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Mendelian randomisation analyses 
of UK Biobank and published data 
suggest that increased adiposity 
lowers risk of breast and prostate 
cancer
Hasnat A. Amin, Pimpika Kaewsri, Andrianos M. Yiorkas, Heather Cooke, 
Alexandra I. Blakemore & Fotios Drenos*

Breast (BCa) and prostate (PrCa) cancer are the first and second most common types of cancer in 
women and men, respectively. We aimed to explore the causal effect of adiposity on BCa and PrCa 
risk in the UK Biobank and published data. We used Mendelian randomisation (MR) to assess the 
causal effect of body mass index (BMI), body fat percentage (BFP), waist circumference (WC), hip 
circumference (HC), and waist-to-hip ratio (WHR) on BCa and PrCa risk. We found that increased BMI, 
WC and HC decreased the risk of breast cancer (OR 0.70 per 5.14 kg/m2 [0.59–0.85, p = 2.1 ×  10–4], 
0.76 per 12.49 cm [60–0.97, p = 0.028] and 0.73 per 10.31 cm [0.59–0.90, p = 3.7 ×  10–3], respectively) 
and increased WC and BMI decreased the risk of prostate cancer (0.68 per 11.32 cm [0.50–0.91, 
p = 0.01] and 0.76 per 10.23 kg/m2 [0.61–0.95, p = 0.015], respectively) in UK Biobank participants. We 
confirmed our results with a two-sample-MR of published data. In conclusion, our results suggest a 
protective effect of adiposity on the risk of BCa and PrCa highlighting the need to re-evaluate the role 
of adiposity as cancer risk factor.

Breast and prostate cancer are the most common and second most common types of cancer diagnosed worldwide 
in men and women,  respectively1. In 2010, the combined cost of breast and prostate cancer to the NHS was £664 
 million2. The number of cases are expected to rapidly increase and, by 2040, are estimated to be 20.2% higher for 
breast cancer and 38.5% higher for prostate cancer in comparison to  20181. Both cancer types are preventable 
in many cases, making robust identification of their modifiable risk factors important.

A recent campaign by Cancer Research  UK3 has emphasised obesity as being a causal risk factor for cancer 
comparable to smoking. It has been proposed that the metabolic environment in obese people is conducive to 
oncogenic  transformation4. However, previously published evidence on the relationship between adiposity and 
breast and prostate cancer does not consistently support this  view5–7. It has been suggested that adiposity is a risk 
factor for breast cancer in post-menopausal  women8, but not in pre-menopausal  women9. A meta-analysis of 67 
studies looking at the relationship between BMI and risk of prostate cancer recently showed that the relationship 
between BMI and prostate cancer is  inconsistent10.

Contrary to the view of obesity as cancer risk factor, previously published evidence suggest that adipose 
tissue may play a role in safely storing harmful  chemicals11. Persistent organic pollutant (POP) concentrations 
increase by 2–4% per kg of weight loss and remain elevated for up to 12 months after a weight loss  intervention12. 
This may be one of the reasons behind the present inconsistency in the findings between BMI and breast and 
prostate cancer risk.

Assessment of what exposures are causal is not trivial: “correlation is not causation”. The vast majority of stud-
ies carried out to examine the impact of adiposity on breast and prostate cancer risk are observational and may 
be susceptible to confounding. Mendelian randomisation (MR) is a method that uses genetic variants associated 
with an exposure of interest, but not with any confounders, to assess the causal effect of the genetically predicted 
exposure on an outcome. In order for the method to provide reliable estimates of the causal effect, it is also 
assumed that the chosen instruments are not related to the outcome of interest independently of the exposure.
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With this work, we aim to explore the causal effect of adiposity on breast and prostate cancer risk in the UK 
Biobank (UKB), a large prospective cohort study, and published  data13–16. We also aim to use the rich phenotype 
data collected as part of the UKB study to identify variables, including chemical exposure, that may explain the 
observed relationship between adiposity and breast and prostate cancer risk.

