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Abstract

With the advancement in machine learning, researchers continue to devise and implement

effective intelligent methods for fraud detection in the financial sector. Indeed, credit card

fraud leads to billions of dollars in losses for merchants every year. In this paper, a multi-

classifier framework is designed to address the challenges of credit card fraud detections.

An ensemble model with multiple machine learning classification algorithms is designed, in

which the Behavior-Knowledge Space (BKS) is leveraged to combine the predictions from

multiple classifiers. To ascertain the effectiveness of the developed ensemble model, pub-

licly available data sets as well as real financial records are employed for performance eval-

uations. Through statistical tests, the results positively indicate the effectiveness of the

developed model as compared with the commonly used majority voting method for combi-

nation of predictions from multiple classifiers in tackling noisy data classification as well as

credit card fraud detection problems.

1. Introduction

Classification has been a key application area of machine learning. A classifier learns a mathe-

matical model from training data samples that maps input features to the target classes or

labels [1]. Given a new unseen data sample, the trained classifier is used to provide a prediction

of the target class [2]. It is, however, not easy to use single or few input variables only to differ-

entiate multiple classes to their fullest [1]. In many classifiers such as neural networks, k-near-

est neighbors (kNN), Support Vector Machine (SVM), and Naïve Bayes (NB), the underlying

assumption is that training data samples contain a valid representation of the population of

interest, which normally require a balanced sample distribution [3]. It has been empirically

observed that building an accurate classifier based on a single paradigm is often ineffective, if

not impossible [2].

Establishing an accurate classifier is not an easy task, as each classification method has its

own advantages and disadvantages. As a result, the concept of classifier fusion using multiple
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classifiers has become one of the most significant methodologies to improve the classification

performance. All classifiers provide their predictions of the class of an incoming data sample,

and these predictions are analyzed and combined using some fusion strategy [4]. In this

regard, selections of appropriate classifiers for constructing an ensemble classification model

remain a difficult task [2].

It is a well-established notion in the literature that a classifier combination offers a viable

alternative to yield better results than those from a single classifier. This is however dependent

on how independent and diverse the classifiers are. Diversity among the chosen classifiers is

an important factor for building a successful multi-classifier system (MCS). Various MCS

methods have been proposed in modelling and handling different types of data [5]. Research

in this area has led to the development of MCS models that combine the strengths of various

individual classifiers, which are built using different training paradigms, to provide improved

and robust classification performance [2].

With the rapid growth in e-commerce, the number of credit card transactions has been on the

rise [6]. Alongside this growth, the issue of credit card fraud has become serious and complicated

[7]. Generally, fraud detection solutions can be divided into supervised and unsupervised classifica-

tion methods [8]. In supervised methods, the classification models are based on different samples

of genuine and fraudulent transactions, while in unsupervised methods, outliers are detected from

the data samples [9]. Merchants are responsible for paying the bill when a fraud occurs through an

online or in-store transaction [10]. In this paper, we focus on the design and application of an

ensemble classification model for credit card fraud detection, which is regarded as a significant

problem in the financial sector. Indeed, billions of dollars are lost annually due to credit card fraud,

and both merchants and consumers are significantly affected by the consequences of fraud [11].

With the advancement in fraud detection methods, fraudsters are finding new methods to avoid

detection. Capturing irregular transaction patterns is a vital step in fraud detection [12], and effi-

cient and effective classification methods are required for accurate detection of credit card frauds.

Two main methods are compared, namely majority voting and Behavior-Knowledge Space

(BKS) [13] in this paper. Majority voting is simple but effective method, where an odd number

of constituent classifiers is used for a decision in an ensemble. On the other hand, BKS consid-

ers the predictive accuracy of each classifiers and use this extra information to aggregate pre-

dictions from individual classifiers and derive better results. The main contribution of this

paper is the formulation of an ensemble MCS model with the BKS for detection of real-world

credit card fraud. The proposed model allows the MCS to accumulate its knowledge and yield

better results over time.

