
PathDetect-SOM: A Neural Network Approach for the Identification
of Pathways in Ligand Binding Simulations
Stefano Motta,* Lara Callea, Laura Bonati, and Alessandro Pandini*

Cite This: J. Chem. Theory Comput. 2022, 18, 1957−1968 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Understanding the process of ligand−protein
recognition is important to unveil biological mechanisms and to
guide drug discovery and design. Enhanced-sampling molecular
dynamics is now routinely used to simulate the ligand binding
process, resulting in the need for suitable tools for the analysis of
large data sets of binding events. Here, we designed, implemented,
and tested PathDetect-SOM, a tool based on self-organizing maps
to build concise visual models of the ligand binding pathways
sampled along single simulations or replicas. The tool performs a
geometric clustering of the trajectories and traces the pathways
over an easily interpretable 2D map and, using an approximate
transition matrix, it can build a graph model of concurrent
pathways. The tool was tested on three study cases representing
different types of problems and simulation techniques. A clear reconstruction of the sampled pathways was derived in all cases, and
useful information on the energetic features of the processes was recovered. The tool is available at https://github.com/
MottaStefano/PathDetect-SOM.

■ INTRODUCTION
The binding of a ligand to its macromolecular target is a critical
event in many cellular processes in living organisms. Under-
standing ligand−protein recognition and interactions at the
molecular level is important to unveil biological mechanisms
and to provide the basis for the design and discovery of new
drugs.1,2

Molecular docking is a well-established computational
method to predict the three-dimensional structure and to
estimate the binding free energy of a protein−ligand
complex.3,4 The low computational requirements of this
method made it the leading approach for ligand virtual
screening. In recent years, due to an impressive increase in
computational power, alternative methods based on molecular
dynamics (MD) have gained increasing attention for their
higher accuracy in modeling ligand−protein binding by
considering protein conformational flexibility.5 These methods
can be classified into two categories: those mainly focused on
the bound and unbound states for estimation of the binding
free energy and those aimed at reproducing the physical
pathway (PP) of binding (and/or unbinding).6 Methods that
fall in the first category include end-state methods, such as the
linear interaction energy (LIE)7 and the molecular mechanics
Poisson−Boltzmann surface area (MM-PBSA),8 and alchem-
ical free-energy perturbation methods, such as thermodynamic
integration (TI)9 and free-energy perturbation (FEP).10

PP methods simulate the complete binding and/or
unbinding events, which can in principle lead to the calculation

of both thermodynamic and kinetic properties11 and to the
characterization of relevant states along the pathways. Methods
falling within this category include several enhanced-sampling
approaches such as steered MD (SMD),12,13 metadynamics
(MetaD)14 and its variations,15−18 Gaussian-accelerated MD
(GaMD),19 scaled MD,20,21 τ-RAMD,22 MD binding,23,24

maze,25,26 and CG-MD.27 It should be noted that with the
increase in computational power due to easier access to high-
performance or GPU-based architectures, unbiased simulations
are also becoming computationally affordable for the study of
long-time-scale processes.28−31 The PP methods have the
advantage of explicitly simulating key molecular events, such as
the protein conformational changes that facilitate ligand access
to the binding cavity and the formation of intermediate states.
All the above information is fundamental to suggest
appropriate modifications of hit compounds in drug-design
studies. However, PP methods generally require an extensive
sampling of binding/unbinding events to obtain an accurate
description of the energy landscape of the process based on
reliable statistics. It follows that many events have to be
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analyzed through several simulation replicas or with a single
simulation that describes several re-crossing events. The large
amount of data from different replicas or events calls for better
automated tools to analyze all the simulated events at once and
to provide a clearly interpretable summary picture of the
differences in the sampled pathways.
We suggest the use of self-organizing maps (SOMs)32 to

handle such complex sets of data. An SOM is a type of artificial
neural network useful for effective identification of patterns in
the data33−35 and has been widely used in many fields.36,37 The
most interesting property of an SOM is that it performs a
dimensionality reduction by mapping multidimensional data
on the SOM grid, retaining topological relationships between
neurons, that is, keeping similar input data close to each other
on the map.33

