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Abstract: The complement system orchestrates a multi-faceted immune response to the invading
pathogen, Mycobacterium tuberculosis. Macrophages engulf the mycobacterial bacilli through bacterial
cell surface proteins or secrete proteins, which activate the complement pathway. The classical
pathway is activated by C1q, which binds to antibody antigen complexes. While the alternative
pathway is constitutively active and regulated by properdin, the direct interaction of properdin is
capable of complement activation. The lectin-binding pathway is activated in response to bacterial
cell surface carbohydrates such as mannose, fucose, and N-acetyl-D-glucosamine. All three pathways
contribute to mounting an immune response for the clearance of mycobacteria. However, the
bacilli can reside, persist, and evade clearance by the immune system once inside the macrophages
using a number of mechanisms. The immune system can compartmentalise the infection into a
granulomatous structure, which contains heterogenous sub-populations of M. tuberculosis. The
granuloma consists of many types of immune cells, which aim to clear and contain the infection
whilst sacrificing the affected host tissue. The full extent of the involvement of the complement system
during infection with M. tuberculosis is not fully understood. Therefore, we reviewed the available
literature on M. tuberculosis and other mycobacterial literature to understand the contribution of the
complement system during infection.
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1. Introduction

Mycobacterium tuberculosis was first discovered by the German physician and micro-
biologist Robert Koch in 1882, who subsequently won the Physiology or Medicine Nobel
prize in 1905 (nobelprize.org). The M. tuberculosis cells are acid-fast rods and obligate
aerobes with a doubling time of 22 h [1]. M. tuberculosis is the causative agent of the
chronic disease, tuberculosis, which caused 10 million new cases and 1.5 million deaths in
2018 [2]. M. tuberculosis was classified as one of the top ten causes of deaths worldwide
in 2016, and importantly, one-quarter of the worlds’ population is infected with latent
tuberculosis [2].Tuberculosis is primarily transmitted through the inhalation of infected air
droplets and symptoms include night sweats, coughing blood, fatigue, and fever. Despite
public misconceptions, tuberculosis is not an eradicated disease in the UK; there were
4725 reported cases in England in 2019 [3]. The complex bacterial cell wall, composed of
arabinogalactan and mycolic acids, has proven to be difficult to penetrate therapeutically,
which goes some way to explaining the continued difficulty in eradicating tuberculosis.
Other barriers that have contributed to the problems with tuberculosis eradication include
drug development failures and a rise of drug resistance. Treatment for drug susceptible
tuberculosis comprises of a combination of four drugs over a 6-month period, whilst drug
resistant infections require up to 24 months of treatment.
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2. Widely Accepted Paradigm of Infection

The agreed paradigm of infection with M. tuberculosis can be separated into early
and late infection. The early acute phase begins with the inhalation of infected airborne
droplets from an infected patient. The bacilli enter the alveolar space and are phagocytosed
by the abundant resident macrophages, which are favoured over any other cell type [4].
Type II alveolar epithelial pneumocytes have been shown to allow the internalisation of M.
tuberculosis in vitro [5]. These macrophages internalise M. tuberculosis through bacterial cell
surface proteins or through secreted proteins that activate the complement pathway [6].
The complement component, C3, is present in serum and opsonises the surface of M.
tuberculosis for recognition by macrophages through the complement receptor [6]. The
absence of serum results in the recognition of M. tuberculosis cell surface ligands, lipoarabi-
nomannan (LAM), via the mannose receptors; however, this scenario has been reported
for virulent strains of M. tuberculosis [6]. The bacilli are capable of evading host protec-
tive mechanisms which includes phagosome–lysosome fusion, recruitment of hydrolytic
lysosomal enzymes, production of reactive oxygen and nitrosative species, apoptosis, and
evasion of antigen presentation, once the bacilli have entered the phagosomal compartment
of macrophages [7].

The chronic phase of infection involves the survival of M. tuberculosis in the macrophages
and is referred to as the latent infection; factors that contribute to this can be host and
pathogen derived, for example, the virulency of M. tuberculosis and host immune status.
The failure of macrophages to eliminate M. tuberculosis infection results in the recruitment of
monocytes, which differentiate into macrophages. This causes the further phagocytosis of
M. tuberculosis in a passive manner, and the cycle continues, causing the logarithmic growth
of tuberculosis infection within the macrophages. The production of chemokines recruits’
lymphocytes and neutrophils to the site of infection, which are not capable of clearing
infection but increase the inflammatory effects. Eventually, macrophage-derived giant cells
and lymphocytes cause the development of a caseous granuloma to compartmentalisation
of the infection; however, the exact factors that drive granulomatous formation are not
fully understood [8]. The bacilli move into the lung interstitial space, which is rich in
complement proteins, and further drives local inflammation, which consequently drives
the influx of more macrophages and neutrophils from the blood and dendritic cells from
the lung parenchyma [9,10]. Tissue-resident dendritic cells play a key role in M. tuberculosis
antigen presentation and the development of anti-mycobacterial T cell responses after a
couple of weeks of infection [11]. The T cells produce interferon-γ (IFN-γ), which activates
the macrophages to kill and eliminate infection and thus causes the halt of the logarithmic
growth of M. tuberculosis [12].

