
4 (2022) 200041

Available online 27 May 2022
2772-9419/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Dynamic Multidimensional Knapsack Problem benchmark datasets

Jonas Skackauskas *, Tatiana Kalganova
College of Engineering, Design and Physical Sciences, Brunel University London, United Kingdom

A R T I C L E I N F O

Keywords:
Dynamic MKP
benchmark datasets
discrete dynamic optimization
non-stochastic dataset generation

A B S T R A C T

With increasing research on solving Dynamic Optimization Problems (DOPs), many metaheuristic algorithms and
their adaptations have been proposed to solve them. However, from currently existing research results, it is hard
to evaluate the algorithm performance in a repeatable way for combinatorial DOPs due to the fact that each
research work has created its own version of a dynamic problem dataset using stochastic methods. Up to date,
there are no combinatorial DOP benchmarks with replicable qualities. This work introduces a non-stochastic
consistent Dynamic Multidimensional Knapsack Problem (Dynamic MKP) dataset generation method that is
also extensible to solve the research replicability problem. Using this method, generated and published 1405
Dynamic MKP benchmark datasets using existing famous static MKP benchmark instances as the initial state.
Then the datasets are quantitatively and qualitatively analyzed. Furthermore, 445 datasets have the optimal
result found of each state using a linear solver. The optimal results and result scores are included with published
datasets.

1. Introduction

Over the last couple of decades, the industry trend towards more
efficient optimization of some business aspects has pushed researchers
to work on dedicated optimization solutions that give a competitive
advantage. One such development is dynamic optimization, where some
parameters of the initial problem can be changed that does not entirely
invalidate the existing solution. However, some adjustments or fixes are
necessary. Dynamic optimization is crucial when some optimization
problem details are unknown beforehand or are subject to unexpected
changes. The most popular family of algorithms to solve such dynamic
optimization problems is the Evolutionary Algorithms (EAs) family [1].

Most practical use-cases of dynamic optimization are in the fields of
transportation, facility control, production, scheduling, and communi-
cations. These problems have a finite number of possible permutations
and are therefore formulated as combinatorial optimization problems.
Several examples of applied dynamic optimization to a real-world
problem are Traffic signal timing solved using a Genetic Algorithm
(GA) [2]. Control parameter optimization using Particle Swarm Opti-
mization (PSO) algorithm [3]. The Chaotic Salp Swarm algorithm
(CSSA), which is based on the PSO algorithm, has been applied to
optimize a Software Defined Network (SDN) to minimize deployment
cost and latency [4]. Distributed Guidance Anti-flocking Algorithm
(DGAA) has been applied to Mobile Wireless Network (MWN)

optimization [5]. The Ant Colony Optimization (ACO) algorithm has
been applied to the Railway Junction Rescheduling problem that aims to
solve dynamic multi-objective optimization, minimize time table devi-
ation and energy expenditure [6].

However, there remains one problem with research conducted to
solve real-world dynamic optimization problems. Which is a lack of
publicly available datasets and, in some cases, also lack the imple-
mentation details in order to reproduce the claims stated in the research
conclusions. It is unreasonable to expect businesses to publish real
recorded historical data that could be reused in further research, as it
may be sensitive business information.

On another front, academic research also is developing new solutions
for theoretical dynamic optimization problems. Such work can be
categorized into two categories, first solving continuous optimization
problems like Moving Peaks Benchmark (MPB), second solving discrete
optimization problems like the Traveling Salesman Problem (TSP)
where randomness is applied to some aspect of the optimization prob-
lem instance.

MPB is a popular continuous domain Dynamic Multi-Objective
Optimization Problem (DMOP) with well-defined benchmark suites,
like DTLZ [7] and CEC [8]. Many algorithmic improvements have been
proposed to tackle the MPB. For example, several combinations of PSO
algorithm enhancements were tested to solve and track the optimum of
MPB [9]. Several improved versions of EAs are used to solve these

* Corresponding author
E-mail address: 1418820@brunel.ac.uk (J. Skackauskas).

Contents lists available at ScienceDirect

Systems and Soft Computing

journal homepage: www.journals.elsevier.com/soft-computing-letters

https://doi.org/10.1016/j.sasc.2022.200041
Received 19 September 2021; Received in revised form 5 March 2022; Accepted 26 May 2022

mailto:1418820@brunel.ac.uk
www.sciencedirect.com/science/journal/27729419
https://www.journals.elsevier.com/soft-computing-letters
https://doi.org/10.1016/j.sasc.2022.200041
https://doi.org/10.1016/j.sasc.2022.200041
https://doi.org/10.1016/j.sasc.2022.200041
http://creativecommons.org/licenses/by/4.0/

Systems and Soft Computing 4 (2022) 200041

2

problems, like Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[10,11], and NSGA-III [12], Pareto Archived Evolution Strategy (PAES)
[13], Dynamic Learning Evolution Algorithm (DLEA) [14]. Other dedi-
cated algorithms for continuous dynamic optimization are Differential
evolution (DE) [15], Firefly Algorithm (FA) [16], Artificial Immune
System (AIS) [17]. Overall scalability and performance of MPB has been
explored on multiple algorithms with generated heterogeneous and
multimodal benchmarks [18]. Robust Optimization Over Time (ROOT)
methodology has been proposed to enable these algorithms solve real
world optimization problems too [19].