Methods
Population and study design. The UK Biobank (UKB) is a large prospective cohort study including 
information and biological samples for approximately 500,000 individuals, recruited between 2006 and 2011. 
The 22 UKB assessment centres throughout England, Wales and Scotland, collected baseline data from the par-
ticipants in the form of questionnaires, physical and cognitive tests and blood and urine  samples17. The age range 
of the participants at the time of enrolment in the study was between 40 and 69 years of age, with a mean age 
of 56.63 years and 57.10 years in men and women, respectively. The use of the data for this study was approved 
by the UK Biobank access committee (application 44566) and data release was from April 2021. All research 
was performed in accordance with relevant guidelines/regulations, and informed consent was obtained from all 
participants by the UK Biobank.

Genotyping. 488,377 individuals had been genotyped for up to 812,428 variants using DNA extracted from 
blood samples on either the UKB Axiom array (438,427 participants) or the UK BiLEVE Axiom array (49,950 
participants). Variants that did not pass standard quality control checks were excluded from any subsequent 
analyses in the  UKB18. These included tests for the presence batch effects, plate effects, sex effects and array 
effects, as well as any departures from Hardy–Weinberg Equilibrium using a p-value threshold of  10−12—further 
details of these tests are available in the supplementary material provided by Bycroft et al.18 Variants with a minor 
allele frequency of < 0.01 and imputed variants with an INFO score of < 0.8 were excluded from any subsequent 
analyses in the UKB.

Sample genotyping quality control metrics were provided by  UKB18. Samples were excluded from the analysis 
if they were outliers for missingness and/or PC-corrected heterozygosity and/or if they had any sex chromosome 
aneuploidies as well as if the genetically inferred sex differed from the reported sex. Samples which did not have a 
genetically determined White British ancestry were also excluded. A list of related individuals was also provided 
by UKB and one individual from each related pair was excluded at random.

Phenotypes. We used data collected at baseline for body mass index (BMI, UKB field 21001), body fat 
percentage (BFP, UKB field 23099) from bio-impedance, waist circumference (WC, UKB field 48) and hip cir-
cumference (HC, UKB field 49). We calculated waist-to-hip ratio (WHR) by dividing WC by HC. The variables 
were standardised to a mean of 0 and a variance of 1.

We used cancer diagnoses information from the 1970s onward obtained from linkage to national cancer 
registries and health records (see http:// bioba nk. ndph. ox. ac. uk/ showc ase/ showc ase/ docs/ Cance rLink age. pdf). 
Breast cancer cases are defined as females who have an ICD-10 code C50 recorded at least once (UKB field 
40006). Prostate cancer cases are defined as males who have an ICD-10 code C61 recorded at least once (UKB 
field 40006). Females who have an ICD-10 code D05, for in situ carcinoma of the breast, without a C50 breast 
cancer entry were removed from the sample. Similarly, males with an ICD-10 code D075, for carcinoma in situ 
of prostate, without a C61 prostate cancer diagnosis were also removed from the sample.

Menopause information for females was obtained through the reported age of menopause information col-
lected (UKB field 3581). This information was compared to the age of first breast cancer diagnosis to identify 
the pre- and post-menopausal cases. For women who did not have breast cancer, we used their menopause 
status at baseline to stratify them into pre- and post-menopausal. Women whose menopause status could not 
be determined were set to missing.

Exposure to chemicals was based on occupation exposure information. A participant was considered to have 
been exposed to chemicals frequently if they answered “Often” and/or “Sometimes” at least once for any of the 
following UKB fields: 22609 (Workplace very dusty); 22610 (Workplace full of chemical or other fumes); 22611 
(Workplace had a lot of cigarette smoke from other people smoking); 22612 (Worked with materials containing 
asbestos); 22613 (Worked with paints, thinners or glues); 22614 (Worked with pesticides); and 22615 (Workplace 
had a lot of diesel exhaust).

Statistical analyses. We used R 3.6.119 to carry out analyses and generate plots, unless stated otherwise.
For the observational correlations, we removed prevalent cases and regressed the exposures (i.e. BMI, BFP, 

WC, HC and WHR) against prostate and breast cancer cases using a logistic regression adjusting for age at 
baseline.

