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Abstract: In this paper, an effective electrocardiogram (ECG) recurrence plot (RP)-based arrhythmia
classification algorithm that can be implemented in portable devices is presented. Public databases
from PhysioNet were used to conduct this study including the MIT-BIH Atrial Fibrillation Database,
the MIT-BIH Arrhythmia Database, the MIT-BIH Malignant Ventricular Ectopy Database, and the
Creighton University Ventricular Tachyarrhythmia Database. ECG time series were segmented and
converted using an RP, and two-dimensional images were used as inputs to the CNN classifiers. In
this study, two-stage classification is proposed to improve the accuracy. The ResNet-18 architecture
was applied to detect ventricular fibrillation (VF) and noise during the first stage, whereas normal,
atrial fibrillation, premature atrial contraction, and premature ventricular contractions were detected
using ResNet-50 in the second stage. The method was evaluated using 5-fold cross-validation
which improved the results when compared to previous studies, achieving first and second stage
average accuracies of 97.21% and 98.36%, sensitivities of 96.49% and 97.92%, positive predictive
values of 95.54% and 98.20%, and F1-scores of 95.96% and 98.05%, respectively. Furthermore, a
5-fold improvement in the memory requirement was achieved when compared with a previous
study, making this classifier feasible for use in resource-constricted environments such as portable
devices. Even though the method is successful, first stage training requires combining four different
arrhythmia types into one label (other), which generates more data for the other category than for VF
and noise, thus creating a data imbalance that affects the first stage performance.

Keywords: electrocardiogram; arrhythmia; recurrence plot; deep residual convolutional neural network

1. Introduction

Arrhythmia is a form of heart condition that is characterized by the rate or the rhythm
of the heartbeat. The heartbeat can be faster than normal, or too slow, or have an irreg-
ular pattern. Tachycardia occurs when the heartbeat is too fast, and bradycardia is the
heart disease that is associated with very slow heartbeats. The most commonly known
cardiovascular diseases include types of arrhythmias such as ventricular fibrillation (VF),
premature ventricular contraction (PVC), atrial fibrillation (AF), and premature atrial con-
traction (PAC), to name just a few. All genders and ethnicities are at risk of cardiovascular
diseases in the United States [1]. There is a casualty related to heart disease every 36 s in
the United States. America records about 655,000 deaths from heart diseases yearly, that is,
one cardiovascular-related death in every four deaths [2]. The United States spent about
USD 219 billion on heart disease-related costs each year in 2014 and 2015 [3].
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Present electrocardiogram (ECG) arrhythmia recognition algorithms are dependent
on the assessment of the morphology of a few ECG beats. The existing scientific literature
outlines various studies of QRS complexes and long-duration ECG signal analysis. Studies
have shown that QRS complexes are popular compared to long-duration ECG signal
analysis for arrhythmia recognition [4]. However, more work is needed to find a more
suitable segment size due to the variations in those features among individuals [5,6]. This
is the motivation to investigate and find a solution to effectively diagnose cardiovascular
diseases using more accurate short-duration continuous ECG beat signals. The proposed
algorithm will simplify the calculation of ECG features and will ease the implementation of
the solution in smartphones without cloud computing for real-time applications to monitor
the health of patients.

The ECG signal is easily available and can be acquired using a number of mediums.
The growing number of publications reflects the importance of its features, which include
subjects such as arrhythmia, sleep, and deep learning (DL). A wide range of automatic
ECG classification methods on signal processing techniques have been proposed over
the years. These include wavelet transform [7,8], frequency analysis [9], support vector
machines (SVMs) [10–13], artificial neural networks (ANNs) [11,13], decision trees [14],
linear discriminant analysis [12], and Bayesian classifiers [13]. Recently, the most commonly
pursued method involved the application of DL algorithms [15–20].

Essentially, time series represent data points in order of their occurrence. Time series
analysis is one of the most common pattern recognition tasks in real life [21–23]. It includes
examples such as biomedical signal analysis, biometrics, industrial devices, financial data,
forecasting, and weather, to name just a few. Time series tasks come in different categories,
which include classification, clustering, curve fitting, prediction and forecasting, and
segmentation. Although this paper addresses the 2D classification problem, it employs
time series data that are converted into 2D with the help of a recurrent plot (RP).

DL models, including convolutional neural networks (CNNs), have recently received
increasing popularity. Unlike the traditional classification method, CNNs use 2D images
and do not rely on feature extraction [24–26]. CNN models are capable of learning features
and classifying them at the same time. Due to CNNs’ 2D data crunching, they make use
of all data, including data that might otherwise be removed throughout noise reduction
and feature extraction, which has a noticeable positive impact on their performance. In
addition to the convolutional layers, several other processing units, such as a pooling
process, sigmoid, a rectifying filter, and a normalization filter, are also responsible for
learning a hierarchy from low-level to high-level features.

A CNN is a type of neural network that learns representations from data using a
number of layers. A CNN consists of an input layer, a hidden layer (which includes a
convolution layer), and an output layer. CNNs require little or no preprocessing compared
to other classification networks due to their ability to learn and automatically optimize
filters. A CNN is well known for understanding the image content and has been successfully
applied to image classification, image segmentation, medical image analysis, natural
language processing [27,28], financial time series analysis, recommendation systems [29],
and brain–computer interfaces [30].

A residual neural network (ResNet) is another type of ANN which jumps over some
layers using skip connections (double layer or triple layer). These skip connections include
rectifiers and batch normalization [31] between them. A skip connection is added to
mitigate the problem of degradation in the model, where adding more layers in a deep
model causes a high number of training errors. ResNets were among the highest performers
in the ILSVRC 2015 classification competition. The developers won first place in ImageNet
detection, ImageNet localization, COCO detection, and COCO segmentation in the ILSVRC
and COCO 2015 competitions. The ResNet architecture comes in several variations, based
on the same principle, but with varying layers. For example, there are ResNet-18, ResNet-34,
ResNet-50, ResNet-101, ResNet-110, and ResNet-152 [31].
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For real-time arrhythmia detection, Fradi et al. [32] applied a multistage technique. In
the first stage, R peak detection and noise removal were applied to the raw ECG data using
a low-pass filter. In the second stage, a CNN-based fully connected layer was applied with
a different network optimizer than in the first stage. Using a multistage process, Fradi et al.
reported an accuracy of 99.37%, 99.15%, and 99.31% for training, validation, and testing,
respectively. The authors in [33] used the RR intervals of the ECG as input for detecting the
AF segment using an ANN for wearable ECG monitoring devices. According to their study,
the model’s sensitivity, specificity, and accuracy were 99.3%, 97.4%, and 98.3%, respectively.
Based on a deep 2D CNN, a model for ECG arrhythmias was proposed in [34]. A number
of optimization strategies were applied during the normalization process, including Xavier
initialization, data augmentation, and dropout. Ten-fold cross-validation using all the data
as testing data was applied in that study to validate the classifier. The results achieved
an average accuracy of 99.05%, with an average sensitivity of 97.85%. The authors in [35]
developed an automatic arrhythmia classification strategy that uses an optimization-based
deep CNN. The optimization algorithm was developed using the multi-objective bat and
Rider optimization algorithms. The ECG wave and Gabor features were used as input
features for arrhythmia detection in the deep CNN classifier. In [36], two classifiers for
classifying heartbeat arrhythmia were proposed. The first classifier was designed based
on a CNN and a long short-term memory (LSTM) network, whereas the other integrates
the RR interval and higher-order statistics features with an LSTM model. Each model
was trained separately on different datasets, and a weighted loss function was applied
to each model to provide a high weight for insufficient data in a particular category. A
meta-classifier was used to combine the predictions of the two classifiers to make a final
prediction. Another CNN-LSTM classifier was used to verify the results.

