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A B S T R A C T   

With increasing research on solving Dynamic Optimization Problems (DOPs), many metaheuristic algorithms and 
their adaptations have been proposed to solve them. However, from currently existing research results, it is hard 
to evaluate the algorithm performance in a repeatable way for combinatorial DOPs due to the fact that each 
research work has created its own version of a dynamic problem dataset using stochastic methods. Up to date, 
there are no combinatorial DOP benchmarks with replicable qualities. This work introduces a non-stochastic 
consistent Dynamic Multidimensional Knapsack Problem (Dynamic MKP) dataset generation method that is 
also extensible to solve the research replicability problem. Using this method, generated and published 1405 
Dynamic MKP benchmark datasets using existing famous static MKP benchmark instances as the initial state. 
Then the datasets are quantitatively and qualitatively analyzed. Furthermore, 445 datasets have the optimal 
result found of each state using a linear solver. The optimal results and result scores are included with published 
datasets.   

1. Introduction 

Over the last couple of decades, the industry trend towards more 
efficient optimization of some business aspects has pushed researchers 
to work on dedicated optimization solutions that give a competitive 
advantage. One such development is dynamic optimization, where some 
parameters of the initial problem can be changed that does not entirely 
invalidate the existing solution. However, some adjustments or fixes are 
necessary. Dynamic optimization is crucial when some optimization 
problem details are unknown beforehand or are subject to unexpected 
changes. The most popular family of algorithms to solve such dynamic 
optimization problems is the Evolutionary Algorithms (EAs) family [1]. 

Most practical use-cases of dynamic optimization are in the fields of 
transportation, facility control, production, scheduling, and communi-
cations. These problems have a finite number of possible permutations 
and are therefore formulated as combinatorial optimization problems. 
Several examples of applied dynamic optimization to a real-world 
problem are Traffic signal timing solved using a Genetic Algorithm 
(GA) [2]. Control parameter optimization using Particle Swarm Opti-
mization (PSO) algorithm [3]. The Chaotic Salp Swarm algorithm 
(CSSA), which is based on the PSO algorithm, has been applied to 
optimize a Software Defined Network (SDN) to minimize deployment 
cost and latency [4]. Distributed Guidance Anti-flocking Algorithm 
(DGAA) has been applied to Mobile Wireless Network (MWN) 

optimization [5]. The Ant Colony Optimization (ACO) algorithm has 
been applied to the Railway Junction Rescheduling problem that aims to 
solve dynamic multi-objective optimization, minimize time table devi-
ation and energy expenditure [6]. 

However, there remains one problem with research conducted to 
solve real-world dynamic optimization problems. Which is a lack of 
publicly available datasets and, in some cases, also lack the imple-
mentation details in order to reproduce the claims stated in the research 
conclusions. It is unreasonable to expect businesses to publish real 
recorded historical data that could be reused in further research, as it 
may be sensitive business information. 

On another front, academic research also is developing new solutions 
for theoretical dynamic optimization problems. Such work can be 
categorized into two categories, first solving continuous optimization 
problems like Moving Peaks Benchmark (MPB), second solving discrete 
optimization problems like the Traveling Salesman Problem (TSP) 
where randomness is applied to some aspect of the optimization prob-
lem instance. 

MPB is a popular continuous domain Dynamic Multi-Objective 
Optimization Problem (DMOP) with well-defined benchmark suites, 
like DTLZ [7] and CEC [8]. Many algorithmic improvements have been 
proposed to tackle the MPB. For example, several combinations of PSO 
algorithm enhancements were tested to solve and track the optimum of 
MPB [9]. Several improved versions of EAs are used to solve these 
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problems, like Non-dominated Sorting Genetic Algorithm II (NSGA-II) 
[10,11], and NSGA-III [12], Pareto Archived Evolution Strategy (PAES) 
[13], Dynamic Learning Evolution Algorithm (DLEA) [14]. Other dedi-
cated algorithms for continuous dynamic optimization are Differential 
evolution (DE) [15], Firefly Algorithm (FA) [16], Artificial Immune 
System (AIS) [17]. Overall scalability and performance of MPB has been 
explored on multiple algorithms with generated heterogeneous and 
multimodal benchmarks [18]. Robust Optimization Over Time (ROOT) 
methodology has been proposed to enable these algorithms solve real 
world optimization problems too [19]. 

In the discrete domain of dynamic optimization problems, [20] 
research work solves Dynamic MKP where item profits, item weights 
and knapsack capacities are changed with a normally distributed 
random operator. For a Dynamic TSP [21,22] research work used pub-
lished TSPLIB library and randomly modified vertex’s location, which 
led to a generation of new problems each time. Then solved the Dynamic 
TSP using the PSO algorithm. For the Dynamic Vehicle Routing Problem 
(VRP) [23], research work used benchmark instances of static VRP and 
applied a stochastic modification algorithm to change the demands of 
the destinations and therefore recalculate the partially executed plan. 

One apparent separation among academic research of dynamic 
optimization is that all of the fully defined benchmark dynamic opti-
mization problems solved are in the continuous domain. All of the 
discrete benchmark problems are obtained from benchmark datasets of 
static optimization problems, modifying the dataset using stochastic 
methods. Stochastically generated problems can only be fairly compared 
if the initial seed of the random operator is used the same each time. 
Otherwise, the dataset optimums and the final result of the optimization 
problem would be different with each algorithm run. The comparison of 
different algorithms could be improved if the seed or better the dynamic 
optimization problem dataset instances or states were recorded and 
shared in full detail. However, none of the research work has shared 
neither seed nor dataset states, making it impossible to verify research 
claims and compare results with future research advancements. Ideally, 
the dynamic optimization problem datasets should be well defined for 
each intermediate instance or state. The datasets should be created using 
a non-stochastic method such that the dynamic aspect of the dataset 
could be extended forward in the time domain. 

