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Abstract—The uncertainty of wind power and electricity price 
restrict the profitability of wind-storage integrated system (WSS) 
participating in real-time market (RTM). This paper presents a 
self-dispatch model for WSS based on deep reinforcement learning 
(DRL). The designed model is able to learn the integrated bidding 
and charging policy of WSS from the historical data. Besides, the 
maximum entropy and distributed prioritized experience replay 
frame, known as Ape-X, is used in this model. The Ape-X 
decouples the acting and learning in training by a central shared 
replay memory to enhance the efficiency and performance of the 
DRL procedures. Besides, the maximum entropy framework 
enables the designed agent to explore various optimal possibilities, 
thus the learned policy is more stable considering the uncertainty 
of wind power and electricity price. Compared with traditional 
methods, this model brings more benefits to wind farms while 
ensuring robustness. 
Index terms—wind farm; energy storage system; electricity 
market; deep reinforcement learning; distributed prioritized 
experience replay; maximum entropy. 

I. INTRODUCTION

he growing penetration of wind power in power system 
triggers the decline of the power system stability. To 

address this problem, incentive policies have been introduced 
around the world [1], especially in China [2]. These policies 
require new wind farms to install energy storage systems (ESSs) 
with 10%-30% of wind farms’ installed capacities. The 
installation of ESS effectively alleviates the uncertainty and 
intermittence of wind power generation, and also provides new 
control strategies for the wind farms’ operation [3]. Meanwhile, 
the market-oriented reform of the electric power industry and 
carbon neutrality policy is proceeding step by step in China, 
which requires wind farms, the main source of clean energy, to 
participate in the electricity market [4].  

For wind farms participating in the electricity market, the 
uncertainty of wind power may cause the deviation between the 
bidding power and generated power, which leads to the penalty 
fee from the market. The integration of ESS can effectively 
alleviate the unbalance quantity. In addition, the ESS can also 
obtain profits for wind farms via ESS arbitrage. 
Correspondingly, wind farms may bid less in low-price periods 

and more in high-price periods as a response to the operation of 
ESS. However, the uncertainty of electricity prices makes the 
bidding policy and ESS operation full of risks.  

Existing investigations of wind-storage correlated self-
dispatch were mainly developed with optimization methods 
under uncertainty, such as stochastic programming and robust 
optimization [5]. However, the prediction accuracy is limited 
by the chaos of atmospheric and human behaviour, and it’s 
difficult for robust optimization to maximize the benefit for the 
error of wind power and electricity price forecast.  

Deep reinforcement learning is a novel solution for wind-
storage correlated self-dispatch. The self-dispatch process can 
be modelled as a Markov decision process (MDP) and further 
solved. Ref. [6] utilized the expected state-action-reward-state-
action (SARSA) algorithm with clustering to learn the ESS 
operation policy. However, this method is incapable of complex 
scenarios due to the limit of the Q-table. Ref. [7] realized hour-
ahead control of ESS based on the Rainbow method. But this 
method cannot be utilized in continuous action space because 
of its value-based mechanism. On the other hand, the deep 
deterministic policy gradient (DDPG) algorithm [8] is popular 
in recent years. But for the limited sample efficiency and high 
sensitivity to hyperparameters, this method is not stable enough 
and difficult to converge for the self-dispatch in wind farms. 
Therefore, it is necessary to develop an efficient wind-storage 
correlated self-dispatch method.  

To address the above problems, this letter proposes a DRL-
based model for wind-storage correlated self-dispatch. The soft 
actor-critic (SAC) algorithm with Ape-X is adopted, aiming to 
improve the benefit of wind farms participating in the electricity 
market and enhance the robustness. The Ape-X frame 
effectively improves the stability and convergence of the 
learned policy. Besides, since the maximum entropy 
mechanism of SAC can avoid the local optimal solution, the 
learned policy is more robust. 

II. PROPOSED SELF-DISPATCH METHODOLOGY

To formulate the wind-storage correlated self-dispatch model，
the Ape-X SAC algorithm is introduced firstly, then the external 
environment is modelled in detail. 

