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Drug target Mendelian randomization (MR) studies use DNA sequence variants in or near a

gene encoding a drug target, that alter the target’s expression or function, as a tool to

anticipate the effect of drug action on the same target. Here we apply MR to prioritize drug

targets for their causal relevance for coronary heart disease (CHD). The targets are further

prioritized using independent replication, co-localization, protein expression profiles and data

from the British National Formulary and clinicaltrials.gov. Out of the 341 drug targets iden-

tified through their association with blood lipids (HDL-C, LDL-C and triglycerides), we

robustly prioritize 30 targets that might elicit beneficial effects in the prevention or treatment

of CHD, including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. We

discuss how this approach can be generalized to other targets, disease biomarkers and

endpoints to help prioritize and validate targets during the drug development process.
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Genome-wide association studies (GWAS) in patients and
populations test relationships between natural sequence
variation (genotype) and disease risk factors, biomarkers,

and clinical endpoints using population-based cohort and
case–control studies.

A well-established role of Mendelian randomization (MR)
analysis is to use genetic variants (mostly identified from GWAS)
as instrumental variables to identify which disease biomarkers
(e.g., blood lipids such as low- and high-density lipoprotein
cholesterol (HDL-C) and triglycerides (TG)) may be causally
related to disease endpoints (e.g., coronary heart disease;
CHD)1,2. We and others have shown that variants in a gene
encoding a specific drug target, that alters the target’s expression
or function, can be used as a tool to anticipate the effect of drug
action on the same target. We have referred to this application of
MR as “drug target MR”3. In contrast to a genome-wide bio-
marker MR, where the variants comprising the genetic instru-
ment are selected from across the genome, in a drug target MR
analysis, variants are selected from the gene of interest or
neighboring genomic region because these variants are most
likely to associate with the expression or function of the encoded
protein (acting in cis). Whereas genome-wide biomarker MR
helps infer the causal relevance of a biomarker for a disease, a
drug target MR helps infer whether and, in certain cases in what
direction, a drug that acts on the encoded protein, whether an
antagonist, agonist, activator, or inhibitor, will alter disease risk
(Supplementary Table 1).

Genome-wide biomarker MR studies have validated the causal
role of elevated low-density lipoprotein cholesterol (LDL-C) on
CHD risk, supporting the findings from randomized controlled
trials of different LDL-C lowering drug classes4–9. However, such
studies have been equivocal on the role of HDL-C and TG in
CHD4,5. Clinical trials of these lipid fractions have also been
seemingly contradictory. For example, using niacin to raise HDL-
C did not reduce CHD risk10, but inhibiting cholesteryl ester
transfer protein (CETP) with anacetrapib, which also raises HDL-
C, was effective in preventing CHD events11. However, a drug
target MR of CETP on CHD, using variants in the CETP gene
weighted by their effect on HDL-C, indicates protection from
disease (odds ratio (OR): 0.87; 95% CI: 0.84–0.90)3. The finding is
consistent with the effect of allocation to the CETP-inhibitor
anacetrapib in a placebo-controlled trial (0.93; 95% CI: 0.86–0.99)
and is compatible with the view that targeting CETP is an
effective therapeutic approach to prevent CHD (Fig. 1)11.
Importantly, as discussed in detail elsewhere3, drug target MR
analyses which use genetic associations with “biomarkers”
downstream to the protein, such as HDL-C, use this effect as a
proxy for protein concentration or activity (where this has not

been measured directly) and do not provide evidence on whether
the biomarker used for the weighting itself mediates disease.
Rather, they inform on the validity of the drug target for a disease,
regardless of the mediating pathway.

Taken together, these observations suggest that other similarly
effective as yet unexploited drug targets might exist for the pre-
vention or treatment of CHD that could be identified through their
association with blood lipids even though such analyses should not
presume that the effect on CHD is mediated through these lipids.

Here, we apply drug target MR on a set of druggable proteins
identified through genetic associations with circulating blood
lipids and assessed their causal relevance for CHD. To place the
findings in context, we first re-evaluate causal effect estimates for
LDL-C, HDL-C, and TG on CHD using “genome-wide biomarker
MR”, based on summary statistics from GWAS of blood lipids
and CHD. Next, we use these data to select genes associated with
blood lipids that encode druggable targets and test the effects of
these drug targets on CHD using “drug target MR” in two
independent datasets. In parallel, we investigate if the genetic
associations with each lipid sub-fraction and CHD are consistent
with a shared causal variant using genetic co-localization. For a
set of replicated, prioritized drug targets, we perform a phenome-
wide scan of genetic associations of variants within the encoding
gene region with additional disease biomarkers and endpoints
beyond CHD. We source data from clinicaltrials.gov and the
British National Formulary (BNF) for drugs in clinical phase
development and approved medicines, respectively, to identify
agents that might be pursued rapidly in clinical phase testing for
treatment or prevention of CHD. Because of interest in this area,
though not the focus of the work, we also evaluate potential
mediators of these effects using multivariable MR (MVMR).
Finally, we discuss how this approach might be generalized to
other drug targets and clinical endpoints, providing a route to
translating findings from GWAS into new drug development.

Results
Genome-wide biomarker MR analysis. Previous genome-wide
biomarker MR studies have shown a causal effect of LDL-C and
TG on CHD risk, while the causal role of HDL-C remains
uncertain5. As an initial step, to confirm the robustness of our
analytical pipeline and contextualize further analyses, we first
replicated previously reported genome-wide biomarker MR esti-
mates using genetic variants from the Global Lipid Genetic
Consortium (GLGC)12 to instrument causal effects of the three
lipid sub-fractions on CHD, using summary statistics from the
CardiogramPlusC4D Consortium GWAS13. Causal estimates
were obtained through univariable MR, with Egger horizontal

Fig. 1 HDL-C, CETP inhibitor, and CHD: genome-wide biomarker vs. drug target MR. Forest plot of the HDL-C biomarker MR estimate (Holmes et al.,
2015), drug target MR estimate of CETP level and function using HDL-C as a proxy (Schmidt et al., 2020), and odds ratio of anacetrapib clinical trial
(HPS3/TIMI55–REVEAL Collaborative Group, 2017). OR odds ratio, CI confidence interval, SD standard deviation.
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pleiotropy correction applied through a model selection
framework14. The OR for CHD per standard deviation (SD)
higher concentration of the corresponding blood lipid fraction
was 1.50 (95% confidence interval (CI): 1.39–1.63) for LDL-C,
0.95 (95% CI: 0.90–1.01) for HDL-C and 1.10 (95% CI: 1.01–1.21)
for TG. These findings were replicated in an independent analysis
using summary statistics from a GWAS meta-analysis of lipids
measured using a nuclear magnetic resonance (NMR) spectro-
scopy platform15,16, and genetic associations with CHD risk
derived from UK Biobank17. The OR for CHD per SD increase in
LDL-C and TG in the replication dataset were 1.28 (95% CI:
1.25–1.31) and 1.23 (95% CI: 1.14–1.32), respectively, and 0.89
(95% CI: 0.83–0.96) per SD increase in HDL-C. This genome-
wide biomarker MR estimates confirmed the previously reported
causal effect of LDL-C and TG on CHD risk but illustrate the
equivocal role of HDL-C. To account for the correlation between
the lipid fractions and evaluate their direct independent effect on
CHD, we performed an MVMR analysis in the discovery datasets,
which assessed genetic associations with the three lipid subfrac-
tions and CHD risk in a single model. The MVMR analysis
generated an OR of 1.53 (95% CI: 1.44–1.62) per SD higher LDL-
C, 0.91 (95% CI: 0.86–0.95) per SD higher HDL-C, and 1.09 (95%
CI: 1.01–1.17) per SD higher TG (Supplementary Table 2).