The proposed study utilized ECG data acquired from four PhysioNet databases,
namely, the MIT-BIH Atrial Fibrillation Database (AFDB), the MIT-BIH Arrhythmia Database
(MITDB), the MIT-BIH Malignant Ventricular Ectopy Database (VFDB), and the Creighton
University Ventricular Tachyarrhythmia Database (CUDB), to classify arrhythmia into six
categories. The proposed approach has two stages. The first stage involves three classes,
including VF, noise, and other, while the second stage classifies the categories contained
by the class other in the first stage, which includes normal, AF, PAC, and PVC. During VF,
the abnormal heart signals cause the ventricles to quiver. This may result in death; hence,
VF requires immediate medical attention. Noisy signals can obscure the most important
features of the signal, which, in turn, can lead to misclassification of the arrhythmia type. A
careful approach is needed when dealing with data prior to classification, and identifying
any potential interferences with an important feature can also contribute significantly. AF is
characterized by the absence of a P wave, irregular RR intervals, and disorganized electrical
impulses. A fast heart rate can also make atrial fibrillation appear more regular and harder
to distinguish from other types of heart rhythm problems [37]. AF also increases the risk of
heart failure by 1%, kidney problems by 0.5%, death by 0.4%, stroke by 0.3%, and coronary
heart disease by 0.1% [38]. Despite the fact that PVC can occur in healthy individuals of
any age, it is more common in the elderly and in men. Frequently occurring PVCs may
indicate serious problems with the heart. Moreover, frequent PVCs may cause the heart
to become less efficient, resulting in heart failure. PACs are similar to PVCs, but they are
found in the atrium. They are caused by a premature contraction of the heart, resulting in
an unsuccessful heartbeat. PACs in healthy patients do not indicate health risks, but they
can trigger serious arrhythmias such as atrial fibrillation [39].

Previous research [40] by the authors has identified the types of arrhythmias discussed
above, but there are some limitations that prevented the method from being applied to
the intended purpose. The models require about 460 megabytes of memory space. By
proposing a new model, it is aimed to improve upon our previous work. As a result, the
proposed work improves the accuracy of the classifier for datasets with rhythm annotation
in the first stage, resulting in a better overall classification accuracy compared to the
previous study. In addition, the memory sizes of both the first and second stage classifiers
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are significantly reduced, enabling applying the proposed method to a broader range of
devices that would not be suitable before due to the larger models in our previous work. In
this work, it is aimed to develop a model that alerts patients to the possibility of cardiac
risks so that they can consult with medical professionals for a further diagnosis and save
their lives.

The diagram shown in Figure 1 shows the procedure followed in the classification.
The classification involves two stages. Input ECG data are fed into the classifier for
preprocessing. Preprocessing begins with data segmentation in preparation to convert
the time series signal into 2D images. The segmented 2 s segments are converted into 2D
images using the recurrence plot method. The 2D images are then used as inputs in the first
classification stage. There are three classes in the first stage, including noise, VF, and other.
The other class of the first stage is further classified into four sub-classes by the second
stage classifier. The second stage classifies ECG data into AF, normal, PAC, and PVC. If the
data are classified as other in the first stage, they are sent to the second stage where they
undergo further preprocessing. The second stage preprocessing involves the detection of
the R peak and segmentation. One-second data before and after the R peak are combined
to form a segment and converted to an RP for the second stage classification.
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The one-dimensional (1D) ECG is converted to 2D images using an RP, allowing
classifying the arrhythmias into one of six categories using a CNN. This study proposes an
improved approach to classification in which two stages are used to improve accuracy. Data
classification began by separating the labels of noise and VF, which required immediate
attention. To begin with, it is necessary to determine the difference between VF and noise,
since VF can imperil life, while noise can make the classification process more difficult.
Due to the absence of R peaks in the segments detected in the first stage, the second
stage cannot differentiate the aforementioned labels [41,42]. VF is caused when the heart’s
organized electrical activity is disrupted, resulting in chaotic electrical impulses. The chaotic
events result in a loss of the R peak since the myocardium’s action potentials cannot be
synchronized. This is one of the reasons behind the proposal in implementing a two-stage
classification system in this work. The remaining labels were segmented using the R-peak
algorithm, and the segments were categorized into the different types of arrhythmias [43]
and analyzed in the second stage. According to the results, the use of RPs and CNNs for
arrhythmia discrimination appears to be feasible.

The following points summarize the contributions of this paper: (i) ECG arrhythmia
detection is investigated by converting the time series ECG to 2D using the RP, which
preserves all the useful features for ECG classification. This study introduces different
layers of a ResNet in order to improve the performance of a previous study [40], achieving
an average accuracy of 97.21% during the first stage and 98.36% during the second stage.
(ii) The ResNet architecture reduces the model memory requirements by 5-fold, enabling
implementation on mobile devices. (iii) By designing a low-memory classifier, a more
dynamic system, which can adapt to changes in the database, can be created. Although
the proposed classifier has more layers than the previous one, it is more computationally
efficient and requires less training time. The remainder of the paper is structured as
follows. Section 2 analyzes RPs to construct 2D segments of the ECG signal. In Sections 3
and 4, methodology analysis is presented, including ECG data acquisition, ECG data
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preprocessing, ECG data classification, performance measures, the CNN classifier used
in training, and results of the proposed methodology. Finally, Sections 5 and 6 present a
summary and conclusions.

2. Time Series to Recurrent Plots

The RP concept was introduced by Eckmann et al. [44] for visualizing the phase
space trajectories, which are difficult to visualize in the time domain. This tool allows the
exploration of the m-dimensional phase space trajectories by displaying their recurrence
in two dimensions. It allows determining the point at which these trajectories return to a
previous state. The main step in this visualization is the calculation of an N × N matrix.
The numerical expression for an RP is defined according to Equation (1).

Rmn
ij = Θ

(
εi − ‖ xi − xj ‖

)
, xi ∈ Rm, ij = 1 . . . N. (1)

where εi is a cutoff distance; Θ is the Heaviside function; xi and xj are the observed subse-
quences at both points i and j; || · || is the norm (Euclidian norm); and N is the number
of states. Since Rij = 1 (i = 1 . . . N), the RP is composed of a black line along a diagonal
line, which represents the identity line with an angle of Π/4. A trajectory reconstruction is
performed using all recurrence points [45–47]. However, it is not possible for them to be
rebuilt from a single occurrence point (i, j). In an m-dimensional time series j, whether the
trajectory is almost identical to the time series is determined by the placement of black dots
at coordinates; otherwise, white dots are placed. This method requires specification of the
threshold parameter ε, used to binarize the R matrix, which is not easy to set.

This work adopts a modified version of an RP that utilizes color information. Color
maps are used rather than Equation (1) to produce the image, which enables distances to be
represented in color. This representation is known as unthresholded recurrence plot [48],
as shown in Equation (2).

Ri,j =‖ xi − xj ‖, ij = 1 . . . N. (2)

Figures 2 and 3 show examples of a typical modification of an RP for different types
of signals. The RP images are created by defining a matrix of values between 0.0 and 1.0.
Each row in the matrix represents a three-element RGB value, indicating the intensity of
red, green, and blue. The converted three-axis signals of the RGB channel into an image
that presents the contained information. The ECG signal is converted into 2D color images
(Figures 2 and 3) as input for the two-stage classifier. The ECG time series signals are
converted into RGB images using the RP so that intensities can be exploited to improve the
image resolution and accuracy of the model. Researchers have used an unthresholded RP
to convert 1D signals into 2D color images [49–52].
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3. Materials and Methods

In this study, a CNN was used to improve the classification of short-duration segments
of ECG signals (2 s) [40]. The CNN was used for arrhythmia classification, involving two
steps: preprocessing the ECG data and constructing the classifier. PhysioBank was used to
resource data (PhysioNet) for the CNN model training, validation, and testing. Considering
that ECG signals are 1D and the CNN model accepts 2D inputs, the ECGs were converted
into 2D ECG images during the ECG data preprocessing step. An RP was applied to the
data for transforming the ECG data and making it possible to perform the classification of
the six arrhythmia categories in the CNN classifier step.