The organization of this paper is as follows. A literature review on different types of MCS is

presented in Section 2. Designs of the MCS model with BKS are explained in Section 3. A series

of empirical evaluation on credit card fraud using publicly available data as well as real-world data

from our collection is presented in Section 4. A summary of the findings is given in Section 5.

2. Literature review

An MCS model commonly includes a decision combination method for combining predic-

tions from an ensemble of classifiers. A number of applications using MCS models have been

developed over the years. In this section, we present a literature review on different classifier

configurations, starting from two classifiers to four or more classifiers.

2.1 Two classifiers

An ensemble classification model using kNN and SVM was presented in [14] to classify elec-

trocardiogram (ECG) signals. The proposed model achieved an accuracy score of 0.752 as
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compared with 0.561 to 0.737 from other classifiers [14]. In financial market trading, an auto-

mated framework was presented in [15], and an MCS model was used a weighted multi-cate-

gory generalized eigenvalue SVM and Random Forest (RF) to generate the buy or sell signals.

Evaluated with five index returns, including those from NASDAQ and DOW JONES, the

MCS model achieved notable improvements over the buy/hold strategy as compared with the

outcomes from other algorithms [15].

Predictions of severity pertaining to abnormal aviation events with risk levels were con-

ducted in [16] using an MCS framework consisting of SVM and deep learning models. The

SVM was used for discovering the relationships between event synopsis and consequences,

while deep learning was deployed in training. Using cross-validation, the proposed MCS

model achieved 81% accuracy, which are 3% and 6% higher than standalone SVM and deep

learning models, respectively [16].

In [17], an MCS model based on dynamic weights was developed. The MCS model com-

prised a backpropagation neural network and the nearest neighbour algorithm, which dynami-

cally assigned a fusion weight to a classifier. Using several public face databases, the proposed

method obtained better classification accuracy rates as compared with those from individual

classifiers [17]. An MCS model was proposed for face image segmentation in [18]. A total of

three Bayes and one SVM were used in the MCS model. An error rate of 13.9% was achieved,

as compared with 50% from standard classifiers, for hair across eyes requirements [18].

2.2 Three classifiers

In [2], an MCS was designed using stacked generalization based on DT (Decision Tree), kNN,

and NB. A total of 20 different UCI data sets were used in the experiments. Based on a breast

cancer data set, an accuracy rate of 74.8% was achieved by the MCS model, as compared with

71.2% from other classifiers [2]. An adaptive MCS model for gene expression was examined in

[4]. Particle swarm optimization, bat-inspired algorithm, and SVM were used in the ensemble

model, which showed significant improvements in classification performance with respect to

breast cancer and embryonal tumors, where the training error reduced by up to 50% [4].

In [19], an MCS model to maximize the diagnostic accuracy of thyroid detection. The

model utilized SVM, NB, kNN, and closest matching rule classifiers to yield the best diagnostic

accuracy. The proposed system achieved an accuracy of 99.5% as compared with 99.1% from

the best individual classifier in automatically discriminating thyroid histopathology images as

either normal thyroid or papillary thyroid carcinoma [19]. An MCS framework to exploit

unlabelled data was detailed in [20]. The MCS model was built using NB, SVM, and kNN. A

total of five text classification data sets were used in the experiments. The highest accuracy rate

of 83.3% was achieved by the MCS model, as compared with those from other algorithms [20].

2.3 Four or more classifiers

An adaptive MCS model for oil-bearing reservoir recognition was presented in [5]. A total of

five classifiers were used, namely C4.5, SVM, radial basis function, data gravitation-based, and

kNN algorithms. A number of rules were included in the adaptive MCS model as well. The

proposed solution achieved perfect accuracy in recognizing the properties of different layers in

the oil logging data [5]. An advanced warning system was designed in [21] using an MCS

approach for outward foreign direct investment. Logistic regression, SVM, NN, and decision

trees were used in the MCS model, which was applied to resource-based enterprises in China.