A. Ape-X SAC algorithm
Based on the maximum entropy formulation, the strong anti-

interference ability and stable performance make SAC an 
important breakthrough in DRL [9]. However, same as the 
DDPG, SAC is still limited by sample efficiency while dealing 
with the coupled uncertainty of wind power and electricity price. 
This is because the action of actors synchronizes with the 
training of the policy network in SAC. Ape-X is a viable 

T 

This work was supported by the National Natural Science Foundation of 
China under Grants U2166211 and 52177103. (Corresponding author: Yue 
Xiang.) 

Xiangyu Wei and Yue Xiang are with the College of Electrical Engineering, 
Sichuan University, Chengdu 610065, China (email: xiangyu_wei@163.com, 
xiang@scu.edu.cn). 

Junlong Li is with the Department of Electronic and Electrical Engineering, 
University of Bath, Bath BA2 7AY, UK (email: jl3466@bath.ac.uk). 

Xin Zhang is with the Electronic and Electrical Engineering, Brunel 
University London, London UB8 3PH, UK (email: xin.sam.zhang@gmail.com) 

Copyright © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSTE.2022.3156426, IEEE Transactions on Sustainable Energy



solution to address this problem [10]. Ape-X decouples actors’ 
action and policy network training via a central shared replay 
buffer. This enables multi actors to act in the environment 
parallelly and centralizes the explored transitions in the replay 
buffer. Thus, the learner can centrally learn the transitions by 
their priority. The architecture of the proposed Ape-X SAC 
model is shown in Fig. 1. 

Different from the traditional SAC, the multi actors in this 
framework are not responsible for learning. Correspondingly, 
they explore the environment based on the shared policy 
network, which is derived from the learner periodically. To 
construct the transition data efficiently, each actor owns an 
independent local circuit buffer, where the constructed 
transitions are first stored in. However, since a great number of 
transitions has already been generated by multi actors, not all 
the transitions are able to be uploaded to the central buffer. Thus, 
the prioritized experience replay is introduced to rank the 
transitions, by comparing the absolute time difference (TD) 
error  |𝛿𝛿𝑖𝑖,𝑡𝑡| of transition (𝑠𝑠𝑖𝑖,𝑡𝑡 ,𝑎𝑎𝑖𝑖,𝑡𝑡 , 𝑟𝑟𝑖𝑖,𝑡𝑡 , 𝑠𝑠𝑖𝑖,𝑡𝑡′) at step 𝑡𝑡.  

𝛿𝛿𝑖𝑖,𝑡𝑡 = |𝑟𝑟𝑖𝑖,𝑡𝑡 + 𝑚𝑚𝑚𝑚𝑚𝑚 
𝑎𝑎𝑖𝑖,𝑡𝑡′

 𝛾𝛾𝛾𝛾�𝑠𝑠𝑖𝑖,𝑡𝑡′, 𝑎𝑎𝑖𝑖,𝑡𝑡′� − 𝑉𝑉�𝑠𝑠𝑖𝑖,𝑡𝑡 ,𝑎𝑎𝑖𝑖,𝑡𝑡�| (1) 
where, 𝑟𝑟𝑖𝑖,𝑡𝑡 is the reward, 𝛾𝛾 is the discount factor, 𝑉𝑉(𝑠𝑠𝑖𝑖,𝑡𝑡,𝑎𝑎𝑖𝑖,𝑡𝑡) is 
the action 𝑎𝑎𝑖𝑖,𝑡𝑡 at state 𝑠𝑠𝑖𝑖,𝑡𝑡.  

Fig.1.The architecture of the Ape-X SAC model 

After being uploaded to the central experience buffer 
periodically, the prioritization of transitions needs to be 
recalculated for the difference of the network. The probability 
𝑃𝑃(𝑖𝑖)  of transition i to be learned is calculated based on the 
stochastic prioritization. 