Several applications of SOMs to the analysis of biomolecular
simulations can be found in the literature,38−40 ranging from
comparison of the dynamics of different mutants,41 clustering
of ligand poses in virtual screening,42 binding site identi-
fication,43 identification of blocks for structural alphabets44−46

and conformational analysis of loop opening.47 More recently,
we applied SOMs to the reconstruction of protein unfolding
pathways on the basis of several SMD simulation replicas.48

Here, we designed, implemented, and tested PathDetect-
SOM (pathway detection on SOM), an SOM-based protocol
for the analysis of ligand binding/unbinding pathways derived
from MD simulations with PP methods. Taking advantage of
the properties of SOMs, the tool is able to generate a model
that clearly highlights differences in the pathways sampled
along a simulation or in different replicas.
The protocol makes it possible to obtain a synthetic view of

the sampled conformational space by highlighting the relevant
states, to trace the pathways followed by the system on the

SOM, and to derive a network model that provides a
meaningful representation of the binding/unbinding pathways.
We applied this protocol to a range of ligand binding/
unbinding simulations with different features, successfully
obtaining not only a simple schematic representation of the
pathways but also hints about the thermodynamics and/or
kinetics of the process. The protocol is implemented as the
batch executable R script with a command-line interface that
will be accessible to biomolecular practitioners with limited or
no familiarity with the R environment.

■ METHODS
Overview of the Protocol. PathDetect-SOM is a modular

command-line tool based on a three-step protocol (see Figure
1):
(a) The user selects a set of features best describing ligand

conformations along the process. If a set of proteins and ligand
atoms is provided, the tool will automatically compute the
pairwise distances between the protein and ligand sets of
atoms. This set of distances will be hereafter referred to as
intermolecular distances.
(b) SOM is initialized and trained with the input vectors

containing the values of the selected features for all the
simulation frames. Each frame is considered as a data point and
assigned to the neuron with most similar feature values. During
the training process, the feature values of a neuron and its
neighbors are adjusted toward the values in the input vector
assigned to that neuron. The final prototype vector of each
output neuron summarizes the conformations associated with
the neuron, and groups of similar conformations are mapped to
neighboring neurons. In addition, to offer a more concise
picture of the map, after training, the neurons are also grouped
to a relatively small number of clusters and the representative

Figure 1. Flowchart of the PathDetect-SOM protocol for ligand binding studies. Data preparation (a); map training and analysis (b); and pathway
analysis (c).
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conformation of each cluster is saved. Population analysis and
average properties can then be visualized on the trained SOM.
(c) The pathways followed during the simulation can be

directly traced on the SOM, reconstructing the binding/
unbinding pathway. This representation facilitates the
identification of regions of the map exclusively sampled by
specific simulations. In turn, pathways can be clustered to
recover dominant binding events. Finally, a graph-based
representation of transitions can be built from the transition
matrix calculated at the neuron level. Community detection on
this graph can highlight putative macrostates.
PathDetect-SOM is distributed as an R script available under

GNU General Public License at https://github.com/
MottaStefano/PathDetect-SOM. The repository includes a
brief guide and tutorial material based on sample trajectories
from the first study case presented in the results.
Data Preparation. The feature selection is a key step for

SOM training. Several features can be used to train the SOM
(e.g., the simple cartesian coordinates of a set of atoms, see
Supplementary Methods and Figure S1). However, the
intermolecular distances are the most suitable choice to
accurately describe the ligand−receptor reciprocal orientation.
A set of receptor and ligand atoms is chosen for the
computation of intermolecular distances. Selected atoms
should describe both the binding site and the mouth at the
entrance of the binding site. Ideally, both atoms from the
backbone and from large or polar/charged side chains should
be included when the side chain dynamics and interactions are
relevant for binding. Similarly, selected ligand atoms should
well describe the core molecular structure and all the relevant
lateral groups. The user can provide the filtered trajectory with
the coordinates of the chosen atoms in the form of an xvg file,
easily obtained using the GROMACS gmx traj command. A
capping value is applied to the distances to avoid that training
is dominated by information on the unbound states (see
Supplementary Methods and Figure S2). Details on the atom
selection for the study cases presented here are summarized in
Table S1.
Map Training. The selected features are used to train the