The experimental results indicated the MCS model was able to yield an accuracy score of

85.1%, as compared with 82.5% from a standard neural network model [21].

PLOS ONE Credit card fraud detection using a BKS model

PLOS ONE | https://doi.org/10.1371/journal.pone.0260579 January 20, 2022 3 / 16

https://doi.org/10.1371/journal.pone.0260579


In [22], estimations of precipitation from satellite images were carried out with an MCS

model, which combined RF, NN, SVM, NB, weighted kNN, and k-means together. A total of

six classes of precipitation intensities were obtained, from no rain to very high precipitation. A

score of 0.93 for the coefficient of correlation was yielded by the proposed method, as com-

pared with only 0.46 from other methods [22]. In [23], a one-against-one method was explored

using MCS that consisted of NN, DT, kNN, SVM, linear discriminant analysis, and logistic

regression. An error rate of 0.99% was produced by the MCS model, as compared with 14.9%

from other methods on the zoo data set [23]. In [24], sentiments of tweets are automatically

classified either positive or negative using an ensemble. Public tweet sentiment datasets are

used in the experiment. The ensemble is formed using multinomial NB, SVM, RF, and logistic

regression. An accuracy rate of 81.06% was achieved on a dataset trained with only 0.03% of

the obtained data [24].

2.5 Remarks

Based on the above review that focuses on various classifier configurations (from two or more

classifiers), it is clear that MCS has been used in various applications, including finance, medi-

cal, engineering and other sectors. The MCS configuration offers the advantage that the output

is not constrained by one classifier, with a pool of classifiers to provide the possibility of

improved results. In the event that one classifier produces an incorrect prediction while other

counterparts yield a correct one, the combined output can be correct, e.g. in accordance with

the majority voting principle. The combined output is, therefore, able to reduce the number of

incorrect predictions from single classification method. The results from various MCS config-

urations reported in the literature are promising, with typically higher accuracy rates. How-

ever, MCS-based methods tend to run slower, since a higher computation load is required for

execution of multiple classifiers, although this is not regularly reported in the literature. While

better results often outweigh longer computational durations, it is useful to ensure that MCS

configurations are feasible in terms of computational requirements for practical applications

in real-world environments.

3. Classification methods

In this study, several standard machine learning models from H2O.ai were employed to estab-

lish an MCS model. The Python software running on the Google Colab environment was

used. In the following sub-sections, the majority voting and the BKS model by Huang and

Suen [25] for decision combination is explained.

3.1 Majority voting

Given M target classes in which each class is represented by Ci, 8i2Λ = {1, 2,. . .,M}. The classi-

fier task is to categorize an input sample, x, to one of the (M+1) classes, with the (M+1)th class

denoting that the classifier rejects x.

A commonly used method for combining multiple classifier outputs is by majority voting.

If there are K classifiers, denoted by e1,. . .,eK, the task is to produce a combined result, E(x) =

j,j2{1, 2,. . .,M, M+1} from all K predictions, ek(x) = jk, k = 1,. . .,K. The number of votes can

be computed using a binary function [26], i.e.,

Vkðx 2 CiÞ ¼
1; if ekðxÞ ¼ i; i 2 Λ

0; otherwise:
ð1Þ

(
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Then, sum the votes from all K classifiers for each Ci

VKðx 2 CiÞ ¼
XK

k¼1

Vkðx 2 CiÞ; i ¼ 1; . . . ;M ð2Þ

and the combined result, E(x), can be determined by

E xð Þ ¼ j; if VE x 2 Cj

� �
¼ maxi2Λ x 2 Cið Þ and

VEðx 2 CjÞ

K
� λ

M þ 1; otherwise
ð3Þ

8
<

:

where 0�λ�1 is a user-defined threshold that controls the confidence in the final decision [27].