Drug target MR analysis. Drug target MR was used to determine
the effect on CHD of perturbing druggable proteins that influence
one or more of the three lipid fractions. First, genes previously
shown to encode druggable proteins were selected in regions
around variants associated with one or more of the major cir-
culating lipid subfractions applying a P value < 1 × 10−6. This
identified 341 genes; 149 for an association with LDL-C, 180 for
HDL-C, and 154 for TG18. One hundred forty genes (41%) were
associated with a single lipid subfraction, 101 (30%) were asso-
ciated with two subfractions and 100 (29%) were associated with
all three subfractions (Supplementary Fig. 1, Supplementary
Data 1). Subsequently, we performed a drug target MR analysis
on CHD accounting for genetic correlation between variants (see
“Methods”). In the absence of direct measures of the encoded
protein, we proxied the effect of genetic drug target perturbation
through the downstream effect on one or more of the three lipid
sub-fractions. Here, we used genetic associations with LDL-C,
HDL-C, and TG as a proxy for drug target effects on CHD, which
does not provide direct evidence on whether the drug target itself
affects CHD through the leveraged lipid weight; this mediation
question is subsequently explored using MVMR.

Of the 341 drug targets, 165 could be associated with CHD, with
131 of these estimates being consistent with a protective effect when
instrumented for a reduction in LDL-C or TG and/or elevation in
HDL-C (Fig. 2, Supplementary Data 2). When weighted by LDL-C,
eighty-seven targets showed a significant effect on CHD after
orientating towards an increasing LDL-C direction, with the first
and third quartiles (Q) of the CHD OR of 1.93 and 3.32. Similarly,
the Q1 and Q3 after orientating the OR toward an increasing HDL-
C direction were 0.22 and 0.53 for the 49 significant HDL-C
instrumented targets, and for the 49 significant TG instrumented
targets these were 1.95 and 4.35, respectively.

To assess the potential for false-positive results, the distribution of
the exposure-specific P values was tested against the uniform
distribution expected under the null hypothesis19. The
Kolmogorov–Smirnov (KS) goodness-of-fit test was not consistent
with the hypothesis that the observed findings could be readily
explained by multiple testing (Supplementary Fig. 2).

Rediscoveries of indications and on-target adverse effects. We
investigated if the drug target MR analysis rediscovered the

mechanism of action of drugs with a license for lipid modification
or compounds with a different indication but with reported lipid-
related effects. To do so, compounds with reported lipid indica-
tions or adverse effects were extracted from the BNF website
(https://bnf.nice.org.uk/), which comprises prescribing informa-
tion for all UK licensed drugs. Out of the 341 druggable genes
included in the analysis, five encoded the targets of drugs with a
lipid-modifying indication (PCSK9, PPARG, PPARA, NPC1L1,
and HMGCR) of which NPC1L1, HMGCR, and PCSK9 are tar-
gets of drugs used in CHD prevention; and six encoded a protein
target of a drug with reported lipid-related adverse effects
(ADRB1, TNF, ESR1, FRK, BLK, and DHODH) (Supplementary
Data 3). To include outcome and side effect data of candidates in
clinical phase development, the 341 drug targets were mapped to
compound data available in a clinicaltrials.gov curated database.
This database differentiates between endpoints monitored
throughout the trial (“outcomes”) and unanticipated harmful
episodes during the study that may be on-target or off-target
effects of the trial agent (“adverse events”). Of the 341 drug tar-
gets, 23 had reported lipid-related outcomes and 40 had reported
lipid-related adverse events (Supplementary Data 3).

The pool of druggable targets that were modeled using higher
LDL-C as a proxy for the pharmacological action on a drug target
included 14 targets of clinically used drugs, three of which were
licensed for CHD treatment by lowering LDL-C (HMGCR,
PCSK9, and NPC1L1). The non-CHD indications of clinically
used drugs included dyslipidemias (PPARA), type 2 diabetes
(PPARG and NDUFA13), autoimmune diseases (TNF), neo-
plasms (RAF1 and PSMA5), circulatory disorders (ABCA1, PLG,
ITGB3, and F2), and alcohol-dependency (ALDH2) (Table 1).
With the exception of F2, instrumenting the target action through
a higher LDL-C effect was associated with a higher CHD risk.
Two drug targets were for compounds already in phase 3 trials for
CHD prevention (ANGPTL3 and CETP). Lastly, three targets
were in phase 2 trials of compounds developed for other
indications (CYP26A1, LTA, and LTB). The remaining 82 of
the 101 targets had not yet been drugged by compounds in
clinical phase development.

When using higher HDL-C as a proxy for pharmacological
action, MR of four drug targets with compounds approved for non-
CHD indications showed a directionally beneficial effect on CHD
(VEGFA, PSMA5, CACNB1, and NISCH), suggesting potential for
indication expansion (Table 1). Three were targets for drugs
approved for non-CHD indications but which showed a potentially
detrimental effect direction on CHD when instrumented through
increasing HDL-C concentration (ESR1, ALOX5, and TUBB). Both
CYP26A1 and CETP were associated with lower CHD risk when
the effect on CHD was instrumented through an elevation of HDL-
C. The remaining 65 of the 74 targets have not yet been drugged by
compounds in clinical phase development.

Lastly, the set of druggable targets with compounds developed
for non-CHD indications that were modeled using higher TG as a
proxy for the pharmacological action on the target included
PPARG, DHODH, VEGFA, TOP1, TUBB, NDUFA13, ABCA1,
BLK, and F2 (Table 1). Of these, instrumenting the CHD effect
through higher TG via drug action on BLK or F2 increased CHD
risk. For the remaining targets, which included CETP, ANGPTL3,
and CYP26A1, instrumenting the target effect through lowering
TG levels decreased the risk of CHD, while the remaining 52 of
the 64 targets have not been drugged by licensed compounds or
clinical candidates yet.

