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Abstract

A new scheme is proposed for extracting planar surfaces
from 2D image sequences. We firstly perform feature corre-
spondence over two neighboring frames, followed by the es-
timation of disparity and depth maps, provided a calibrated
camera. We then apply iterative Random Sample Consensus
(RANSAC) plane fitting to the generated 3D points to find a
dominant plane in a maximum likelihood estimation style.
Object points on or off this dominant plane are determined
by measuring their Euclidean distance to the plane. Experi-
mental work shows that the proposed scheme leads to better
plane fitting results than the classical RANSAC method.

1. Introduction

Digital video cameras are widely used, and the quantity
of digital videos has dramatically increased recently. For
reuse and storage purpose, consumers have to retrieve a
video from a large number of multimedia resources. To
seek similar videos from a definite database, information
retrieval systems have been established with promising per-
formance in searching accuracy and efficiency, e.g. [8].
Many of these established systems attempt to search for
videos that have been annotated with metadata a priori (e.g.
[3]). Nevertheless, there are still a significant number of
footages that have been shot but not ever used [1]. These
footages normally have not been properly annotated, and
hence the retrieval can only be carried out according to the
video contents rather than the annotated information.

Of the generic video contents, the need for the ability
to retrieve 3D models from databases or the Internet has
gained prominence. Content-based 3D model retrieval cur-
rently remains a hot research area, and has found its tremen-
dous applications in computer animation, medical imag-
ing, and security. To extract a 3D object, shape-based 3D
modelling (e.g. [9]) and similarity or dissimilarity (dis-
tance) computation (e.g. [7]) are two of the main research
schemes. In this paper, rather than extracting a complete 3D
model, we intend to reconstruct flat surfaces from video se-

quences. This work is inspired by the fact that flat surfaces
are one of the basic components of a 3D model, where the
estimation of flat surfaces significantly affects the 3D mod-
eling. We believe that the proposed approach in this paper
can be used to effectively facilitate the application of 3D
model retrieval from databases or Internet in the future.

One of the commonly used strategy to recover flat sur-
faces is performed using multiple view reconstruction. For
example, Bartoli and Sturm [2] used Plucker coordinates to
represent the 3D lines in the scope of maximum likelihood
estimation, and then they proposed an orthonormal repre-
sentation to challenge the bundle adjustment problem. Zhou
et al. [10] conducted coplanarity checks using cross-ratio
invariants and periodic analysis of the triangular regions. In
this paper, our main contribution is to introduce an iterative
RANSAC plane fitting strategy in a maximum likelihood
estimation style. This new technique enables us to obtain
the best plane fitting to the generated 3D points automati-
cally rather than using empirical criteria that is determined
according to a limited number of image samples.

The proposed planar determination algorithm in this pa-
per starts with corner feature detection using two neighbor-
ing frames in a monocular video sequence. Given the epipo-
lar geometry constraint, we then build up dense matching
between these two groups of points of interest using the sum
squared of differences (SSD) correlation method. Assum-
ing a calibrated camera (used to collect this sequence), we
then compute a depth map, based on the estimated disparity
map. If there is only one single flat surface in the scene,
we can launch a RANSAC algorithm [5] to fit a plane to the
available three-dimensional points. This RANSAC opera-
tion is iterated in an expectation-maximisation context for
seeking global minimal errors, which is the main contribu-
tion of our work. Note that the proposed strategy works in
the presence of motion parallax. To retrieve planes from
uncalibrated scenes, we will explore a fast multiple-view
reconstruction strategy, based on the algorithm presented in
this paper.
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Figure 1. Flowchart of the proposed coplanar
determination algorithm.

2 Estimation of a depth map

Before a plane fitting starts, 3D point sets need to be
generated based on the 2D image inputs. Of two neighbor-
ing images, we consider the later image is the shifted one
from the previous image. Given a shift (4x,4y) and an
image point (x,y) in a previous frame, the auto-correlation
function for similarity check across frames is defined as
c(x, y) =

∑
W [I(xi, yi) − I(xi + 4x, yi + 4y)]2, where

I(·) denotes the image function and (xi,yi) are the im-
age points in the window W (Gaussian) centred at (x,y).
The shifted image can be approximated by a Taylor ex-
pansion as follows, I(xi + 4x, yi + 4y) ≈ I(xi, yi) +

[Ix(xi, yi), Iy(xi, yi)]
[

4x
4y

]
, where Ix(·) and Iy(·) de-

note the partial derivations along x and y, respectively.

Eventually, we have c(x, y) = [4x,4y]C(x, y)
[

4x
4y

]
,

where C(x, y) represents the intensity structure of the local
neighborhood. Let λ1 and λ2 be two eigenvalues of matrix
C(x, y). A corner point can be detected if min(λ1, λ2) is
larger than a pre-defined threshold.

Once holding the points of interest, we then apply the
sum squared of differences correlation method to match
these corner features. Using the matched features, we ex-
ploit the well-established epipolar constraints to further re-
fine the correspondence of features. The camera parameters
are then used for recovering the scene geometry [10]. As an
example, Fig. 2(a) and (b) show the original images super-
imposed by the extracted corner features using the Harris
corner detector [6], (c) is the disparity map and (d) refers to
the estimated depth map according to the relationship: D =
fd/z, where D is depth to be computed, f focal length, d
introcular distance and z estimated disparity.

(a) (b)

(c) (d)

Figure 2. Estimation of disparity and depth
maps: (a) and (b) feature extraction, (c) and
(d) disparity and depth maps.