We obtained genetic instruments for BMI, WC, HC and WHR from summary statistics from publicly avail-
able sex-stratified GWAS meta-analyses of European  ancestry15,16,20. We included all independent variants that 
were associated with the trait as listed in the supplementary tables provided by the authors of the studies. Please 
see Supplementary Table S1 for a list of variants used.

The most recent GWAS of BFP that does not include UKB  participants20 does not provide sex-stratified 
summary statistics and could not be used to obtain instruments for BFP. We therefore carried out association 
analyses for the 10 variants found to be associated with BFP by Lu et al.20 in the UKB using PLINK 2.021, in males 
and females separately, and excluded those who had cancer to minimise any  bias22. Please see Supplementary 
Table S1 for a list of independent variants associated with BFP along with their effect sizes.

We used the variants and their effect sizes (see Supplementary Table S1) to calculate additive genetic risk 
scores (GRSs) in the UKB using PLINK 2.021. We regressed each GRS on its respective trait to obtain  R2 and 

http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/CancerLinkage.pdf
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F-statistics (see Supplementary Table S2) to demonstrate that the instruments used are associated with their 
respective traits.

We carried out a one-sample MR in the UKB to assess the effect of the adiposity measures on breast and 
prostate cancer using the two-stage  method23. In the first step, we regressed the adiposity measure on its respec-
tive GRS to obtain a set of fitted values for the adiposity measure. In the second step, we regressed the cancer 
outcome (i.e. breast cancer or prostate cancer) on the fitted values using a logistic regression, adjusted for age at 
baseline. The confidence intervals were obtained using bootstrap with 10,000 repetitions.

To test whether exposure to workplace chemicals or menopause status modified the causal effect of adiposity 
on breast and prostate cancer, respectively, we stratified the sample by menopause status and by chemical expo-
sure and repeated the one-sample MR analyses described above. We then used the metagen() function from the 
meta package in  R24 to perform a chi-squared test for heterogeneity between the strata.

It is assumed that the instruments selected for MR analyses are not related to the outcome of interest inde-
pendently of the exposure (this is known as the “exclusion restriction” assumption). To test this assumption, 
we regressed the cancer outcome on each of the GRSs using a logistic regression, adjusted for the respective 
adiposity measure. If the assumption is valid, the GRS will not be associated with the outcome. Evidence of 
association means that the estimate effect may be affected by bias and methods such as MR Egger will provide a 
more accurate estimate of the causal effect.

To confirm any findings from our one-sample MR analyses, we used the TwoSampleMR package in  R25 to 
perform a two-sample MR analysis using the inverse-variance weighted method with a multiplicative random 
effects model. We used the MR-Egger method as a sensitivity analysis and to detect the presence of pleiotropy 
(indicated by a statistically significant intercept term). The genetic instruments for the adiposity measures were 
obtained as described previously. We used the extract_outcomes_data(…,rsq = 1) function to extract the effect 
sizes and standard errors for the outcomes from Michailidou et al.13 and Shumacher et al.14, which are the meta-
analysis of breast cancer GWASs (122,977 cases, 105,974 controls) and the meta-analysis of prostate cancer 
GWASs (79,194 cases, 61,112 controls), respectively. Please see Supplementary Table S3 for all variants used in 
the two-sample MR analyses along with their harmonised effect sizes.

To determine whether the associations of adiposity measures were independent of each other and of child-
hood adiposity, we used an extension of the MR method, known as multivariable MR (MVMR)26. MVMR is 
useful when the genetic instruments used are associated with more than a single risk factor tested, as in this 
case of overlapping SNPs for the adiposity measures. Instruments used in the MVMR for childhood adiposity 
were extracted from Vogelezang et al.27 We used MVMR as implemented in the mv_multiple() function from 
the TwoSampleMR  package25, which also removes SNPs of LD > 0.001 between measures.