𝑃𝑃(𝑖𝑖) = 𝑝𝑝𝑖𝑖
𝛼𝛼

∑  𝑁𝑁 𝑝𝑝𝑛𝑛𝛼𝛼
 ,  𝑝𝑝𝑖𝑖 = 1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖) (2) 

where  𝛼𝛼  is the hyperparameter, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)  is the rank by the 
absolute TD error, 𝑁𝑁 is the number of transitions in the buffer. 
For the bias method is introduced to alter the converged results, 
the importance-sample weights 𝜔𝜔𝑖𝑖 is utilized to anneal the bias. 

𝜔𝜔𝑖𝑖 = �
1
𝑁𝑁
⋅

1
𝑃𝑃(𝑖𝑖)

�
𝛽𝛽

(3) 

where 𝛽𝛽 is the hyperparameter. 
According to the annealed probability, the learner selects the 

transitions from the experience buffer. The exploration of actors 
is completed by the central processing unit (CPU). Thus, the 
computing power of the graphics processing unit (GPU) will 
not be shared by actors. For Ape-X SAC, SAC tries to 
maximize the expected sum of rewards and the entropy [11] of 
a policy 𝜋𝜋:  

𝐽𝐽(𝜋𝜋) = �𝐸𝐸(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)～𝜌𝜌𝜋𝜋�𝑟𝑟�𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡� + 𝛼𝛼𝛼𝛼�𝜋𝜋( · ∣ 𝑠𝑠𝑡𝑡)��
𝑇𝑇

𝑡𝑡=0

 (4) 

where 𝑠𝑠𝑡𝑡 is the state at step t, 𝑎𝑎𝑡𝑡 is the action at step t, 𝑟𝑟�𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡� 
presents the reward of action 𝑎𝑎𝑡𝑡 at state 𝑠𝑠𝑡𝑡, 𝜌𝜌𝜋𝜋 is the state-action 
marginal of the trajectory distribution introduced by 𝜋𝜋, 𝛼𝛼 is the 
hyper-parameter that balances the entropy term against the 
reward, 𝐻𝐻( · ) is the entropy, 𝐻𝐻(𝑋𝑋) = −∑  𝑥𝑥𝑖𝑖∈𝑋𝑋 𝑃𝑃(𝑥𝑥𝑖𝑖)log 𝑃𝑃(𝑥𝑥𝑖𝑖), 
𝜋𝜋(· ∣ 𝑠𝑠𝑡𝑡) is the policy in the state 𝑠𝑠𝑡𝑡. 

There are 3 main functions that need to be trained in SAC: 
State value function 𝐽𝐽𝑉𝑉(𝜓𝜓), soft Q-function 𝐽𝐽𝑄𝑄(𝜃𝜃), and policy 
function 𝐽𝐽𝜋𝜋(𝜙𝜙) . Among them, the policy is modelled as a 
Gaussian distribution, and its mean vector and covariance 
matrix are given by the neural network. Therefore, the 
information projection is needed for the soft policy 
improvement, and it’s defined by relative entropy. The policy 
parameters can be obtained by formula (5): 

𝐽𝐽𝜋𝜋(𝜙𝜙) = 𝐸𝐸𝑆𝑆𝑡𝑡∼𝐷𝐷 �𝐷𝐷𝐾𝐾𝐾𝐾 �𝜋𝜋𝜙𝜙(⋅∣ 𝑠𝑠𝑡𝑡) ∥
exp�𝑄𝑄𝜃𝜃(𝑠𝑠𝑡𝑡 ,⋅)�

𝑍𝑍𝜃𝜃(𝑠𝑠𝑡𝑡)
�� (5) 

where, 𝐷𝐷 is the distribution of the previously sampled states and 
actions, exp�𝑄𝑄𝜃𝜃(𝑠𝑠𝑡𝑡 ,⋅)�  is the exponential of the Q-function 
𝑄𝑄𝜃𝜃(𝑠𝑠𝑡𝑡 ,⋅), 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 ∥ 𝑃𝑃) is the KL divergence, or relative entropy, 
𝑍𝑍𝜃𝜃(𝑠𝑠𝑡𝑡) is the partition function, it normalizes the distribution. 