SOM using an iterative approach. The map is initialized by
assigning random values of the feature vectors to each neuron.
In each training cycle, the input vectors representing the single
conformations are presented in random order to the map and
assigned to the neuron with the closest feature values, also
called the best matching unit (BMU). The feature values of the
BMU and its neighbors are modified to be closer to the values
of the input vector. The magnitude of the modification
decreases with the distance from the BMU and along the
training. At the end of the iterative process, the resulting SOM
preserves the topological relationship between neurons,
keeping similar original input data close on the map. In a
second step, with the aim of making the map easier to
interpret, the neurons are further grouped in a small, but
representative, number of clusters by agglomerative hierarch-
ical clustering using Euclidean distances and complete linkage.
For each system, the optimal number of clusters can be
selected on the basis of silhouette profiles (Figure S3). We
propose to choose the number of clusters as the one with the
optimal silhouette profile within the 9−15 range. A lower
number of clusters would create conformations too coarse for
the process that is taking place, while a number higher than 15
would create excessive fragmentation, making the visual
interpretation difficult and thus going against the purpose of

the tool. A representative structure for each neuron is saved;
this is defined as the structure with the feature vector closest to
the neuron vector. For each cluster, a representative neuron is
also chosen as the one with the feature values closest to the
weighted-average feature vector of the neurons belonging to
that cluster. In the latter case, the average was performed using
the population of each neuron as weight.
In the present work, 10 × 10 sheet-shaped SOMs with a

hexagonal lattice shape and without periodic boundary
conditions were trained over 5000 training cycles. The neurons
were further grouped in a small, but representative, number of
clusters, different for each study case, using the cluster analysis
approach outlined above.

Path Analysis. The trained SOM captures the conforma-
tional space of several trajectories in a topological map.
Therefore, it is possible to reconstruct the path explored by
each simulation on the map. Pathways are traced on the SOM
based on the annotation of the BMU associated with each
frame of the simulation. Given that similar conformations are
enforced to be close on the map, the pathways traced on the
SOM are usually continuous. Some exceptions to this behavior
may arise due to large conformational changes between two
consecutive frames in the simulation. Alternatively, disconti-
nuities may highlight important information on the process
only visible by projection on the map, that is, the map has the
potential to identify and report when partially geometrically
similar conformations should be considered dissimilar and
separated in the low-dimensional space, probably representa-
tive of distinct conformational states. The resulting SOM
pathways were also clustered by agglomerative hierarchical
clustering using average linkage. Two different distance metrics
are implemented in the PathDetect-SOM tool: a time-
dependent and a time-independent distance. In the time-
dependent version, the distance between the SOM pathways of
two simulations is defined as the average distance of the BMUs
of each couple of frames. The distance between two BMUs is
defined as the Euclidean distance between the position of the
neurons on the map. This distance was also used in a previous
work by the authors.48 In the time-independent version, for
each frame of the simulation, the minimum distance between
the BMU of the first and the second simulation is computed
and averaged over the number of frames. This approach
provides a framework to compare simulations evolving at
different speeds such as those presented in study case 2. For
this type of simulation, indeed, frames to be compared are not
at the same position along the replicas due to the different
evolution of the simulations. Comparing each frame with the
closest frame of the second replica is a time-independent way
of performing a distance calculation between two pathways.
An approximate transition matrix between each pair of

neurons can be computed from the time-dependent distance
approach. The matrix is then transformed into a row stochastic
matrix, and a graph is built with nodes representing the
neurons and edges with weight proportional to the negative
logarithm of the transition probability between the correspond-
ing neurons. Communities of nodes can be detected, and in
the present work, we used the walktrap algorithm,49 but other
methods can be easily applied. A neuron representative of each
community is selected as the one with the highest eigenvector
centrality score in the subgraph which only contains nodes
belonging to the community.
In this work, for the third study case, a commitor analysis

was performed using the R library markovchain.50,51 This
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analysis computes the probability of hitting a set of states A
before set B starting from different initial states. In this case,
the two extremes were the bound and unbound states.
All the analyses were performed in the R statistical

environment using the kohonen package52,53 for the SOM
training and igraph package54 for graph construction and
analysis.