This research attempts to solve the aforementioned issue and create a 
non-stochastic dataset generation method for a discrete optimization 
problem. This research provides the dataset generation method that 
takes an existing static benchmark dataset as an initial state and gen-
erates a dynamic dataset with the desired number of states where each 
state is an evolution from the previous state. The state’s creation is done 
in a non-stochastic way where generated state always is the same for the 
constant input state and depends only on the input state and datasets 
constraints defined in the initial state. Such generated dynamic dataset 
is a collection of sequential states of a static dataset. The evolution of 
these states is in a predictable and repeatable way such that one 
generated dynamic dataset could be further extended with more states if 
needed. This research is vital because fully defined datasets will be 
compatible with most dynamic optimization algorithms. No special 
environments are needed to use the dataset generators, and dataset 
generators do not need to rely on random operator seed, which could be 
easily overlooked. Then such dynamic optimization algorithm results 
can be independently verified for result validity and directly compared 
with results obtained from other dynamic optimization algorithms. 

This Dynamic MKP benchmark is a good test suite for testing and 
comparing the performance of combinatorial optimization algorithms in 
dynamic environment like Genetic Algorithm (GA) [24], Particle Swarm 
Optimization (PSO) [25], Ant Colony Optimization (ACO) [26], Firefly 
Algorithm (FA) [27], Monarch Butterfly Optimization (MBO) [28], 
Cuckoo Search (CS) [29], Artificial Bee Colony (ABC) [30], Moth Search 
(MS) [31], Slime Mould Algorithm (SMA) [32]. 

The contributions of this research to science are:  

• Introduced a deterministic dynamic dataset generation method that 
takes a static instance of the MKP dataset and generates a dynamic 
dataset consistently. Dataset Generator is published on GitHub [33].  

• Generated new, fully defined Dynamic MKP benchmark instances 
from existing static MKP benchmarks for consistent and repeatable 
cross research reference. The benchmark datasets are published on 
GitHub [34].  

• The generated benchmarks are qualitatively and quantitatively 
analyzed and proven as valid Dynamic MKP datasets. The visuali-
zation tool is published on GitHub [35]. 

Dynamic MKP Datasets 

1.1. Dynamic MKP 

The multidimensional Knapsack problem is widely used for bench-
marking combinatorial optimization algorithms [36]. Solutions to the 
MKP problem have numerous applications in the real world, such as 
loading cargo optimization, slicing problem, budget management, and 
investment portfolio management problem. Therefore, there is a lot of 
interest to develop algorithms to solve the MKP problem. Then, Dynamic 
Multi-dimensional Knapsack has also attracted some research commu-
nity attention due to the nature of the problem that can be easily 
extended into dynamic variant using static datasets as the initial setting. 

All existing attempts to solve MKP have involved using static MKP 
benchmarks as the initial setting and introducing the stochastic changes 
to some aspect of the optimization problem and process over the time 
domain. [20] uses normally distributed random operator to change item 
profits, item weights and knapsack capacities on OR library initial 
datasets. Meanwhile, the research [37] has dynamic changes in item 
profits, item weights and knapsack capacities, and all new randomly 
generated items. 

1.2. Dynamic MKP definition 

Multidimensional knapsack problem consists of items I and knap-
sacks K. The items have profit and N-dimensional weight that fills 
knapsacks. The goal is to choose a set of items with a maximum total 
profit without exceeding any of the knapsack capacities. 

maximize
∑n

i=1
xi × Pi (1)  

subject to
∑n

i=1

(
xi ×Wi,k

)
≤ Ck, ∀(k) where k ∈ (N ≤ m) (2)  

where n and m is a number of items and knapsacks in the problem. xi ∈

{0,1} is a decision vector to take the item Ii. Pi is the profit of the item Ii. 
Wi,k is the weight of ith item for the kth knapsack? Ck is the capacity of the 
kth knapsack. 

The Dynamic Multidimensional Knapsack Problem can have one or 
multiple aspects of the dataset to be dynamic. In this study, the profit of 
items, item weights, and knapsack capacities are set to vary in discrete 
state intervals. The states are notes as St , t ∈ {0,1,2, …} where S0 is the 
initial state of the MKP dataset, and t is the state index. Each dynamic 
MKP state can be solved individually as a static MKP instance. 

1.3. Dynamic MKP dataset creation using deterministic state generation 
method 

The approach of deterministic state generation method is designed to 
use the static instances of the existing benchmark MKP dataset as its 
initial state S0. Then use the information from the initial dataset to 
create states in sequential order. The dynamic dataset is created using a 
deterministic set of formulas. The deterministic approach is essential to 
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have the dataset reproducible. Using a stochastic method would make 
the research reproducibility and extension more difficult. 

In this research, the item profits, item weights, and knapsack ca-
pacities are adjusted while generating a state. The new state’s adjust-
ment factors are determined from the values in the previous state and 
the constraints set by the initial state. The state generation method has a 
“State Adjustment Magnitude” Δ parameter to control the difference in 
the profit, weight, and capacity value differences between the states. 
This parameter is a constant for the entire dynamic dataset generation. 
The default value is 0.05 or 5% of the allowable adjustment range. This 
parameter ensures that the following states are reasonably similar to 
previous states, and none of the values has been modified more than the 
upper limit of the dataset value range. 

For the purposes of creating a deterministic state generation that is 
reproducible yet chaotic, based on the information only taken from the 
previous state, the “3 value modifier” operator X3V(v1, v2, v3) is intro-
duced. This operator takes three values v1, v2, v3 and calculates them to 
one real value between -1 and 1: 

X3V(v1, v2, v3) = (H3(v1, v2 ∗ 2, v3 ∗ 5) ∗ 2 − 1)3 (3)  

H3(v1, v2, v3) = frac(M(v1) ∗M(v2) ∗M(v3)+M(v1)+M(v2)+M(v3))
(4)  

frac(x) = x − ⌊x⌋ (5)  

M(x) =
x

10⌊log10x⌋ (6)  

where M(x) is a mantissa of the number x, frac(x) is a fractional part of a 
number, H3 is a simple numerical hash of three numbers (v1, v2, v3) that 
returns a number between 0 and 1 evenly distributed, and finally, X3V is 
“3 value modifier” a normalized value between -1 and 1 and has prob-
ability density concentrated around 0. The property of having proba-
bility density concentrated around 0 in X3V gives small adjustment 
values for the majority of the dataset with a few larger adjustments, 
which resembles in real-world optimization the majority of minor 
operational adjustments and a few more significant disruptions. 