Reparametrize the policy by the neural network, 𝑎𝑎𝑡𝑡 =
𝑓𝑓𝜙𝜙(𝜖𝜖𝑡𝑡; 𝑠𝑠𝑡𝑡), then formula (5) can be re-written as formula (6): 

𝐽𝐽𝜋𝜋(𝜙𝜙) = 𝐸𝐸𝑆𝑆𝑡𝑡～𝐷𝐷,𝜀𝜀𝑡𝑡~N(0,1)[log𝜋𝜋𝜙𝜙�𝑓𝑓𝜙𝜙(𝜀𝜀𝑡𝑡; 𝑠𝑠𝑡𝑡) ∣ 𝑠𝑠𝑡𝑡�

− 𝑄𝑄𝜃𝜃 �𝑠𝑠𝑡𝑡 , 𝑓𝑓𝜙𝜙(𝜀𝜀𝑡𝑡; 𝑠𝑠𝑡𝑡)�]
(6) 

where 𝜀𝜀𝑡𝑡  is an input noise vector, 𝜋𝜋∅  is defined implicitly in 
terms of 𝑓𝑓𝜙𝜙 . Therefore, the gradient of formula (6) can be 
further approximated [9]. 

B. External environment
The setting of the external environment is crucial for DRL,

especially considering the uncertainty of wind power and 
electricity price. The real-time electricity market is set as an 
hour-ahead market. At hour t, the self-dispatch system should 
determine the hour-ahead operation scheme of ESS and bidding 
volume for the period from the hour t+1 to hour t+2, which 
includes 4-time slots with the length of 15 minutes. The reward 
of action a at time t on day j is set as:  
𝑅𝑅𝑠𝑠,𝑎𝑎,𝑗𝑗 = 𝐵𝐵𝑎𝑎,𝑡𝑡

rt + 𝐽𝐽𝑎𝑎,𝑡𝑡 + 𝜔𝜔1�𝜇𝜇𝑃𝑃ES,𝑗𝑗
c.sum − 𝜏𝜏𝑉𝑉𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚� + 𝜔𝜔2|𝑉𝑉ES,𝑗𝑗

end-𝑉𝑉ES,𝑗𝑗
in | (6) 

𝐵𝐵𝑎𝑎,𝑡𝑡
rt = 𝑃𝑃𝑃𝑃𝑡𝑡 �𝑃𝑃To,𝑡𝑡 − �𝑃𝑃To,𝑡𝑡 − 𝑃𝑃bid,𝑡𝑡� ∗ 𝜀𝜀�𝑃𝑃To,𝑡𝑡 − 𝑃𝑃bid,𝑡𝑡�� (7) 

𝐽𝐽𝑎𝑎,𝑡𝑡 = 𝜔𝜔3 ��𝑃𝑃bid,𝑡𝑡 − 𝑃𝑃To,𝑡𝑡� ∗ 𝜀𝜀�𝑃𝑃bid,𝑡𝑡 − 𝑃𝑃To,𝑡𝑡�� (8) 

     𝑃𝑃To,𝑡𝑡 = 𝑃𝑃real,𝑡𝑡 + 𝜇𝜇𝑃𝑃Charge,𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (9) 

Q Network

… … …

Q

Target Q’ Network

Central Experience buffer
 Time difference error
 Stochastic prioritization
 Annealed probability

 Non-stationary distribution

Multi-Actors

Value Network

Learner

… … …

Q’

Policy Network

… … …

μ

σ

Buffer 1

Actor 1

Environment

Action 1
Wind power 

bidding volume

Action 2
ES Charging/Dis -
charging Power

Shared Policy Network

Buffer n

Actor n

Buffer 2

Actor 2
…

Actions

$
Power Market

Network
parameters 

update 
periodically

Reward, State

Prioritized 
Experience

State, Action, 
Reward, State’