Independent validation of the drug target MR estimates. To
help verify the MR findings and reduce the multiple testing
burden, an independent two-sample drug target MR analysis was
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conducted using summary statistics from a GWAS of blood lipids
measured using an NMR spectroscopy platform15,16, and genetic
associations with CHD risk derived from UK Biobank17. The
validation analysis identified 47 significant MR estimates (P
value < 0.05), of which 39/47 (83%) showed a concordant direc-
tion of effect with the initial analysis (Fig. 3) corresponding to 30
drug targets. Replicated targets included the licensed LDL-
lowering drug targets PCSK9 and NPC1L1 (Table 2). While the
majority of the replicated drug targets were anticipated to
decrease CHD risk when instrumenting their effect through LDL-
C concentration based on the univariable results, nine of the drug
targets analyzed were significantly associated with lower CHD
when the drug target effects were modeled through HDL-C and/
or TG (Supplementary Fig. 3).

Discriminating independent lipid effects using MVMR. After
considering each lipid sub-fraction as a single measure on disease
risk in the univariable drug target MR analyses, we performed a
multivariable drug target MR (MVMR) analysis including LDL-
C, HDL-C, and TG in a single model to account for potential

pleiotropic effects of target perturbation via the other lipid sub-
fractions and, in contrast to the previous univariable drug target
MR, attempt to directly identify any potential lipid mediating
pathway. Twenty-six of the replicated targets had sufficient data
(3 or more variants) for the multivariable analysis. This analysis
identified a single likely lipid fraction for 12 targets (SLC12A3,
APOB, APOA1, PVRL2, APOE, APOC1, CELSR2, GPR61,
PCSK9, and CEACAM16 through LDL-C; LPL through HDL-C;
and ALDH1A2 through TG) (Supplementary Data 4). We found
that SMARCA4 and APOA5 likely affected CHD through LDL-C
and TG and that RPL7A likely affected CHD through LDL-C and
HDL-C pathways. Due to the limited number of variants in
VEGFA, CILP2, NDUFA13, and ANGPTL4, multivariable MR
analysis could not distinguish the lipid fraction through which
CHD was likely affected. Additionally, the presence of horizontal
pleiotropy in the MVMR analysis based on heterogeneity tests
suggested that PCSK9, LPL, APOC1, APOE, PVRL2, APOB,
APOC3, CETP, APOA1, and CELSR2 may affect CHD through
additional pathways beyond the lipid sub-fractions LDL-C, HDL-
C, and TG included in the current model.

Fig. 2 Discovery drug target MR estimates on CHD. Analyses were performed using genetic associations with LDL-C, HDL-C, and TG from the Global
Lipid Genetic Consortium (GLGC) with CHD events from the CardiogramPlusC4D Consortium. Drug targets are grouped by clinical phase according to the
ChEMBL database. Blue indicates a beneficial effect on CHD risk and red a detrimental effect per SD difference with respect to the indicated lipid sub-
fraction. Significant estimates are indicated with an asterisk (*). Co-localization of genetic effects on the relevant lipid sub-fraction and CHD at the same
locus is indicated by a square around the cell.
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Co-localization between loci for lipids and CHD. Co-
localization analyses are often performed to facilitate the map-
ping of genetic variants to causal genes in a disease GWAS by
assessing whether associations with gene expression and disease
outcome share a causal variant. Here, we applied co-localization
analysis using blood lipids as an intermediate trait instead of gene
expression data as a parallel validation step to assess if the genetic
associations with each lipid sub-fraction and CHD were con-
sistent with a shared causal variant20. Twenty-eight out of a total
of 33 co-localization signals overlapped a significant finding in
the discovery MR, which corresponded to 25 genes encoding a
drugged or druggable target (Fig. 2). Moreover, 11 of the repli-
cated drug targets showed evidence of co-localization between the
lipid sub-fraction and CHD. These included 9 targets replicated
for lowering LDL-C levels (SMARCA4, PVLR2, APOE, APOC1,
CARM1, RPL7A, ADAMTS13, PCSK9, and C9orf96), one target
replicated for raising HDL-C levels (LPL), and one target repli-
cated for lowering TG levels (VEGFA).

Tissue expression to aid drug target prioritization. While many
tissues are involved in lipid homeostasis, the liver is considered

the mechanistic effector organ for many therapeutics targeting
lipid metabolism21. To investigate if the replicated drug target
genes were specifically expressed in the liver or any other parti-
cular tissue, we extracted their RNAseq expression profiles from
the Human Protein Atlas22 and calculated two commonly used
tissue specificity metrics: the tau and z-scores23. Whilst tau
summarizes the overall tissue distribution of a given gene and
helps to distinguish between broadly expressed housekeeping
genes (tau= 0) and tissue-specific genes (tau= 1), z-scores
quantify how elevated the expression of a particular gene is in a
particular tissue compared to other tissues. Among the 30 repli-
cated genes, 28 had available RNAseq data, of which 15 (54%)
showed elevated expression in the liver compared to other tissues
(z-score > 1) (Table 2, Supplementary Fig. 4). These genes
included the known lipid-lowering drug target genes, PCSK9, and
NPC1L1. Furthermore, eight genes were highly specific to the
liver as indicated by high tau values (tau > 0.8). Other tissues
showing elevated expression of the replicated drug target genes
were gastrointestinal tissues such as the small intestine and colon
(e.g., APOA4 and APOB) and kidney (SLC12A3). Regarding the
expression distribution of the targets, 9 showed tau values below

Table 1 Univariable drug target MR estimates for drug targets approved for indications other than lipid-lowering.

Drug target gene LDL-C (OR,
95% CI)

HDL-C (OR, 95% CI) Triglycerides (OR,
95% CI)

Mechanism of action and indication

ESR1 – 2.11 (1.13–3.93)* – AGONIST: Neoplasms, Hypogonadism, Menorrhagia, Primary
Ovarian Insufficiency, Acne Vulgaris, Postmenopausal
Osteoporosis
ANTAGONIST: Breast Neoplasms, Neoplasms
MODULATOR: Infertility, Dyspareunia, Breast Neoplasms,
Postmenopausal Osteoporosis

TNF 2.03 (1.05–3.93)* – 1.21 (0.78–1.9) INHIBITOR: Ankylosing Spondylitis, Crohn Disease, Psoriasis,
Rheumatoid Arthritis, Colitis, Ulcerative, Psoriatic Arthritis,
Immune System Diseases, Juvenile Arthritis

BLK – – 0.46 (0.31–0.7)* INHIBITOR: Precursor Cell Lymphoblastic Leukemia–Lymphoma,
Neoplasms

DHODH 0.66 (0.44–1.0) – 7.42 (2.32–23.71)* INHIBITOR: Rheumatoid Arthritis, Immune System Diseases,
Multiple Sclerosis

PPARG 1.67 (1.04–2.68)* 0.71 (0.35–1.48) 2.18 (1.14–4.15)* AGONIST: Type 2 Diabetes Mellitus, Diabetes Mellitus,
Ulcerative Colitis, Cardiovascular Diseases