3.1. ECG Database

ECG signals were gathered from four publicly accessible datasets in PhysioNet [43].
Among the four datasets are the MIT-BIH Atrial Fibrillation Database (AFDB) [53], the
MIT-BIH Arrhythmia Database (MITDB) [54], the MIT-BIH Malignant Ventricular Ectopy
Database (VFDB) [55], and the Creighton University Ventricular Tachyarrhythmia Database
(CUDB) [41]. A range of categories are provided by the MITDB, including normal, AF, PAC,
and PVC. In this database are 48 ECG recordings of a half-hour length sampled at 180 Hz,
obtained from 47 patients. Although the MITDB contains arrhythmia data with different
categories, it does not provide enough data to satisfy the classification of all the categories
under study. To satisfy the abovementioned arrhythmia categories, additional data for AF
were obtained from the AFDB. This database includes 25 ECG recordings of subjects with
atrial fibrillation. Out of the 25 ECG recordings of human subjects, only 23 are accessible for
classification since 2 of the signals are only represented by rhythms and unaudited beats.
The duration of each recording for this dataset is 10 h, and each recording is sampled at
250 samples per second. The data for the VF category were retrieved from the VFDB. This
database includes 22 ECG recordings from subjects who experienced VF. The duration of
the recordings is half an hour each, and the data are sampled at 250 samples per second.
The data for the noise category were obtained from the CUDB. There are 35 ECG recordings
in this database. The duration of the ECG recordings of the CUDB is about 8 min each, and
the sampling frequency is 250 samples per minute.

3.2. ECG Data Preprocessing

The ECG recordings from the four datasets were sampled using different sampling
frequencies. The MITDB was sampled at 360 Hz, while the AFDB, CUDB, and VFDB
were sampled at 250 Hz. Records from all the datasets are available with beat and rhythm
annotations, which were used for the isolation of the segments. A window of 2 s was
considered (equivalence of 2 s = 720 samples for ECG from the MITDB and 500 samples
for ECG from the AFDB, CUDB, and VFDB). The segments were annotated using the
annotations made available in the databases.

An image serves as an input to the 2D CNN. Consequently, we converted each ECG
segment into 2D images with the RP before classifying them. Even though the segment
sizes are different due to the difference in the sampling frequencies for the datasets, the
size of the resulting images is fixed to obtain the same size images. Figure 2 shows the ECG
waveforms and their corresponding recurrence plot during the first stage of classification.
The ECG waveforms for the second stage of classification and their corresponding RPs are
shown in Figure 3.

3.3. Classification

The data segments were labeled in the first classification stage based on the beat and
rhythm annotations provided in the records. Different annotation types were used to label
segments in the first stage. During the first stage, other types of arrhythmias and VF were
annotated with rhythm annotations, while noise was annotated with artifact annotations.
An annotation was given to a segment if two-thirds of the data fell into that category in
the first stage. Each segment of the data was annotated using the annotation used for
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the R peak in the middle of the segment during the second classification stage. Training,
validation, and testing sets were randomly selected from the datasets (which made up 70%,
15%, and 15% of the total data used).

3.4. Performance Measures

To assess the performance of the CNN classifiers, we used accuracy (Acc), sensitivity
(Sens), specificity (Sp), positive predictive value (PPV), F1-score (F1), and Cohen’s kappa
(kappa). A total of six datasets were created from the four databases: the first stage was
divided into VF and noise, while the second stage was divided into normal, AF, PAC,
and PVC. Three subsets were randomly selected from the datasets: training, validation,
and testing. For the purpose of assessing performance in multiclass classification, it was
assumed that the proposed model is one that classifies samples into three classes, namely,
A, B, and C. A confusion matrix for the model can be visualized as shown in Table 1.
Analyzing performance involves comparing the following parameters.

Table 1. Visualization of the confusion matrix.

Predicted
A B C

Actual
A PAA PBA PCA
B PAB PBB PCB
C PAC PBC PCC

1. Acc: This gives a matrix that describes how the model performs across all classes.

Acc =
TP + TN

TP + TN + FP + FN
× 100% (3)

2. Sens: This gives the percentage of the true samples that were correctly detected by
the algorithm.

Sens =
TP

TP + FN
× 100% (4)

3. Sp: This indicates the percentage of the samples that were correctly detected as
negative segments and beats.

Sp =
TN

TN + FP
× 100% (5)

4. PPV: This is calculated according to Bayes’ theorem.

PPV =
Sens× P

(Sens× P + (1− Sp)× (1− P))
(6)

P =
TP + FN

TP + FP + FN + TN
(7)

5. F1: This gives the harmonic mean of the sensitivity and the positive predictive value.

F1 = 2× Sens× PPV
Sens + PPV

× 100% (8)

6. Kappa:

Kappa =
po− pe
1− pe

× 100% (9)
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po =
TP + TN

TP + FP + TN + FN
(10)

pe = (TN + FP)× (TN + FN) + (FN + TP)× (FP + TP) (11)

7. True negative (TN): This represents the number of negative samples that were correctly
predicted as negative by the model. TN is calculated for each of the three classes in
the example in Table 1.

TN(A) = PAB + PCB + PBC + PCC (12)

TN(B) = PAA + PCA + PAC + PCC (13)

TN(C) = PAA + PBA + PAB + PBB (14)

8. False positive (FP): FP is the number of samples predicted by the model to be positive
which, in fact, turned out to be negative.

FP(A) = PAB + PAC (15)

FP(B) = PBA + PCB (16)

FP(B) = PBA + PCB (17)

9. False negative (FN): FN is the number of positive samples that were incorrectly
predicted as negative by the model. In multiclass classification, FNs are also calculated
for each class.

FN(A) = PBA + PCA (18)

FN(B) = PAB + PCB (19)

FN(C) = PAC + PBC (20)

Multiclass classifications use the same TP as binary classifications do. However, true
positives are calculated for each class in multiclass classification. The TPs of classes A, B,
and C in Table 1 are represented, respectively, by the variables PAA, PBB, and PCC. The
prevalence (P) is the percentage of the whole study population that has the target condition.
P for the minority class in the population was used for PPV calculation. In an imbalanced
classification problem, a minority class is a class with few examples. In this study, the
first stage analyzed 29,217 images in 3 classes. There were 20,531 images categorized as
other, 4256 images as noise, and 4430 images as VF. In the first classification stage, noise
was a minority class with the lowest number of samples. The second stage analyzed
19,640 images, and 7228 of the images were in the normal ECG category, 6488 in the AF
category, 2559 in the PAC category, and 3365 in the PVC category. According to this case,
PAC is the minority class with the lowest number of samples. The PPV for the first and
second stages was calculated according to the prevalence of noise and PAC, respectively.
The po measure represents the proportion of units where there is agreement and is described
in Equation (10). The pe measure represents the probability of random agreement.

For each of the models, all of the first and second stage data were tested in order to
calculate the overall performance of the two-stage classifier. In the first stage, six classes
(AF, noise, normal, PAC, PVC, and VF) were classified into noise, other, and VF. In the
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second stage, all images predicted as other by the first stage classifier were classified into
four categories: AF, normal, PAC, and PVC. Then, the prediction confusion matrix was
used to evaluate the two-stage classifier’s overall performance for the six-class classification
using the defined metrics. For the two-stage classifier, PAC is the minority class as it has
the lowest number of samples. PPV was calculated according to the prevalence of PAC in
the two-stage classifier.