The state of the dynamic dataset is created first, calculating the 
state’s new item profits, then new item weights, and lastly, new knap-
sack capacities. The dynamic dataset generation method is designed to 
preserve each item’s value within the range initial state’s S0 value range, 
which is an intrinsic item’s property easily expressed as profit over 
average weight. Also, the new state’s profit and weight values cannot 
cross their constraint boundaries. Then lastly, knapsack capacities are 
recalculated to keep the same tightness as the initial state’s S0 tightness. 
Following is the list of constraints that the new state must maintain:  

• Minimum Profit minP = min
i

P0,i  

• Maximum Profit maxP = max
i

P0,i  

• Minimum Value minV = min
i

P0,i

W0,i  

• Maximum Value maxV = max
i

P0,i

W0,i  

• Minimum Weight minW = min
i,k

W0,i,k  

• Maximum Weight maxW = max
i,k

W0,i,k  

• Knapsack Tightness Tk =

∑m
i=1

W0,i,k

C0,k
∀ k 

where P0,i is the profit of the ith item in the initial state S0, W0,i is the 
average weight of the ith item in the initial state S0, W0,i,k is the weight of 
the ith item for the kth knapsack in the initial state S0, and finally C0,k is 
the knapsack capacity of the kth knapsack in the initial state S0. 

New states can then be generated using these calculated constraints 
from the original dataset and the current state data. The state generation 
method order is strictly sequential, where the new state depends only on 

the most recent predecessor. To make explanation easily understand-
able, the process of creating a state involves a current state which is 
noted as St used as input in the state generation and a successor new 
state which is noted as St+1. Each state St has an independent set of item 
profits Pt,i, item weights Wt,i,k, and knapsack capacities Ct, k, where t 
notes the state, i notes the item, and k notes the knapsack of the dataset. 

Furthermore, for the state generation, the adjustment limits have to 
be set in accordance with original constraints and the State Adjustment 
Magnitude Δ parameter. The Δ parameter is also called SAM in the code 
and charts with no special characters’ support.  

• Profit adjustment magnitude 

ΔP = Δ ∗ (maxP − minP) (7)    

• Weight adjustment magnitude 

ΔW = Δ ∗ (maxW − minW) (8)   

Profit generation is the first step of creating a new state St+1. For each 
item, profit Pt+1,i the procedure uses the profits of 3 items to calculate 
profit modifier using X3V operator and original constraints to calculate 
chaotic profit adjustment within limits of the dataset characteristics. 

Pt+1,i = Max
(
Min

(
Pt,i +Px,maxV ∗Wt,i

)
, minV ∗Wt,i

)
(9)  

Px = X3V
(
Pt,i− 1,Pt,i,Pt,i+1

)
∗ ΔP + Pxc (10)  

Pxc = Min
(
maxP − Pt,i,ΔP

)
− Max

(
Pt,i − minP, ΔP

)
(11)  

where, Pt+1,i is new item profit for the state St+1 of the ith item that is 
applied for all items ∀i. This new profit is calculated using the current 
state’s profit Pt,i and profit adjustment value Px, then it is constrained 
within a minimum, and a maximum allowed item profit, which is a 
product of items average weight and original value: maxV ∗ Wt,i and 
minV ∗ Wt,i. The profit adjustment Px value is calculated using profit 
adjustment multiplier ΔP multiplied by X3V operator values taken from 
the current item’s profit Pt,i and two adjacent item profits Pt,i− 1, Pt,i+1, 
then added profit adjustment correction Pxc. Pxc is a value that main-
tains the profit within initial dataset constraints but allows free 
manipulation when profit Pt,i is within the profit range by at least value 
of ΔP, in those cases Pxc = 0. 

After profits are complete, the new state’s St+1 item weights are 
generated. For each item’s weight Wt+1,i,k the procedure uses weights of 
three items to calculate weight modifier using X3V operator and original 
weight and value constraints to create a chaotic weight modifier within 
limits of the dataset characteristics. 

Wt+1,i,k = Max
(

Min
(

Wt,i,k +Wx,
Pt,i

minV
− Wt,i

)

, Wt,i −
Pt,i

minV

)

(12)  

Wx =
(
X3V

(
Wt,i− 1,k,Wt,i,k ,Wt,i+1,k

)
∗ ΔW +Wxc

)
(13)  

Wxc = Min
(
maxW − Wt,i,k , ΔW

)
− Max

(
Wt,i,k − minW, ΔW

)
(14)  

where, Wt+1,i,kis new item weight for state St+1 of the ith item that is 
applied for all items i and all knapsacks k. In principle, the generation of 
weights is similar to the generation of profits, except that it is also 
executed for all knapsacks. New item weight is calculated using the 
weight of the current state Wt,i,k added with weight adjustment Wx. This 
value is constrained between Pt,i

maxV − Wt,i and Wt,i −
Pt,i

minV such that as a 
result of new weight, the value of the item does not go over the limits of 
the initial dataset. Pt,i

maxV − Wt,i is items profit over the maximum value 
that gives minimum weight, and removing average weight gives 
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maximum allowed weight increase to the item. Similarly, Wt,i −
Pt,i

minV 
gives maximum allowed weight decrease. The Wx weight adjustment is 
calculated using X3V operator with weight values of 3 adjacent items of 
the same knapsack and is multiplied with the weight adjustment 
magnitude ΔW and added weight adjustment correction Wxc value. 
Wxc is a similar value to Pxc that it ensures each new weight is within 
dataset limits but does not restrict the adjustment. 

And finally, the knapsack capacities are calculated for the state St+1. 
This is the simplest calculation of them all. It uses the initial state’s 
knapsack tightness values and the current state’s item weights to create 
new knapsack capacities to maintain the same tightness as the initial 
state. 

Ct+1,k =
∑n

i=1
Wt+1,i,k ∗ Tk, ∀k (15)  

where, Ct+1,k is new state’s capacity of the k knapsack, and is a sum of all 
item weights for that knapsack multiplied by initial knapsack tightness 
Tk of the kth knapsack. 