PPARA 3.77 (1.44–9.85)* – – AGONIST: Cardiovascular Diseases, Hypercholesterolemia,
Dyslipidemias

NDUFA13 1.63 (1.13–2.35)* – 1.18 (1.0–1.39)* † INHIBITOR: Diabetes Mellitus, Type 2 Diabetes Mellitus
ALDH2 0.14 (0.07–0.29)* – – INHIBITOR: Ectoparasitic Infestations, Alcoholism
NISCH – 0.57 (0.35–0.93)* 1.16 (0.31–4.34) AGONIST: Hypertension
ABCA1 2.05 (1.34–3.15)* 1.41 (0.66–3.0) 2.4 (1.29–4.49)* INHIBITOR: Cardiovascular Diseases
F2 0.17 (0.05–0.59)* 0.57 (0.13–2.43) 0.35 (0.13–0.94)* INHIBITOR: Venous Thrombosis, Thrombosis, Unstable Angina,

Thrombocytopenia, Atrial Fibrillation, Embolism, Stroke
TUBB – 7.56 (1.18–48.38)* 4.46 (2.13–9.36)* INHIBITOR: Breast Neoplasms, Neoplasms, Hodgkin Disease,

Large-Cell Anaplastic Lymphoma, Non-Small-Cell Lung Carcinoma,
Gout, Familial Mediterranean Fever

VEGFA – 0.22 (0.15–0.3)* 4.16 (2.45–7.08)* † ANTAGONIST: Retinal Neovascularization
INHIBITOR: Diabetic Retinopathy, Retinal Neovascularization, Wet
Macular Degeneration, Macular Edema, Colorectal Neoplasms,
Neoplasms, Glioblastoma, Renal Cell Carcinoma, Non-Small-Cell
Lung Carcinoma, Uterine Cervical Neoplasms

RAF1 2.06 (1.48– 2.86)* – 2.63 (0.79–8.83) INHIBITOR: Neoplasms
PSMA5 2.47 (1.8–3.39)* † 0.08 (0.02–0.29)* – INHIBITOR: Multiple Myeloma, Neoplasms, Mantle-Cell

Lymphoma
ALOX5 – 1.74 (1.18–2.58)* – INHIBITOR: Asthma, Ulcerative Colitis, Rheumatoid Arthritis,

Juvenile Arthritis
CACNB1 – 0.38 (0.2–0.72)* – BLOCKER: Cardiovascular Diseases

MODULATOR: Fibromyalgia, Seizures, Epilepsy, Neuralgia,
Restless Legs Syndrome, Postherpetic Neuralgia

PLG 18.35 (5.47–61.6)* 5.48 (0.07–456.86) 0.75 (0.18–3.14) ACTIVATOR: Thrombosis, Pulmonary Embolism, Stroke,
Myocardial Infarction, Heart Failure, Hepatic Veno-Occlusive
Disease
INHIBITOR: Hemorrhage, Menorrhagia

ITGB3 1.64 (1.06–2.52)* 2.79 (0.81–9.62) – INHIBITOR: Thrombosis, Unstable Angina
TOP1 2.3 (0.15–35.62) – 16.72 (4.19–66.8)* INHIBITOR: Neoplasms

These drug targets showed lipid records in clinicaltrials.gov and/or the British National Formulary (BNF). OR odds ratio of CHD per 1-standard deviation increase in LDL-C, HDL-C, or triglycerides; CI
confidence interval.
*Indicates significance in the discovery analysis.
†Indicates significance in both original and validation study and concordant direction of effect.
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0.5, indicating that they are broadly expressed and suggesting
that, when developing a drug, the possibility of observing adverse
effects increases24.

Phenome-wide scan of replicated drug target candidates. The
identification of potential mechanism-based adverse effects of a
target represents an important aspect when prioritizing clinical
candidates in the drug development pipeline. To explore potential

effects of target perturbation on clinical endpoints other than
CHD (whether beneficial or adverse), we performed a phenome-
wide scan in 102 disease traits of the 30 drug targets replicated via
drug target MR (Methods, Fig. 4, Supplementary Figs. 5–33). The
102 traits were agnostically selected and represent the entire
spectrum of clinical disease available from the Neale Lab UK
Biobank release, with the exclusion of Coronary Artery Disease
(ICD10 code: I25), and data from 23 publicly available GWAS
with the largest sample sizes for such phenotypes. Besides

Fig. 3 Replication of drug target MR findings. The discovery and replication analyses used different data sources for both exposure and outcome. Totally,
145 replication MR analyses were performed in which the gene boundaries included genetic associations exceeding the pre-specified significance threshold
(P value≤ 1 × 10−4).

Table 2 Tissue specificity for replicated genes encoding drug targets.

Drug target gene LDL-C (OR,
95% CI)

HDL-C (OR,
95% CI)

Triglycerides (OR,
95% CI)

Tissue specificity
index (tau)

Top tissues (Z-score > 1)

APOA5 2.05 (1.4–3.02)* † 0.72 (0.6–0.87)* † 1.21 (1.12–1.31)* † 1.00 Liver
SLC12A3 1.94 (1.43–2.63)* 0.89 (0.86–0.93)* † 0.75 (0.24–2.33) 0.98 Kidney
CEACAM16 1.66 (1.31–2.11)* † 0.46 (0.27–0.79)* 0.56 (0.25–1.27) 0.98 Pancreas, tonsil
APOC3 2.04 (1.72–2.42)* † 0.67 (0.58–0.78)* 1.26 (1.12–1.41)* † 0.95 Liver
APOA4 1.51 (1.23–1.86)* † 0.53 (0.38–0.74)* 1.27 (1.14–1.43)* † 0.94 Small intestine, colon, duodenum
APOB 1.5 (1.18–1.9)* † 1.23 (0.72–2.12) 0.53 (0.29–0.98)* † 0.94 Liver, small intestine
APOA1 1.88 (1.49–2.36)* † 0.84 (0.63–1.11) 1.25 (1.12–1.4)* † 0.93 Liver, small intestine
NPC1L1 2.01 (1.48–2.73)* † – 2.56 (0.75–8.68) 0.92 Small intestine, colon, duodenum, liver
GPR61 1.97 (1.56–2.5)* † 3.02 (0.77–11.91) 5.14 (1.43–18.48)* 0.91 Cerebral cortex, adrenal gland, eye,

thyroid gland
PCSK9 1.6 (1.45–1.77)* † – – 0.87 Liver, lung, pancreas
APOC1 1.31 (1.22–1.41)* † 0.39 (0.25–0.59)* 0.51 (0.17–1.47) 0.85 Liver
CETP 1.49 (1.29–1.72)* 0.91 (0.87–0.95)* † 1.98 (1.63–2.4)* † 0.76 Lymph node, liver, placenta, spleen
ADAMTS13 11.18 (4.37–28.59)* † – - 0.72 Liver
CILP2 1.19 (1.01–1.39)* – 1.18 (1.0–1.39)* † 0.71 Testis, gallbladder, ovary, thyroid gland
LPL – 0.63 (0.49–0.82)* † 1.68 (1.46–1.92)* † 0.68 Adipose tissue, breast, heart muscle,