To explore the possibility of a non-linear causal relationship between adiposity and cancer risk, we removed 
prevalent cases and performed non-linear MR using the sliding window method described by Burgess et al.28 
using a window size of 50,000 and a step size of 1000. The residuals that were used to order the data were obtained 
by regressing the adiposity measure on its genetic risk score, adjusted for age, age-squared2(to adjust for the 
non-linear effects of age), the first four genetic principal components (to account for population stratification) 
and genotyping array.

To identify potential confounders responsible for the observed positive association between BMI and inci-
dent breast cancer cases, we developed an algorithm that used a step-wise procedure to test which variables can 
minimise the effect size of BMI on breast cancer when added in the model as covariates. Only variables with more 
than 1000 non-missing observations associated with both BMI and breast cancer (p < 0.05) were considered. 
Categorical phenotypes were converted to separate binary variables. Age at baseline was included in all models.

Ethics approval and consent to participate. UK Biobank has ethical approval from the North West 
Multi-centre Research Ethics Committee (16/NW/0274). The work was carried out under UK Biobank applica-
tion 44566.

Results
Population characteristics. After QC, we had 177,471 females and 154,453 males remaining in the sam-
ple. Table 1 summarises their age, adiposity measures and lifetime smoking status based on the information 
collected at baseline.

Effect of observed adiposity on incident cancer risk. We first sought to examine the observational 
effect of the adiposity measures (i.e. BMI, BFP, WC, HC and WHR) on the risk of breast and prostate cancer. We 
only used incident cases to avoid a previous cancer diagnosis affecting any of the measures considered. We found 
that, in our sample, each of the adiposity measures are associated with an increased risk of breast cancer but, with 
the exception of HC, are associated with a decreased risk of prostate cancer (Fig. 1 & Supplementary Table S4).

Causal effect of adiposity on cancer risk: one-sample MR. We obtained estimates (odds ratios (OR) 
per SD unit increase) of the causal effect of the adiposity measures on breast and prostate cancer using one-sam-
ple MR (Figs. 2 & 3 and Supplementary Table S5). The variants that we used to generate the GRSs are available 
in Supplementary Table S1. The strength of the association between these GRSs and the adiposity measures are 
provided in Supplementary Table S2. 

We found that increased BMI, WC and HC decreased the risk of breast cancer (OR 0.70 [95% CIs 0.59–0.85, 
p = 2.1 ×  10–4], OR 0.76 [95% CIs 0.60–0.97, p = 0.028] and OR 0.73 [95% CIs 0.59–0.90, p = 3.7 ×  10–3], respec-
tively) and increased WC and BMI decreased the risk of prostate cancer (OR 0.68 [95% CIs 0.50–0.91, p = 0.01] 
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and OR 0.76 [95% CIs 0.61–0.95, p = 0.015], respectively) based on our one sample MR using the UK Biobank 
individual level data.

Testing the exclusion restriction assumption. We found that the associations between the GRSs for 
BMI, WC, HC and breast cancer were present even after adjusting for BMI, WC, and HC, respectively (Sup-
plementary Table S6). This suggests that these GRSs violate the exclusion restriction assumption, i.e. the genetic 
instrument may affect the outcome independently of the exposure and the estimated causal effect may be biased. 
We found that the GRS for BMI was not associated with prostate cancer independently of BMI. However, the 
GRS for WC was associated with prostate risk independently of WC (Supplementary Table S6), so the estimate 
of the causal effect of WC on prostate cancer risk obtained in the UKB may also be biased. We addressed these 
issues by confirming our one-sample MR results using the two sample MR Egger method in published data as 
described below, which is robust even when the exclusion restriction assumption is violated.

Table 1.  UK Biobank population characteristics by cancer status. Sex-specific distribution of age and adiposity 
measures and lifetime smoking status in the full sample, in those who have breast/prostate cancer and in those 
who do not have breast/prostate cancer. Standard deviations are provided in round brackets, if applicable. 
N = sample size.