A simplified example of dataset state creation is shown in Fig. 1 
below. For a given input dataset state St , new item profit values Pt+1,i are 
calculated for all items i. Each item’s profit calculation uses profit values 
of three items from the input dataset Pt,i− 1, Pt,i, Pt,i+1. Then X3V operator 
and Px functions are applied on selected inputs. Then constrained profit 
values are exported. Similarly, new item weight values Wt+1,i,k are 
calculated for all items i and all knapsacks k. Also, each item’s weights 
calculation uses weight values of three items for the same knapsack from 
the input dataset Wt,i− 1,k, Wt,i,k, Wt,i+1,k. Then X3V and Wx functions are 
applied on those input weights, and constrained item weight values are 
exported. Finally, new knapsack capacities Ct+1,k are calculated for all 
knapsacks k. Each knapsack capacity calculation uses all newly calcu-
lated item weights Wt+1,i,k for a knapsack k. Then all those weights are 
summed up and multiplied by the original knapsack tightness. Then 
final knapsack capacity values are exported. 

1.4. Created dataset instances 

Dynamic Multidimensional Knapsack Problem datasets are created 
using already existing benchmark datasets as a basis of dataset genera-
tion. The original benchmark datasets are taken from the ResearchGate 
repository [38]. For the purpose of this research, OR and GK datasets are 
used to create dynamic datasets, while SAC94 datasets are omitted due 
to low complexity and inconsistent sparseness. 

Dataset deterministic state generation method requires input Δ SAM 
that set the difficulty to generate the next state. This difficulty magni-
tude limits the percentage change applied for each adjusted value when 
generating a new state. If a value is too high, the next state can appear 
nothing like the previous state. If the value is too low, states might not 
differ at all due to the nature of integer numbers. Since Δ SAM is the 
maximum adjustment that will occur, it is recommended that minimum 
item weight minW and minimum item profit minP multiplied by Δ is 
more than 10. This number is chosen based on a reasonable probability 
that the item profit and weight adjustments will be more than one and 
have reasonably low discrete distortion of integer numbers. 
{

minW ∗ Δ ≥ 10
minP ∗ Δ ≥ 10 (16) 

The MKP datasets can be modified that preserves the original 
combinatorial characteristics of the dataset by multiplying all item 
profits, item weights, and knapsack capacities by a constant value. Using 
this method, dynamic GK datasets will be modified by a factor of 123, 
which is large enough to eliminate the small adjustment magnitude 
problem and reduce discrete distortion to a minimum. These modified 
datasets will have slight adjustments to item weights, and profits affect 
the dataset more accurately. 

Following is the list of configurations chosen to generate Dynamic 
MKP benchmark instances:  

• 100 generated states with Δ = 0.2  
• 100 generated states with Δ = 0.1  
• 100 generated states with Δ = 0.05 

Fig. 1. Dataset state creation flowchart of Item Profits, Item Weights, and Knapsack Capacities. The flowchart shows the key dependencies of each value adjustment 
in the generated state. 
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• 100 generated states with Δ = 0.02  
• 100 generated states with Δ = 0.01 

Using the method described, a total of 1405 dynamic datasets are 
generated. 55 dynamic dataset instances are generated from 11 static 
instances in the GK library, and 1350 dynamic dataset instances 
generated from 270 static instances in the OR library. 

2. Dynamic MKP dataset analysis 

Generated dynamic MKP datasets are analyzed in two ways: first, 
dataset statistical analysis, and second, dataset optimal result analysis. 
The dataset statistical analysis method is meant to determine what 
changes have occurred to each item from one state to the next state and 
what is cumulative item discrepancy from the initial state to the last 
generated state. Dataset states are analyzed by profit distance, average 
weight distance, and absolute weight distance. For dataset results 
analysis, each state of the dynamic dataset is independently solved using 
a linear solver that finds the optimal result for the state. The results of 
each state are compared by finding solution distance. The solution dis-
tance is calculated by counting how many different items are between 
two state optimal result vectors. 

Solution distance: 

SD =

∑n
i=0

(
x1,i ⊕ x2,i

)

n
(17)  

where x1and x2 are optimal result vectors of dynamic dataset states 1 
and 2. Each result point is counted if one result vector includes it and the 
other result vector does not. It is the normalized binary vector Hamming 
distance. 

Profit distance: 

PD =

∑n
i=0

(
P1,i − P2,i

)

n
(18) 

Average weight distance: 

WD =

∑n
i=0

⃒
⃒
∑m

k=0

(
W1,i,k

)
−

∑m
k=0

(
W2,i,k

)⃒
⃒

n
(19) 

Absolute weight distance: 

|WD| =

∑n
i=0

( ∑m
k=0

⃒
⃒W1,i,k − W2,i,k

⃒
⃒
)

n
(20)  

2.1. Statistical analysis metrics 

Each dataset has its unique properties and constraints. Therefore, to 

Fig. 2. Item profit change to initial state for datasets generated from GK01.  

Fig. 3. Average item weight change to initial state for datasets generated from GK01.  
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do analysis, it is essential to understand what boundaries are expected 
for each dataset due to its constraints. 

First, the theoretical solution distance E(SD) is the statistically 
expected value of solution distance when results vectors of two non- 
correlated datasets in comparison have random distribution with a 
constant solution tightness ST. The formula can be reduced to the 
following. 

E(SD) = 2 × (1 − ST) ∗ ST (21) 

Then theoretical profit distance E(PD) is the statistically expected 
profit distance for two datasets that follow identical item size and item 
value constraints, but dataset contents do not have any correlation. The 
formula can be reduced to the following. 

E(PD) =
maxP − minP

3
(22) 

Theoretical average weight distance EWD is the statistically ex-
pected average weight distance for two datasets that follow identical 
item size and item value constraints, but dataset contents do not have 
any correlation. The formula can be reduced to the following. 

EWD = m0.5 ×
maxW − minW

3
(23) 

Theoretical absolute weight distance E|WD| is the statistically 
expected absolute weight distance for two datasets that follow identical 
item size and item value constraints, but dataset contents do not have 

any correlation. The formula can be reduced to the following. 

E|WD| = m ×
maxW − minW

3
(24)  

2.2. Example GK01 dynamic dataset statistical analysis 

The graph in Fig. 2 shows how much each state’s all items’ profits is 
on average different from the initial state. For the GK01 dataset, the 
theoretical profit distance is E(PD) = 2050. The dynamic dataset 
generated with Δ SAM-0.2 has the profit distance to the initial state 
approaching close to the theoretical profit distance possible for a dataset 
with these constraints. Dynamic datasets generated with lower Δ SAM 
value do not reach the theoretical value within 100 generated states of 
the dynamic dataset. 