In the discrete domain of dynamic optimization problems, [20]
research work solves Dynamic MKP where item profits, item weights
and knapsack capacities are changed with a normally distributed
random operator. For a Dynamic TSP [21,22] research work used pub-
lished TSPLIB library and randomly modified vertex’s location, which
led to a generation of new problems each time. Then solved the Dynamic
TSP using the PSO algorithm. For the Dynamic Vehicle Routing Problem
(VRP) [23], research work used benchmark instances of static VRP and
applied a stochastic modification algorithm to change the demands of
the destinations and therefore recalculate the partially executed plan.

One apparent separation among academic research of dynamic
optimization is that all of the fully defined benchmark dynamic opti-
mization problems solved are in the continuous domain. All of the
discrete benchmark problems are obtained from benchmark datasets of
static optimization problems, modifying the dataset using stochastic
methods. Stochastically generated problems can only be fairly compared
if the initial seed of the random operator is used the same each time.
Otherwise, the dataset optimums and the final result of the optimization
problem would be different with each algorithm run. The comparison of
different algorithms could be improved if the seed or better the dynamic
optimization problem dataset instances or states were recorded and
shared in full detail. However, none of the research work has shared
neither seed nor dataset states, making it impossible to verify research
claims and compare results with future research advancements. Ideally,
the dynamic optimization problem datasets should be well defined for
each intermediate instance or state. The datasets should be created using
a non-stochastic method such that the dynamic aspect of the dataset
could be extended forward in the time domain.

This research attempts to solve the aforementioned issue and create a
non-stochastic dataset generation method for a discrete optimization
problem. This research provides the dataset generation method that
takes an existing static benchmark dataset as an initial state and gen-
erates a dynamic dataset with the desired number of states where each
state is an evolution from the previous state. The state’s creation is done
in a non-stochastic way where generated state always is the same for the
constant input state and depends only on the input state and datasets
constraints defined in the initial state. Such generated dynamic dataset
is a collection of sequential states of a static dataset. The evolution of
these states is in a predictable and repeatable way such that one
generated dynamic dataset could be further extended with more states if
needed. This research is vital because fully defined datasets will be
compatible with most dynamic optimization algorithms. No special
environments are needed to use the dataset generators, and dataset
generators do not need to rely on random operator seed, which could be
easily overlooked. Then such dynamic optimization algorithm results
can be independently verified for result validity and directly compared
with results obtained from other dynamic optimization algorithms.

This Dynamic MKP benchmark is a good test suite for testing and
comparing the performance of combinatorial optimization algorithms in
dynamic environment like Genetic Algorithm (GA) [24], Particle Swarm
Optimization (PSO) [25], Ant Colony Optimization (ACO) [26], Firefly
Algorithm (FA) [27], Monarch Butterfly Optimization (MBO) [28],
Cuckoo Search (CS) [29], Artificial Bee Colony (ABC) [30], Moth Search
(MS) [31], Slime Mould Algorithm (SMA) [32].

The contributions of this research to science are:

• Introduced a deterministic dynamic dataset generation method that
takes a static instance of the MKP dataset and generates a dynamic
dataset consistently. Dataset Generator is published on GitHub [33].

• Generated new, fully defined Dynamic MKP benchmark instances
from existing static MKP benchmarks for consistent and repeatable
cross research reference. The benchmark datasets are published on
GitHub [34].

• The generated benchmarks are qualitatively and quantitatively
analyzed and proven as valid Dynamic MKP datasets. The visuali-
zation tool is published on GitHub [35].

Dynamic MKP Datasets

1.1. Dynamic MKP

The multidimensional Knapsack problem is widely used for bench-
marking combinatorial optimization algorithms [36]. Solutions to the
MKP problem have numerous applications in the real world, such as
loading cargo optimization, slicing problem, budget management, and
investment portfolio management problem. Therefore, there is a lot of
interest to develop algorithms to solve the MKP problem. Then, Dynamic
Multi-dimensional Knapsack has also attracted some research commu-
nity attention due to the nature of the problem that can be easily
extended into dynamic variant using static datasets as the initial setting.

All existing attempts to solve MKP have involved using static MKP
benchmarks as the initial setting and introducing the stochastic changes
to some aspect of the optimization problem and process over the time
domain. [20] uses normally distributed random operator to change item
profits, item weights and knapsack capacities on OR library initial
datasets. Meanwhile, the research [37] has dynamic changes in item
profits, item weights and knapsack capacities, and all new randomly
generated items.

1.2. Dynamic MKP definition

Multidimensional knapsack problem consists of items I and knap-
sacks K. The items have profit and N-dimensional weight that fills
knapsacks. The goal is to choose a set of items with a maximum total
profit without exceeding any of the knapsack capacities.

maximize
∑n

i=1
xi × Pi (1)

subject to
∑n

i=1

(
xi ×Wi,k

)
≤ Ck, ∀(k) where k ∈ (N ≤ m) (2)

where n and m is a number of items and knapsacks in the problem. xi ∈

{0,1} is a decision vector to take the item Ii. Pi is the profit of the item Ii.
Wi,k is the weight of ith item for the kth knapsack? Ck is the capacity of the
kth knapsack.