Females Males

All Cases Controls All Cases Controls

N 177,471 9613 167,858 154,453 6817 147,636

Ever smoked (%) 55.71 57.69 55.60 65.03 66.2 64.98

Age (years) 56.63 (7.90) 58.93 (7.10) 56.49 (7.92) 57.10 (8.08) 62.99 (4.89) 56.83 (8.10)

BMI (kg/m2) 27.02 (5.14) 27.27 (4.93) 27.00 (5.15) 27.82 (4.23) 27.60 (3.83) 27.83 (4.24)

WC (cm) 84.56 (12.49) 85.71 (12.13) 84.50 (12.51) 97.03 (11.32) 97.27 (10.55) 97.02 (11.36)

HC (cm) 103.36 (10.31) 104.01 (9.92) 103.32 (10.33) 103.53 (7.58) 103.27 (7.04) 103.55 (7.61)

WHR (cm/cm) 0.82 (0.07) 0.82 (0.07) 0.82 (0.07) 0.94 (0.06) 0.94 (0.06) 0.94 (0.07)

BFP (%) 36.56 (6.87) 37.13 (6.53) 36.52 (6.89) 25.27 (5.80) 25.73 (5.57) 25.25 (5.80)

Figure 1.  Effect of observed adiposity on incident cancer risk. Odds ratios per SD increase (OR) and 95% 
confidence intervals when regressing incident breast and prostate cancer cases on the adiposity measures 
using a logistic regression. BMI body mass index, BFP body fat percentage, HC hip circumference, WC waist 
circumference, WHR waist-to-hip ratio.
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Using two-sample MR to confirm the one-sample MR results. We sought to replicate our find-
ings using external outcome summary statistics from meta-analyses of 122,977 breast cancer  cases13 and 79,194 
prostate cancer  cases14, and external exposure summary statistics from Lu et  al.20 and  GIANT15,16. We used 
two-sample MR to assess the causal effect of adiposity measures on breast and prostate cancer risk (Table 2). We 
found that increased BMI, WC, HC, and BFP are causally protective for breast cancer using the inverse vari-
ance weighted method. The p-values of the intercept from the MR Egger method suggest that the instruments 
used for BMI, WC, and HC may be pleiotropic, but the causal estimates generated using MR Egger show that 
increased BMI, WC, and HC are still protective for breast cancer when pleiotropy is considered (Table 2). We 
also found that BMI and WC were protective for prostate cancer.

Testing for the presence of non-linearity. Both one-sample MR and two-sample MR assume that the 
exposure-outcome relationship is linear, but this is not always true. We therefore carried out non-linear MR 
analyses to visualise the association between the adiposity measures and the outcomes in different ranges of the 
exposure (please see Supplementary Fig. S1 for the sliding window plots). There appears to be visual evidence 
of non-linearity in the relationship between adiposity and breast cancer, but no such pattern is evident for the 
relationship between adiposity and prostate cancer.

Assessing the independent contribution of different adiposity measures to cancer risk. We 
next performed two-sample multivariable MR to identify whether the protective effects of increased BMI, WC, 
HC and BFP on breast cancer risk are independent of each other (Supplementary Table S7). We found that BMI 
was still protective for breast cancer independently of all other measures. We also found that BMI was still pro-
tective for prostate cancer independently of all other measures.

Assessing the independent effects of childhood and adult adiposity on cancer risk. We carried 
out a two-sample multivariable MR to assess whether the effect of the adiposity measures on breast and pros-
tate cancer was independent of childhood BMI (Supplementary Table S8). We found that none of the adiposity 
measures associated with breast cancer independently of childhood BMI. We also found that BMI and WC were 
protective for prostate cancer independently of childhood BMI.

Effect of adiposity on breast cancer by menopause status. Since BMI has shown to be protective 
for breast cancer in pre-menopausal women, we stratified women based on their menopause status at breast 

Figure 2.  Causal effect of adiposity on prostate cancer. Odds ratios (OR) and 95% confidence intervals from 
a one-sample MR analysis of the causal effect of adiposity on prostate cancer risk in the complete sample (all) 
and in the selected strata. BMI body mass index, BFP body fat percentage, HC hip circumference, WC waist 
circumference, WHR waist-to-hip ratio.
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cancer diagnosis (or at baseline for controls) and repeated the one-sample MR analyses. We found that the 
protective effect of adiposity on breast cancer was stronger in pre-menopausal women in comparison to post-
menopausal women (Fig. 3).