A receiver operating characteristic (ROC) curve is a visual representation of the false
positive rates (sensitivity) and false negative rates (specificity). In the representation of
the ROC curve, the x-axis shows the percentage of false positives, while the y-axis shows
the percentage of false negatives. With ideal values provided, a point (0, 1) on an ROC
curve indicates the test is more effective at separating cases from non-cases. The area under
the ROC curve (AUC) is the area between the ROC and the axes, which can be anywhere
between 0 and 1. An AUC that is closer to 1 indicates better test performances. When
examining algorithm performance, the AUC metric is the proper tool since it does not
rely on the prediction criteria. Classification models help to categorize observations into
categories. Since the result of a classifier or diagnosis can be an arbitrary real value, a
threshold value is required to determine the boundary between classes, and it is calculated
from the ROC [56].

3.5. Two-Dimensional CNN Classifier

Our previous work monitored a number of classifiers and observed consistent ex-
periences. In order to provide examples for discussion, we applied three CNN models
successfully in the ImageNet Large Visual Perception Challenge (ILSVRC) [57,58] to the
ECG arrhythmia classification. The ILSVRC is a competition for classifying objects in a
set of images. Our previous work applied the AlexNet, VGG16, and VGG19 models. The
AlexNet model took part, achieved first place in the competition of 2012, and was the first
model to use a CNN model with the help of GPUs. The VGGNet model took part and
achieved second place after GoogleNet in the same competition in 2014, and its structure is
widely used in image recognition because of its simple structure. Although these models
are successful in classifying arrhythmia with high accuracies, there remains a challenge
in applying them for the intended purpose. Since the aim is to apply the classification
capabilities of the models in mobile devices, the size of the model needs to remain small
enough to be uploaded to the devices. Thus, further research is required to determine
genetic models that recognize the type of arrhythmia present in RP segments with a lower
memory requirement.

In this paper, the ResNet model was used to address the memory size problem we
encountered with the other models and improve the performance of the first classification
stage. The ResNet architecture is recommended for addressing the problems faced during
the training of deeper networks. To find a suitable ResNet layer size that is effective
in discriminating the six types of arrhythmias and requires less memory, five different
ResNet architecture layer sizes were compared. Figure 4 shows the structure of the network
architecture for ResNet (ResNet-18, Figure 4a; ResNet-50, Figure 4b). In Table 2, the five
main features of each architecture are presented in detail. ResNet architectures begin with
the initial convolution and maximum pooling using the 7 × 7 and 3 × 3 kernel sizes,
respectively, as shown in Figure 4a,b. Afterwards, the first stage out of the four stages of the
networks (represented in different colors) begins with two residual blocks containing two
layers each for the shallow network. According to Figure 4, each pair of the 3-by-3 filters in
both the 18 and 34 layers of the ResNet architecture has a shortcut connection added to it.
For all shortcuts, identity mapping and zero padding are applied to increase dimensions,
followed by a stride of 2. The deeper architectures including 50 layers, 101 layers, and
154 layers use their own building block due to concerns that more time is required to train
them [31]. A stack of three layers is applied which includes 1 × 1, 3 × 3, and 1 × 1 filters,
as shown in Table 2. The 1 × 1 layer reduces the dimensions and then increases them again,
while the 3 × 3 layer remains as a bottleneck and has smaller dimensions [31]. As shown in
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Table 2, in the ResNet-18 architecture, the two-layer blocks are replaced with three-layer
blocks to form the 50-layer network.
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1× 1, x2048

× 3

1 × 1 Average pool, 6-d
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Average pool, 6-d
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3.6. Training

The standard practice in [59] was observed in preparing images for the training
procedure. We used color images generated by the RP. The RP images from the ECG time
series were downscaled to 224× 224 to reduce the training time [60]. Before feeding images
to the network, the pixel means were computed from a fixed location over the training set
and subtracted from each image, and then the network was trained using the centered RGB
values of the pixels. The ECG signal was not normalized; instead, it was used to generate
the 2D images which were fed to the network as training data. Data augmentation in this
work was similar to that applied in [60], which alters the intensity of the RGB channels in
the training images. Color models based on the RGB system combine red, green, and blue.
In this data augmentation, image translations and horizontal reflections were generated
to increase the size of the training dataset and reduce overfitting. Before activation and
after every convolution, a batch normalization (BN) was applied [61]. BN refers to the
process of re-centering and re-scaling the input layers so that the learning process takes
less time and is more accurate. All residual nets were trained completely from scratch with
weights initialized as shown in [58]. Network optimization was achieved using stochastic
gradient descent (SGD) with a batch size of 256 samples. The network optimizer changed
the attributes of the neural network, such as weights and the learning rate, to reduce
losses. A batch size of 256 samples means that 256 samples will be used to estimate the
error gradient before the model weights are updated. SGD is one of the commonly used
algorithms for solving optimization problems [62]. Initially, 0.1 was set for the learning
rate; when the error plateaued, it was divided by 10. As the learning rate was decreased
during training, the accuracy of the model was improved, and overfitting was reduced.
The weight decay was set to 0.0001, the momentum was set to 0.9, and no dropout was
used [31,58]. The learning rate is a hyperparameter that determines the step size at each
iteration while moving toward a minimum loss function. The learning rate influences
the extent to which recently acquired information overwrites earlier information; thus,
it represents the learning speed of the network. Weight decay helps constrict a network
and therefore decrease its complexity by limiting weight growth. In this way, irrelevant
components of the weight are suppressed by choosing the smallest ones. Momentum
is a technique that is used along with SGD to improve the learning speed and accuracy.
In addition to relying on the gradient of the current iteration, momentum also uses the
gradient of the previous iteration in order to determine the direction of learning. The
dropout technique was used to address the problem of overfitting. In dropouts, units
and their connections are randomly removed from the network during training. In the
ResNet-18 architecture, there are over 11 million trainable parameters, and there are over
23 million in the ResNet-50 architecture.

4. Results
4.1. Determining the Number of Layers in ResNet

We used the deep residual learning procedure implemented in [58]. As described in
the previous section, we applied 0.9 for the momentum, and 0.0001 for the weight decay. We
also utilized the weight initializer used in [57], and the batch normalization applied in [61].
The batch size was kept at 128 on one GPU (Nvidia Tesla K40 GPU). A learning rate of 0.1
was initially used, which was divided by ten every thirty-two thousand iterations. Similar
data augmentation used in [63] for training was applied. The first stage of classification
involved distinguishing between noise, VF, and other categories. In the first classification
stage, 29,217 images were analyzed. A total of 20,531 images were categorized into the
other category; 4256 images were classified as noise; and 4430 images were classified as
VF. In the second classification stage, images were grouped into one of four datasets based
upon the first stage. Normal, AF, PAC, and PVC datasets were included in the second stage.
In the second round of classification, a total of 19,640 images were analyzed. A total of
7228 images constituted the normal set, 6488 constituted the AF set, 2559 constituted the
PAC set, and 3365 constituted the PVC set. As a result of training and testing the image
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categories together, the predicted results were used to evaluate the predictive model. Based
on the Acc, Sens, and Sp of the models, the performance of the first and second stages of
classification was evaluated. To determine the ResNet layer size, a number of different layer
sizes were trained, and the best ResNet was selected in terms of Acc and lower memory
size. The number of layers for training was varied according to the available ResNet models
from 18 to 152 layers [61].

Tables 3 and 4 present the comparison of the accuracy for the ResNet models used to
determine the layer size as well as the memory it requires in the two stages of classification.
Tables 5 and 6 present the comparison for the performance of the layers using Sens, and Sp
in the two stages of classification. The chosen model for cross-validation and classification
had the best performance along with the lowest memory requirement. Based on training,
testing, and validating the various layer sizes, it appears that 18 and 101 layers are needed
for the first and second stages of arrhythmia classification, respectively, when using ResNet
algorithms. The training, validation, and testing results obtained after training the 18 layers
of ResNet in the first classification stage were better than those obtained from our previous
work [40]. As a result, the 18 layers of ResNet require less memory than the rest of the layer
sizes, making them ideal for the first stage of classification. The results obtained from the
101 layers in the second classification stage were superior to those obtained from the 18, 34,
50, and 152 layers. The testing accuracy was 97.04% and 98.46% in the first classification
and second classification stages using 18 and 101 layers, respectively. In the first and second
stages of classification, 43 and 169 megabytes of memory were required for the 18 and 101
layers, respectively.