The graph in Fig. 3 shows how much all items’ average weight is 
different from the initial state. For the GK01 dataset, the theoretical 
average weight distance is EWD = 2382. The dynamic dataset generated 
the highest Δ SAM-0.2 has the average weight distance far away from 
possible theoretical average weight distance. To reach the theoretical 
average weight distance would take significantly more states. This is 
because the dataset generation method has to simultaneously follow the 
limit of the weight of the items for each knapsack and item’s value, 
which is the ratio of average weight over profit. This makes item weight 
distribution significantly slower. 

The graph in Fig. 4 shows how much all items’ absolute weight of all 

Fig. 4. Absolute item weight to initial state for datasets generated from GK01.  

Fig. 5. Item profit change to the previous state for datasets generated from GK01.  
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Fig. 6. Average item weight to the previous state for datasets generated from GK01.  

Fig. 7. Absolute item weight to the previous state for datasets generated from GK01.  

Fig. 8. Optimal result distance to initial state for datasets generated from GK01.  
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knapsacks is different from the initial state. For the GK01 dataset, 
theoretical absolute weight distance E|WD| = 9225. Similar to theoret-
ical average weight distance dynamic dataset generated Δ SAM-0.2 has 
the average weight distance to the initial state far away from possible 
theoretical absolute weight distance. These values follow the same set of 
constraints and are expressed using different calculations method. 

The graph in Fig. 5 shows how much each states’ item profits are on 
average different from the previous state. This profit change value is 
relatively constant throughout all states of the dataset, as the measure-
ment is not compounding over multiple states. Also, this value is far 
below the theoretical profit distance. Having a high distance from state 
to state would make a not useful dynamic dataset because of high dis-
turbances, making the dataset not have any relation among the states. 
Having reasonably low profit change from state to state enables dynamic 
optimization algorithms to reuse information in solved previous states to 
solving the next state. 

The graph in Fig. 6 shows how much all items’ average weight of all 
knapsacks is different from the previous state. Similarly to item profit, 
the average weight distance is relatively constant, as the measurement is 
not compounding over multiple states. 

The graph in Fig. 7 shows how much all items’ absolute weight of all 
knapsacks is different from the previous state. Similarly to item profit, 
the average weight distance is relatively constant, as the measurement is 
not compounding over multiple states and is far from theoretical abso-
lute weight distance. 

3. Dynamic MKP dataset result analysis 

Constrained optimization problems often have sparse solutions for 
ranked near-optimal solutions. This is due to a large portion of search 
space being infeasible and the remaining feasible space containing lots 
of close to optimal solutions distributed far apart in the search space. 
Multidimensional Knapsack Problem’s solutions are incredibly sparse. 
This is due to the sparse nature of packing problems and made sparser by 
doing such packing in multiple dimensions. To analyze the results of the 
dynamic datasets, a small selection of lower combinatorial complexity 
problem instances in each state has been solved to the optimal solution 
using Google Or-tools integer linear programming [39]. 

3.1. Example GK01 dynamic dataset result analysis 

The graph in Fig. 8 shows the progression of states’ optimal result 
distance to the initial state S0 dataset. Where 0 all items in state’s 
optimal result are same as in initial state’s optimal result items, and 1 all 

items in state’s optimal result are opposite of initial state’s optimal result 
items. Higher Δ value makes result distance to the initial state’s result 
higher. GK01 Knapsack tightness is exactly 0.5, and the resulting 
tightness is often very close to knapsack tightness. Therefore, the theo-
retical solution distance is also E(SD) = 0.5. Over 100 states SAM-0.01 
and SAM-0.02 are growing, but SAM-0.05, SAM-0.1 and SAM-0.2 do 
reach theoretical distance and stops growing. 

The graph in Fig. 9 shows the progression of states’ optimal result 
distance to the previous state. it shows how much difference is in items 
taken to the optimal solution in comparison to the previous state Si− 1. 
For datasets with lower Δ value, some states solution distance is zero 
compared to the state before. Even with slight profit and item weight 
changes, the optimal solution can still have the same items fit in the 
knapsack for maximum profit. However, the final result profit will be 
different and such information not reflected in this graph. Furthermore, 
with SAM-0.2, the solution distance is around 0.3 to the previous state, 
which is quite close to the theoretical solution distance. This dataset 
characteristic might appear to be very challenging for dynamic opti-
mization algorithms to tackle since there are many changes in the 
optimal result. This dataset is still valid, regardless of how challenging it 
is, to test how quickly algorithms can adapt to significant change and 
find good results improved on previous state’s results and not neces-
sarily find the optimal result. 

3.2. Dynamic datasets optimal result scores 

The performance of the MKP result is measured with the total profit 
of items in the knapsack. The optimal MKP result score is the maximum 
possible profit. Then for dynamic MKP, result performance is measured 
with a sum of each dataset state result profit. When each dynamic MKP 
dataset state result is found optimal, then the overall dynamic dataset 
score is optimal. 

Following is the table with the optimal result scores of the dynamic 
datasets. In Table 1, optimal result scores are shown of 50 datasets. 
There are optimal result scores shown of partial dynamic dataset and full 
dynamic dataset for each of these datasets. The result of 0 states which is 
only the initial state’s result, 10 states which is optimal result summed 
up to 10th state, 25 states which is optimal result summed up to 25th 

state, 50 states which is optimal result summed up to 50th state, 75 states 
which is optimal result summed up to 75th state, and 100 states which is 
optimal result of a full dataset. 

Fig. 9. Optimal result distance to the previous state for datasets generated from GK01.  
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4. Comparative performance analysis 

In addition to dataset statistical and optimal result analysis, 
comparative algorithm performance is tested. A high-performance 
baseline ACO algorithm implementation for the MKP problem has 
been adapted to solve this Dynamic MKP benchmark [26]. The algo-
rithm has been configured to perform two dynamic optimization stra-
tegies: Full-restart strategy and Pheromone-sharing strategy. Full-restart 
strategy is a standard optimization strategy, where each state is 
considered independently, and after each state change, the optimization 
is restarted from the beginning. The pheromone-sharing strategy is a 
simple yet very effective dynamic optimization strategy, where after 
each state change, the pheromone is reused [40]. All tests have been 
executed on the AMD Threadripper 2990WX system with the clock 
running at 2.9Ghz, with execution parallelism is set to 32 threads on the 
first NUMA node. 