3.2 BKS

A BKS is a K-dimensional space, where every dimension indicates the decision (i.e., predicted

class) from one classifier. The intersection of the decisions from K different classifiers occupies

one unit in the BKS, e.g., BKS(e1(x) = j1,. . .,eK(x) = jK) denotes a unit where each ek produces

a prediction jk, k = 1,. . .,K. In each BKS unit, there are M partitions (cells), which accumulate

the number of data samples actually belonging to Ci.

Consider an example with two classifiers. A two-dimensional (2–D) BKS can be formed, as

given in Table 1.

Every BKS unit, Uij, contains M cells, i.e., nH
1 ; . . . ; nH

M, where H represents the overall pre-

diction e1(x) = j1,. . .,eK(x) = jK. The total number of data samples belonging to each class is

recorded in each nH
1 , i = 1,. . .,M. When an input sample, x, is shown, one of the BKS units is

activated (also known as the focal unit) after obtaining the decisions from all K classifiers. As

an example, U34 becomes active as the focal unit if e1(x) = 3 and e2(x) = 4. The total number of

samples in the focal unit can be obtained by using

TðHÞ ¼
XM

i¼1

nH
i ð4Þ

and the one with the highest number of samples is identified

RðHÞ ¼ j; where nH
j ¼ maxi2Λðn

H
i Þ ð5Þ

The decision rule for determining the final outcome is

E xð Þ ¼
R Hð Þ; if T Hð Þ > 0 and

nH
RðHÞ

TðHÞ
� λ

M þ 1; otherwise
ð6Þ

8
><

>:

where 0�λ�1 is a user-defined confidence threshold.

Table 1. Two-dimensional BKS.

e1 1 2 . . . M+1

e2

1 U11 U12 . . . U1(M+1)

2 U21 U22 . . . U2(M+1)

..

. ..
. ..

. . .
. ..

.

M+1 U(M+1)1 U(M+1)2 . . . U(M+1)(M+1)

https://doi.org/10.1371/journal.pone.0260579.t001
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The BKS has similarity with the confusion matrix. With the Bayesian approach, multiplica-

tion of evidence from the confusion matrices is required to estimate the joint probability of K
events when combining the predictions. This step is eliminated in the BKS method, where a

final decision is reached by giving the input sample directly to the class that has gathered the

greatest number of samples. This simple method of BKS gives a fast and efficient method for

combining various decisions, as shown in [25] for classification of unconstrained handwritten

numerals.

A hierarchical agent-based framework with the BKS for decision combination is proposed.

As shown in Fig 1, the framework has N agent groups in the base layer, with each group com-

prises multiple individual agents. The agents can be machine learning models, statistical meth-

ods as well as other classification algorithms. A manager agent is assigned to combine the

predictions from each agent group using a BSK. Each manager agent sends its prediction to a

decision combination module comprising another BKS in the top layer that produces the final

combined prediction.

A numerical example is presented to better illustrate the BKS mechanism. In Table 2, a sim-

ple binary classification problem is shown. There are two agents (classifiers) and six input sam-

ples, along with their predicted and actual classes. A BKS can be constructed, as shown in

Table 3. As an example, for input samples 1 and 4 (Table 2), both agents 1 and 2 predict class

Fig 1. A hierarchical agent-based framework with the BKS.

https://doi.org/10.1371/journal.pone.0260579.g001
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1, and the actual class is 1. This information is recorded in the highlighted (grey) BKS unit in

Table 3. Given a new test sample, the predictions from all agents are used to activate a BKS

unit, and the combined predicted class (final output) is reached based on the highest number

of samples from the majority class, as given in Eq (5). Whenever the highlighted (grey) BKS

unit is activated during the test phase, the combined (final) prediction is Class 1.

4. Experiments

In this empirical evaluation, publicly available data sets from UCI Machine Learning Reposi-

tory [28], KEEL Repository [29], and Kaggle [30] are used. A real-world data set is also used

for evaluation.