Effect of adiposity on cancer risk by occupational chemical exposure. We hypothesised that the 
protective effect of adiposity may be due to adipose tissue absorbing and safely storing environmental carcino-
gens. We, therefore, stratified our sample, based on self-reported exposure to dust and/or chemicals and/or 
fumes at work and repeated the analyses. We found that the protective effect of increasing adiposity on prostate 
cancer was stronger in men who reported that they were frequently exposed to potentially hazardous substances 
at work in comparison those who were not (Fig. 2). There is no statistically significant heterogeneity (chi-squared 
p-value > 0.1) in the effect sizes between women who reported that they were frequently exposed to potentially 
hazardous substances at work and those who did not (Fig. 3).

Identification of confounders of the BMI-breast cancer association. We used a stepwise proce-
dure to identify any confounding variables that might explain the opposite direction of effects estimated by the 
observational and MR associations of BMI with risk of breast cancer. Supplementary Table S9 lists the fields that 
were both associated with incident breast cancer risk and attenuated the detrimental effect of BMI. The ln(OR) of 
breast cancer per SD unit increase in BMI is reduced tenfold when ankle spacing width, frequency of stair climb-
ing, amount of moderate physical activity, macular degeneration and leukocyte count are added to the model, 
but it does not decrease below zero. It is possible that the variables our algorithm selects may be associated with 
a missing or currently unknown higher order variable that may explain the discrepancy between the observed 
and causal associations between BMI and risk of breast cancer.

Discussion
We sought to assess the causal effects of increased adiposity on the risk of breast and prostate cancer. We found 
that increased adiposity measures were associated with a lower risk of incident prostate cancer, but with an 
increased risk of incident female breast cancer. Both one-sample MR and two-sample MR analyses showed that 
increased BMI and WC were protective for both breast and prostate cancer and that HC was protective for breast 
cancer. Multivariable MR analyses suggest: that BMI is the independent driver of these protective associations; 

Figure 3.  Causal effect of adiposity on breast cancer. Odds ratios (OR) and 95% confidence intervals from 
a one-sample MR analysis of the causal effect of adiposity on breast cancer risk in the complete sample (all) 
and in the selected strata. BMI body mass index, BFP body fat percentage, HC hip circumference, WC waist 
circumference, WHR waist-to-hip ratio. The top  I2 values refer to the test of heterogeneity between pre- and 
post-menopausal cases. The bottom  I2 values refer to the test of heterogeneity between those reporting frequent 
exposure to workplace chemical in comparison to those that report infrequent exposure.
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and that childhood BMI attenuates the association between adiposity and breast cancer, but not between adi-
posity and prostate cancer. Stratified analyses suggest that the protective effect of adiposity on breast cancer and 
on prostate cancer may be enhanced in pre-menopausal women and in men exposed to workplace chemicals, 
respectively. When we attempted to identify the confounders responsible for the observed detrimental associa-
tion between increasing BMI and breast cancer, we found a number of variables that may be involved, but these 
are of a currently uncertain clinical significance.

In this work, we found that increases in all of the adiposity measures we tested were observationally associated 
with a higher number of breast cancer cases. In this respect, the UK Biobank is in agreement with a previously 
published large meta-analysis of 126 studies finding the same  association29. The inverse associations between 
the adiposity measures and prostate cancer were more surprising. Here the evidence are more heterogeneous, 
as illustrated by a recent large scale meta-analysis10, which found an overall null association between BMI and 
prostate cancer, but found an inverse association between BMI and prostate specific antigen concentrations. 
Furthermore, a number of well powered  studies30,31 have also identified an inverse association between BMI and 
prostate cancer, so our results in the UK Biobank are, therefore, not unusual. Furthermore, increased adiposity 
has been suggested as protective for low grade prostate  cancer10, the prostate cancer cases in the UKB are likely 
to be low grade due to the age of the sample, and this may further explain why we found an inverse observational 
relationship between adiposity and prostate cancer risk.