■ RESULTS
The PathDetect-SOM protocol, developed for the analysis of
ligand binding/unbinding pathways, is implemented into a
command-line tool with the capability to build an SOM
representation of the conformations sampled during the MD
simulations. Taking advantage of the SOM topological
ordering, the tool offers the possibility to visually represent
pathways sampled during different events/replicas in a clear
2D representation. Finally, the geometric microstates identified
by the SOM (neurons) can be represented as a graph model,
built from their transition probabilities. The graph provides a
clear representation of the pathways followed during the
simulations, facilitating the identification of alternative routes.
Community detection on the graph generates a state model
analogous to kinetic partitioning.
In the following sections, we present the application of the

protocol to three cases that differ for the PP method used to
investigate the ligand binding. The study cases were selected to
represent PP simulations with different characteristics to
highlight the flexibility and general applicability of the
PathDetect-SOM tool.
(1) The first case regards a ligand unbinding process studied

through several replicas of SMD simulation. The simultaneous
evolution of the replicas (due to the constant velocity of the
bias) and the use of a directional collective variable (CV)
makes this study case simple and optimal for testing some
parameters of the tool (tests are discussed in the Supple-
mentary Methods section, Figures S1, S2, S4, and S5 and
Tables S2 and S3).

(2) The second study case is a ligand unbinding problem
treated with several replicas of infrequent MetaD. This method
differs from the SMD used for the first case because the system
evolves along the selected CV with a series of small forth and
back movements that fill the free-energy basin. As a result,
there is no correspondence between the simulation times of
different replicas. Moreover, the type of CV chosen in this case
is nondirectional and may provide very different unbinding
paths.
(3) The third study case consists of a single long MetaD

simulation, in which several binding and unbinding events are
sampled. In this case, the simulation evolves in all the
directions according to two selected CVs, and the ligand has
greater freedom than in the previous cases.
All the simulations were performed using GROMACS55

patched with PLUMED.56

Ligand Unbinding through Multiple Replicas with
Constant Velocity Pulling. The hypoxia inducible factor 2α
(HIF-2α) is a pharmacologically relevant transcription factor
widely recognized as a target for cancer therapy.57 Following
the discovery of a buried cavity within the HIF-2α Per-ARNT-
SIM-B (PAS-B) domain,58 several artificial small molecules
were identified as HIF-2α ligands and potential inhibitors of
the HIF-2α dimerization with the aryl hydrocarbon receptor
nuclear translocator (ARNT).59−62 In a recent work, we
investigated the unbinding of the THS-020 ligand from the
HIF-2α PAS-B domain through SMD simulations.63 50
constant velocity SMD replicas of 25 ns each were used to
pull the ligand along the selected CV, namely, the distance
between the center of mass of the amino acid atoms lining the
cavity and the center of mass of the ligand. The simulations
analyzed in this work are those along the preferred entrance to
the cavity identified in the previous work (reported as “path
1”).63

All replicas evolved simultaneously, due to the constant
velocity of the bias, and along a directional CV. The trained
SOM (Figure 2 and details in the Methods section) shows a

Figure 2. SOM analysis of SMD simulations of THS-020 unbinding from HIF-2α: (a) neighbor distance plot. (b) Clustering of the neurons. The
representative conformation of each cluster is depicted in cartoons with the ligand in sticks.
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distribution of states that ranges from the initial bound state
(top-right of the map) to the unbound state (top-left). The
neighbor distance plot (Figure 2a) represents the average
similarity of a neuron with its neighbors. This map shows a
compact group of neurons in correspondence of the bound
state and along the right and bottom border of the map. On
the contrary, neurons lying at the center of the map display
more heterogeneities. In the cluster analysis of SOM neurons
(see the Methods section), we identified nine clusters that
represent the binding geometries explored by the system
following the distance CV used for the SMD simulations
(Figure 2b). The representative conformations extracted from
the different clusters help to visualize the relevant states
sampled.
The pathways followed by each replica were then mapped