The Dynamic Multidimensional Knapsack Problem can have one or
multiple aspects of the dataset to be dynamic. In this study, the profit of
items, item weights, and knapsack capacities are set to vary in discrete
state intervals. The states are notes as St , t ∈ {0,1,2, …} where S0 is the
initial state of the MKP dataset, and t is the state index. Each dynamic
MKP state can be solved individually as a static MKP instance.

1.3. Dynamic MKP dataset creation using deterministic state generation
method

The approach of deterministic state generation method is designed to
use the static instances of the existing benchmark MKP dataset as its
initial state S0. Then use the information from the initial dataset to
create states in sequential order. The dynamic dataset is created using a
deterministic set of formulas. The deterministic approach is essential to

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

3

have the dataset reproducible. Using a stochastic method would make
the research reproducibility and extension more difficult.

In this research, the item profits, item weights, and knapsack ca-
pacities are adjusted while generating a state. The new state’s adjust-
ment factors are determined from the values in the previous state and
the constraints set by the initial state. The state generation method has a
“State Adjustment Magnitude” Δ parameter to control the difference in
the profit, weight, and capacity value differences between the states.
This parameter is a constant for the entire dynamic dataset generation.
The default value is 0.05 or 5% of the allowable adjustment range. This
parameter ensures that the following states are reasonably similar to
previous states, and none of the values has been modified more than the
upper limit of the dataset value range.

For the purposes of creating a deterministic state generation that is
reproducible yet chaotic, based on the information only taken from the
previous state, the “3 value modifier” operator X3V(v1, v2, v3) is intro-
duced. This operator takes three values v1, v2, v3 and calculates them to
one real value between -1 and 1:

X3V(v1, v2, v3) = (H3(v1, v2 ∗ 2, v3 ∗ 5) ∗ 2 − 1)3 (3)

H3(v1, v2, v3) = frac(M(v1) ∗M(v2) ∗M(v3)+M(v1)+M(v2)+M(v3))
(4)

frac(x) = x − ⌊x⌋ (5)

M(x) =
x

10⌊log10x⌋ (6)

where M(x) is a mantissa of the number x, frac(x) is a fractional part of a
number, H3 is a simple numerical hash of three numbers (v1, v2, v3) that
returns a number between 0 and 1 evenly distributed, and finally, X3V is
“3 value modifier” a normalized value between -1 and 1 and has prob-
ability density concentrated around 0. The property of having proba-
bility density concentrated around 0 in X3V gives small adjustment
values for the majority of the dataset with a few larger adjustments,
which resembles in real-world optimization the majority of minor
operational adjustments and a few more significant disruptions.

The state of the dynamic dataset is created first, calculating the
state’s new item profits, then new item weights, and lastly, new knap-
sack capacities. The dynamic dataset generation method is designed to
preserve each item’s value within the range initial state’s S0 value range,
which is an intrinsic item’s property easily expressed as profit over
average weight. Also, the new state’s profit and weight values cannot
cross their constraint boundaries. Then lastly, knapsack capacities are
recalculated to keep the same tightness as the initial state’s S0 tightness.
Following is the list of constraints that the new state must maintain:

• Minimum Profit minP = min
i

P0,i

• Maximum Profit maxP = max
i

P0,i

• Minimum Value minV = min
i

P0,i

W0,i

• Maximum Value maxV = max
i

P0,i

W0,i

• Minimum Weight minW = min
i,k

W0,i,k

• Maximum Weight maxW = max
i,k

W0,i,k

• Knapsack Tightness Tk =

∑m
i=1

W0,i,k

C0,k
∀ k

where P0,i is the profit of the ith item in the initial state S0, W0,i is the
average weight of the ith item in the initial state S0, W0,i,k is the weight of
the ith item for the kth knapsack in the initial state S0, and finally C0,k is
the knapsack capacity of the kth knapsack in the initial state S0.

New states can then be generated using these calculated constraints
from the original dataset and the current state data. The state generation
method order is strictly sequential, where the new state depends only on

the most recent predecessor. To make explanation easily understand-
able, the process of creating a state involves a current state which is
noted as St used as input in the state generation and a successor new
state which is noted as St+1. Each state St has an independent set of item
profits Pt,i, item weights Wt,i,k, and knapsack capacities Ct, k, where t
notes the state, i notes the item, and k notes the knapsack of the dataset.

Furthermore, for the state generation, the adjustment limits have to
be set in accordance with original constraints and the State Adjustment
Magnitude Δ parameter. The Δ parameter is also called SAM in the code
and charts with no special characters’ support.

• Profit adjustment magnitude

ΔP = Δ ∗ (maxP − minP) (7)

• Weight adjustment magnitude

ΔW = Δ ∗ (maxW − minW) (8)

Profit generation is the first step of creating a new state St+1. For each
item, profit Pt+1,i the procedure uses the profits of 3 items to calculate
profit modifier using X3V operator and original constraints to calculate
chaotic profit adjustment within limits of the dataset characteristics.