4.1 Setup

Fig 2 shows the configuration of the hierarchical agent-based framework used in the experi-

ments. It consists of three groups, where each group contains three agents. The three agents

are Random Forest (RF), Generalized Linear Model (GLM), and Gradient Boosting Machine

(GBM), which have been selected based on extensive experiments of individual and group per-

formances. Three agent managers are established, each with a BKS module. The prediction

from these three agent managers are sent to the decision combination module that has another

BKS to produce the final predicted class.

Training is first conducted using randomized orders of the data samples, which is followed

by a validation process. This in turn creates three group-based BKS modules (one for each

group). The next step is combining the outputs from BKS modules 1 to 3 using training data

with another randomized sequence, leading to the establishment of another overall (final) BKS

module that combines the outputs from the previous three group-based BKS modules. Given a

test sample, the group-based BKS outputs are combined again with the overall BKS module to

produce a final predicted class for computation of the performance metrics, namely classifica-

tion accuracy and F1-score.

Table 2. Prediction outputs of Agents 1 and 2.

Data Actual class Predicted Class

Agent 1 Agent 2

Sample 1 1 1 1

Sample 2 1 2 1

Sample 3 2 2 2

Sample 4 1 1 1

Sample 5 2 2 2

Sample 6 2 1 2

https://doi.org/10.1371/journal.pone.0260579.t002

Table 3. Creation of BKS for the classification scenario in Table 2.

Agent 1 Predicted Class = 1 Predicted Class = 2

Agent 2

Predicted Class = 1 No. of actual Class 1 samples = 2 No. of actual Class 1 samples = 1

No. of actual Class 2 samples = 0 No. of actual Class 2 samples = 0

Predicted Class = 2 No. of actual Class 1 samples = 0 No. of actual Class 1 samples = 0

No. of actual Class 2 samples = 1 No. of actual Class 2 samples = 2

https://doi.org/10.1371/journal.pone.0260579.t003
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Classification accuracy and F1-score of each experiment are recorded using Eqs (7) and (8),

respectively.

Accuracy ¼
TN þ TP

TP þ FP þ TN þ FN
ð7Þ

F1 ¼
TP

TP þ 1

2
FP þ FNð Þ

ð8Þ

For performance comparison between majority voting and BKS statistically, the sign test

[31] is adopted. In the sign test, the number of wins is spread based on a binomial distribution.

Given a large number of cases, the number of wins under the null hypothesis is distributed

according to n n
2
;
ffiffi
n
p

2

� �
, allowing the use of the z-test, i.e., should the number of wins be at least

n
2
þ 1:96

ffiffi
n
p

2

� �
, then the outcome is statistically significant with p< 0.05. The number of wins

required for a comparison of k = 25 experimental results are [32]: 18 wins for (the significance

level) α = 0.05 (i.e., 95% confidence level) and 17 wins for a less stringent α = 0.1 (i.e., 90% con-

fidence level), respectively. In addition, for a more stringent setting of α = 0.01 (i.e., 99% confi-

dence interval), a total of 19 wins is required.

Fig 2. Configuration of the hierarchical agent-based framework used in the experiments.

https://doi.org/10.1371/journal.pone.0260579.g002
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4.2 Benchmark data

A total of 10 data sets are used in the experiments. The details of each data set, i.e., B1 to B10,

are shown in Table 4, including the number of instances and features as well as the imbalanced

ratio (IR) information.

The accuracy rates and F1 scores are shown in Tables 5 and 6, respectively. In general, the

BKS results are slightly higher than those from majority voting for both performance

indicators.

Table 4. List and descriptions of benchmark datasets.