on the SOM (Figure S6). They are quite consistent, since they
roughly evolve through the same sequence of clusters, in
agreement with the high directionality imposed by the method.
However, some recurrent unbinding pathways can be
identified with slight differences from each other, as also
emerges from the dendrogram in Figure S7. An overview of
these pathways is provided by the network graph derived from
the transition matrix (see the Methods section), reported in
Figure 3a. All the simulations start from the bound state (top-
right), in which the ligand presents the nitrobenzene ring
parallel to the main helix, with the nitro group pointing toward
the lower side of the cavity. Then, some replicas evolve
through neurons at the bottom right of the map (branch 1 of
the graph), while others follow pathways closer to the center of
the map (branch 2 of the graph). While simulations following
branch 1, which was sampled in most of the replicas (34 out of
50), show the ligand slightly rotated along its principal axis,
those along branch 2 maintain the ligand in an orientation
similar to the bound state and rigidly translate it along the
pathway. When the nitro group reaches the solvent, however,

the two branches merge before a second ramification in the
graph appears (branches 3 and 4). Replicas in branch 3
describe a rigid transition of the ligand that maintains the
initial bound orientation while those in branch 4 sample
conformations with the ligand rotated and bound to the mouth
of the cavity. The two final branches appear equally probable
(22 replicas though branch 3 and 28 through branch 4).
Finally, we colored neurons according to the average SMD

pulling forces applied to the frames belonging to that neuron
(Figure 3b). Results show that the pulling of the ligand out of
its initial bound state requires the maximum of the force, while
the remaining part of the pathway requires less force. We
interpreted the peaks of maximum forces as the approximate
location of the highest energy barrier to be crossed during
unbinding, which corresponds to the energy necessary to pull
out the ligand from its initial state.

Ligand Unbinding through Multiple Replicas with a
Bidirectional Sampling. Deoxyhypusine synthase (DHS) is
an enzyme responsible for the post-translational hypusination
of the eukaryotic initiation factor 5A (eIF5A) that controls cell
proliferation and has been linked to cancer.64 The involvement
in pathogenesis together with the high specificity and
functional relevance of the hypusination reaction have made
this system an important and promising therapeutic target,
stimulating the design and development of inhibitors able to
target the hypusination process, including the N1-guanyl-1,7-
diaminoheptane (GC7). In a recent work by some of the
authors, we investigated the unbinding of GC7 from DHS
using an approach inspired to infrequent MetaD.65 We used
the number of contacts between the ligand and the protein
binding site atoms as a single CV in 30 replicas of infrequent
MetaD that were stopped when the ligand reached an
unbound state.
By applying the PathDetect-SOM approach to the above

simulations, we obtained the trained SOM shown in Figure 4.

Figure 3. Transition network for the SMD simulations of THS-020 unbinding from HIF-2α. (a) Transition network with its main ramifications
explicitly indicated by black arrows (nodes are colored according to the SOM clusters). The representative conformations of neurons that
characterize each branch (red circles in the network) and of the bound state (in yellow) are depicted in cartoons with the ligand in sticks. (b)
Network colored according to the average SMD force of its frames (from blue to red, increasing values of this property), and the representative
conformations of the neurons with the maximum forces, superimposed to the bound state (in gray).
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The neighbor distance plot (Figure 4a) displays a very
compact region on the left side, corresponding to different
bound states. All these neurons were grouped together in the
neuron clustering phase (cluster A), while the diverse unbound
conformations are segregated to the opposite side (Figure 4b).
Due to the nature of these MetaD simulations, where the

system evolves along the CV with a series of small forth and
back movements, the direct tracing of the pathways on the map
may cause a slight confusion (Figure S8). Moreover, given the

lack of correspondence between simulation times of different
replicas, we needed to perform a time-independent clustering
of pathways (see the Methods section), which allows us to
compare replicas of different lengths (dendrogram in Figure
S9). Two distinct types of pathways arise from this analysis.
Building a network from the transition matrix, as in the
previous study case, made the differences between the two
pathways more evident (Figure 5a).

Figure 4. SOM analysis of simulations of GC7 unbinding from DHS. (a) Neighbor distance plot. (b) Clustering of the neurons. The representative
conformation of each cluster is depicted in cartoons with the ligand in sticks.