seminal vesicle
APOE 1.3 (1.2–1.41)* † 0.39 (0.26–0.59)* 0.5 (0.17–1.45) 0.58 Liver, adrenal gland
CELSR2 1.97 (1.78–2.18)* † 0.06 (0.04–0.09)* – 0.58 Cerebral cortex, fallopian tube, skin
ALDH1A2 – 0.89 (0.81–0.99)* 1.28 (1.07–1.54)* † 0.55 Endometrium, blood, cervix, uterine,

fallopian tube, eye, seminal vesicle, testis
ANGPTL4 – 0.48 (0.28–0.83)* † 3.38 (1.02–11.22)* † 0.50 Liver, adipose tissue, breast, cerebral

cortex, pancreas
PVR 1.31 (1.12–1.54)* † 0.32 (0.11–0.91)* – 0.45 Liver, heart muscle
NDUFA13 1.63 (1.13– 2.35)* – 1.18 (1.0–1.39)* † 0.43 Testis, blood, heart muscle,

skeletal muscle
CARM1 2.27 (1.68–3.05)* † – – 0.38 Skeletal muscle
VEGFA - 0.22 (0.15–0.3)* 4.16 (2.45–7.08)* † 0.33 Thyroid gland, endometrium, heart

muscle, liver, skeletal muscle, urinary
bladder

SIK3 1.15 (0.57–2.31) 0.46 (0.29–0.73)* † 1.08 (0.98–1.18) 0.27 Cerebral cortex, ovary, parathyroid gland,
testis, thyroid gland

TMED1 2.06 (1.5–2.83)* † – – 0.26 Blood, heart muscle, liver, placenta,
skeletal muscle

PSMA5 2.47 (1.8–3.39)* † 0.08 (0.02–0.29)* – 0.23 Liver, cerebral cortex, kidney, skeletal
muscle, thyroid gland

SMARCA4 2.22 (1.98–2.49)* † 0.01 (0.0–0.02)* – 0.19 Cerebral cortex, bone marrow, esophagus,
skeletal muscle, skin, testis, tonsil

RPL7A 2.29 (1.57–3.36)* † – – 0.19 Salivary gland, endometrium, lymph node,
ovary, pancreas

The tau value is a measure of tissue specificity with values between 0 and 1, where 1 indicates high specificity for a single tissue. The tissue(s) with the highest expression of the gene is indicated in the
top tissue column. OR odds ratio of CHD per 1-standard deviation increase in LDL-C, HDL-C, or triglycerides; CI confidence interval.
*Indicates significance in the discovery analysis.
†Indicates significance in both original and validation study and concordant direction of effect.
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Fig. 4 Prioritized target: lipoprotein lipase (LPL). a Genetic associations at the locus (±50 kbp) in black vs. genome-wide associations (gray, P value < 1 × 10−6

based on two-sided z-tests). The x-axis shows the per allele effect on the corresponding lipid expressed as mean difference (MD) from GLGC and the y-axis
indicates the per allele effect on CHD expressed as log odds ratios (OR) from CardiogramPlusC4D. The marker size indicates the significance of the association
with the lipid sub-fraction (P value). b Univariable and multivariable (drug target) cis-MR results presented as OR and 95% confidence intervals with lipid exposure
(n= 188,577 individuals) and CHD outcome (n= 60,801 cases and 123,504 controls). An asterisk (*) indicates the MR estimates as being replicated, and a dagger
(†) that the lipid effect and CHD signals are co-localized. c. Disease associations at the locus with 103 clinical endpoints from UK Biobank and GWAS Consortia.
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genome-wide significant associations with diseases of the circu-
latory system, variants in six drug target genes showed genome-
wide significant associations with type 2 diabetes (NDUFA13,
CILP2, PVRL2, VEGFA, APOC1, and LPL), five with Alzheimer’s
disease (APOC1, PVR, PVRL2, APOE, and CEACAM16), four
with asthma (SMARCA4, CETP, VEGFA, and ALDH1A2) and
four with gout (APOA1, APOC3, APOA4, and APOA5). Notably,
the PheWAS rediscovered the mechanism of action of metformin,
a drug targeting NDUFA13 and licensed for type 2 diabetes25.

Discussion
By combining publicly available GWAS datasets on blood lipids
and CHD and applying MR approaches with drug information
and clinical data, we have genetically validated and prioritized
drug targets for CHD prevention.

We identified 131 drug target genes associated with CHD risk
from a set of 341 druggable genes overlapping associations with
one or more of the major blood lipid fractions. The set of targets
included NPC1L1, HMGCR, and PCSK9, which are known tar-
gets of LDL-lowering drugs whose efficacy in CHD prevention
has been proven in clinical trials. We performed an independent
replication study both to corroborate the targets and the direction
of the effects. We replicated the findings in independent datasets
(UCLEB Consortium and UK Biobank) in which lipids were
measured using a different platform (NMR spectroscopy in
UCLEB) and the disease endpoints ascertained by linkage to
routinely recorded health data (UK Biobank). The validation
study replicated 83% (39/47) of the initial estimates, including the
mechanism of action of current lipid-modifying drug targets
PCSK9 and NPC1L1 and the suggested mechanism of action of
compounds under investigation for lipid modification through
TG or HDL-C, such as CETP inhibitors26,27.

As a positive control step, our (genome-wide) biomarker MR
analysis replicated previous findings on the potential causal
relevance of LDL-C, TG, and HDL-C5,11,28. Importantly, contrary
to previous studies, here we replicated findings using a completely
independent set of NMR-spectroscopy measured lipids data and
CHD cases sourced from UK Biobank. While the causal relevance
of LDL-C for CHD has been robustly proven through successful
drug development of for example statins, there are as yet no
compounds licensed for CHD prevention through effects on
HDL-C and TG. Hence, the causal relevance of the lipid sub-
fraction, while supported by the current genome-wide biomarker
MR analyses, cannot be concluded definitively. It is therefore
essential to highlight that, while our drug target analysis uses
genetic associations with these lipid sub-fractions as weights, our
inference throughout has been on the therapeutic relevance of
perturbing the proteins encoded by the corresponding genes
which are the main category of a molecular target for drug action.
The genetic associations with the corresponding lipids are merely
used as a proxy for protein activity and/or concentration, serving
to orientate the MR effects in the direction of a therapeutic effect.
They do not provide comprehensive evidence on the pathway
through which perturbation of such targets causally affects CHD.
Nevertheless, MVMR does provide insight on the potential rele-
vance of lipid pathways in mediating the effects of drug target
perturbation. In general, results that do not meet the significance
threshold should not be over-interpreted as proof of the absence
of effect29. This may be exacerbated here by potential weak
instrument bias, which will be expected to attenuate results
towards the no-effect direction.