Since observational studies cannot directly provide information on cause-and-effect relationships, we carried 
out MR analyses to see whether the associations we found were causal. We found that adiposity was causally 
protective for breast cancer and our results are similar to those reported by Guo et al.6 using the same study 
but with a lower number of cases. Observationally, adiposity is reportedly protective for pre-menopausal breast 
 cancer9 and our MR results, which show that the protective effect is stronger in pre-menopausal women, are in 
agreement with this. Considering all adiposity measures together, we found that BMI, a body mass measure, 
appears to drive the causal effect over the adiposity measures of body shape. We also show that, whilst BMI may 
explain the association between the other adiposity measures and breast cancer, childhood BMI may in fact 
explain the association between adulthood BMI and breast cancer—the latter is in agreement with Richardson 
et al.32 In these cases the continuity of the BMI phenotype throughout life fits well with the model of life-long 
exposure but also makes the interpretation of the results more difficult. It is possible that for breast cancer, child-
hood BMI is a better proxy of female body adiposity excluding breast fat and that this “core” adipose tissue is 
responsible for the protective effect seen here.

We also carried out MR analyses for prostate cancer. We found that BMI and WC are causally protective for 
prostate cancer in the UK Biobank dataset and this is supported by our analysis of external data. Davies et al.7 
report no causal effect of BMI on prostate cancer, but this may be due to lack of statistical power because they 
used a smaller number of cases (20,848 vs. 79,194). Our multivariable MR results suggest that the protective 

Table 2.  Two-sample MR estimates of the causal effect of adiposity on breast and prostate cancer. Odds 
ratios (OR) and 95% confidence intervals from a two-sample MR analysis of the causal effect of adiposity 
on breast and prostate cancer risk in women and men, respectively.  p(intercept) = p-value of the intercept from 
the MR Egger method. BMI body mass index, BFP body fat percentage, HC hip circumference, WC waist 
circumference, WHR waist-to-hip ratio.

Cancer Exposure Method OR [95% CIs] p p(intercept)

Breast BMI MR Egger 0.55 [0.36–0.83] 7.14E − 03 1.41E − 01

Breast BMI Inverse variance weighted 0.74 [0.65–0.85] 1.36E − 05 NA

Breast BFP MR Egger 0.30 [0.14–0.62] 1.19E − 02 1.48E − 01

Breast BFP Inverse variance weighted 0.51 [0.34–0.74] 4.55E − 04 NA

Breast HC MR Egger 0.28 [0.13–0.59] 3.99E − 03 2.33E − 02

Breast HC Inverse variance weighted 0.69 [0.52–0.90] 6.99E − 03 NA

Breast WC MR Egger 0.36 [0.20–0.66] 4.62E − 03 2.65E − 02

Breast WC Inverse variance weighted 0.74 [0.61–0.91] 3.23E − 03 NA

Breast WHR MR Egger 0.73 [0.18–3.03] 6.73E − 01 8.91E − 01

Breast WHR Inverse variance weighted 0.81 [0.62–1.05] 1.15E − 01 NA

Prostate BMI MR Egger 0.79 [0.50–1.26] 3.31E − 01 9.87E − 01

Prostate BMI Inverse variance weighted 0.79 [0.70–0.90] 2.91E − 04 NA

Prostate BFP MR Egger 0.56 [0.27–1.18] 1.66E − 01 3.03E − 01

Prostate BFP Inverse variance weighted 0.82 [0.59–1.13] 2.21E − 01 NA

Prostate HC MR Egger 0.83 [0.28–2.52] 7.53E − 01 9.14E − 01

Prostate HC Inverse variance weighted 0.79 [0.60–1.03] 7.82E − 02 NA

Prostate WC MR Egger 1.15 [0.26–5.11] 8.59E − 01 6.07E − 01

Prostate WC Inverse variance weighted 0.77 [0.61–0.98] 3.31E − 02 NA

Prostate WHR MR Egger 0.46 [0.17–1.19] 2.49E − 01 3.33E − 01

Prostate WHR Inverse variance weighted 0.83 [0.64–1.07] 1.52E − 01 NA
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association between WC and prostate cancer is driven again by BMI, a body mass measure, and that the associa-
tion between BMI and WC is not attenuated by childhood BMI.