The role of the complement system in M. tuberculosis infection is poorly understood.
There are a handful of publications that show complement pathway activation during
challenge with M. tuberculosis; however, there is very little understanding of the exact
involvement of the complement cascade and its contribution to tuberculosis disease pro-
gression. Therefore, this review focuses on the evidence for the role of the complement
system during M. tuberculosis infection.

3. Classical Pathway and Mycobacteria

C1q activates the classical pathway, which is the first subcomponent of the classi-
cal complement cascade. C1q is a hexameric molecule (460 kDa) with a characteristic
tulip-like structure [13] that binds directly to the surface of bacteria or can be activated
during the adaptive immune response by binding to the antibody–antigen complexes.
The binding of C1q results in the cleavage of C4 and C2 to the convertase C4bC2a. Then,
this convertase cleaves C3 to produce C3a and C3b, which are ligands that opsonise
M. tuberculosis. Most individuals received the Bacillus Calmette-Buérin (BCG) vaccination
in the UK up until 2005, so studies in the model organism, Mycobacterium bovis BCG, have
shown C1q binding in the presence of Immunoglobulin G (IgG) and immune globulin
M (IgM) in serum samples [14]. The presence of anti-lipoarabinomannan (LAM) IgG2 in
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the sera of Indian tuberculosis patients has correlated with classical activation by BCG
in sera [15]. C1q-deficient serum has shown a reduction C3 binding [16]. Some argue
that the classical pathway is a lot more active than the alternative pathway in the lungs
despite its lower abundance of serum, which has been demonstrated through bronchoalve-
olar lavage fluid [16]. Additionally, Ferguson and colleagues tested the binding of C3 to
M. tuberculosis and showed that incubating nonimmune human serum for less than 5 min
with M. tuberculosis resulted in the cleavage of C3 to C3b, C3bi, and other fragments [16].
The antigen–antibody complexes or opsonised bacterial surfaces interact with complement
receptors (CR). Some of the early evidence from the 1990s showed that the monocyte
complement receptors CR1 and CR3 were responsible for the adherence to the major ligand
C3 and ingestion of M. tuberculosis [17]. Neutrophils challenged with Mycobacterium kansasi
showed evidence for CR3 binding [18]. Hu and colleagues investigated the contribution of
the CR3, which recognises the iC3b fragment in mycobacteria by using CR3-deficient mice.
There was no difference in mortality between CR3WT and CR3−/− mice upon infection
with M. tuberculosis, nor was there a difference of bacterial burden in the liver, spleen, and
lungs, which was confirmed histologically [19]. Others have used Mycobacterium avium in
CR3−/− mice and have shown that there is no difference in bacterial burden, susceptibility
to M. avium, and granulomatous response compared to the control mice [20]. However,
there was significantly higher invasion of M. avium in bone marrow-derived macrophages
(BMDM) in CR3−/− mice [20]. The cell surface of M. avium was sufficient for activation
of the classical complement pathway independent of antibodies in vitro; the levels of C3
cleavage were measured by incubation of C1, C2, C3, and C4 with M. avium [20]. The
classical pathway and its contribution to the host response during tuberculosis infection is
summarized in Figure 1.

Patients with tuberculoid leprosy (TT) exhibit little bacilli in the skin lesions whilst
lepromatous leprosy (LL) patients have greater numbers of bacilli in many skin lesions.
Leprosy is associated with the development of pathologic immune reactions, reversal
reaction (RR), or erythema nodosum leprosum (ENL). Transcriptomic analysis of PBMCs
in RR and ENL has shown increased C1q activity, but the C1q levels in blood did not in-
crease [21,22]. This suggests that the C1q was deposited in tissues and therefore able to bind
to immunoglobulins to form immune complexes [23]. Those with LL reactions presented
with lower levels of C4 and increased with the development of RR or ENL. Polymorphisms
in CR1 have been shown to increase susceptibility to Mycobacterium leprae [24].
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Figure 1. Overview of the complement system in mycobacteria.

A simplified cartoon representing the involvement of the three complement pathways
in tuberculosis infection: classical, lectin binding, and alternative. Briefly, the classical
pathway is initiated by C1q, which recognises antibody—M. tuberculosis antigen complexes.
The lectin binding pathway is activated by the recognition of complex sugar moieties on the
M. tuberculosis cell surface. The alternative pathway is constituently active at basal levels,
and unlike the other pathways, it does not require activation. The alternative pathway is
regulated by properdin and factor H. All three complement pathways lead to the activation
of C3 convertases, which cleaves C3 to C3b. C3b opsonises M. tuberculosis, which is ready
for recognition by macrophages. The bacilli reside within the macrophage and experience
a multitude of stresses induced by the host to clear the infection. This event develops into
the characteristic granuloma. The C3 convertases also activate C5 convertases, resulting in
the cleavage of C5 to C5a and C5b, leading to the formation of the MAC and ultimately,
mycobacterial cell lysis.
4. Alternative Pathway and Mycobacteria