Pt+1,i = Max
(
Min

(
Pt,i +Px,maxV ∗Wt,i

)
, minV ∗Wt,i

)
(9)

Px = X3V
(
Pt,i− 1,Pt,i,Pt,i+1

)
∗ ΔP + Pxc (10)

Pxc = Min
(
maxP − Pt,i,ΔP

)
− Max

(
Pt,i − minP, ΔP

)
(11)

where, Pt+1,i is new item profit for the state St+1 of the ith item that is
applied for all items ∀i. This new profit is calculated using the current
state’s profit Pt,i and profit adjustment value Px, then it is constrained
within a minimum, and a maximum allowed item profit, which is a
product of items average weight and original value: maxV ∗ Wt,i and
minV ∗ Wt,i. The profit adjustment Px value is calculated using profit
adjustment multiplier ΔP multiplied by X3V operator values taken from
the current item’s profit Pt,i and two adjacent item profits Pt,i− 1, Pt,i+1,
then added profit adjustment correction Pxc. Pxc is a value that main-
tains the profit within initial dataset constraints but allows free
manipulation when profit Pt,i is within the profit range by at least value
of ΔP, in those cases Pxc = 0.

After profits are complete, the new state’s St+1 item weights are
generated. For each item’s weight Wt+1,i,k the procedure uses weights of
three items to calculate weight modifier using X3V operator and original
weight and value constraints to create a chaotic weight modifier within
limits of the dataset characteristics.

Wt+1,i,k = Max
(

Min
(

Wt,i,k +Wx,
Pt,i

minV
− Wt,i

)

, Wt,i −
Pt,i

minV

)

(12)

Wx =
(
X3V

(
Wt,i− 1,k,Wt,i,k ,Wt,i+1,k

)
∗ ΔW +Wxc

)
(13)

Wxc = Min
(
maxW − Wt,i,k , ΔW

)
− Max

(
Wt,i,k − minW, ΔW

)
(14)

where, Wt+1,i,kis new item weight for state St+1 of the ith item that is
applied for all items i and all knapsacks k. In principle, the generation of
weights is similar to the generation of profits, except that it is also
executed for all knapsacks. New item weight is calculated using the
weight of the current state Wt,i,k added with weight adjustment Wx. This
value is constrained between Pt,i

maxV − Wt,i and Wt,i −
Pt,i

minV such that as a
result of new weight, the value of the item does not go over the limits of
the initial dataset. Pt,i

maxV − Wt,i is items profit over the maximum value
that gives minimum weight, and removing average weight gives

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

4

maximum allowed weight increase to the item. Similarly, Wt,i −
Pt,i

minV
gives maximum allowed weight decrease. The Wx weight adjustment is
calculated using X3V operator with weight values of 3 adjacent items of
the same knapsack and is multiplied with the weight adjustment
magnitude ΔW and added weight adjustment correction Wxc value.
Wxc is a similar value to Pxc that it ensures each new weight is within
dataset limits but does not restrict the adjustment.

And finally, the knapsack capacities are calculated for the state St+1.
This is the simplest calculation of them all. It uses the initial state’s
knapsack tightness values and the current state’s item weights to create
new knapsack capacities to maintain the same tightness as the initial
state.

Ct+1,k =
∑n

i=1
Wt+1,i,k ∗ Tk, ∀k (15)

where, Ct+1,k is new state’s capacity of the k knapsack, and is a sum of all
item weights for that knapsack multiplied by initial knapsack tightness
Tk of the kth knapsack.

A simplified example of dataset state creation is shown in Fig. 1
below. For a given input dataset state St , new item profit values Pt+1,i are
calculated for all items i. Each item’s profit calculation uses profit values
of three items from the input dataset Pt,i− 1, Pt,i, Pt,i+1. Then X3V operator
and Px functions are applied on selected inputs. Then constrained profit
values are exported. Similarly, new item weight values Wt+1,i,k are
calculated for all items i and all knapsacks k. Also, each item’s weights
calculation uses weight values of three items for the same knapsack from
the input dataset Wt,i− 1,k, Wt,i,k, Wt,i+1,k. Then X3V and Wx functions are
applied on those input weights, and constrained item weight values are
exported. Finally, new knapsack capacities Ct+1,k are calculated for all
knapsacks k. Each knapsack capacity calculation uses all newly calcu-
lated item weights Wt+1,i,k for a knapsack k. Then all those weights are
summed up and multiplied by the original knapsack tightness. Then
final knapsack capacity values are exported.

1.4. Created dataset instances

Dynamic Multidimensional Knapsack Problem datasets are created
using already existing benchmark datasets as a basis of dataset genera-
tion. The original benchmark datasets are taken from the ResearchGate
repository [38]. For the purpose of this research, OR and GK datasets are
used to create dynamic datasets, while SAC94 datasets are omitted due
to low complexity and inconsistent sparseness.

Dataset deterministic state generation method requires input Δ SAM
that set the difficulty to generate the next state. This difficulty magni-
tude limits the percentage change applied for each adjusted value when
generating a new state. If a value is too high, the next state can appear
nothing like the previous state. If the value is too low, states might not
differ at all due to the nature of integer numbers. Since Δ SAM is the
maximum adjustment that will occur, it is recommended that minimum
item weight minW and minimum item profit minP multiplied by Δ is
more than 10. This number is chosen based on a reasonable probability
that the item profit and weight adjustments will be more than one and
have reasonably low discrete distortion of integer numbers.
{

minW ∗ Δ ≥ 10
minP ∗ Δ ≥ 10 (16)

The MKP datasets can be modified that preserves the original
combinatorial characteristics of the dataset by multiplying all item
profits, item weights, and knapsack capacities by a constant value. Using
this method, dynamic GK datasets will be modified by a factor of 123,
which is large enough to eliminate the small adjustment magnitude
problem and reduce discrete distortion to a minimum. These modified
datasets will have slight adjustments to item weights, and profits affect
the dataset more accurately.