The set of 30 replicated drug targets also included lipoprotein
lipase (LPL), a target that could potentially decrease CHD risk
based on the univariable MR findings, with an effect through
HDL-C further endorsed by the co-localization and MVMR

analyses (Fig. 4). In contrast to current lipid-lowering drug targets
which are specifically expressed in the liver, LPL shows the
highest specific expression in adipose tissue which suggests tissues
beyond the liver may be relevant to target lipid metabolism.
Several pharmacological attempts have been pursued to target
LPL30,31, and gene therapy has also been applied to treat LPL
deficiency by introducing extra copies of the functional enzyme in
patients with hypertriglyceridemia32. The approval of gene ther-
apy interventions and the known indirect activation of LPL by
drugs targeting other proteins, such as fibrates33 and
metformin34, suggest that the previous failure of compounds
targeting LPL in initial trials may have been idiosyncratic. LPL
activity is also modulated by another protein in the replicated
dataset, apolipoprotein A5 (ApoA5), which is exclusively
expressed in liver tissue. The MVMR suggests that ApoA5 (par-
tially) affects CHD through LDL-C and TG-mediated pathways.
Regardless of the mediating lipid or lipids, the genetic findings in
relation to both LPL and ApoA5 are consistent and point to this
as an important potentially targetable pathway in atherosclerosis,
supporting prior work35.

To provide an indicative genetic profile of a drug target and
hypothesize about potential mechanism-based adverse effects,
repurposing opportunities or expansion of the indication port-
folio of a drug target, we performed a PheWAS of variants in and
around the replicated set of targets on 102 traits. While in some
cases PheWAS highlighted associations with particular clinical
endpoints, for example, the rediscovery of already known indi-
cations or biological pathways, such as the associations of type 2
diabetes with variants in NDUFA13 or the association of Alz-
heimer’s Disease with APOE, further research is needed to eval-
uate the causal role of the target in the corresponding disease and
the beneficial or detrimental effects of modulating those targets
pharmacologically.

Some limitations of this study are noteworthy. First, we only
included genes regarded as encoding druggable proteins, which
currently comprise approximately 25% of all protein-coding
genes18. As knowledge advances, additional proteins will become
druggable, and alternative therapeutic strategies such as antisense
oligonucleotides and gene therapy may extend the range of
mechanisms that can be targeted. The approach we describe is in
fact agnostic to therapeutic modality and could be adapted
accordingly. Notably, antisense oligonucleotides were efficiently
delivered to the liver36, where 54% of the prioritized targets in our
analysis showed elevated expression compared to other tissues.
Second, we assigned variants to druggable genes based on geno-
mic proximity, which may be as reliable as other approaches in
mapping causal genes37–39. However, simple genomic proximity
might result in the misleading assignment of the causal gene in a
region containing multiple genes in high LD (e.g., PVRL2,
APOC1, and APOE are all located in a region of LD in
Chr19:45349432-45422606, GRCh37). In an effort to account for
this, all the druggable genes (±50 kbp) that overlap one of the
genetic variants associated with LDL-C, HDL-C, or TG were
included in the analysis, and we provided information on the
proximity of the variant to the gene, a gene distance rank value
(in base pairs), and previous gene prioritization data by the
Global Lipids Genetics Consortium (GLGC)12 to inform scenar-
ios in which the causal gene may be a non-druggable gene but
reside in the same region (Supplementary Data 1). Lastly, because
some but not all of the studies contributing to these consortia
measured blood lipids on a fasting sample, we are unable to
conduct separate analyses based on genetic effects in the fasting
and non-fasting state.

We used cis-MR to evaluate the relevance of each drug target to
CHD, which is less prone to violation of the horizontal pleiotropy
assumption than MR analyses with trans instruments3, which
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also require direct measurement of the protein of interest.
However, cis-MR also requires some decisions to be made
regarding instrument selection: defining the locus of interest, the
significance threshold for the association with the exposure, and
the LD threshold to prune correlated instruments. Since an
agreement on the choice of a general LD threshold and flanking
region has yet to be reached, we used a window of 50kbp and LD
threshold of 0.4, which showed the most consistent estimates in a
grid-search in the discovery data using the four positive control
examples: PCSK9, NPC1L1, HMGCR, and CETP. Based on
previous studies showing that using less stringent P value
thresholds often results in improved performance in cis-MR
settings, we relaxed the threshold below genome-wide sig-
nificance to select the genetic associations to instrument the
exposure; and accounted for LD correlation by pruning and LD
modeling during the MR analysis3,40.

We addressed multiple testing in the MR analyses in a number
of complementary ways. To assess the potential for false-positive
results, we tested the distribution of the exposure-specific P values
against the uniform distribution expected under the null
hypothesis19. The KS goodness-of-fit test indicated that the
number of extreme P values obtained would be highly unlikely
under the null hypothesis, suggesting that they are unlikely to
represent false positives. Next, we validated our findings with
independent data sources and conducted a second drug target
MR, although several drug target genes could not be evaluated in
the validation analysis because the gene boundaries did not
include genetic associations exceeding the pre-specified sig-
nificance threshold (P value ≤ 1 × 10−4), likely related to the
“modest” sample size of the NMR replication data (N= 33,029).
By drawing inference on replicated data, the multiple testing
burden was considerably reduced (0.052= 0.0025), which when
applied to 98 drug targets retained after replication would suggest
up to one result being a false positive.

Beyond univariable MR analyses, we attempted to further
validate the findings with a multivariable extension of the inverse-
variance weighted (IVW) and MR Egger methods, however, in
some cases we observed imprecise estimates in line with previous
studies which attributed this to the inclusion of highly correlated
exposures in the model41. To further evaluate if the association
signals in the exposure and outcome datasets shared a causal
genetic variant, we performed colocalization analyses. Because
these analyses were originally developed to find evidence of co-
localization between mRNA expression and disease and not for
an intermediate trait and disease, the default prior probabilities
used in the analysis may not be optimal for these pairs of traits. In
addition, the single-causal-variant assumption in genetic co-
localization methods may not always be satisfied even when prior
conditional analyses are performed, with regions with multiple
causal variants potentially yielding false-negative results42.

The effect directions of the replicated drug targets were com-
pared to results from clinical trials using data from the clinical-
trials.gov registry. However, the lack of precision in the annotation
of events associated with lipid perturbations (e.g., hyperlipidemia)
in this dataset hinders the assignment of reported lipid abnormal-
ities to a particular lipid sub-fraction. Moreover, the proportion of
clinical trials with reported results in clinicaltrials.gov is less than
54.2%43, suggesting that additional drug candidates with lipid
effects might have been investigated but were not included in this
analysis because of the lack of accessible data. Furthermore, our
analysis relied on mapping clinical trial interventions to compounds
known to act through binding to the targets of interest, which could
potentially miss clinical trials of compounds annotated with fewer
synonyms (such as research codes for compounds used by indivi-
dual trial sponsors). Lastly, we performed a PheWAS spanning over
100 clinical endpoints, 80 of which were derived from UK Biobank.