Unlike the classical and lectin complement pathways, which require stimuli for ac-
tivation, the alternative pathway is constitutively active at basal levels, and it is ready to
recognise invading pathogens rapidly. The alternative pathway and its contribution to the
host response during tuberculosis infection is summarized in Figure 1. The alternative path-
way is activated by C3 (C3bBb) convertase, which is bound to the complement-activating
target and causes the cleavage of C3. The C3bBb convertase is formed from the association
of factor B in the presence of Mg2+ and factor D. This causes the cleavage of factor B into Bb
and Ba fragments, thus forming the C3bBb convertase. The C3bBb convertase produces the
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opsonin C3b, which is deposited alongside C3bBb convertase, resulting in the formation of
C5 convertase, which produces C5a and C5b fragments and results in cell lysis when the
membrane attack complex (C5-9) is inserted in a membrane [25,26].

Properdin is a regulator of the alternative pathway and composed of seven throm-
bospondin type 1 repeats (TSR1-TSR6). TSR4 is crucial for the stabilisation of C3bBb,
and TSR5 contributes to the binding of C3b demonstrated through domain deletion
studies [27]. Properdin binds to the bacterial cell surface directly and is responsible for the
recruitment of C3b, which causes assembly of the C3 convertase and ultimately more C3b
deposition on the bacterial surface. TSR4+5 upregulates tissue necrotic factor-α (TNF-α),
which is involved in the growth and maintenance of the granuloma, but it downregulates
interleukin 10 (IL-10) and interleukin 12 (IL-12); this subsequently reduces stimulation of
natural killer (NK) cells and IFN-γ. Thus, properdin is involved in modulation of the im-
mune response to mycobacterial infection [28]. Unlike properdin, Factor H has been shown
to downregulate complement activation by specifically binding to Mycobacterium bovis BCG
and thus preventing uptake of M. bovis BCG by THP-1 macrophages [14,28]. Additionally,
Factor H results in the upregulation of TNF-α, interleukin 1 β (IL-1β), and interleukin 6
(IL-6) expression during early phagocytosis. IL-1β provides resistance to mycobacteria,
whilst IL-6 enables a T-cell response to M. tuberculosis infection. IL-12, IL-10, and tissue
growth factor β (TGF-β) are downregulated by factor H, which suppresses the Th1 response
and IFN-γ, thus dampening the anti-inflammatory cytokine response [29,30].

5. Collectins, Lectin Pathway, and Mycobacteria

An important component of the innate immune system is collectins, which are key
pattern-recognition molecules (PRMs) that bind to invading pathogens and contribute to
neutralisation and clearance [31]. The role of collectins and the lectin pathway during
tuberculosis infection is summarized in Figure 1.

Collectins are also important in influencing the subsequent adaptive immune response
against these microbial infections. Among the collectins are surfactant proteins A (SP-A)
and D (SP-D), mannose-binding lectin (MBL), liver collectin (CL-L1), kidney collectin (CL-
K1), CL-LK (composed of CL-L1 and Cl-K1), and placenta collectin (CL-P1) [32]. Additional
collectins have also been described in Bovidae species, which are called conglutinin, CL-43
and CL-46 [32]. Collectins can clear microbial infection through aggregation, opsonisation,
inhibition of phagocytosis, and microbial growth inhibition [32]. Of these collectins, MBL,
CL-LK, and SP-A have also been shown to be involved in complement interactions.

As discussed, MBL is a major component of the complement system’s lectin pathway
and is mainly a serum protein. The structure of MBL is similar to C1q and SP-A and
can target terminal sugars on the surface of bacteria in a calcium-dependent manner [33].
SP-A and MBL have globular C-terminal lectin domains that target microorganisms in
this manner [32]. This MBL binding to the surface of microbes can subsequently acti-
vate complement via MBL-associated serine proteases (MASPs), consequently leading
to greater microbial clearance through opsonisation with C3 and C4 components and
complement-mediated phagocytosis [32]. Additionally, MBL has complement-independent
properties and can inhibit bacterial growth directly and acts as an opsonin in its own
right [34–36]. MBL can bind several Gram-positive and Gram-negative bacteria, including
Staphylococcus aureus, Streptococcus pyogenes, Listeria monocytogenes, and non-encapsulated
Neisseria meningitidis, Escherichia coli, Haemophilus influenzae, Klebsiella spp, and mycobacte-
ria species [37–39]. In mycobacteria, MBL has been shown to bind to lipoarabinomannan
(LAM) from Mycobacterium avium [36] and mannosylated lipoarabinomannan (ManLAM)
from several others, e.g., M. tuberculosis, M. bovis, M. kansasii, Mycobacterium gordonae and
Mycobacterium smegmatis [40]. The persistence of M. leprae LAM in mice contributes to
the deposition of membrane attack complex (MAC), resulting in myelin loss and axonal
damage [41]. Conversely, the inhibition of MAC provides neuroprotection in response to
M. leprae infection [41]. Multi-drug therapy for the treatment of M. leprae was believed to
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release dead bacilli, and Mycobacterium. leprae LAM can sustain persistent complement
activation, resulting in chronic inflammation [41,42].