Following is the list of configurations chosen to generate Dynamic
MKP benchmark instances:

• 100 generated states with Δ = 0.2
• 100 generated states with Δ = 0.1
• 100 generated states with Δ = 0.05

Fig. 1. Dataset state creation flowchart of Item Profits, Item Weights, and Knapsack Capacities. The flowchart shows the key dependencies of each value adjustment
in the generated state.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

5

• 100 generated states with Δ = 0.02
• 100 generated states with Δ = 0.01

Using the method described, a total of 1405 dynamic datasets are
generated. 55 dynamic dataset instances are generated from 11 static
instances in the GK library, and 1350 dynamic dataset instances
generated from 270 static instances in the OR library.

2. Dynamic MKP dataset analysis

Generated dynamic MKP datasets are analyzed in two ways: first,
dataset statistical analysis, and second, dataset optimal result analysis.
The dataset statistical analysis method is meant to determine what
changes have occurred to each item from one state to the next state and
what is cumulative item discrepancy from the initial state to the last
generated state. Dataset states are analyzed by profit distance, average
weight distance, and absolute weight distance. For dataset results
analysis, each state of the dynamic dataset is independently solved using
a linear solver that finds the optimal result for the state. The results of
each state are compared by finding solution distance. The solution dis-
tance is calculated by counting how many different items are between
two state optimal result vectors.

Solution distance:

SD =

∑n
i=0

(
x1,i ⊕ x2,i

)

n
(17)

where x1and x2 are optimal result vectors of dynamic dataset states 1
and 2. Each result point is counted if one result vector includes it and the
other result vector does not. It is the normalized binary vector Hamming
distance.

Profit distance:

PD =

∑n
i=0

(
P1,i − P2,i

)

n
(18)

Average weight distance:

WD =

∑n
i=0

⃒
⃒
∑m

k=0

(
W1,i,k

)
−

∑m
k=0

(
W2,i,k

)⃒
⃒

n
(19)

Absolute weight distance:

|WD| =

∑n
i=0

(∑m
k=0

⃒
⃒W1,i,k − W2,i,k

⃒
⃒
)

n
(20)

2.1. Statistical analysis metrics

Each dataset has its unique properties and constraints. Therefore, to

Fig. 2. Item profit change to initial state for datasets generated from GK01.

Fig. 3. Average item weight change to initial state for datasets generated from GK01.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

6

do analysis, it is essential to understand what boundaries are expected
for each dataset due to its constraints.

First, the theoretical solution distance E(SD) is the statistically
expected value of solution distance when results vectors of two non-
correlated datasets in comparison have random distribution with a
constant solution tightness ST. The formula can be reduced to the
following.

E(SD) = 2 × (1 − ST) ∗ ST (21)

Then theoretical profit distance E(PD) is the statistically expected
profit distance for two datasets that follow identical item size and item
value constraints, but dataset contents do not have any correlation. The
formula can be reduced to the following.

E(PD) =
maxP − minP

3
(22)

Theoretical average weight distance EWD is the statistically ex-
pected average weight distance for two datasets that follow identical
item size and item value constraints, but dataset contents do not have
any correlation. The formula can be reduced to the following.

EWD = m0.5 ×
maxW − minW

3
(23)

Theoretical absolute weight distance E|WD| is the statistically
expected absolute weight distance for two datasets that follow identical
item size and item value constraints, but dataset contents do not have

any correlation. The formula can be reduced to the following.

E|WD| = m ×
maxW − minW

3
(24)

2.2. Example GK01 dynamic dataset statistical analysis

The graph in Fig. 2 shows how much each state’s all items’ profits is
on average different from the initial state. For the GK01 dataset, the
theoretical profit distance is E(PD) = 2050. The dynamic dataset
generated with Δ SAM-0.2 has the profit distance to the initial state
approaching close to the theoretical profit distance possible for a dataset
with these constraints. Dynamic datasets generated with lower Δ SAM
value do not reach the theoretical value within 100 generated states of
the dynamic dataset.

The graph in Fig. 3 shows how much all items’ average weight is
different from the initial state. For the GK01 dataset, the theoretical
average weight distance is EWD = 2382. The dynamic dataset generated
the highest Δ SAM-0.2 has the average weight distance far away from
possible theoretical average weight distance. To reach the theoretical
average weight distance would take significantly more states. This is
because the dataset generation method has to simultaneously follow the
limit of the weight of the items for each knapsack and item’s value,
which is the ratio of average weight over profit. This makes item weight
distribution significantly slower.

The graph in Fig. 4 shows how much all items’ absolute weight of all

Fig. 4. Absolute item weight to initial state for datasets generated from GK01.

Fig. 5. Item profit change to the previous state for datasets generated from GK01.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

7

Fig. 6. Average item weight to the previous state for datasets generated from GK01.

Fig. 7. Absolute item weight to the previous state for datasets generated from GK01.