Data set Ref Problem Instances Features IR

B1 [29] abalone-17_vs_7-8-9-10 2,338 8 39.3

B2 [29] abalone-20_vs_8-9-10 1,916 8 72.7

B3 [29] flare-F 1,066 11 23.8

B4 [28] pima 768 8 1.9

B5 [29] ring 7,400 20 1.0

B6 [28] spambase 4,597 57 1.5

B7 [29] twonorm 7,400 20 1.0

B8 [29] winequality-red-4 1,599 11 29.2

B9 [29] winequality-white-3-9_vs_5 1,482 11 58.3

B10 [30] Credit card transactions by European cardholders 284,807 30 577.9

https://doi.org/10.1371/journal.pone.0260579.t004

Table 5. Accuracy rates.

Data set BKS Voting

B1 0.9734 0.9717

B2 0.9864 0.9864

B3 0.9453 0.9439

B4 0.7204 0.7205

B5 0.9541 0.9466

B6 0.9514 0.9498

B7 0.9782 0.9352

B8 0.9501 0.9521

B9 0.9823 0.9809

B10 0.9981 0.9980

https://doi.org/10.1371/journal.pone.0260579.t005

Table 6. F1 scores.

Data set BKS Voting

B1 0.9863 0.9855

B2 0.9931 0.9931

B3 0.9715 0.9704

B4 0.7675 0.7700

B5 0.9539 0.9451

B6 0.9601 0.9588

B7 0.9782 0.9353

B8 0.9742 0.9753

B9 0.9911 0.9904

B10 0.9991 0.9990

https://doi.org/10.1371/journal.pone.0260579.t006
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To evaluate the robustness of BKS, the data samples are corrupted with noise at 10% and

20% levels. A total of 25 runs are conducted for each data set, and the average results are listed

in Table 7. Fig 3 indicates the numbers of wins pertaining to the BKS against majority voting.

The three bars for each dataset represent the data with no noise (-0), with 10% noise (-0.1),

and with 20% noise (-0.2).

To evaluate whether BKS performs better than majority voting from the statistical perspec-

tive, a two-tailed sign test is used, as detailed in Section 4.1. Fig 3 shows the number of wins of

BKS over majority voting from the experimental results (plotted at 16 wins and above). BKS

achieves at least 18 wins out of 25 experimental runs in all ten noisy data sets (10% and 20%

noise levels), indicating its superior performance over majority voting in undertaking noisy

data samples for α = 0.05 (95% confidence level). When a more stringent statistical significance

level of α = 0.01 (i.e., 99% confidence level) is used for evaluation, BKS outperforms majority

voting in 9 out of 10 data sets with a noise level of 20%. This outcome positively indicates the

usefulness of BKS over majority voting in mitigating the negative effect of noise in

performance.

Table 7. Accuracy rates with and without noise.

Data set Noise BKS Voting

B1 0% 0.9734 0.9717

10% 0.9402 0.9263

20% 0.912 0.8923

B2 0% 0.9864 0.9864

10% 0.9716 0.9625

20% 0.9438 0.9296

B3 0% 0.9453 0.9439

10% 0.9405 0.9221

20% 0.9334 0.9027

B4 0% 0.7204 0.7205

10% 0.7391 0.6859

20% 0.7235 0.6822

B5 0% 0.9541 0.9466

10% 0.9534 0.9483

20% 0.9528 0.9460

B6 0% 0.9514 0.9498

10% 0.8697 0.7874

20% 0.8627 0.8150

B7 0% 0.9782 0.9352

10% 0.9468 0.9226

20% 0.9365 0.9004

B8 0% 0.9501 0.9521

10% 0.9155 0.8967

20% 0.8650 0.8236

B9 0% 0.9823 0.9809

10% 0.9469 0.9341

20% 0.8910 0.8709

B10 0% 0.9981 0.9980

10% 0.9629 0.9535

20% 0.9571 0.9230

https://doi.org/10.1371/journal.pone.0260579.t007
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To ascertain the effectiveness of BKS with other methods in the literature, a comparison of

the F1 score with the published results of GEP [26] and CUSBoost [33] is shown in Table 8.