To cross-compare highly efficient dynamic optimization algorithm 
result scores of the Dynamic MKP, each result profit has to be expressed 
as profit gap to the best-known profit, or the “result gap” for short. The 

result gap score is calculated for each state, which is the percentage of 
the state’s result profit difference to the best-known profit. The best- 
known results are submitted to a verified public repository [41]. Using 
the result gap allows comparing algorithm performance quantitatively 
across all benchmark instances. 

Following in Figs. 10 and 11, the dynamic optimization results of the 
ACO algorithm are displayed. The ACO algorithm solved all Dynamic 
MKP benchmark dataset instances generated from the GK library in both 
instances. For each SAM Δ value there are 11 GK benchmark datasets 
run 10 times. Each dynamic dataset state run time has been limited to 1 
second per 100 items in the problem. For example, GK01 has 100 items 
therefore, each state is limited to 1 second runtime, GK03 with 150 items 
limited to 1.5s, and GK11 with 2500 items limited to 25s. In Fig. 10, the 
ACO algorithm with Full-restart strategy is configured to solve each 
dynamic state independently, from the start, without any share of the 
learned knowledge from previous state optimization. Every state for this 
optimization strategy appears as a new optimization problem therefore, 
the convergence of every state is similar throughout the whole optimi-
zation. Also, the Δ value does not have an impact on the optimization 

Table 1 
Dynamic datasets optimal result scores of selected datasets. Optimal result scores are the sum of 0 states, 10 states, 25 states, 50 states, 75 states, 100 states.  

Dataset 0 states 10 states 25 states 50 states 75 states 100 states 

gk01 SAM-0.01 463218 5089903 12043838 23653772 35281859 46897705 
gk01 SAM-0.02 463218 5092327 12059177 23693904 35383395 47113463 
gk01 SAM-0.05 463218 5113768 12097901 23892037 35778881 47610395 
gk01 SAM-0.1 463218 5121272 12169486 24044573 35925950 47924151 
gk01 SAM-0.2 463218 5177484 12293033 24189553 36116201 48166300 
OR10 × 100-0.25_1 SAM-0.01 2836872 31205045 73830256 145018245 216448557 288212783 
OR10 × 100-0.25_1 SAM-0.02 2836872 31176234 73779210 145071138 216174187 286840590 
OR10 × 100-0.25_1 SAM-0.05 2836872 31123728 73635411 144442790 214350962 284811984 
OR10 × 100-0.25_1 SAM-0.1 2836872 30805648 71709699 140660402 208541345 276564063 
OR10 × 100-0.25_1 SAM-0.2 2836872 29648279 69427770 133693742 197679341 262428557 
OR10 × 100-0.50_1 SAM-0.01 5091585 55953867 132336914 259552759 386384459 513376968 
OR10 × 100-0.50_1 SAM-0.02 5091585 55866397 132033525 260305360 388821856 517324762 
OR10 × 100-0.50_1 SAM-0.05 5091585 56065926 133118084 262589997 393619307 524410687 
OR10 × 100-0.50_1 SAM-0.1 5091585 56629927 134571121 266159634 395126427 526352982 
OR10 × 100-0.50_1 SAM-0.2 5091585 56542194 135328561 268860774 403977829 540243294 
OR10 × 100-0.75_1 SAM-0.01 7057125 77643072 183396152 359231095 535672559 712133307 
OR10 × 100-0.75_1 SAM-0.02 7057125 77369672 182892248 357984295 532064332 706249480 
OR10 × 100-0.75_1 SAM-0.05 7057125 77602511 183329109 359336913 534961784 709195281 
OR10 × 100-0.75_1 SAM-0.1 7057125 76740410 181074663 349629918 514015441 679144481 
OR10 × 100-0.75_1 SAM-0.2 7057125 74281645 171926494 331859849 492799464 658580578 
OR30 × 100-0.25_1 SAM-0.01 2699358 29687005 70191529 137774216 205487725 273471842 
OR30 × 100-0.25_1 SAM-0.02 2699358 29702444 70268015 137971147 205397065 272700290 
OR30 × 100-0.25_1 SAM-0.05 2699358 29502620 69475293 135491089 201383026 266403778 
OR30 × 100-0.25_1 SAM-0.1 2699358 28900744 68183405 133807293 197430527 262757855 
OR30 × 100-0.25_1 SAM-0.2 2699358 27977949 66054651 130252336 195671607 261708983 
OR30 × 100-0.50_1 SAM-0.01 5014341 55059043 129891484 254621859 379817047 505328790 
OR30 × 100-0.50_1 SAM-0.02 5014341 55025745 130037468 255079511 379914843 505524676 
OR30 × 100-0.50_1 SAM-0.05 5014341 55200665 130045508 254327181 378085224 501037881 
OR30 × 100-0.50_1 SAM-0.1 5014341 54810897 128082790 247397275 366761689 486607011 
OR30 × 100-0.50_1 SAM-0.2 5014341 53103991 124497893 244395075 363760632 483039836 
OR30 × 100-0.75_1 SAM-0.01 7071762 77864424 184162853 361344304 538697991 716206864 
OR30 × 100-0.75_1 SAM-0.02 7071762 77780937 183865316 359936517 536422253 713362025 
OR30 × 100-0.75_1 SAM-0.05 7071762 77932653 184544801 362035765 538160553 714949227 
OR30 × 100-0.75_1 SAM-0.1 7071762 77557884 183180055 361505598 542978957 725238465 
OR30 × 100-0.75_1 SAM-0.2 7071762 77189609 183136611 365412793 547980898 727926255 
OR5 × 100-0.25_1 SAM-0.01 2998863 32939171 77757416 152752166 227713579 302850314 
OR5 × 100-0.25_1 SAM-0.02 2998863 32821440 77541184 152413231 227296574 302426478 
OR5 × 100-0.25_1 SAM-0.05 2998863 33098483 78857803 155459878 233754591 311477600 
OR5 × 100-0.25_1 SAM-0.1 2998863 32819219 79103918 159026997 238008299 318890576 
OR5 × 100-0.25_1 SAM-0.2 2998863 31792534 75667725 150669330 224083685 298265765 
OR5 × 100-0.50_1 SAM-0.01 5259111 57816931 136753398 268534896 400626535 532774988 
OR5 × 100-0.50_1 SAM-0.02 5259111 57739290 136877350 268314426 400103228 532502998 
OR5 × 100-0.50_1 SAM-0.05 5259111 57570616 136465452 269864698 403784094 536018915 
OR5 × 100-0.50_1 SAM-0.1 5259111 58845857 142707776 289653226 440496588 591692649 
OR5 × 100-0.50_1 SAM-0.2 5259111 62153210 151213344 304160231 460660467 610787683 
OR5 × 100-0.75_1 SAM-0.01 7358106 81027232 191732938 376103226 559814098 742782860 
OR5 × 100-0.75_1 SAM-0.02 7358106 81164628 191864001 375883541 559920437 744012008 
OR5 × 100-0.75_1 SAM-0.05 7358106 81539986 193322737 378920251 562125666 744462914 
OR5 × 100-0.75_1 SAM-0.1 7358106 81354829 191189919 372271347 550102686 726936473 
OR5 × 100-0.75_1 SAM-0.2 7358106 80952636 187322886 367257155 546541749 724836393  
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quality for ACO with Full-restart strategy. In Fig. 11 ACO algorithm with 
Pheromone-sharing strategy continues to use the same pheromone after 
dynamic state change and therefore has a significant head start to 
improve the solution further. ACO with Pheromone-sharing strategy can 
take a significant advantage when the Δ value is low because each dy-
namic change is small and the optimal solution is not significantly 
different compared to the state before the change. 