Other mycobacterial ligands that can be targeted by MBL include the antigen 85 (Ag85)
complex of M. tuberculosis [43]. Experiments using the vaccine strain Mycobacterium bovis
BCG have demonstrated complement activation of all three pathways [14]. For the lectin
pathway, this study demonstrated the direct binding of both MBL and L-ficolin from hu-
man serum to mycobacteria and subsequent MASP2 activation, resulting in the cleavage of
C2 and C4, complement activation, and C3 deposition [14]. Patients with tuberculosis have
been reported to have lower ficolin-2 levels compared to healthy controls, and in vitro ex-
periments have shown L-ficolin to bind to virulent mycobacteria more so than non-virulent
mycobacteria [44]. Interaction between L-ficolin with neutrophils and macrophages was
shown to stimulate IFN-γ, interleukin-17 (IL-17), IL-6, NO, and TNF-α [44]. Presumably,
mycobacteria encounter MBL in the serum under situations such as disseminated disease
(e.g., extra pulmonary tuberculosis), although the precise role played by MBL in comple-
ment activation is not well understood. However, the lectin pathway’s role in overall
complement activation in the blood is thought to be less than the classical and alternative
pathways, which is probably because of the low levels of initiating its initiating proteins,
e.g., MBL and ficolins [14]. It is also worth noting that in other anatomical sites other than
the bloodstream, lectin pathway activation against mycobacteria may have more of a role
depending on the relative concentrations of C1q, MBL, and ficolins in different bodily
fluids, which are currently not well understood [14].

Deficiency in MBL is known to increase susceptibility to microbial infection, despite
most individuals being apparently healthy [45–47]. MBL serum levels in the human popula-
tion vary greatly (from 5 to 10,000 ng/mL), and this could be from genetic polymorphisms
in the MBL genes [48]. Deficiency in MBL is common, with a quarter of Caucasians
observed to have low levels (<500 ng/mL) of MBL, making them more susceptible to
infection [49]. In mice, MBL deficiency was observed to make mice more susceptible to
Staphylococcus aureus infection [50], whilst in humans with severe burns, MBL deficiency
was associated with increased susceptibility to infection with Pseudomonas aeruginosa [51].
MBL deficiency is also linked to meningococcal infection and pneumococcal pneumonia
cancer chemotherapy patients [52–54]. In tuberculosis, serum levels of MBL and its as-
sociation to disease has been studied. There is evidence that both normal or increased
levels of MBL are associated with frequent mycobacteria infection with M. tuberculosis and
M. leprae [55,56], which is postulated to occur through enhanced complement-mediated
uptake of the pathogen into host cells. Approximately 5 to 30% of healthy humans possess
mutations associated to MBL deficiency, which been linked with susceptibility to tuber-
culosis and other inflammatory diseases in some ethnic minorities [57–59]. In contrast,
polymorphisms in the MBL gene were associated with protection against tuberculosis
meningitis in children [60], showing that genetic changes can be both potentially protective
as well as harmful. Additionally, polymorphisms in MBL and MASP-2 genes were associ-
ated with the susceptibility of tuberculosis, showing possible gene–gene interactions [61].
However, in 168 patients with tuberculosis, no association was found between ficolin-2,
ficolin-3, MASP-2 genotypes, the lectin complement pathway, or serum levels, and suscepti-
bility to pulmonary tuberculosis suggests that high MBL serum levels in these tuberculosis
patients were probably due to an acute phase response instead [62].

The serum collectin CL-LK (composed of CL-L1 and CL-K1) can also activate the lectin
pathway by via MASP-1 and MASP-2 [63]. The serum levels of CL-LK are lower than those
of MBL (approximately 0.3 µg/mL), so CL-LK probably plays a minimal role in pathogen
recognition and clearance. However, CL-LK has been reported to bind to M. tuberculosis via
ManLAM but not to M. smegmatis [64]. Furthermore, mice deficient in CL-K1 showed no
change in susceptibility to M. tuberculosis infection, whilst CL-LK opsonised M. tuberculosis
does not alter its phagocytosis or intracellular persistence in human macrophages [64].
Intriguingly, serum levels of CL-LK in tuberculosis patients is decreased, compared to
controls, perhaps showing its possible utility as a biomarker for tuberculosis [64].
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Conglutinin is a type of collectin largely found in bovine serum and is secreted
from the liver, binding to iC3b. Truncated conglutinin (rfBC) exhibited bacteriostatic
activity in culture and showed an inhibition of phagocytosis of M. bovis BCG in THP-1
macrophages [65]. The inhibition of phagocytosis occurs possibly because rfBC interferes
with mannose receptor-mediated uptake by masking lipoarabinomannan on the M. bovis
BCG surface or by preventing an adaptive immune response [65]. Maltose (an analogue
of mannose) was shown to inhibit interaction between M. bovis BCG and conglutinin and
thus indicated competitive inhibition by binding to carbohydrate surface motifs [65]. The
incubation of M. bovis BCG with complement from human serum caused the inhibition of
M. bovis BCG with conglutinin-mediated phagocytosis [65].