Figure 5. Transition network for the simulations of GC7 unbinding from DHS. (a) Transition network with its ramification explicitly indicated by
black arrows (nodes are colored according to the SOM clusters). The representative conformations of neurons that characterize each branch (red
circles in the network) are depicted in cartoons with the ligand in sticks. (b) Network colored according to the node betweenness centrality (from
white to red, increasing values of this property), and the representative conformations of neuron 17, bottleneck for pathway 1.
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The two pathways (branches 1 and 2 of the network, in
Figure 5a) lead to different neurons, all describing unbound
states. The separation of the unbound states in different
neurons is due to the ligand exiting from the two opposite
sides of the binding site. Compared to the previous case, this
graph is more densely connected due to the bidirectionality of
the sampling during the MetaD simulation. Most of the
simulations (70%) evolve through branch 1 (Pathway A in the
original work65) in which the ligand escapes from the side of its
guanidine group. The remaining replicas (30%) proceed

through an opposite pathway, indicated as branch 2 in the
graph, in which the ligand exits from the side of its amino-
group (Pathway B in the original work65). Interestingly, most
of the simulations following branch 1 pass through neuron 17,
a node with a high value of betweenness centrality (Figure 5b).
As betweenness is calculated as the number of shortest paths
through a node,66 neuron 17 is a critical conformation to
observe the bound/unbound transition. The representative
conformation of this neuron shows the characteristic of the
intermediate state hypothesized in the previous work,65

Figure 6. SOM trained with MetaD simulations of THS-020 binding to HIF-2α. (a) Neighbor distance plot. (b) Clustering of the neuron vectors.
The representative conformation of each cluster is depicted in cartoons with the ligand in sticks.

Figure 7. Transition network for the MetaD simulation of THS-020 binding to HIF-2α. (a) Transition network with main pathways indicated by
black arrows (nodes are colored according to the SOM clustering). (b) Communities identified by the walktrap method represented on the
network (nodes are colored according to the different communities). The representative conformations of the communities are depicted in
cartoons with the ligand in sticks. (c) Committor probability analysis. The representative conformations of neurons with a committor probability of
about 0.5 are reported in red sticks and X-ray starting conformation in gray sticks.
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namely, a stable salt bridge of the ligand primary amine group
with Glu137.
Ligand Binding/Unbinding through a Single Meta-

dynamic Simulation. As a third study case, we applied the
PathDetect-SOM protocol to a single MetaD simulation of
ligand binding. The system under study is the same presented
in Ligand Unbinding through Multiple Replicas with Constant
Velocity Pulling: the THS-020 binding to HIF-2α. In a
previous work, starting from the SMD simulations, we built a
path CV and used well-tempered MetaD to enhance the
sampling along the selected CV and to reconstruct the free-
energy landscape of the process.63 During the 1.8 μs of MetaD
simulation, we observed a high number of binding and
unbinding events.
The trained SOM (Figure 6 and details in the Methods

section) presents the starting bound conformation in the top-
left corner (cluster L) and the completely unbound
conformation in the top-right corner (cluster G). Due to the
conformational freedom along the z(r) CV of the path CV
(which represents the distance from the reference path), the
ligand can also rotate and sample alternative bound
conformations. This is the case of cluster I, which contains
conformations in which the ligand is rotated 180° with respect
of the X-ray starting structure.
For the sake of comparison with the free-energy landscape

previously identified by the MetaD calculation,63 we mapped
the frames belonging to each free-energy basin on the SOM
(Figure S10). We found that conformations belonging to each
of these basins generally map in few close neurons, belonging
to the same cluster on the map.
In this study case, the direct tracing of pathways on the

SOM is difficult due to the unique long simulation that
samples multiple binding/unbinding events. The set of
pathways is better represented on the SOM in the form of a
movie (Supplementary Movie 1). However, the transition
network analysis proposed in the PathDetect-SOM protocol is
capable of providing a clear representation of the pathways
sampled during the MetaD simulation (Figure 7a).
As shown in Figure 7a, there are two main branches: branch