While this enabled screening for associations with a wide range of
diseases, genetic associations derived from diagnostic codes in
electronic health record datasets might suffer from limited case
numbers and inaccurate case and control definitions, which would
reduce the power to detect true associations. To increase the power
to detect associations, we included data from publicly available
GWAS with the largest sample sizes for such phenotypes.

In summary, we have shown an approach to move from
GWAS signals to drug targets and disease indications. We illu-
strated its potential using genetic association data on lipids and
CHD data, but the approach could also be applied in other set-
tings where there are GWAS of diseases and biomarkers thought
to be potentially affected by the drug target. For example, with the
increasingly available data on inflammatory biomarkers, this
approach could be used to evaluate the causal role of anti-
inflammatory drug targets, such as IL6R, in CHD, Alzheimer’s
disease, and major depression, following up on associations
described in several studies44–46, to identify potential new indi-
cations for anti-inflammatory agents established in the treatment
of autoimmune conditions. Similarly, recent genetic studies on
coagulation factor levels47 can be harnessed to instrument the
effect of modulating druggable targets for thrombotic disorders,
such as FXI or FXII, which are emerging as potential targets for
anticoagulant drugs48,49.

When used as a screening tool, the approach could help reduce
the high failure rate problem in drug discovery by genetically
validating targets in the earlier phases of the drug development
pipeline.

Methods
Data sources. To determine the causal role and replicate previously reported
results on the causal effect of LDL-C, HDL-C, and TG on CHD, we obtained
summary-level genetic estimates from the Global Lipids Genetics Consortium
(188,577 individuals)12 and from CardiogramPlusC4D (60,801 cases and 123,504
controls)13.

Independent replication data were sourced using lipids exposure data from a
GWAS meta-analysis of metabolic measures by the University College
London–Edinburgh-Bristol (UCLEB) Consortium15 and Kettunen et al.16 utilizing
NMR spectroscopy measured lipids (joint sample size up to 33,029). Independent
CHD data was obtained from a publicly available GWAS of 34,541 cases and
261,984 controls in UK Biobank17.

Individual-level data from a random subset of 5000 unrelated individuals of
European ancestry from UK Biobank was used to generate the LD reference
matrices as described in the Instrument selection section.

Drug target gene selection. Analyses were conducted using Python v3.7.3. To
estimate the causal effect of modulating the level of each lipid sub-fraction via a
druggable gene on CHD, variants associated with LDL-C, HDL-C, and/or TG with
a P value ≤ 1 × 10−6 were selected. Druggable genes overlapping a 50 kbp region
around the selected variants were extracted, resulting in 341 associated drug target
genes (149 for LDL-C, 180 for HDL-C, and 154 for TG). The set of genes in the
druggable genome were identified18, and identifiers were updated to Ensembl
version 95 (GRCh37), used in this analysis. Because we only scanned for genetic
associations with the druggable genome, protein-coding genes that were the “true”
causal gene but not yet druggable would be missed and the association misassigned.
To mitigate this and provide information about potential effects through non-
druggable genes, we provide the minimum distance from the variant to the gene,
where variants located within a gene were given a distance of 0 bp, a gene distance
rank value according to their base-pair distance, and indicated the druggable genes
prioritized by GLGC (Supplementary Data 1).

Instrument selection. For the genome-wide biomarker MR analyses, a P value
threshold of 1 × 10−6 was used to select exposure variants associated with LDL-C,
HDL-C, and/or TG. For cis- or drug target MR analyses, variants from/within the
341 selected genes (±50 kbp) were selected based on a P value ≤ 1 × 10-4. In both
settings, variants were filtered on a MAF > 0.01 and LD clumped to an r2 < 0.4.
These parameters showed the most consistent estimates in a grid-search in the
discovery data using the positive control examples: PCSK9, NPC1L1, HMGCR, and
CETP (Supplementary Fig. 34). To account for residual correlation between var-
iants in the MR analyses, we applied a generalized least squares framework with an
LD reference dataset derived from UK Biobank50. LD reference matrices were
created by extracting a random subset of 5000 unrelated individuals of European
ancestry from UK Biobank. Variants with a MAF < 0.001, and imputation
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quality < 0.3 were excluded. To ensure that SNPs with lower MAF have higher
confidence, variants were removed if MAF < 0.005 and genotype probability < 0.9;
MAF < 0.01 and genotype probability < 0.8; MAF < 0.03 and genotype
probability < 0.6.

MR analysis. As a validation step, a genome-wide biomarker MR analysis was
conducted for each lipid sub-fraction to replicate previous findings using genetic
associations across the genome. A model-selection framework was used to decide
between competing IVW fixed-effects, IVW random-effects, MR–Egger fixed effects
or MR–Egger random-effects models14. While IVW models assume an absence of
directional horizontal pleiotropy, Egger models allow for possible directional pleio-
tropy at the cost of power. After removing variants with large heterogeneity (P
value < 0.001 for Cochran’s Q test) or leverage, we re-applied this model selection
framework and used the final model. The influence of parameter selection in the drug
target MR performance was explored in a grid-search of several r2 and gene
boundaries combinations using the positive control examples PCSK9, NPC1L1,
HMGCR, and CETP, where the lipid perturbation is the intended indication. To
assess the possibility of false-positive results, we compared the empirical P value
distribution of the discovery MR findings against the continuous uniform distribution
using the KS goodness-of-fit test (two-sided). Under the null hypothesis of no asso-
ciation, P values follow a continuous uniform distribution between 0 and 119.

In addition, we conducted genome-wide biomarker and drug target
multivariable MR analyses using genetic associations with the three lipid sub-
fractions and CHD risk in a single regression model, to identify likely mediating
lipids in the causal pathway of CHD.

Results were presented as mean difference (MD) or OR with 95% confidence
interval (95% CI) coded towards the canonical drug target effect direction; i.e.,
toward lower LDL-C and triglyceride concentration, and higher HDL-C
concentration.

Co-localization analysis. To estimate the posterior probability of each druggable
gene sharing the same causal variant for the exposure lipid and CHD risk51 we
performed colocalization analyses. First, we conducted a stepwise conditional analysis
using GCTA-COJO v1.92.4 with genotype data from 5000 individuals randomly
selected from UK Biobank52. Colocalization analyses were performed using a Python
implementation of the Bayesian method “coloc” v3.2-120. The default prior prob-
abilities were used to estimate if an SNP was associated only with the lipid sub-
fraction (p1= 10−4), only with CHD risk (p2= 10−4), or with both traits
(p12= 10−5). For each drug target gene, all variants from/within the gene boundaries
(±50 kbp) with a MAF > 0.01 were included. A posterior probability above 0.8 was
considered sufficient evidence of colocalization based on previous observations20.