Fig. 8. Optimal result distance to initial state for datasets generated from GK01.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

8

knapsacks is different from the initial state. For the GK01 dataset,
theoretical absolute weight distance E|WD| = 9225. Similar to theoret-
ical average weight distance dynamic dataset generated Δ SAM-0.2 has
the average weight distance to the initial state far away from possible
theoretical absolute weight distance. These values follow the same set of
constraints and are expressed using different calculations method.

The graph in Fig. 5 shows how much each states’ item profits are on
average different from the previous state. This profit change value is
relatively constant throughout all states of the dataset, as the measure-
ment is not compounding over multiple states. Also, this value is far
below the theoretical profit distance. Having a high distance from state
to state would make a not useful dynamic dataset because of high dis-
turbances, making the dataset not have any relation among the states.
Having reasonably low profit change from state to state enables dynamic
optimization algorithms to reuse information in solved previous states to
solving the next state.

The graph in Fig. 6 shows how much all items’ average weight of all
knapsacks is different from the previous state. Similarly to item profit,
the average weight distance is relatively constant, as the measurement is
not compounding over multiple states.

The graph in Fig. 7 shows how much all items’ absolute weight of all
knapsacks is different from the previous state. Similarly to item profit,
the average weight distance is relatively constant, as the measurement is
not compounding over multiple states and is far from theoretical abso-
lute weight distance.

3. Dynamic MKP dataset result analysis

Constrained optimization problems often have sparse solutions for
ranked near-optimal solutions. This is due to a large portion of search
space being infeasible and the remaining feasible space containing lots
of close to optimal solutions distributed far apart in the search space.
Multidimensional Knapsack Problem’s solutions are incredibly sparse.
This is due to the sparse nature of packing problems and made sparser by
doing such packing in multiple dimensions. To analyze the results of the
dynamic datasets, a small selection of lower combinatorial complexity
problem instances in each state has been solved to the optimal solution
using Google Or-tools integer linear programming [39].

3.1. Example GK01 dynamic dataset result analysis

The graph in Fig. 8 shows the progression of states’ optimal result
distance to the initial state S0 dataset. Where 0 all items in state’s
optimal result are same as in initial state’s optimal result items, and 1 all

items in state’s optimal result are opposite of initial state’s optimal result
items. Higher Δ value makes result distance to the initial state’s result
higher. GK01 Knapsack tightness is exactly 0.5, and the resulting
tightness is often very close to knapsack tightness. Therefore, the theo-
retical solution distance is also E(SD) = 0.5. Over 100 states SAM-0.01
and SAM-0.02 are growing, but SAM-0.05, SAM-0.1 and SAM-0.2 do
reach theoretical distance and stops growing.

The graph in Fig. 9 shows the progression of states’ optimal result
distance to the previous state. it shows how much difference is in items
taken to the optimal solution in comparison to the previous state Si− 1.
For datasets with lower Δ value, some states solution distance is zero
compared to the state before. Even with slight profit and item weight
changes, the optimal solution can still have the same items fit in the
knapsack for maximum profit. However, the final result profit will be
different and such information not reflected in this graph. Furthermore,
with SAM-0.2, the solution distance is around 0.3 to the previous state,
which is quite close to the theoretical solution distance. This dataset
characteristic might appear to be very challenging for dynamic opti-
mization algorithms to tackle since there are many changes in the
optimal result. This dataset is still valid, regardless of how challenging it
is, to test how quickly algorithms can adapt to significant change and
find good results improved on previous state’s results and not neces-
sarily find the optimal result.

3.2. Dynamic datasets optimal result scores

The performance of the MKP result is measured with the total profit
of items in the knapsack. The optimal MKP result score is the maximum
possible profit. Then for dynamic MKP, result performance is measured
with a sum of each dataset state result profit. When each dynamic MKP
dataset state result is found optimal, then the overall dynamic dataset
score is optimal.

Following is the table with the optimal result scores of the dynamic
datasets. In Table 1, optimal result scores are shown of 50 datasets.
There are optimal result scores shown of partial dynamic dataset and full
dynamic dataset for each of these datasets. The result of 0 states which is
only the initial state’s result, 10 states which is optimal result summed
up to 10th state, 25 states which is optimal result summed up to 25th

state, 50 states which is optimal result summed up to 50th state, 75 states
which is optimal result summed up to 75th state, and 100 states which is
optimal result of a full dataset.

Fig. 9. Optimal result distance to the previous state for datasets generated from GK01.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

9

4. Comparative performance analysis

In addition to dataset statistical and optimal result analysis,
comparative algorithm performance is tested. A high-performance
baseline ACO algorithm implementation for the MKP problem has
been adapted to solve this Dynamic MKP benchmark [26]. The algo-
rithm has been configured to perform two dynamic optimization stra-
tegies: Full-restart strategy and Pheromone-sharing strategy. Full-restart
strategy is a standard optimization strategy, where each state is
considered independently, and after each state change, the optimization
is restarted from the beginning. The pheromone-sharing strategy is a
simple yet very effective dynamic optimization strategy, where after
each state change, the pheromone is reused [40]. All tests have been
executed on the AMD Threadripper 2990WX system with the clock
running at 2.9Ghz, with execution parallelism is set to 32 threads on the
first NUMA node.

To cross-compare highly efficient dynamic optimization algorithm
result scores of the Dynamic MKP, each result profit has to be expressed
as profit gap to the best-known profit, or the “result gap” for short. The

result gap score is calculated for each state, which is the percentage of
the state’s result profit difference to the best-known profit. The best-
known results are submitted to a verified public repository [41]. Using
the result gap allows comparing algorithm performance quantitatively
across all benchmark instances.