1 connects the crystallographic-like bound conformation to the
unbound state, while branch 2 follows the unbinding of an
alternative binding mode (cluster I). Only a small number of
connections between the two branches are present, indicating
that the ligand cannot freely rotate within the binding site, and
it preferentially unbinds and rebinds to interconvert between
the two bound states.
The previous study cases sampled only one unbinding event

for each replica and, for this reason, the graph model only
describes the interconnection between states along the
unbinding pathway. In this last case, due to the MetaD
sampling of several binding/unbinding events, the obtained
graph takes into account connections along both directions
and thus contains more information about the kinetic of the
process. Indeed, assuming that the ligand remains trapped for a
sufficient time inside an energy minimum, the communities
identified with the walktrap method exhibits the properties of
kinetic clustering (Figure 7b). It is important to consider that,
for an accurate calculation of kinetic properties, the transition
matrix should take into account the effect of the bias potential
deposited during the simulation. For this reason, this approach
can provide quantitative results only if the analyzed simulation
is unbiased or if a proper reweighting procedure to the
transition matrix is applied. With the aim of showing the

potential of the tool, we present the results obtained from the
previously published MetaD simulation, without performing
any reweighting procedure. The same approach applied to an
unbiased simulation, or with a reweight of the transition
matrix, would provide accurate description of the kinetic of the
process instead of a simple indication of the energy barrier
position. The identified communities well represent the
ensemble of metastable states sampled along the process.
Along both the branches, it is possible to identify a small
community for the bound state (communities E and G); a
community in which the ligand is still completely inside the
binding cavity and did not reach the unbound state (C and A);
a community in which the ligand is located at the mouth of the
cavity, but it is already partially immersed in the solvent (B and
D); and a community for the completely unbound state (F).
Moreover, the transitions between communities may be
associated with conformational changes with high energy
barriers. Focusing on transitions between communities B and
C, and between communities A and D, it seems that they are
associated with the conformational changes necessary to
observe ligand binding. Indeed, nodes at the boundary of
these two pairs of communities display higher average RMSD
values for residues at the mouth of the cavity involved in the
recognition process (Figure S11).
Finally, we performed a committor analysis: we computed

the probability of ending in the crystallographic-like bound
conformation (neuron 91, in community E) before reaching
the unbound conformation (neuron 100, community F)
starting from each neuron (Figure 7c). Given that the
transition state is expected to have an equal chance of going
to either states, configurations with a committor of
approximately 0.50 can be considered at the transition state.
In the present case, the energetic barrier seems to be located
around conformations close to neurons 63, 72, 73, and 82 (in
community C, Figure 7c). These conformations are located at
the boundaries between communities E and C and are near to
the bound state, in agreement with the conclusions drawn from
the SMD simulations (Ligand Unbinding through Multiple
Replicas with Constant Velocity Pulling).

■ DISCUSSION
Data from MD simulations can contain extremely useful
information on molecular processes, but it does not lead to
simple canonical analysis protocols: system-specific and
problem-specific strategies are often required to extract
information from increasingly large trajectory files. Planning
and designing appropriate strategies can be a very difficult task,
and it often requires the development of ad hoc scripts for
advanced analysis and the use of dedicated analysis tools.
Several general-purpose tools for the analysis of MD

trajectories are available, including GROMACS analysis
tools,67 CPPTRAJ,68 VMD,69 MDAnalysis,70 Bio3D,71 and
MDTraj.72 All these tools provide basic post-processing
analysis such as RMSD, RMSF, radius of gyration, hbond,
and contact maps. Some of them are built-in tools distributed
along with the main simulation engine (GROMACS analysis
tools and CPPTRAJ), while others are python or R libraries
that provide a flexible framework for complex analysis
(MDAnalysis, Bio3D, and MDTraj) but require the user to
develop an ad hoc code.
Among the most advanced post-processing methods,

Markov state models (MSMs) are often used to develop a
complete kinetic model of the process under investigation.73,74

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01163
J. Chem. Theory Comput. 2022, 18, 1957−1968

1964

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c01163/suppl_file/ct1c01163_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c01163/suppl_file/ct1c01163_si_002.mp4
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c01163/suppl_file/ct1c01163_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01163?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


These types of analyses are often complex and require a high
level of expertise by the user to obtain reliable results. For this
reason, they are difficult to implement as an automated user-
friendly protocol. Moreover, effective use of MSMs requires
that simulated data meet strict sampling conditions, such as a
lag time sufficiently long to produce a Markovian-state
decomposition.75 This implies that this method can only be
used when the aggregate simulation time is in the order of
hundreds of microseconds or more. Moreover, development of
MSMs using enhanced-sampling MD requires reweighting
procedures that nowadays are still at an early stage of
development.76