5. Further dynamic dataset analysis 

Dynamic datasets are numerically heavy, and static on-the-paper 
visualizations such as graphs, diagrams, or tables cannot show a com-
plete picture and give the reader an intuitive understanding of the 
dataset and its dynamics. For this reason, further dataset analysis 
demonstration is developed. This analysis is not possible to be printed 
out, therefore the analysis is published on GitHub with complete data of 
all dynamic datasets [35]. 

Fig. 10. Dynamic optimization performance of ACO Full-restart strategy for all SAM levels. Each line shows the average gap convergence of GK01-GK11 dynamic 
datasets group run 10 times each, totalling 110 runs. 

Fig. 11. Dynamic optimization performance of ACO Pheromone-sharing strategy for all SAM levels. Each line shows the average gap convergence of GK01-GK11 
dynamic datasets group run 10 times each, totalling 110 runs. 
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5.1. Profit and weight distance effect 

Profit and weight distance effect demonstration is a dynamic scatter 

plot where each item is represented by a dot on a value over a size plot. 
All items are divided into four groups by their weight size and their 
profit value. Groups are chosen considering two factors. First, whether 

Fig. 12. Profit and weight distance effect for GK01 SAM-0.05 dataset initial state. Each series represent the division of each item’s value and average weight into a 
quadrant based on the initial state. On the initial state, the division is clearly visible. 

Fig. 13. Profit and weight distance effect for GK01 SAM-0.05 dataset last state. Each series represent the division of each item’s value and average weight into a 
quadrant based on the initial state. On the last state, items are significantly mixed up. 

Fig. 14. Optimal result effect GK01 SAM-0.05 dataset initial state.  

J. Skackauskas and T. Kalganova                                                                                                                                                                                                           



Systems and Soft Computing 4 (2022) 200041

12

item profit is higher or lower than median item profit, and second, 
whether item weight is higher or lower than median item weight. Since 
profit and weight are independent variables, this divides all items into 
four equally sized groups. Each item is marked for the initial state 
dataset and remains constant in all states of the dynamic dataset. 

For example, the distance effect is displayed of dataset GK01 SAM- 
0.05 for the initial state and the last state in Figs. 12and 13. At first, 
for the initial state, the plot appears evenly divided into four quadrants. 
Series 1 is initially low weight and low value items; Series 2 is initially 
low weight and high value; Series 3 is initially high weight and low value 
items; Series 4 is initially high weight and high value items. Then, all 
groups become increasingly mixed up by advancing graphs through 
each state until each series can appear to have low and high value and 
weight items scattered. When the dataset profit and weights reach 
theoretically expected distance values, the groups should look mixed 
entirely up. In the example of GK01 SAM-0.05 last state, the groups do 

not appear to be completely mixed up. Most of the large weight items 
remained on the heavy side, and most of the low weight items remained 
on the light side. 

5.2. Optimal result effect 

Similarly, to profit and weight distance effect demonstration, an 
optimal result effect demonstration is a dynamic scatter plot where each 
item is represented by a dot on a value over a size plot. However, in this 
dynamic plot, each item belongs in a group according to the optimal 
result decision vector obtained from the linear solver solution for each 
state. The item is either part of the optimal set or not. From one state to 
another, the item may change the group to reflect a new optimal solution 
of that given state. 

For example, the optimal result is displayed of dataset GK01 SAM- 
0.05 for the initial state and the last state in Figs. 14 and 15. In both 

Fig. 15. Optimal result effect, GK01 SAM-0.05 dataset last state.  

Fig. 16. Dynamic dataset constraint coverage effect, GK01 SAM-0.02 dataset, items range 13-21 inclusive.  
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example figures, the higher value items are significantly more likely to 
be included in the optimal result decision vector than lower value items. 
However, the item’s size does not appear to impact the likelihood to be 
included in the optimal result decision vector. 

5.3. Dynamic dataset constraint coverage effect 

This visualization chart is a group of line graphs where each line 
represents an item of the dynamic dataset. The line shows the path of the 
item that has been moved through the dataset constraint space. The 
chart can display up to 20 items at once, and it can limit the number of 

Fig. 17. Dynamic dataset constraint coverage effect, GK01 SAM-0.05 dataset, items range 13-21 inclusive.  

Fig. 18. Dynamic dataset optimal result coverage effect, GK01 SAM-0.02 dataset, items range 7-21 inclusive.  
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dynamic states range for a more transparent comparison of each item’s 
path. 