Experience priority calculation

State, Action, 
Wind power,

Electricity Price

State’, State, 
Penalty Cost,

Benefit, Reward

Exp
for 

each 
actor

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSTE.2022.3156426, IEEE Transactions on Sustainable Energy



where, 𝐵𝐵𝑎𝑎,𝑡𝑡
rt  is the benefit from the real-time market of action a 

at time t, 𝜔𝜔1 and 𝜔𝜔2 are the penalty coefficients, 𝑃𝑃ES,𝑗𝑗
c.sum is the 

gross charging volume of ESS on day j, 𝑉𝑉𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 is the max state 
of charge (SoC) of ESS, 𝜏𝜏  is the max daily charge-discharge 
cycle,  𝑉𝑉ES,𝑗𝑗

end  is the SoC of ESS after the last action on day 
j, 𝑉𝑉ES,𝑗𝑗

in  is the initial SoC of ESS on day j, 𝐽𝐽𝑎𝑎,𝑡𝑡 is the penalty cost 
for the real power deviations from the bidding volume of time 
t, 𝐽𝐽𝑡𝑡 = 0 when the real power surplus, but the surplus power 
needs to be curtailed, 𝜇𝜇 is the charging/discharging efficiency, 𝑃𝑃𝑃𝑃𝑡𝑡 
is the electricity price at time t, 𝑃𝑃To,𝑡𝑡 is the total power of WSS at 
time t, 𝑃𝑃Charge,𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the real charging power at time t, 𝜀𝜀( · ) is the unit 
step function, 𝑃𝑃bid,𝑡𝑡 is the bidding power at time t for the next hour, 
𝑃𝑃real,𝑡𝑡 is the wind power output at time t, 𝜔𝜔3 is the real-time balanced 
electricity price. 

The state-space 𝑆𝑆𝑡𝑡 and action space 𝐴𝐴𝑡𝑡 is set as: 
𝑆𝑆𝑡𝑡 = {𝑇𝑇𝑡𝑡 ,𝑃𝑃WP,𝑡𝑡

Fcst ,𝑃𝑃𝑃𝑃 𝑡𝑡
Fcst,𝑊𝑊WT,𝑡𝑡 ,𝑉𝑉ES,𝑡𝑡 , 𝜀𝜀WP,𝑡𝑡} (7) 

𝐴𝐴𝑡𝑡 = {𝑃𝑃Charge,𝑡𝑡+1,𝑃𝑃Charge,𝑡𝑡+1
𝑝𝑝𝑝𝑝𝑝𝑝 } (8) 

where 𝑇𝑇 is the time, 𝑃𝑃WP,𝑡𝑡
Fcst  is the forecasted wind power output at 

time t for the next 8 quarters and 9 hours, 𝑃𝑃𝑃𝑃 𝑡𝑡
Fcst  is the 

forecasted electricity price at time t for the next 8 quarters and 
24 hours, 𝑊𝑊WT,𝑡𝑡 is the historical weather data recorded by the 
WSS, 𝑉𝑉ES,𝑡𝑡 is the SoC of ESS at time t, 𝜀𝜀WP,𝑡𝑡 is the wind power 
forecasting error for the last 8 quarters, 𝑃𝑃Charge,𝑡𝑡+1

𝑝𝑝𝑝𝑝𝑝𝑝  is the planned 
charging power at time t for the next hour, 𝑃𝑃bid,𝑡𝑡+1 is the bidding 
power for the next hour. 

Additionally, some tricks are applied to enhance the 
performance. For example, 1) The 24 forecasted hourly 
electricity price data is compressed to 8 to streamline the action 
space; 2) The historical forecasting error is added to remedy the 
forecasting error; 3) The agent will act four times to form a 
complete action, aiming at improving the convergence.  

III. CASE STUDY

In this section, the proposed self-dispatch model is performed 
on a 99 MW wind farm with 30MW ESS located in northern 
China. One-year data is scaled and used for validation. The max 
charge/discharge rate of ESS is 6MW, and the efficiency is 95%. 
Due to the deviation of the hour-ahead plan, ESS is designed to 
be able to modify the charging/discharging plan in real time, 
and the modification margin is 3MW for each time step. The 
forecast data is generated by XGboost [12], which is testified 
efficient in time series forecast. The mean absolute percentage 
error (MAPE) of the ultra-short/short term wind power forecast 
is 4.372% and 8.761%. As for the ultra-short/short term 
electricity price, they are 5.561% and 6.746% respectively.  