Following in Figs. 10 and 11, the dynamic optimization results of the
ACO algorithm are displayed. The ACO algorithm solved all Dynamic
MKP benchmark dataset instances generated from the GK library in both
instances. For each SAM Δ value there are 11 GK benchmark datasets
run 10 times. Each dynamic dataset state run time has been limited to 1
second per 100 items in the problem. For example, GK01 has 100 items
therefore, each state is limited to 1 second runtime, GK03 with 150 items
limited to 1.5s, and GK11 with 2500 items limited to 25s. In Fig. 10, the
ACO algorithm with Full-restart strategy is configured to solve each
dynamic state independently, from the start, without any share of the
learned knowledge from previous state optimization. Every state for this
optimization strategy appears as a new optimization problem therefore,
the convergence of every state is similar throughout the whole optimi-
zation. Also, the Δ value does not have an impact on the optimization

Table 1
Dynamic datasets optimal result scores of selected datasets. Optimal result scores are the sum of 0 states, 10 states, 25 states, 50 states, 75 states, 100 states.

Dataset 0 states 10 states 25 states 50 states 75 states 100 states

gk01 SAM-0.01 463218 5089903 12043838 23653772 35281859 46897705
gk01 SAM-0.02 463218 5092327 12059177 23693904 35383395 47113463
gk01 SAM-0.05 463218 5113768 12097901 23892037 35778881 47610395
gk01 SAM-0.1 463218 5121272 12169486 24044573 35925950 47924151
gk01 SAM-0.2 463218 5177484 12293033 24189553 36116201 48166300
OR10 × 100-0.25_1 SAM-0.01 2836872 31205045 73830256 145018245 216448557 288212783
OR10 × 100-0.25_1 SAM-0.02 2836872 31176234 73779210 145071138 216174187 286840590
OR10 × 100-0.25_1 SAM-0.05 2836872 31123728 73635411 144442790 214350962 284811984
OR10 × 100-0.25_1 SAM-0.1 2836872 30805648 71709699 140660402 208541345 276564063
OR10 × 100-0.25_1 SAM-0.2 2836872 29648279 69427770 133693742 197679341 262428557
OR10 × 100-0.50_1 SAM-0.01 5091585 55953867 132336914 259552759 386384459 513376968
OR10 × 100-0.50_1 SAM-0.02 5091585 55866397 132033525 260305360 388821856 517324762
OR10 × 100-0.50_1 SAM-0.05 5091585 56065926 133118084 262589997 393619307 524410687
OR10 × 100-0.50_1 SAM-0.1 5091585 56629927 134571121 266159634 395126427 526352982
OR10 × 100-0.50_1 SAM-0.2 5091585 56542194 135328561 268860774 403977829 540243294
OR10 × 100-0.75_1 SAM-0.01 7057125 77643072 183396152 359231095 535672559 712133307
OR10 × 100-0.75_1 SAM-0.02 7057125 77369672 182892248 357984295 532064332 706249480
OR10 × 100-0.75_1 SAM-0.05 7057125 77602511 183329109 359336913 534961784 709195281
OR10 × 100-0.75_1 SAM-0.1 7057125 76740410 181074663 349629918 514015441 679144481
OR10 × 100-0.75_1 SAM-0.2 7057125 74281645 171926494 331859849 492799464 658580578
OR30 × 100-0.25_1 SAM-0.01 2699358 29687005 70191529 137774216 205487725 273471842
OR30 × 100-0.25_1 SAM-0.02 2699358 29702444 70268015 137971147 205397065 272700290
OR30 × 100-0.25_1 SAM-0.05 2699358 29502620 69475293 135491089 201383026 266403778
OR30 × 100-0.25_1 SAM-0.1 2699358 28900744 68183405 133807293 197430527 262757855
OR30 × 100-0.25_1 SAM-0.2 2699358 27977949 66054651 130252336 195671607 261708983
OR30 × 100-0.50_1 SAM-0.01 5014341 55059043 129891484 254621859 379817047 505328790
OR30 × 100-0.50_1 SAM-0.02 5014341 55025745 130037468 255079511 379914843 505524676
OR30 × 100-0.50_1 SAM-0.05 5014341 55200665 130045508 254327181 378085224 501037881
OR30 × 100-0.50_1 SAM-0.1 5014341 54810897 128082790 247397275 366761689 486607011
OR30 × 100-0.50_1 SAM-0.2 5014341 53103991 124497893 244395075 363760632 483039836
OR30 × 100-0.75_1 SAM-0.01 7071762 77864424 184162853 361344304 538697991 716206864
OR30 × 100-0.75_1 SAM-0.02 7071762 77780937 183865316 359936517 536422253 713362025
OR30 × 100-0.75_1 SAM-0.05 7071762 77932653 184544801 362035765 538160553 714949227
OR30 × 100-0.75_1 SAM-0.1 7071762 77557884 183180055 361505598 542978957 725238465
OR30 × 100-0.75_1 SAM-0.2 7071762 77189609 183136611 365412793 547980898 727926255
OR5 × 100-0.25_1 SAM-0.01 2998863 32939171 77757416 152752166 227713579 302850314
OR5 × 100-0.25_1 SAM-0.02 2998863 32821440 77541184 152413231 227296574 302426478
OR5 × 100-0.25_1 SAM-0.05 2998863 33098483 78857803 155459878 233754591 311477600
OR5 × 100-0.25_1 SAM-0.1 2998863 32819219 79103918 159026997 238008299 318890576
OR5 × 100-0.25_1 SAM-0.2 2998863 31792534 75667725 150669330 224083685 298265765
OR5 × 100-0.50_1 SAM-0.01 5259111 57816931 136753398 268534896 400626535 532774988
OR5 × 100-0.50_1 SAM-0.02 5259111 57739290 136877350 268314426 400103228 532502998
OR5 × 100-0.50_1 SAM-0.05 5259111 57570616 136465452 269864698 403784094 536018915
OR5 × 100-0.50_1 SAM-0.1 5259111 58845857 142707776 289653226 440496588 591692649
OR5 × 100-0.50_1 SAM-0.2 5259111 62153210 151213344 304160231 460660467 610787683
OR5 × 100-0.75_1 SAM-0.01 7358106 81027232 191732938 376103226 559814098 742782860
OR5 × 100-0.75_1 SAM-0.02 7358106 81164628 191864001 375883541 559920437 744012008
OR5 × 100-0.75_1 SAM-0.05 7358106 81539986 193322737 378920251 562125666 744462914
OR5 × 100-0.75_1 SAM-0.1 7358106 81354829 191189919 372271347 550102686 726936473
OR5 × 100-0.75_1 SAM-0.2 7358106 80952636 187322886 367257155 546541749 724836393