Table 3. Evaluating the first classification stage accuracy and model size to determine the layer size
for ResNet.

ResNet Number of Layers Training Validation Testing Size (MB)

ResNet-18 98.77% 96.61% 97.04% 43
ResNet-34 98.12% 96.74% 97.45% 83
ResNet-50 98.40% 96.23% 96.53% 94

ResNet-101 98.55% 96.42% 97.26% 169
ResNet-152 98.60% 96.09% 96.72% 230

Table 4. Evaluation of the ResNet layers using the three performance measures (training, validation,
and testing).

ResNet Number of Layers Training Validation Testing Size (MB)

ResNet-18 99.43% 94.06% 94.65% 43
ResNet-34 99.21% 95.59% 95.26% 83
ResNet-50 98.95% 97.22% 98.15% 94

ResNet-101 98.59% 97.91% 98.46% 169
ResNet-152 98.56% 97.62% 98.33% 230

Table 5. Evaluating the first classification stage using Sens and Sp to determine the ResNet layer size.

ResNet Number of Layers Sens Sp
Noise Other VF Noise Other VF

ResNet-18 96.33% 92.96% 99.42% 97.16% 99.30% 99.28%
ResNet-34 95.93% 99.17% 94.35% 98.32% 99.00% 98.91%
ResNet-50 92.64% 98.58% 96.61% 97.03% 98.31% 99.33%

ResNet-101 93.20% 99.50% 96.89% 97.29% 99.37% 99.40%
ResNet-152 93.43% 98.75% 95.76% 97.34% 98.51% 99.17%
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Table 6. Second stage Sens and Sp for the selection of the ResNet layers.

ResNet Number of Layers Sens Sp
AF Normal PAC PVC AF Normal PAC PVC

ResNet-18 87.27% 99.67% 92.08% 98.49% 94.37% 99.84% 99.11% 99.46%
ResNet-34 88.35% 99.08% 96.04% 98.69% 94.83% 99.56% 99.55% 99.53%
ResNet-50 97.17% 99.67% 95.51% 98.49% 99.11% 99.80% 99.41% 99.28%

ResNet-101 98.34% 99.67% 96.31% 97.98% 99.22% 99.84% 99.59% 99.28%
ResNet-152 97.84% 99.42% 94.72% 98.99% 98.99% 99.73% 99.41% 99.64%

Since the aim is to apply the first and second stages of arrhythmia classification
models in portable devices, it is very important to find an effective model that will be
able to automatically discriminate between the six categories of arrhythmia and require
a reasonably low memory size that will fit into the devices. Considering the fact that the
memory size of the model is vital to the accomplishment of the intended purpose, it was
decided to consider a layer size that will be able to meet both requirements of the models
(good performance and less memory size) in the second classification stage. Then, the
50-layer ResNet was used for the second classification stage as a better alternative. The
results presented in Table 4 show that the 50 layers have an accuracy of 98.15%, which
is 0.31% less than the best testing accuracy (101 layers). The memory required for the
50 layers, on the other hand, is 75 megabytes less than that of the 101 layers.

4.2. Performance Evaluation

Presented in this section are the results of the three performance measures (training,
validation, and testing) in the two stages of arrhythmia classification. For training, valida-
tion, and testing, the data were set at 70%, 15%, and 15%, respectively. The test results were
used to assess the predictive ability of the models at both stages. The confusion matrix
table, on the other hand, indicates the real classification results in the testing data versus
the predicted results.

4.2.1. Assessment of the First Stage of Classification

To begin the classification process, the classifier was evaluated using three accuracy
measures (training, validation, and testing accuracies). By utilizing the predicted results,
Sp, Sens, and Acc values of the model were calculated based on the classification matrix.
Table 7 reports the performance evaluation for the first stage of classification, which in-
cluded cross-validation of input data for learning, validating, and testing. The first four
columns of Table 7 show the representation of the cross-validation stage and the three sets
of performance measures (training, validation, and testing accuracies) in the first stage
of classification, respectively. The mean and standard deviation of the three performance
measures are presented in the last row, which are 98.56 ± 0.16%, 96.76 ± 0.31%, and
97.21 ± 0.34%, respectively. Table 8 reports the performance measure for the first stage of
classification cross-validation (5-fold) using sensitivity, specificity, and F1-score. The sensi-
tivity in the first classification stage had a mean and standard deviation of 96.44 ± 0.47%,
93.77 ± 1.39%, and 99.27 ± 0.09% for the three datasets under classification (VF, noise, and
other, respectively). According to the Sp, the first stage of classification reported a mean
and standard deviation of 97.80 ± 0.76%, 99.22 ± 0.24%, and 98.97 ± 0.74% for the three
datasets, respectively. The cross-validation in the first stage achieved a mean and standard
deviation F1-score of 93.01 ± 1.10%, 95.46 ± 0.63%, and 99.42 ± 0.06%, respectively, for
noise, other, and VF. Figure 5a shows the ROC curves for the first stage of classification.
Table 9 shows the performance of the first stage classifier using the ROC curve. This
performance shows the results of the 5-fold cross-validation for the three classes (noise,
other, and VF). The threshold values to determine the boundary between the classes were
also calculated and are presented in Table 9.
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Table 7. First stage performance measure for the cross-validation (5-fold) using training validation
and testing accuracies.

CV Training Validation Testing

Mean ± SD 98.56 ± 0.16% 96.76 ± 0.31% 97.21 ± 0.34%

Table 8. First stage Sens, Sp, and F1-score for the 5-fold cross-validation.

Noise Other VF
CV Sens Sp F1-Score Sens Sp F1-Score Sens Sp F1-Score

Mean 96.44 97.80 93.01 93.77 99.22 95.46 99.27 98.97 99.42
STD 0.47% 0.76% 1.10% 1.39% 0.24% 0.63% 0.09% 0.74% 0.06%
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Table 9. Performance of the first stage cross-validation test using the AUC of the ROC curve.

CV
Noise Other VF

AUC Threshold AUC Threshold AUC Threshold

Mean 0.991 0.273 0.999 0.536 0.991 0.626
STD 0.002 0.040 0.001 0.334 0.001 0.160

4.2.2. Performance Evaluation of the Second Stage of Classification

According to Table 10, the performance of the second stage was evaluated using cross-
validation, which took into account input data from three datasets (training, validation, and
testing). The evaluation of the performance of the classifier used the means and standard
deviations of the three sets of performance measures (training, validation, and testing
accuracies), which were 98.72 ± 0.16%, 97.71 ± 0.16%, and 98.36 ± 0.16%, respectively.
Table 11 reports the performance evaluation for the second stage of classification using Sens,
Sp, and F1-score for the cross-validation (5-fold). According to the results of the second
stage of classification, the means and standard deviations for sensitivity were 97.64 ± 0.42%,
99.65 ± 0.22%, 95.73 ± 1.11%, and 98.67 ± 0.48% for the four datasets (AF, normal, PAC,
and PVC categories, respectively). According to the Sp, the second classification stage
means and standard deviations for the four datasets (AF, normal, PAC, and PVC) were
98.90 ± 0.19%, 99.84 ± 0.10%, 99.52 ± 0.12%, and 99.52 ± 0.17%, respectively. The F1-score
recorded means and standard deviations of 98.07 ± 0.08%, 99.18 ± 0.19%, 96.59 ± 0.46%,
and 98.37 ± 0.18% for AF, normal, PAC, and PVC, respectively. Figure 5b shows the ROC
curves for the second stage of classification. The performance of the second classifier using
the AUC of the ROC curve for the second classifier is reported in Table 12. Performances are
shown for the 5-fold cross-validation of the four classes (AF, normal, PAC, and PVC). The
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threshold values used to establish the boundary between the classes were also calculated
and are presented in Table 12.