CUSBoost [33] achieves the worst performance, while GEP [26] achieves close results as com-

pared with those from BKS and majority voting. Overall, BKS achieves the highest F1 scores in

four out of six data sets, while the scores of the remaining two are a little lower by 0.01 as com-

pared with those of majority voting.

4.3 Real-world data

This evaluation focuses on real financial transaction records (available in [34]) from Septem-

ber to November 2017 in a Southeast Asia financial firm. As indicated in [35], Southeast Asia

is one of the fastest growing regions over the years, with a gross domestic product growth rate

of over 6%. In this experiment, a total of 60,595 transaction records from 9,685 customers are

available for evaluation. The transactions cover activities in 23 countries, with various spend-

ing items ranging from online website purchases to grocery shopping. A total of 28 transac-

tions have been identified by the firm and labeled as fraud cases, with the remaining being

genuine, or non-fraud cases.

Each transaction record consists of the account number, transaction amount, date, time,

device type used, merchant category code (MCC), country, and type of transaction. The

account number is anonymized to ensure privacy of customers. In addition to the nine original

features, feature aggregation is conducted to generate eight new features. These aggregated fea-

tures utilise the transaction amount, acquiring country, MCC, and device type over a period of

three months. A summary of the features is shown in Table 9.

Feature importance scores can provide useful information of the data set. The scores can

highlight the relevance of each feature for classification. Based on the 17 features, we carry out

a feature importance study using the Decision Tree (DT), Random Forest (RF), and XGBoost

classifiers. Fig 4 illustrates the results. It can be observed that all the features depict different

Fig 3. Number of BKS wins over majority voting in data sets with and without noise (red, yellow, and green lines

indicate the threshold of wins requires for significance level of α = 0.1, 0.05 and 0.01, respectively).

https://doi.org/10.1371/journal.pone.0260579.g003

Table 8. Comparison of F1 scores with literature (best in bold).

Dataset BKS Voting GEP [26] CUSBoost [33]

B1 0.9863 0.9855 0.9048 0.3231

B2 0.9931 0.9931 - 0.3363

B3 0.9715 0.9704 0.927 0.1809

B4 0.7675 0.7700 - 0.5543

B8 0.9742 0.9753 0.9005 0.0939

B9 0.9911 0.9904 0.8964 0.1674

https://doi.org/10.1371/journal.pone.0260579.t008
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levels of importance, and feature 12 (i.e., the count of unique acquiring country) appears to be

the most important feature in all three classifiers. The remaining aggregated features (features

10 to 17) generally have slightly higher importance scores as compared with those of the origi-

nal features.

Similar to the benchmark data experiment, noise is added with increment of 10% to 40% to

this real-world data set. Table 10 summarizes the results. BKS outperforms majority voting

when the level of noise increases, indicating its robustness against noisy data. When the noise

level increases to 20% and above, BKS outperforms majority voting 18 times (20% and 30%

noise) and 19 times (40% noise), respectively. This outcome positively signifies the statistical

superior performance of BKS over majority voting at 95% confidence level (α = 0.05) for

undertaking noisy data (20% noise and above) in this real-world experiment.

Table 11 lists that F1 scores of the experiments. When no noise is added, the F1 scores for

both BKS and voting are the same. Again, for noisy data sets, BKS consistently achieves higher

F1 scores, as compared with those from majority voting.

In addition to the experiments with additive noise, two experiments with under-sampling

methods are conducted. Two different ratios of minority (fraud transactions) to majority

Table 9. List of features and description.