Lung surfactant proteins SP-A and SP-D can also both bind to Gram-negative and
Gram-positive bacteria, aggregating, neutralising, inhibiting their growth, and acting as
opsonins [32]. SP-A has structural similarities to C1q and MBL that resemble a bouquet of
flowers [66] and has also been shown to regulate complement activation [67]. Furthermore,
the receptor for C1q (CD93/C1qRp/C1qR) is also a phagocytic receptor for SP-A and
MBL [68]. SP-A can also bind directly to C1q [69], and SP-A may regulate complement
activity in the lung as a result. This occurs through two mechanisms: Firstly, SP-A prevents
C1q from combining with C1r and C1s to form the complete C1 complex that is needed
to activate complement, and secondly, SP-A interferes with immune complex recognition
by both C1q and C1 [67]. It is not clear what impact this has on immune defence against
microbes in the lung, but these findings suggest that SP-A may be protective against lung
inflammation by inhibiting C1q-mediated complement activation. The implications for
mycobacterial infection are unknown, but it is well established that SP-A interacts directly
with M. tuberculosis via its putative adhesin Apa glycoprotein [70]. SP-A, as an opsonin,
enhances the phagocytosis of M. tuberculosis and M. avium by macrophages via the increased
expression of mannose receptor [52,71,72], whilst similarly, SP-A can enhance the uptake
of M. bovis BCG via the specific 210-kDa SP-A receptor (SPR210) in U937 macrophages
and rat alveolar macrophages [73,74], leading to enhanced mycobacterial killing and the
production of TNF-α and nitric oxide [75].

In humans, there are two isotypes of SP-A (SP-A1 and SP-A2) that are coded for by
separate genes [66]. Several mutations at the SP-A gene locus have been associated with
both protection from or susceptibility to tuberculosis in human populations around the
world (e.g., Mexico, Ethiopia, India and China) [76–80]. These findings demonstrate the
complex nature of the host–pathogen interaction of mycobacterial infections mediated by
complement and collectins.

6. Granuloma Formation and the Complement System

One of the hallmarks of a successful tuberculosis infection is the presence of granulo-
mas, which have been described as solid host-protective structures. However, this idea has
vastly changed as a result of the advancement in microscopic technologies that show gran-
ulomas to be dynamic structures that allow cells to move in and out [81]. The granuloma is
made up of giant cells, which arise from the fusion of mature macrophages and foam cells
that are characterised by lipid accumulation [82]. An overview of the granuloma structure
has been summarized in Figure 2.
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Figure 2. Overview of the M. tuberculosis granuloma.

This is an overly simplified cartoon of the complex M. tuberculosis granuloma. Briefly,
the polarisation of macrophages into M1 and M2 is balanced finely by the host to manage
chronic infection. These groups of macrophages are distinct; M1 macrophages promote
a pro-inflammatory response using glycolytic respiration, whilst the M2 macrophages
promote an anti-inflammatory response. The inflammatory markers regulate the promotion
and formation of the granuloma and determines disease outcome.

Foamy macrophages are distinct to non-foamy macrophages as they express higher
levels of MHCII, CD11b+, CD11c, and CD40; however, they are poor antigen-processing
cells [83]. Infected foamy macrophages are packed with host lipid, which is consumed
by M. tuberculosis through aerobic glycolysis and the induction of genes encoding lipid
transporters and lipolytic enzymes [82,84,85]. Live cell imaging studies have shown the
localisation and migration of M. tuberculosis towards the host lipid reservoirs [86]. Finally,
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as the foamy macrophages leave the original granuloma, dissemination results in secondary
granuloma formation.

Other aspects of the granuloma include necrotic areas also known as caseum, made up
of neutrophils, natural killer (NK) cells, dendritic cells (DC), B and T cells. This structure is
lined with epithelial cells, histocytes (mature monocytes), and lymphocytes, which play a
key role in the granulomatous formation. The histiocytes are activated by T lymphocytes,
which secrete IFN-γ, infected macrophages become necrosed (Ghon focus), and thus
persistence of chronic infection occurs [43,44,87]. The primary lesion can spread to the local
lymph system undergoing latency and calcifications (Ghon complex) [87].