Here, we presented a tool based on SOMs specifically
designed for the analysis of ligand binding pathways sampled in
simulations by means of an automated protocol. Our
development takes inspiration from other tools based on
SOMs already developed by our group and others,39 some of
which with fast implementation on GPU.38 These tools have
been successfully applied to MD data, but they were mainly
focused on clustering of macromolecular conformations and
not on pathway analysis.
The PathDetect-SOM tool does not have any sampling

condition and can be applied to MD simulations that sample
multiple ligand binding events. While it cannot be directly used
to compute stationary quantities and long-time kinetics (unless
one demonstrates that the criteria for MSMs are met), it
provides an immediate interpretation of the pathways sampled
during the simulation and can give hints about the
thermodynamics and kinetics of the process. Recently, an
analysis of camphor unbinding pathways from cytochrome
P450cam has been performed using the t-distributed stochastic
neighbor embedding (t-SNE) dimensionality reduction
method.77 Authors obtained a two-dimensional representation
of the ligand trajectories that facilitate interpretation and
helped in grouping similar pathways. Here, we take advantage
of SOM properties to obtain a similar dimensionality
reduction, with the intrinsic advantage of the resulting
segregation of conformations in local microstates (neurons)
that immediately allows the building of an approximate
transition matrix. Moreover, SOM was also demonstrated as
a powerful tool for the comparison of simulations performed
with different simulation parameters.48

In this work, we tested the PathDetect-SOM tool on a range
of ligand binding/unbinding simulations with different
features. In all cases, the pathways were successfully
characterized and mapped over an intuitive 2D map, thus
confirming the general applicability of the protocol. Moreover,
depending on the simulation type, several hints regarding the
energetics of the process were obtained. In the first study case,
we exploited the possibility of re-mapping a property, the SMD
pulling forces, on the SOM neurons in order to identify the
location of the highest unbinding energy barrier along the
simulation (corresponding to the frames with the largest values
of the pulling forces). In the second study case, the transition
graph and the betweenness centrality score of the nodes
suggested the obligate transition across a neuron for the
unbinding across pathway 1. Finally, in the third study case, we
computed some interesting properties starting from the
approximate transition matrix. Here, a reweighting procedure
should have been performed to account for the effect of the
bias applied during the simulation. Depending on the type of
simulation, different reweighting schemes can be applied. If the
bias is time-independent, the most simple and effective

reweighting procedures are TRAM78 and DHAM.79 If the
bias is time-dependent, on the other hand, the situation
becomes more complicated, and the reweighting procedures
that can be applied are limited. For example, a reweighting
approach for MetaD simulations based on the Girsanov
theorem was recently proposed by the group of B Keller.80,81

However, random number and the force at every time step are
required to calculate the relative path probability, and for this
reason, the reweighting factors are computed on the fly (using
a patched MD engine) during the simulation and cannot be
derived in a post-processing step. With the aim of showing the
potential of the tool, we present the results obtained on a
MetaD simulation, without performing any reweighting
procedure, but accurate kinetic properties can be derived if
one analyzes unbiased simulations, or accurately reweighted
trajectories. In the presented study case, the committor
analysis suggested the location of the energy barrier on the
SOM, while determination of the communities in the
transition graph led to the identification of kinetic macrostates.
As the above properties were computed from the approximate
transition matrix, their accuracy strictly depends on the
extension of the sampling.
PathDetect-SOM has been implemented in the form of an R

batch script with an easy command-line interface. While the
tool was primarily designed for ligand binding studies, it can be
applied to many other types of simulations (unfolding,
protein−protein, or protein−peptide binding) by appropriate
choice arguments on the command-line input. The batch script
format offers easiness of use with flexibility of customization
through simple command-line options. As future development,
the tool can be extended and included in an R package to offer
expert users the possibility to develop ad hoc extensions to the
analyses. The tool is open source and freely available with a
brief guide and tutorials at https://github.com/MottaStefano/
PathDetect-SOM.
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