No Features Description

1 Account Number Anonymized account number

2 Transaction Amount Amount spent in the transaction

3 Transaction Date Date of said transaction

4 Transaction Time Time of said transaction

5 Device Type Type of device used for transaction

6 MCC Merchant category code

7 Acquiring Country Country where transaction took place

8 For Country Country where card was issued

9 Transaction Type Sale or cancellation

10 Transaction Amount Count Count of transactions by cardholder

11 Transaction Amount Sum Sum of total transactions by cardholder

12 Acquiring Country Count Count of unique acquiring country

13 Acquiring Country Sum Sum of acquiring country for transaction

14 MCC Count Count of all MCC

15 MCC Sum Sum of specific MCC for transaction

16 Device Type Count Count of different device types used

17 Device Type Sum Sum of specific device type used for transaction

https://doi.org/10.1371/journal.pone.0260579.t009

Fig 4. Feature importance using DT, RF, and XGBoost.

https://doi.org/10.1371/journal.pone.0260579.g004
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(genuine transactions) are evaluated, i.e., 1:100 and 1:500, and the overall results are shown in

Table 12. Obviously, under-sampling does not help improve the voting results, while the use of

1:100 ratio enhances the BKS results slightly, as the data set is much more balanced, as com-

pared to the original ratio.

5. Conclusions

A multi-classifier system has been designed to address the classification challenge pertaining

to credit card fraud. Specifically, the combination of a hierarchical agent-based framework

with the BKS as a decision-making method has been constructed for classifying transaction

records of credit cards into fraudulent and non-fraudulent cases. This combination allows the

accumulation of knowledge and yields better results over time. To evaluate the proposed

multi-classifier system, a series of experiments using publicly available data sets and real finan-

cial records have been conducted. The results from the ten benchmark data sets indicate the

performance of BKS is better than that of the majority voting method for decision combina-

tion. In addition to noise-free data, noise up to 20% has been added to the data samples, in

order to evaluate the robustness of the proposed method in noisy environments. Based on the

statistical sign test, the BKS-based framework offers statistically superior performance over the

majority voting method.

For the real transaction records from a financial firm, up to 40% noise has been added to

the data samples. When the noise levels reach 20% and above, the BKS-based framework out-

performs the majority voting method, with statistical significance at the 95% confidence level,

Table 10. Accuracy rates and BKS wins with noise added.

Noise BKS Voting BKS Wins

0% 0.9993 0.9993 0

10% 0.9961 0.9907 9

20% 0.9872 0.9771 18

30% 0.9699 0.9576 18

40% 0.9656 0.9511 19

https://doi.org/10.1371/journal.pone.0260579.t010

Table 11. F1 scores with noise added.

Noise BKS Voting

0% 0.9996 0.9996

10% 0.9970 0.9963

20% 0.9935 0.9881

30% 0.9845 0.9779

40% 0.9822 0.9762

https://doi.org/10.1371/journal.pone.0260579.t011

Table 12. Accuracy rates with different ratios of minority to majority samples.

Sampling BKS Voting

Original 0.9993 0.9993

1:100 0.9995 0.9981

1:500 0.9993 0.9980

https://doi.org/10.1371/journal.pone.0260579.t012
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as ascertained by the sign test. Based on the outcomes from both benchmark and real-world

data, the proposed BKS-based framework is effective for detecting fraudulent credit card cases.

In future work, we will address several limitations of the current BKS models. Firstly, it is

possible for the BKS table to contain empty cells, leading to no prediction for a given data sam-

ple. This observation generally occurs when the number of classifiers increases, i.e., a larger

knowledge space is formed. In addition, noisy data sets, particularly noise in class labels, result

in inaccurate information captured in the BKS cells, leading to erroneous predictions. We

intend to exploit probabilistic methods, such as Bayesian inference, to interpret the BKS pre-

diction and enhance its robustness in undertaking noisy data classification problems.

Additionally, we will investigate imbalanced data issues using a combination of over-sam-

pling and under-sampling techniques. The effect of these different techniques toward classifi-

cation performance will be analyzed and compared systematically using statistical hypothesis

tests. We will also develop an online version of the proposed model. The model will be able to

learn data samples on-the-fly and keep improving its prediction accuracy incrementally. This

online learning model will be applied to various financial problems as well as other classifica-

tion tasks.
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