Table 10. Evaluation of the accuracy through training, validation, and testing with cross-validation
(5-fold) in the second stage.

CV Training Validation Testing

Mean ± SD 98.72 ± 0.16% 97.71 ± 0.16% 98.36 ± 0.16%

Table 11. Evaluation of the accuracy through Sens, Sp, and F1-score with cross-validation (5-fold) in
the second stage.

AF N PAC PVC
CV Sens Sp F1-Score Sens Sp F1-Score Sens Sp F1-Score Sens Sp F1-Score

Mean 97.64 98.90 98.07 99.65 99.84 99.18 95.73 99.52 96.59 98.67 99.52 98.37
STD 0.42% 0.19% 0.08% 0.22% 0.10% 0.19% 1.11% 0.12% 0.46% 0.48% 0.17% 0.18%

Table 12. Performance of the second stage cross-validation test using the AUC of the ROC curve.

CV
AF Normal PAC PVC

AUC Threshold AUC Threshold AUC Threshold AUC Threshold

Mean 0.998 0.234 0.999 0.624 0.998 0.144 0.999 0.264
STD 0.001 0.139 0.000 0.228 0.001 0.096 0.000 0.110

Table 13 reports the average accuracies for the first and second classification stages,
where the achieved results during the 5-fold cross-validation were 96.49 ± 0.39% and
97.92 ± 0.30% for sensitivity, 98.66 ± 0.14% and 99.45 ± 0.04% for specificity, 93.29 ± 0.68%
and 95.18± 0.37% for PPV, 95.96± 0.55% and 98.05± 0.19% for F1-score, and 95.28 ± 0.57%
and 97.71 ± 0.20% for kappa, respectively.

Table 13. Evaluation of the average accuracy through Sens, Sp, PPV, F1-score, and kappa with
cross-validation in the first and second stages.

Av Sens Av Sp PPV Av F1-score Kappa
CV 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

Mean 96.49 97.92 98.66 99.45 93.29 95.18 95.28 97.71 95.28 97.71
STD 0.39% 0.30% 0.14% 0.04% 0.68% 0.37% 0.57% 0.20% 0.57% 0.20%

In order to evaluate the overall performance of the proposed work, all classes were
tested both in the first and second classification stages. There were three classes in the first
stage, including noise, other, and VF. When predicted as noise or VF, the predictions were
recorded under their respective categories, but if predicted as other, the RP image was sent
to the second stage for further classification as AF, normal, PAC, or PVC. Table 14 shows the
results of the procedure, with an accuracy of 94.85%, kappa of 94.44%, average sensitivity
of 94.96 ± 2.94%, average specificity of 93.37 ± 7.31%, average F1-score of 94.05 ± 4.61%,
and PPV of 93.37 ± 7.31%.

Table 14. Overall performance of the two models through Acc, averages of Sens, Sp, PPV, and
F1-score, and kappa.

Acc Av Sens Av Sp Av PPV Av F1-score Kappa

94.85% 94.44 ± 2.94% 94.96 ± 7.31% 93.37 ± 7.31% 94.05 ± 4.61% 93.37%
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5. Discussion

Four datasets were used to train and test the procedure and different annotations were
applied. Annotating the first stage data was based on the type of rhythm in two-thirds
of the segment. In the second classification stage, the label for the R peak provided the
segment annotation. One of the strengths of the proposed work is that it is able to classify
arrhythmias with more than one annotation type, resulting in the ability to classify even
more types of arrhythmias regardless of the type of annotation needed. Two seconds of data
are required per segment, which may expose more than one arrhythmia type per segment.
Because of this, the model is at high risk of misclassification; thus, more data are needed
to balance the training data and enhance the possibility of a correct classification across
all labels. The problem can be solved by adding more datasets with the same arrhythmia
type in the future. All types of arrhythmias can be tested using both models with enough
data. This study next implemented an AI system that is able to incorporate both models;
thus, more testing was required. Having added more data and trained a more balanced
dataset, both models were tested using the same datasets. Since the results of the second
stage heavily depended on those of the first stage (other), it is important to increase the
sensitivity of the first stage since the results for the second stage will be lower than those
currently reported.

The results shown in Table 15 compare the proposed ECG diagnostic classifiers applied
in this work with previous work [40]. The comparison includes the number of layers, the
size of the model, the time taken for training the model, and the accuracies obtained using
the same databases and number of training epochs. The proposed model’s results are
compared to those reported in the previous work, confirming the effectiveness of the
current approach, which can be utilized in mobile devices to classify a 2D arrhythmia based
upon short durations of the arrhythmia.

Table 15. Comparison of the proposed approach with previous work.

Classifier Layer Size Model Size (MB) Training Time (h) Accuracy (%) First Stage Accuracy (%) Second Stage

ResNet-18 18 43 6.26 97.21 94.65
ResNet-34 34 83 6.22 97.45 95.26
ResNet-50 50 94 6.32 96.53 98.36

ResNet-101 101 169 6.25 97.26 98.46
ResNet-152 152 230 6.26 96.72 98.33

AlexNet 8 228 5.37 96.59 98.53
VGG16 16 525 7.6 87.35 86.86
VGG19 19 545 7.75 81.01 94.09

In previous work, most of the work focused on recognizing the six categories of ar-
rhythmia in two stages. Table 15 shows that the AlexNet model obtains the highest accuracy
of 96.59% and 98.53%, respectively, in the first and second classification stages. Mobile
devices, cloud computing, and telemedicine applications for real-time ECG arrhythmia
analysis can potentially benefit from this accuracy in the classified types of arrhythmias.
Despite the fact that the AlexNet model is efficient in ECG arrhythmia classification, it
would be beneficial to reduce the model’s memory size.

In this study, the aim was to develop a classifier to enable edge computing on mobile
devices. Since edge computing requires computation, data storage, and a close proximity
to the source of data, powerful devices are also needed to make it possible. Mobile devices,
for example, are equipped with storage and computing capabilities to make classification
possible. This task requires both read-only memory (ROM) and random-access memory
(RAM). Both permanent and non-permanent data are stored in the ROM. For instance,
ROM is used for media, files, and games, while RAM is used for application and game
execution, but once the applications are closed, the RAM is cleared.

Despite all mobile devices having both ROM and RAM, not all of them are capable of
running certain data processing and classification due to the specific memory requirements.
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For the purpose of running software and graphic games, smartphones have RAM ranging
from 2 GB to over 12 GB. Obviously, not all smartphone users require that much RAM.
Different applications and games require different amounts of RAM memory, but larger
amounts of RAM are necessary to run several programs at once smoothly. The two models
(for the first and second stages) require 460 GB of storage space; thus, running them with
other high graphic software and applications on a smartphone with limited RAM may
negatively affect the user experience, resulting in many users not using the application.

The technique of image processing is largely determined by the processing capability
of the device. As outlined above, random access memory and read-only memory are
vital to a successful implementation of the method in mobile devices; thus, care must be
taken when choosing the type of model to use. The financial constraints of many mobile
device users limit their choice of devices, even though they would appreciate a variety
of functions, including the one proposed in this study. Application developers should
therefore consider these limitations when designing their applications. We can see from
Table 15 that the proposed model requires less memory than the other models, allowing
the method to be used in a wider range of devices and with other applications without
changing or upgrading the RAM.

Table 15 shows that the proposed model has 10 and 42 more hidden layers than the
previous method [40]. It is still able to archive a model that takes 185 and 134 megabytes
less memory than the previous study. Additionally, this model produced networks that
performed 0.62% better in the first stage and maintained a similar level of accuracy in the
second stage. Despite the proposed model having up to 42 more layers than the previous
work, the difference in the training time was less than an hour. The findings shown in
Table 15 demonstrate an improvement over the previous study and contribute to the
advancement of arrhythmia classification methods.