The interrelationships between macrophages and M. tuberculosis have an effect on
dampening the immune response and cause the increased survival of mycobacteria. Dis-
tinct types of macrophages, M1 and M2, can allow permissive or restrictive mycobacterial
growth [84,88] M1 macrophages are involved in the pro-inflammatory Th1 response, which
is also known as the Warburg effect during the early infection phase. M1 macrophages are
stimulated by Toll-like receptor (TLR) ligands and IFN-γ via signal transducer and activa-
tor of transcription 1 (STAT1) signaling. IFN-γ results in STAT1 phosphorylation, which
upregulates the transcription of nitric oxide synthase; thus, nitric oxide (NO) and NO-
derived species are produced [89–91]. TNF-α provides protection against M. tuberculosis
infection by binding to the TNF receptor, which results in the activation of the nuclear
factor kappa-light change enhancer of activated B cells (NFKB pathway, and it has been
associated with granulomatous formation. Mice that are deficient in TNF-α or TNF-α
receptors have been shown to be unable to generate granulomatous structures in response
to M. tuberculosis [92]. M1 macrophages utilise aerobic glycolysis upon activation for the
production of ATP [93,94]. The electron transport chain is also altered during this period
for the production of reactive oxygen species (ROS) and NO.

In contrast, M1 macrophages are transformed into M2 macrophages by the 6-kDa
early secretory antigenic target (ESAT-6) [91]. M. tuberculosis can subvert the switch from
M2 to M1 and thus persist and survive in the internal macrophage environment [88,95,96].
M2 macrophages are involved in an anti-inflammatory T helper 2 (Th2) response, which is
stimulated by interleukin 4 (IL-4), interleukin 13 (IL-13), and IL-10 via STAT6 and STAT3
signaling [90,97–99]. IL-4 is produced in response to M. bovis BCG and M. tuberculosis
lipoarabinomannan from bone marrow cells and induces oxidative phosphorylation and
mitochondrial respiration [94,100]. M2 macrophages favour fatty acid oxidation and oxida-
tive metabolism, which continues to generate energy for a longer period [93,94]. Blocking
oxidative metabolism can prevent M2 polarising and drives towards M1 [93]. Additionally,
a study reported pleural macrophages after combination therapy: isoniazid, rifampicin,
pyrazinamide, and ethambutol (HRZE) favoured polarisation to M2-like phenotype [101].
M. tuberculosis sub-populations in the granuloma experience hypoxia, causing the pH of the
caseous core of the granuloma to range between 7.2 and 7.5. In vitro analysis has shown
peripheral blood mononuclear cells switching from M1 to M2 on the induction of hypoxic
conditions [102]. Each granuloma is an isolated entity that determines whether it initiates
active disease or remains quiescent, and the relative ratio of M1/M2 macrophages can
determine the granuloma status [103]. Interestingly, M2 macrophages have been found to
be abundant in the lung tissue of MDR-TB patients.

7. Th1/Th2 Switch in the Granuloma and the Involvement of Complement System

The maintenance of the granuloma in critical in the control of tuberculosis, and the
early interactions of complement and other innate immune factors (e.g., collectins) may
be essential in modulating the subsequent adaptive immune response and formation of
the granuloma. The granuloma is a complex lesion made up of various immune cells
that effectively cordons off M. tuberculosis infection and limits its growth and spread, but
conversely also is a place for the mycobacterium to persist as latent infection [104]. In-
flammatory cytokines such as TNF-α and IFN-γ are critical for granuloma development
and are secreted by infected M. tuberculosis-infected macrophages early on in the infection
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process, accelerating the recruitment of cells in the granuloma [105]. Recent studies have
suggested that the complement regulatory proteins Factor H and properdin may also play
a role in this process by enhancing the pro-inflammatory cytokine responses required for
granuloma formation and maintenance [28,29]. Factor H bound to M. bovis BCG was found
to inhibit phagocytosis by macrophages but also boosted pro-inflammatory cytokines (TNF-
α, IL-1β, and IL-6) whilst simultaneously decreasing anti-inflammatory cytokines (IL-10,
TGF-β, and IL-12) [29]. Similar findings were also observed with properdin-bound M. bovis
BCG [28]. It has been suggested that this may be a strategy to limit intracellular infection by
M. tuberculosis whilst promoting inflammatory conditions for the granuloma and limiting
the spread of infection [29]. A balance of inflammation, particularly in the lungs, must be
tightly controlled, and this balance is essential for the maintenance of a protective homeo-
static granuloma. This balance is referred to as the Th1/Th2 balance and is governed by
the relative concentrations of IFN-γ/TNF-α (Th1) versus IL-4/IL-10/TGF-β (Th2) within
the granuloma. It is possible that innate immune molecules such as factor H, properdin,
C1q, and collectins may influence the early host–pathogen interactions described above for
M. tuberculosis and influence the inflammatory response, shaping the adaptive immunity
(granuloma formation and maintenance through the balance of Th1/Th2). Indeed, Factor
H expression is enhanced in monocytes by IFN-γ, and macrophages can locally produce
complement proteins such as C1q, suggesting that they may reside within the granu-
loma [106]. However, it is currently unknown if any complement proteins reside within the
granuloma, but they may play a role in preventing Th1/Th2 imbalance, which ultimately
results in granuloma necrosis as well as M. tuberculosis reactivation and growth, which is
also advanced by CD4+ T cell activation [107]. Moreover, the possible suppression of IL-12
by complement proteins, the subsequent reduction in the phagocytosis of mycobacteria,
and impaired antigen presentation would lead to a downregulation in the Th1 response
and the recruitment of CD4+ T cells secreting IFN-γ. This would be also important in
the Th1/Th2 balance within the protective granuloma, where T-cell activation can initiate
granuloma necrosis [108].