3 Iterative RANSAC plane fitting

RANSAC plane fitting is designed to effectively work
in the presence of data outliers. This method starts from
fitting a plane to a set of 3 points (considered as inliers) ran-
domly selected from the matched corner features. Other
image points are then evaluated using the Euclidean dis-
tances between these 3D points and the fitted plane. If the
points fall in a pre-defined region, then they will be classi-
fied as inliers. Otherwise, the points will be removed from
the consideration of coplanarity. These steps are repeated
until a count limit is reached. In a classical RANSAC plane
fitting approach, the iteration is terminated by either a user-
specified number or the number of outliers falling below
a pre-defined threshold. This heuristic trick cannot handle
general situations, where either under- or over-estimation
usually appears.

We here intend to find a strategy to achieve maximum
likelihood estimation to the flat surfaces. Let N indepen-
dent samples be represented as X = x1, ..., xN (N ≥ 30
denoting a part of the overall image points), the probabil-
ity density function p(x) (Euclidean distance between the
selected 3D points and the fitted plane) and a Gaussian ex-
its as N (x,θ,r), where θ and r stand for a fraction of the
inliers of the estimated plane and the relationship between
the samples and the inliers, respectively. To obtain a maxi-
mum likelihood estimation of θ and r, we can maximise the
likelihood function ΠN

i=1p(xi). The object function can be
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(a) (b)

Figure 3. Estimated ground planes (in red
color and hereafter) by (a) the proposed
method, and (b) a classical RANSAC tech-
nique with the constraint where the number
of outliers falls below a pre-defined thresh-
old.

generalised as f(θ, r) =
∑N

i=1 ωiN (xi, θ), where ωi are
weight factors and will be determined when we carry out
similarity measurements. Based on the Jensen’s inequal-
ity, we have an alternative object function as log f(θ, r) ≥∑N

i=1 log
(

ωiN (xi,θ,r)
qi

)qi

, where qi is a non-negative con-

stant that satisfies
∑N

i=1 qi = 1.
Considering the current estimation θk and rk (k indicates

current state), we iterate the following E and M stages via
the expectation-maximisation (EM) algorithm [4]:

(1) E-stage: Assuming that θk and rk are fixed, we
expect to obtain qi that maximises the right hand side of
the object function. The solution is expressed as: qi =

ωiN (xi,θk,rk)∑N

i=1
ωiN (xi,θk,rk)

.

(2) M-stage: Considering qi as constants, we max-
imise the right side of the object function with respect
to θ and r. The inlier fraction θ is solved by θk+1 =∑N

i=1
xiωiN (xi,θk,rk)∑N

i=1
ωiN (xi,θk,rk)

, where r is updated according to the

following equation rk+1 ∝
∑N

i=1 qi(xi − θk)(xi − θk)T .
This E-M iteration will terminate if and only if |θ̄m+1− θ̄m|
is less than a pre-defined threshold (θ̄m denotes an averaged
θ in group m). In other words, the difference between two
distributions instead of two consecutive samples is used as
a stopping criterion.

Fig. 3 illustrates the estimated ground planes, high-
lighted by red color, using two different techniques. It is
observed that the proposed scheme leads to more accurate
coplanar determination. For example, Fig. 3(a) shows that
the points on the stones (in the image centre) have been cor-
rectly identified to be over the ground plane by the proposed
approach. At the same time, the classical RANSAC plane
fitting approach fails to do so (Fig. 3(b)).

(a) (b)

(c) (d)

Figure 4. Four test sequences used in this pa-
per.

4. Experimental work

We conduct experiments to demonstrate how effectively
the iterative RANSAC plane fitting scheme works in ex-
tracting flat surfaces, particularly ground planes. The per-
formance of the proposed method is compared to that of
the classical RANSAC plane fitting scheme with the con-
straint where the number of outliers falls below a pre-
defined threshold. Four image sequences have been tested
and their example frames are illustrated in Fig. 4.

Fig. 5 illustrates two neighboring image frames of a
test sequence namely “campus”, superimposed by the de-
tected corner features (see Fig. 5(a) and (b)). It exhibits
in Fig. 5(c) and (d) that the proposed RANSAC plane fit-
ting scheme results in better outcomes of flat surface fit-
ting. For example, Fig. 5(c) shows that using the proposed
method we are able to correctly identify most points on the
ground. Fig. 5(d) denotes a significant number of points
on the buildings have been incorrectly classified to be on
the ground plane by the classical technique. Meanwhile,
the points on the ground plane shown on Fig. 5(d) are less
dense than those of Fig. 5(c), which remains an issue in the
classical method.

As an exmaple, Fig. 6 presents statistical outcomes of
the averaged Euclidean distance between the overall 3D
points (from depth maps) and the fitted flat surface by the
proposed and classical plane fitting schemes. Smaller Eu-
clidean distance indicates better accuracy. For justification
purpose, we here reveal partial statistical results of the im-
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(a) (b)

(c) (d)

Figure 5. Examples of the estimated ground
plane in sequence “campus” by two differ-
ent methods: (a) and (b) feature extraction,
(c) outcome of the proposed method, and (d)
outcome of the classical method.

age sequence shown in Fig. 5, where ten consecutive image
frames are employed for analysis in a pair-wise style. We
observe that the proposed plane fitting scheme holds better
accuracy of plane fitting than the classical one due to maxi-
mum likelihood estimation.

5. Conclusions and future work

We have described a technique for effective recovery of
flat surfaces from digital video content. The developed sys-
tem has been evaluated in a vast number of experiments.
Flat surfaces are extracted from the scenes by analysing
the video content, e.g. correspondence and 3D recovery.
A novel iterative RANSAC plane fitting scheme was pro-
posed. We conducted experiments of retrieving flat sur-
faces from videos, and the results confirmed that our plane
retrieval technique was more accurate than the classical
method. To develop an algorithm working for uncalibrated
scenes, on-line camera calibration will be integrated into the
proposed plane fitting platform. Also, more senarios need
to be evaluated in the future.
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