Table 16 compares the results of this study with those reported in other publications
with respect to their respective arrhythmia categories, segment lengths, and average accu-
racies using various databases (mainly the MITDB). The Inception-ResNet-v2 network with
RP images was used in Zhang et al. [64] as a classification method for cardiac arrhythmias.
The CPSC database detected nine types of arrhythmias in their proposed work. Almost the
same arrhythmia types except for VF and noise were used in their study with longer ECG
segments. Compared to the two proposed stages, their work used a one-stage classification
method. They reported average accuracies of 84.7%, 84.7%, and 84.4% for Sens, PPV, and
F1-score, respectively. Ullah et al. [65] proposed a 2D CNN model for classifying eight types
of arrhythmias. They reported 99.02% accuracy for classification using their model, which
includes three convolutional layers, two downsampling layers, and a fully connected layer.
Değirmenci et al. [66] classified five types of arrhythmias using a balanced distribution
of ECG heartbeat images from the MITDB database, with an overall accuracy of 99.7%.
Izci et al. [67] reported an accurate arrhythmia detection approach for five different types
of arrhythmias that achieved 97.42% accuracy. As described in Le et al. [68], a multi-module
recurrent convolutional neural network was used to fuse information from time series,
spectrograms, and metadata modules for automatic ECG arrhythmia classification.
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Table 16. ECG arrhythmia classification evaluations.

Studies Databases No. of
Classes

Segment
Length(s) Method Acc (%) Sens (%) PPV (%) F1-Score

Zhang et al. [64] CPSC 9 5 Inception-ResNet-v2 N/A 84.7 84.7 84.4
Ullah et al. [65] MITDB 8 N/A 2D CNN 99.02 N/A N/A N/A

Degirmenci et al. [66] MITDB 5 N/A CNN 99.70 99.70 99.22 N/A
Izci et al. [67] MITDB 5 N/A CNN 97.42 N/A N/A N/A
Le et al. [68] MITDB 6 N/A RCNN 98.29 N/A N/A 99.14
Li et al. [69] MITDB - N/A CNN 97.96 N/A N/A 84.94

Chen et al. [70] MITDB 6 10 CNN + LSTM 99.32 97.75 97.66 N/A
Yıldırım et al. [71] MITDB 17 10 1D CNN 91.33 83.91 N/A 91.33

He et al. [72] CPSC 9 30 CNN + LSTM N/A N/A N/A 80.6

Yildirim et al. [73] MITDB 5 1 DULSTM
DBLSTM

99.25
99.39 N/A N/A N/A

Yao et al. [74] CPSC 9 1.5 ResNet +
BLSTM-GMP N/A 80.1 82.6 81.2

Fradi et al. [44] MITDB, TPB 5 1.496 1D CNN 99.61 N/A N/A 99
Wang et al. [75] MITDB 5 N/A Random forest 92.31 89.98 N/A N/A

El-Saadawy et al. [76] MITDB 5 N/A SVM + PNN 88.7 N/A N/A N/A

Sahoo et al. [77] MITDB 6 N/A PNN +
RBF-NN

99.54
99.89 N/A N/A N/A

Khairuddin et al. [78] MITDB 17 N/A K-NN 97.30 N/A N/A N/A

Proposed

AFDB,
MITDB,
CUDB,
VFDB

3
4
6

2
ResNet-18
ResNet-50

ResNet-18&50

97.21
98.36
94.85

96.49
97.92
94.44

95.54
98.20
93.37

95.96
98.05
94.05

CNN = convolutional neural network, LSTM = long short-term memory, DULSTM = deep unidirectional LSTM,
DBLSTM = deep bidirectional LSTM, SVM = support vector machine, BLSTM = bidirectional LSTM, GMP = global
maximum pooling, K-NN = k-nearest neighbor, CDF = cumulant derived features, PNN = probabilistic neural
network, ANN = artificial neural network, RBF-NN = radial basis function neural network.

Overall, they reported an accuracy of 98.29% and an F1-score of 99.14%. Li et al. [69]
presented a method for identifying VEB beats from artifacts by using a wavelet transform
and a CNN. Their accuracy was 97.96%, and their F1-score was 84.94%. In [65,66,68],
different algorithms were proposed to classify 2D ECGs with better accuracy than the
proposed approach. Although most of them did not specify the segment length, it can be
observed that they used shorter segments than the proposed work. Using longer segments
in arrhythmia classification has the risk of exposing more than one label in the same
segment, which may confuse the classifier. Moreover, different combinations of arrhythmia
types were classified in the other works, which makes comparisons more challenging.
However, results from similar studies may provide a basis for comparison.

Other studies also applied 1D-CNN techniques in their quest for effective arrhythmia
diagnosis. In Chen et al.’s [70] study, they employed a CNN and an LSTM to detect six
types of arrhythmias using 10 s ECG segments and attained 99.32%, 97.53%, and 96.66%
accuracy for testing, Sens, and PPV, respectively. The MITDB was used to construct
a 1D-CNN classifier for 17 types of arrhythmias by Yildirim et al. [71]. Based on 10 s
ECG segments, they achieved an accuracy of 91.33%, 83.91%, and 91.33% for testing,
sensitivity, and F1-score, respectively. In [72], two deep neural network models with
residual convolutional modules and bidirectional LSTM layers were proposed to extract
ECG features and concatenate them into input features for further training. The study
analyzed ECG data from the CPSC database and obtained an overall F1-score of 80.6%.
Yildirim et al. [73] used DBLSTM-based wavelet sequences to classify ECG signals. Their
proposed study classified five types of arrhythmias based on the MITDB archive with an
accuracy of 99.39%. Using time-varying features of ECG signals, Yao et al. [74] proposed
a multiclass arrhythmia detection approach that integrates a CNN, recurrent cells, and
attention modules. Their study achieved 81.2% classification accuracy. Fradi et al. [44]
proposed a multistage 1D-CNN-based arrhythmia classifier that achieved an F1-score of
99% for five classes of arrhythmias.

In [75], ECG signal data were de-noised using a wavelet transform, and beat char-
acteristics including RR intervals, morphological features, and statistical features were
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combined and used as input features for random forest classifiers, which achieved an
average accuracy of 99.08%. El-Saadawy et al. [76] extracted features from ECG heartbeats,
applied PCA to remove unwanted features, and classified the ECG signals based on an
SVM, with an average accuracy rate of 88.7%. Sahoo et al. [77] used a PNN and radial basis
function neural network (RBF-NN) to estimate six types of arrhythmias from an ECG signal,
reporting an accuracy of 99.54% and 99.89%, respectively. Khairuddin et al. [78] imple-
mented the Haar wavelet transform and k-nearest neighbor classifier to detect arrhythmias
and achieved an average accuracy of 97.30%. The authors in [75–77] successfully used
different machine learning methods to classify arrhythmias with high accuracy. Machine
learning algorithms require less training and classification time, less processing power, and
less data than CNNs but still take a lot of time during the preprocessing stage. CNNs may
appear to require more resources and time, but once the classifier is ready, classification
does not take much time.

Using only one beat as a basis for classification of arrhythmias has been studied
with reasonable accuracy. When it comes to identifying arrhythmias that have abnormal
heartbeats, it performs well. However, it cannot separate arrhythmias with abnormal
rhythms. The proposed approach in this paper is well suited for these cases and can classify
rhythm-based arrhythmias in the first stage and arrhythmias with abnormal heartbeats in
the second stage.

Due to the types of arrhythmias examined in this study, this study is not comparable
to other studies. The applied method is applied for the advancement of medical instru-
mentation (AAMI) arrhythmia types, which are the most studied arrhythmia types. This
includes normal (N), ventricular ectopic (V), supraventricular ectopic (S), fusion (F), and
unknown (Q). In Table 17, five types of arrhythmias are summarized where the AAMI
arrhythmia beats are taken from the MITDB.

Table 17. Summary of the AAMI arrhythmia types extracted from the MITDB database.