The suppression of IL-10 and TGF-β may further promote mycobacterial clearance dur-
ing the early stages of infection rather than promoting M. tuberculosis growth [109]. Indeed,
IL-10 inhibits phagolysosomal maturation, thus facilitating M. tuberculosis persistence [30],
and it also inhibits antigen presentation during phagocytosis via major histocompatibility
complex (MHC) [110]. Furthermore, IL-10 is involved in suppressing dendritic cell activa-
tion [111], leading to a weakened Th1 response with increased mycobacterial growth [112].
The levels of IL-10 and TGF-β in the lungs of active tuberculosis patients is also significantly
elevated, suggesting a suppression of the immune response to M. tuberculosis, facilitating
pathogenesis and disease progression [113]. Thus, the involvement of innate immune
molecules such as complement proteins in the phagocytosis of mycobacteria may help
diminish the evasion mechanisms employed by M. tuberculosis, thus enhancing bacteria
clearance in the early stages of infection and facilitating a protective response immune
response in the form of a granuloma.

Additionally, studies in zebrafish infected with M. marinum have shown that a
virulence-associated RD1 locus plays a role in the macrophage internal environment for
the development of granuloma formation [114]. RD1 locus knock-outs in zebrafish were re-
ported to dysregulate macrophage aggregation in granulomas and promoted macrophage
cell death [114]. Others have used the zebrafish model to study M. tuberculosis granulomas,
which were subsequently dissected and cultured ex vivo; these granulomas displayed the
same heterogeneity in immune cells and in immune response [115].

Trehalose 6,6′-dimycolate (TDM) is a glycolipid component of the mycobacterial
cell wall and has been shown to mimic M. tuberculosis granulomatous formation in
mice [116–118]. Complement C5 is secreted directly from the M. tuberculosis infected
macrophages, and C5a is responsible for the transcription/translation of cytokines. An-
imal studies have demonstrated that A/J (C5 deficient) and C5aR−/− mice succumb to
M. tuberculosis infection compared to C57BL/6 mice when treated with TDM from a failure



Medicina 2021, 57, 84 11 of 18

to contain and localise the infection in granulomas [117–119]. The BMDM from the A/J
mice ex vivo were unable to clear M. tuberculosis infection and enhanced the multiplication
of M. tuberculosis within the macrophages [117–119].

Additionally, complement protein 7 (C7) inserts into the cell membrane and plays
a vital role in the formation of the membrane attack complex, C5b-9, resulting in cell
lysis [120]. A study has shown that C7−/− mice decreased M. tuberculosis dissemination
into livers, reducing lung immunopathology and smaller granulomas [120]. However, the
true effect of C7 in M. tuberculosis remains mostly unclear.

The recognition of M. tuberculosis by myeloid cells via PRRs causes the activation of
nucleotide-binding oligomerisation domain-like receptors (NLRs). NLR activation drives
the assembly of an inflammasome consisting of oligomerised NLRs, adaptor apoptosis-
associated speck-like protein containing a CARD, and caspase-1. Caspase-1 activation and
cleavage enables the cleavage of IL-1β and IL-18 and pore-forming molecule gasdermin
D (GSDMD). IL-1 β is released through GSDMD pores, which result in lytic cell death.
M. tuberculosis infected THP-1 macrophages caused the formation of ASC specks and were
only localised in dead cells, and IL-1 β secretion increased [121]. The secretory antigenic
target secretion system 1, ESX-1, mediated plasma membrane damage causing K+ efflux,
NLRP3 activation, and subsequent caspase-1 mediated IL-1β release in THP-1 cells.

A subset of M. tuberculosis infection can occur in non-myeloid cells. M. tuberculosis
with functional type VII secretion systems and Phthiocerol dimycocerosates (PDIM) form
intracellular cording phenotypes that have been reported within the human lymphatic
endothelial cells (hLEC) [122]. M. tuberculosis-infected hLEC gain access to the cytosol,
whereby cording occurs. The bacilli prevent the activation of host-immune sensors, thus
preventing xenophagy and the persistence of chronic infection [122].

Anti-tuberculosis drugs have been shown to be less effective in vitro against non-
replicating mycobacteria generated under hypoxic conditions [123]. An important advance
for our appreciation of the complexity within granuloma was achieved by dual staining
techniques that confirmed the presence of heterogenous sub-populations of M. tuberculosis
in hypoxic cultures and lung sections [123,124]. These sub-populations exhibited differen-
tial susceptibility to antimicrobial agents and required differential growth requirements
in vitro [125]. Culture supernatant from actively growing M. tuberculosis contains a family
of cell wall cleaving enzymes known as resuscitation promoting factors (Rpfs) involved
in the resuscitation of differentially culturable bacteria [126,127]. Together, these cells can
persist and cause relapse in patients and thus cause a state of chronic infection. Persister
cells are defined in two ways: firstly, those cells that evade the antibiotic but are drug-
susceptible upon subculture, and secondly, bacteria that can switch to being metabolically
inactive and thus exhibit persistence through slow growth or none at all [128].