TABLE I 
PARAMETERS SETTING OF THE PROPOSED MODEL

Parameters Values 
Structure of policy network [512, 256, 256, 128] 
Structure of value network [512, 512, 256, 256] 

Learning rate 3×10-6 
Batch size 4096 

Central experience buffer size 2×106 
Number of actors 16

Penalty coefficient 𝜔𝜔1 and 𝜔𝜔2 -1000 ¥/MWh 
Real-time balanced price 𝜔𝜔3 -2.5×𝑃𝑃𝑃𝑃𝑡𝑡 

Number of max charging cycles/day 1.0

The proposed approach is trained for 10000 episodes, 96 
steps (1 day) per episode to learn the optimal self-dispatch 
policy. To evaluate the performance of the self-dispatch policy 
learned from training data, comparative tests are carried out on 
the test set, where 30 days of data are used.  

The results of different methods are compared in Table II. 
The results demonstrate the effectiveness of the proposed 
model in enhancing the benefit of the ESS. Meanwhile, the 
learned policy is more robust. The deviation between the hour-
ahead dispatch plan and real-time power generation is much 
less than the other methods, which can mostly be covered by 
the real-time dispatch of ESS.  

TABLE II 
BENEFIT COMPARISON OF DIFFERENT ALGORITHMS 

Methods Average 
Benefit (¥) 

Average deviation 
(MW/step) 

Max deviation 
(MW/step) 

Original 204763.0 0.578 4.719 
DDPG 186231.2 0.886 6.041 
SAC 204935.1 0.504 5.700 

Ape-X SAC 210398.5 0.244 2.560 
Ideal model 213294.8 0 0 

In addition, compared with the average benefit, ¥186231.2 in 
the test set earned by DDPG, that of the SAC is almost 10% 
higher, which proved the effectiveness of the entropy 
mechanism introduced in SAC. The great potential of DDPG 
can not be denied because it’s almost omnipotent theoretically. 
But in this case, the optimal parameters are hard to find. As for 
the Ape-X SAC, the average benefit earned by the proposed 
model reached ¥210398.5, which is 2.7% higher than the 
traditional SAC model. The experiment results verify the role 
of distributed prioritized experience replay frame in alleviating 
the uncertainty brought by the coupled uncertainty of wind 
power and electricity market. 

To further elaborate on the performance of the proposed 
model, a windy day in the test set is selected. The electricity 
price and charging plan are shown in Fig. 2. From Fig. 2, it can 
be found that the learned policy is able to formulate the 
charging/discharging plan considering the long-term benefit in 
the electricity market. Furthermore, for the deviation between 
forecasted wind power and real power, the charging plan can 
not make the maximum benefit from the market, even with the 
real-time dispatch. 

Fig.2. The electricity price and charging plan in one day 

 The self-dispatch result is shown in Fig. 3. Due to the 
consideration of the historical forecasting error, the learned 
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policy is more accurate. For example, most of the forecasted 
wind power in step (0, 25) is less than the real-time power 
generation and the error is similar. Obviously, the algorithm 
captures this feature, so the bidding power is extremely close to 
the real-time power generation. Furthermore, due to the high 
penalty fee of the insufficient power supply, the learned policy 
tends to bid less to prevent the additional cost from the market, 
although it may lead to the wind curtail. Fortunately, the amount 
of curtailed power is under control. Meanwhile, the robustness 
of the learned policy gets proved. 

Fig.3. The self-dispatch result in one day 

IV. CONCLUSION

This letter presents a self-dispatch model of WSS based on 
Ape-X SAC. The designed algorithm is able to learn the self-
dispatch strategies from historical data through actor-critic 
networks. The use of distributed prioritized experience replay 
frame and entropy enables the designed agent to explore various 
optimal possibilities, thus the learned policy is more stable 
when considering the coupled uncertainty of wind power and 
electricity price. Comparative results illustrate that the learned 

policy earns 1.36% less than the optimal policy, which is much 
better than the others. 
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