There is previously published evidence which suggests that adipose tissue may play a role in safely storing 
harmful  chemicals11. Persistent organic pollutant (POP) concentrations increase by 2–4% per kg of weight loss 
and remain elevated for up to 12 months after a weight loss  intervention12. We hypothesised that the protective 
effect of increasing adiposity on prostate and breast cancer risk might be explained by its ability to sequester 
potentially carcinogenic substances. Our results, which show that the protective effect was enhanced in men 
reporting more frequent exposure to potentially carcinogenic substances at work, support our hypothesis in 
prostate cancer. The same effect was not observed in female breast cancer, which may be due to an insufficient 
number of cases or due to a more complex underlying mechanism. In both breast and prostate cancer cases, it 
appears that the overall mass of adipose tissue, as measured by BMI, is more relevant than either % body fat or 
where the fat accumulates, measured by the WHR, WC and HC. This fits well with the idea of adipose tissue 
operating as a sink to store potentially harmful chemicals, but a more detailed investigation where exposure is 
accurately measured is required.

The direction of the observational association between BMI and breast cancer is opposite to that of the causal 
effect, which suggests that the former is confounded. We found that variables relating to physical activity (i.e. 
frequency of stair climbing and moderate physical activity) may be one source of confounding and this is sup-
ported by the fact that increased physical activity is protective for breast  cancer33. Our algorithm also selected 
macular degeneration (an eye disease for which increasing age is the strongest risk factor and circulating lipids 
have also been involved)34, ankle width (which might represent swelling of the lower extremities—symptoms of 
diabetes and cardiovascular disease), and leukocyte count (a marker of systemic inflammation)35. These variables 
are likely to represent a currently undefined higher order variable, perhaps biological age or a marker of overall 
health, and further investigation is required to identify what this variable might be and whether or not it can be 
modified to minimise breast cancer risk.

A number of limitations are present in our work. The UK Biobank study, despite its sample size and almost 
comprehensive phenotyping, does have a "healthy volunteer" selection bias. The rate of cancer is lower in com-
parison to the general  population36. Also, the proportion of adults who were overweight or obese among men 
and women in the UK population was 78% and 73%, respectively, compared to 74% and 60%, respectively, for 
the same age group in the UK  Biobank37. The sample is, therefore, not representative of adiposity in the wider 
UK population. The difficulty in measuring adiposity should also be mentioned. The adiposity measures we use 
consider different aspects of adiposity.

Conclusions
In conclusion, we found that increased adiposity is causally protective for breast and prostate cancer and the 
effects in the prostate cancer may be modified by exposure to potentially carcinogenic substances. Further work 
needs to be done to identify variables that are responsible for the observed relationship between increased BMI 
and increased risk of breast cancer. It is clear that reduction of adiposity, in and of itself, may not reduce the 
risk of breast and prostate cancer as the recent campaign by Cancer Research  UK3 might suggest. As adiposity 
is a known risk factor for other age-related diseases, such as type-2-diabetes and cardiovascular disease, it is 
necessary to explore the mechanisms through which adiposity may protect against certain types of cancer and 
to identify how the former can be minimised without sacrificing the latter.

Data availability
This research has been conducted using the UK Biobank Resource under project 44566 (https:// www. ukbio 
bank. ac. uk/ 2018/ 12/ genet ic- and- non- genet ic- facto rs- able- to- predi ct- and- modify- the- risk- of- diffe rent- types- 
of- cancer/). All bona fide researchers can apply to use the UK Biobank resource for health-related research that 
is in the public interest.
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