8. Anti-Tuberculosis Drugs and Immune Modulation

The anti-tuberculosis drugs currently available for the treatment of tuberculosis not
only render the bacilli defective through unique mechanisms, they also have some effect on
the immune response. This section focuses on the interplay between the anti-tuberculosis
drugs and the immune response.

Rifampicin (RIF) is one of the most potent anti-tuberculosis drug and was introduced
into the anti-tuberculosis drug regimen in 1968. RIF inhibits M. tuberculosis by binding
to the β subunit of DNA-dependent RNA polymerase; resistance is associated with the
rpoB gene. This drug has been shown to increase CD1b expression, which is found on
cytokine-activated macrophages, thus boosting the T-cell response to M. tuberculosis [129].
Additionally, RIF was shown to augment NO production in human alveolar epithelial cells,
which are activated by IL-1β, TNF-α, and IFN-γ [130]. Prostaglandin E2 (PGE2) is involved
in the activation of antigen presenting cells, regulation of T- and B- cell responses, and
chronic inflammation. PGE2 production was inhibited by RIF in human alveolar cells [131].
RIF inhibits prostaglandin E2 production and arachidonic acid release in human alveolar
epithelial cells. Others have reported rifampicin to exert no effect on the production of NO
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but prevented phagocytosis in mouse macrophages [132]. RIF and dexamethasone have
similar effects on the macrophage phagocytosis of zymosan but differ in their effects on
nitrite and TNF-alpha production.

Isoniazid (INH) was approved by the FDA in 1952 for treatment against tuberculosis.
INH is oxidised by the M. tuberculosis catalase-peroxidase KatG, which produces free
radicals and in turn inhibits mycolic acid synthesis [133,134]. Phagocytic cells produce
ROS/NOS after infection with M. tuberculosis to clear the bacteria; however, M. tuberculosis
is highly resistant to ROS/NOS, and thus the phagocytic cells undergo necrosis. A study has
shown INH can inhibit the oxidative stress-induced necrosis of phagocytic cells; however,
this is not fully understood [135]. Additionally, INH induces the apoptosis of CD4+ T cells,
autophagy, and phagosomal maturation in response to M. tuberculosis [136,137].

Pyrazinamide (PZA) has been recognised as an anti-tuberculosis drug since 1952.
PZA is converted to pyrazinoic acid by nicotinamidase encoded by pncA and is only
activate against bacilli in an acidic pH or inside macrophages [138]. This drug reportedly
reduces the release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α from
M. tuberculosis infected monocytes [139].

Bedaquiline (BDQ) is a recent FDA-approved drug used for the treatment of multi-
drug resistant tuberculosis (MDR-TB). This drug inactivates bacterial ATP synthase and
thus depletes the pathogen of ATP [140]. BDQ reportedly triggers phagosome-lysosome
fusion and autophagy in macrophages infected with M. tuberculosis [141,142].

Clofazimine (CFZ) demonstrated anti-tuberculosis action in the 1950s; however, ex-
treme side effects were reported—for example, skin discolouration and mental disturbances.
Thus, its use was halted. However, in the early 1960s, CFZ was approved again by WHO
for the treatment of drug-resistant M. leprosy. Additionally, the emergence of extremely
drug-resistant M. tuberculosis (XDR-MTB) has shown interest in CFZ once again [141]. CFZ
is enzymatically reduced followed by spontaneous oxidation and results in the production
of ROS [143]. The potassium channel Kv1.3 has been associated with the activation and
function of T lymphocytes. CFZ has been reported to inhibit the T-cell receptor signalling
pathway by blocking IL-2 production and thus results in immunosuppressive activity [144].

9. Conclusions

The M. tuberculosis research field has mainly focussed on the impact of complement
activation on the actively growing mycobacterial populations; very little is known about
the dormant, non-replicating, and resuscitation of heterogenous sub-populations of my-
cobacteria that exist within granulomas.

To understand the complement cascade in M. tuberculosis infection, we need to con-
tinue advancing in our knowledge of the infection and immune response to M. tuberculosis.
To date, we carry out macrophage infections in vitro using M. tuberculosis but do not
understand fundamental questions. Why are macrophages not infected equally whilst
using a homogenous M. tuberculosis culture and immortalised cell lines? Why does mul-
tiplicity of infection need to be tightly controlled in vitro, and why do a large number of
bacteria overwhelm the macrophage if there are only a limited number of receptors for
phagocytosis?

All three complement pathways together play a role in the pathogenesis of M. tuberculosis
infection; although poorly understand, this review sheds light on the complexity of tuber-
culosis infection.
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