For example, the dataset constraint coverage paths are displayed for 
items 13 to 21 inclusive and span through all states from 0 to 100 in 
Figs. 16 and 17. The GK01 dataset generated using SAM-0.02 has all 
items cover a smaller, more localized constraint space than GK01 SAM- 
0.05. Items in the GK01 SAM-0.05 dataset has a broader coverage and 
has more overlap in the constraint space among the items. 

5.4. Dynamic dataset optimal result coverage effect 

For the dynamic datasets with optimal results, the optimal result 
coverage of every state can be displayed. This chart displays for all states 
whether the item belongs in the decision vector of optimal solution or 
not. Orange color represents an item in the optimal set and blue color 
represents a not optimal item. The chart also differentiates the items 
always part of the optimal set with green color series and items that are 
never part of the optimal set with black color series. 

For example, optimal item’s decisions are displayed for items 7 to 21 
inclusive and span through all states from 0 to 100 in Figs. 18 and 19. In 
dataset GK01 SAM-0.01, where each item has mutated the least, more 
items have remained always optimal or never optimal compared to 
dataset GK01 SAM-0.02, where items cover larger constraint area and 
therefore larger changes in size and value have an effect on the optimal 
solution. 

6. Conclusion 

This research has pointed out that there is a critical gap in discrete 
Dynamic Optimization Problem (DOP) research. There are no fully 
defined DOP datasets upon which the research can be based. Previous 
works have used stochastic generation methods and have not preserved 
the optimization states or random operator seed values to compare the 
optimization results directly. Therefore, it is impossible to evaluate 
dynamic optimization algorithms fairly or conduct a repeatability study. 

To solve that problem, this research proposes a non-stochastic dy-

namic dataset generation method that can consistently generate the next 
state of dynamic MKP based on nothing but input dataset and Δ value. 
The generated dataset will always be identical based on the input 
dataset. Therefore, dynamic optimization algorithms can be cross- 
compared in future research by any research work. 

Using this dynamic dataset generation method, 1405 fully defined 
Dynamic MKP benchmark instances have been generated from the 
existing static MKP benchmark dataset library. Then those dynamic 
datasets have been published to be used as Dynamic MKP benchmark. 

This work also provides Dynamic MKP benchmark datasets analysis. 
The quantitative analysis shows the range of dynamism of all dataset 
parameters. Optimal result dynamics are analyzed of 455 datasets with 
low combinatorial complexity of 100 items, where all states have been 
solved to optimal result using linear solver. Then developed an inter-
active tool for an additional dynamic demonstration which helps to do 
more analysis and develop an intuitive understanding of the dynamics of 
the datasets. - 
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[37] A. Baykasoğlu, F.B. Ozsoydan, Evolutionary and population-based methods versus 
constructive search strategies in dynamic combinatorial optimization, Information 
Sciences 420 (2017) 159–183. 

[38] J.H. Drake, Benchmark instances for the Multidimensional Knapsack Problem 
(2015) [Online]. Available, https://www.researchgate.net/publication/27 
1198281_Benchmark_instances_for_the_Multidimensional_Knapsack_Problem 
[Accessed 30 04 2019]. 

[39] Google, GitHub-or-tools, Google (2015) [Online]. Available, https://github. 
com/google/or-tools [Accessed 16 12 2021]. 

[40] D. Angus, T. Hendtlass, Dynamic Ant Colony Optimisation, Applied Intelligence 23 
(1) (07/2005) 33–38. 

[41] J. Skackauskas, Dynamic MKP Benchmark Best Known Results (6 12 2021) 
[Online]. Available, https://github.com/jonasska/Dynamic-MKP-Benchmark 
-Best-Known-results [Accessed 7 12 2021]. 

J. Skackauskas and T. Kalganova                                                                                                                                                                                                           

http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0006
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0006
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0006
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0007
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0007
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0007
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0008
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0008
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0008
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0009
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0009
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0009
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0009
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0010
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0010
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0010
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0011
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0011
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0012
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0012
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0012
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0013
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0013
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0013
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0014
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0014
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0014
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0015
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0015
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0015
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0016
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0016
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0017
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0017
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0017
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0018
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0018
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0018
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0019
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0019
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0019
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0020
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0020
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0020
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0021
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0021
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0021
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0022
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0022
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0022
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0023
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0023
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0023
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0023
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0024
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0024
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0024
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0025
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0025
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0025
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0026
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0026
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0026
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0027
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0027
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0027
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0028
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0028
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0028
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0029
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0029
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0029
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0030
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0030
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0031
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0031
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0031
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0032
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0032
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0032
https://github.com/jonasska/Dynamic-MKP-Datasets-Generator
https://github.com/jonasska/Dynamic-MKP-Benchmark-Datasets
https://github.com/jonasska/Dynamic-MKP-Benchmark-Datasets
https://github.com/jonasska/Dynamic-MKP-Datasets-Visualization
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0036
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0036
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0037
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0037
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0037
https://www.researchgate.net/publication/271198281_Benchmark_instances_for_the_Multidimensional_Knapsack_Problem
https://www.researchgate.net/publication/271198281_Benchmark_instances_for_the_Multidimensional_Knapsack_Problem
https://github.com/google/or-tools
https://github.com/google/or-tools
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0040
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0040
https://github.com/jonasska/Dynamic-MKP-Benchmark-Best-Known-results
https://github.com/jonasska/Dynamic-MKP-Benchmark-Best-Known-results

	Dynamic Multidimensional Knapsack Problem benchmark datasets
	1 Introduction
	1.1 Dynamic MKP
	1.2 Dynamic MKP definition
	1.3 Dynamic MKP dataset creation using deterministic state generation method
	1.4 Created dataset instances

	2 Dynamic MKP dataset analysis
	2.1 Statistical analysis metrics
	2.2 Example GK01 dynamic dataset statistical analysis

	3 Dynamic MKP dataset result analysis
	3.1 Example GK01 dynamic dataset result analysis
	3.2 Dynamic datasets optimal result scores

	4 Comparative performance analysis
	5 Further dynamic dataset analysis
	5.1 Profit and weight distance effect
	5.2 Optimal result effect
	5.3 Dynamic dataset constraint coverage effect
	5.4 Dynamic dataset optimal result coverage effect

	6 Conclusion
	Conflicts of interest
	References