Drug indications and adverse effects. To evaluate if the drug target MR and
colocalization analyses rediscovered known drug indications, adverse effects, or
predicted repurposing opportunities, drug information, and clinical trial data were
extracted for the set of 341 druggable targets. Drug target genes were mapped to
UniProt identifiers and indications and clinical phase for compounds that bind the
target were extracted from the ChEMBL database (version 25)53. Drug indications
and lipid adverse effects data for licensed drugs were extracted from the British
National Formulary (BNF) website (https://bnf.nice.org.uk/) in July 2019.

To further examine the effects of the drugs and clinical candidates that are
known to act through binding to the 341 druggable targets, relevant clinical trial
data were downloaded from the clinicaltrials.gov registry. Compound names and
synonyms were extracted from ChEMBL database (version 25)53 and used to
identify clinical trials with matching interventions. In the case of non-exact
matches, the results were inspected manually to ensure that only relevant trial
records were used in the analysis. Lipid-related trial outcomes and adverse events
were identified by searching the relevant fields within the trial records with the
keywords: lipo*, lipid*, ldl*, hdl*, cholest*, and triglyceride*. For adverse events,
the search was limited to the trial arm in which the drug of interest was
administered (as opposed to placebo or active control used in the study), and only
adverse events that affected at least one study participant were included.

Tissue expression analysis. To further characterize the genes prioritized by the
MR pipeline, their tissue expression was analyzed as follows. First, RNAseq data
were downloaded from Human Protein Atlas (HPA)22, which captures the baseline
expression of human genes and proteins across a panel of diverse healthy tissues
and organs. For each included gene and tissue, HPA provides a consensus Nor-
malized eXpression value (NX), obtained by normalizing TPM (transcripts per
million) values from three independent transcriptomics datasets: GTEx54,
Fantom555, and HPA’s own RNAseq experiments56.

The downloaded NX values were then used to investigate if the prioritized
target genes were specifically expressed in any of the included tissues. Two
commonly used tissue specificity metrics were calculated for each gene: tau and z-
score23. Tau summarizes the overall tissue distribution of a given gene and ranges
from 0 to 1, where 0 indicates ubiquitous expression across all included tissues
(house-keeping genes) and 1 indicates narrow expression (highly tissue-specific
genes). While tau provides a single summary measure of the tissue specificity, z-
scores are calculated for individual tissues separately to quantify how elevated the

gene expression is in a particular tissue compared to others. Here, higher z-score
values indicate higher tissue specificity. See Kryuchkova-Mostacci et al.23 for details
on the calculation and interpretation of the two metrics.

Phenome-wide scan of replicated drug target genes. To provide an overview of
potential non-CHD effects of the prioritized drug targets, we performed a
phenome-wide scan of 102 disease endpoints. These included genome-wide sum-
mary statistics for 80 ICD10 main diagnoses in UK Biobank, with the exclusion of
Coronary Artery Disease (ICD10 code: I25), which was explored in detail in the
previous sections. The data were released by Neale Lab (1st August 2018, http://
www.nealelab.is/uk-biobank/), and downloaded using a Python implementation of
MR Base API57. The variants in and around the prioritized drug target genes
allowing for a boundary region of 50 kbp were extracted, palindromic variants were
inferred using the API default MAF threshold of 0.3 and removed58. The Ensembl
REST Client was used to gather positional information for the variants59.

Power was further maximized by sourcing data from 23 publicly available
GWAS with the largest sample sizes for such phenotypes (Supplementary Table 3
and Supplementary Data 5). All the GWAS clinical endpoints and UK Biobank
ICD10 main diagnoses were grouped according to ICD10 chapters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All source GWAS data used throughout the paper are publicly available as specified in the
Methods. We used GWAS data for the following outcomes (Supplementary Table 3 and
Supplementary Data 5): LDL-C, HDL-C, Triglycerides [http://lipidgenetics.org/#data-
downloads-title], Coronary Heart Disease [http://www.cardiogramplusc4d.org/data-
downloads/], Rheumatoid arthritis [https://grasp.nhlbi.nih.gov/downloads/
ResultsOctober2016/Okada/], Juvenile arthritis [http://ftp.ebi.ac.uk/pub/databases/gwas/
summary_statistics/HinksA_23603761_GCST005528/], Ankylosing spondylitis [https://
ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/CortesA_23749187_GCST005529/],
Ulcerative colitis [http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/LiuJZ_261
92919_GCST003045/], Psoriasis [http://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/TsoiLC_23143594_GCST005527/], Crohn disease [http://ftp.ebi.ac.uk/pub/
databases/gwas/summary_statistics/LiuJZ_26192919], Stroke [http://www.megastroke.
org/index.html], Asthma [https://www.thelancet.com/journals/lanres/article/PIIS2213-
2600(18)30389-8/fulltext], Multiple sclerosis (https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3832895/], Gout [http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
TinA_31578528_GCST008970/], Ovarian neoplasms [http://ftp.ebi.ac.uk/pub/databases/
gwas/summary_statistics/PhelanCM_28346442_GCST004462/], Parkinson disease
[https://drive.google.com/drive/folders/10bGj6HfAXgl-JslpI9ZJIL_JIgZyktxn], Alzheimer
disease (https://www.ncbi.nlm.nih.gov/pubmed/30617256], Type 2 diabetes mellitus
[https://www.nature.com/articles/s41588-018-0241-6], Myocardial infarction [http://
www.cardiogramplusc4d.org/data-downloads/], Heart failure [https://www.nature.com/
articles/s41467-019-13690-5], Atrial fibrillation [https://www.nature.com/articles/s41588-
018-0171-3], Diabetic nephropathies [http://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/vanZuydamNR_29703844_GCST005881], Chronic kidney failure [https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888/], Schizophrenia [http://www.med.
unc.edu/pgc/files/resultfiles/], Narcolepsy [http://ftp.ebi.ac.uk/pub/databases/gwas/
summary_statistics/FaracoJ_23459209_GCST005522/], Atopic dermatitis [http://ftp.ebi.
ac.uk/pub/databases/gwas/summary_statistics/PaternosterL_26482879_GCST003184],
Biliary liver cirrhosis [http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
CordellHJ_26394269_GCST003129], and 80 ICD10 main diagnoses in UK Biobank
released by Neale Lab (1st August 2018, http://www.nealelab.is/uk-biobank/). Data from
clinical trials were queried from the clinicaltrials.gov registry. Data on licensed drugs and
compounds under development were sourced from the British National Formulary and
ChEMBL v25, respectively. The data underlying each figure have been deposited in the
UCL Research Data Repository under accession code https://doi.org/10.5522/04/
14555715.

Code availability
The code underlying each figure has been deposited in the UCL Research Data
Repository under accession code https://doi.org/10.5522/04/14555715.
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