AAMI Type No. of Beats

Normal (N) 8980
Ventricular ectopic (V) 7202

Supraventricular ectopic (S) 2758
Fusion (F) 799

Unknown (Q) 8307

Since this work includes a different number of arrhythmia types, it is not suitable to be
compared to other works. For a fair comparison, the proposed CNN model was compared
with previous ECG arrhythmia classification works on the AAMI arrhythmia beats. Table 18
shows the cross-validation performance measurements of sensitivity, specificity, and F1 for
each class (F, N, S, Q, and V). Additionally, Table 19 provides the results of a 5-fold cross-
validation, including accuracy, kappa, PPV, and the averages of sensitivity, specificity, and
F1-score. Using the AAMI arrhythmia beats, the proposed method achieved 98.21 ± 0.11%
accuracy, 96.40± 0.54% average sensitivity, 96.89± 0.79% average specificity, 93.26± 2.61%
PPV, 96.65 ± 0.19% F1, and 97.44 ± 0.15% kappa.

Table 18. Classification performance acquired with 5-fold cross-validation for Sens, Sp, and F1 score.

Type CV_1 CV_2 CV_3 CV_4 CV_5
Sens SP F1 Sens SP F1 Sens SP F1 Sens SP F1 Sens SP F1

Mean 96.14% 97.00% 96.56% 96.00% 97.76% 96.84% 95.89% 97.26% 96.55% 97.03% 95.63% 96.31% 96.92% 96.78% 96.84%
STD 4.35% 3.39% 3.79% 4.96% 1.90% 3.38% 4.83% 1.88% 3.33% 2.89% 5.42% 4.15% 2.39% 3.07% 2.64%
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Table 19. Average classification performances including Acc, Sens, Sp, PPV, F1, and kappa.

CV Acc Sens Sp PPV F1 Kappa

Mean ± STD 98.21 ± 0.11% 96.40 ± 0.54% 96.89 ± 0.79% 93.26 ± 2.61% 96.65 ± 0.19% 97.44 ± 0.15%

According to Table 20, compared to the accuracy from [15,68,79–81] the proposed
model achieved a better classification performance, which indicates that using RP, RR
detection, and the ResNet architecture can improve the classification accuracy of ECG
arrhythmias. In their respective studies, the models in [82,83] performed better than the
model in this study. The reported accuracy was 1.27% and 1.23% higher than that of the
proposed work. This study’s F1-score and sensitivity were higher than those of [83]. The
AAMI arrhythmia beat classification used in our study was based on the MITDB database.
This database has a limited number of beats in other beat types, as shown in Table 17.
Compared with two studies with better accuracy than this work, the nature of the beat
types that were originally investigated in this study requires applying a longer segment
length. By applying the same segment length to the AAMI, the achieved accuracy was
reduced. In the future, further investigation will be conducted to determine whether an
RP can be applied to AAMI arrhythmia classification with shorter ECG segment lengths.
Additionally, additional databases will be included in order to improve the arrhythmia
types with fewer data to improve the model’s accuracy.

Table 20. Comparison between our approach and existing approaches to AAMI arrhythmia types.

Studies Classes Method Acc (%) Sens Sp PPV F1

Acharya et al. [15] 5 CNN 94.03 96.71 91.54 N/A N/A
Oh et al. [79] 5 CNN + LSTM 98.10 97.50 98.70 N/A N/A
Izci et al. [67] 5 CNN 97.42 N/A N/A N/A N/A
Zhu et al. [80] 5 SVM 97.80 88.83 93.76 N/A N/A

Aphale et al. [81] 5 CNN 92.73 92.00 91.00 N/A 91.00
Sellami et al. [82] 5 CNN 99.48 96.97 99.87 96.83 N/A

Gan et al. [83] 4 DenseNet-BiLSTM 99.44 95.89 99.32 96.11 95.89
Proposed 5 ResNet-50 98.21 96.40 96.89 93.26 96.65

Users can employ the proposed model as shown in Figure 6. The ECG device acquires
and sends the ECG data wirelessly to the mobile phone for arrhythmia classification.
When sent to the mobile phone, the data undergo preprocessing which includes signal
segmentation and an RP to turn the signal into images for the trained classifier, which are
also kept in the mobile device. Clinicians can use the results of the diagnosis as a reference
for further analysis.
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The proposed method utilizes two classifiers, one to classify the segments without
the QRS complex, and the R peak classification. As a result, it may be impossible to apply
the previously proposed solution to real-time signal processing in mobile devices due to
the increased memory size. In that regard, the ResNet architecture [60] is the best model
for reducing the memory size and providing the required learning capacity of a CNN, as
shown in Table 15.

In the first and second stages of classification, accuracies of 97.21% and 98.36% were
achieved, respectively, when using the 2D residual network model. Compared to our
previous research [40], the proposed model improved the classification accuracy in the
first stage of classification, resulting in a better overall accuracy than the previous study,
and this solution can be easily implemented in mobile devices for real-time ECG arrhyth-
mia classification.

In the proposed CNN approach, RPs are used as a representation of the ECG segment
in the classification. In addition to large memory sizes for storage and usage, training
large CNNs also requires long training times. Currently, the training time has been greatly
reduced by using modern advanced hardware such as GPUs and supercomputers, reducing
weeks of training for a very large model to days or even hours. The idea of skip connections
used in highway networks is also applied in ResNet, which, in turn, helps to further
preserve the training time. Table 15 shows a comparison to the AlexNet and VGG networks.
ResNet is 20 and 8 times deeper and has a low computational complexity [37,58].

Despite the fact that this study shows interesting results on the specific types of
arrhythmias under study, due to the lack of testing on random data and the lack of an
accuracy threshold for obtaining random classification, it has some limitations. The results
obtained thus far cannot be compared to random classification statistically.

In the proposed method, an RP is used to convert time series ECG signals into color
images and use these as input for the classification of arrhythmias. The aim of this study
was to develop a low-memory and effective ECG arrhythmia diagnostic model. However,
color images were used instead of grayscale images to improve the accuracy of the model.
Due to the fact that color images increase the network complexity, further research will
be conducted to utilize grayscale images in order to reduce memory requirements and
investigate the effect on accuracy.

6. Conclusions

This paper proposes a 2D residual CNN-based ECG RP-based arrhythmia classification
method. PhysioNet provides access to four databases used to acquire ECG data for this
study. A two-second segment of ECG data is segmented and converted into RP images.
The RP images of the ECG are an effective representation of both the ECG beat and rhythm.
In order to boost the classification performance, the application of the R peak recognition
procedure was proposed for segmenting the second stage input data. For the development
and testing of the proposed method, we utilized the MIT-BIH AFDB [55], the MIT-BIH
Arrhythmia Database [56], the MIT-BIH Malignant Ventricular Ectopy Database [57], and
the Creighton University Ventricular Tachyarrhythmia Database [58]. Based on 5-fold
cross-validation, the accuracy of the two classifiers during the first and second classification
stages was 97.21% and 98.36%, with a sensitivity of 96.49% and 97.92%, a positive predictive
value of 95.54% and 98.20%, and an F1-score of 95.96% and 98.05%, respectively. Overall,
the two-stage approach achieved an accuracy of 94.85%, sensitivity of 94.44%, specificity of
94.96, PPV of 94.05%, and kappa of 93.37%. At the first and second classification stages,
better results were achieved in comparison to the previous work. As part of this study,
a 5-fold improvement in memory requirements is demonstrated when compared with a
previous study, making this classifier feasible for use in resource-constrained environments
such as portable devices. Recurrence plots have been used in different areas of classification
in the past, but more work is needed to support their use in CNNs. Four databases
from PhysioNet with an RP were used for this study, but they have a limited number of
arrhythmia categories. As a result, data imbalance affects the performance of the classifier.
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In future, more databases and detailed, broader studies will be examined to verify the effect
of the RP method using a CNN.
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