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

10

quality for ACO with Full-restart strategy. In Fig. 11 ACO algorithm with
Pheromone-sharing strategy continues to use the same pheromone after
dynamic state change and therefore has a significant head start to
improve the solution further. ACO with Pheromone-sharing strategy can
take a significant advantage when the Δ value is low because each dy-
namic change is small and the optimal solution is not significantly
different compared to the state before the change.

5. Further dynamic dataset analysis

Dynamic datasets are numerically heavy, and static on-the-paper
visualizations such as graphs, diagrams, or tables cannot show a com-
plete picture and give the reader an intuitive understanding of the
dataset and its dynamics. For this reason, further dataset analysis
demonstration is developed. This analysis is not possible to be printed
out, therefore the analysis is published on GitHub with complete data of
all dynamic datasets [35].

Fig. 10. Dynamic optimization performance of ACO Full-restart strategy for all SAM levels. Each line shows the average gap convergence of GK01-GK11 dynamic
datasets group run 10 times each, totalling 110 runs.

Fig. 11. Dynamic optimization performance of ACO Pheromone-sharing strategy for all SAM levels. Each line shows the average gap convergence of GK01-GK11
dynamic datasets group run 10 times each, totalling 110 runs.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

11

5.1. Profit and weight distance effect

Profit and weight distance effect demonstration is a dynamic scatter

plot where each item is represented by a dot on a value over a size plot.
All items are divided into four groups by their weight size and their
profit value. Groups are chosen considering two factors. First, whether

Fig. 12. Profit and weight distance effect for GK01 SAM-0.05 dataset initial state. Each series represent the division of each item’s value and average weight into a
quadrant based on the initial state. On the initial state, the division is clearly visible.

Fig. 13. Profit and weight distance effect for GK01 SAM-0.05 dataset last state. Each series represent the division of each item’s value and average weight into a
quadrant based on the initial state. On the last state, items are significantly mixed up.

Fig. 14. Optimal result effect GK01 SAM-0.05 dataset initial state.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

12

item profit is higher or lower than median item profit, and second,
whether item weight is higher or lower than median item weight. Since
profit and weight are independent variables, this divides all items into
four equally sized groups. Each item is marked for the initial state
dataset and remains constant in all states of the dynamic dataset.

For example, the distance effect is displayed of dataset GK01 SAM-
0.05 for the initial state and the last state in Figs. 12and 13. At first,
for the initial state, the plot appears evenly divided into four quadrants.
Series 1 is initially low weight and low value items; Series 2 is initially
low weight and high value; Series 3 is initially high weight and low value
items; Series 4 is initially high weight and high value items. Then, all
groups become increasingly mixed up by advancing graphs through
each state until each series can appear to have low and high value and
weight items scattered. When the dataset profit and weights reach
theoretically expected distance values, the groups should look mixed
entirely up. In the example of GK01 SAM-0.05 last state, the groups do

not appear to be completely mixed up. Most of the large weight items
remained on the heavy side, and most of the low weight items remained
on the light side.

5.2. Optimal result effect

Similarly, to profit and weight distance effect demonstration, an
optimal result effect demonstration is a dynamic scatter plot where each
item is represented by a dot on a value over a size plot. However, in this
dynamic plot, each item belongs in a group according to the optimal
result decision vector obtained from the linear solver solution for each
state. The item is either part of the optimal set or not. From one state to
another, the item may change the group to reflect a new optimal solution
of that given state.

For example, the optimal result is displayed of dataset GK01 SAM-
0.05 for the initial state and the last state in Figs. 14 and 15. In both

Fig. 15. Optimal result effect, GK01 SAM-0.05 dataset last state.

Fig. 16. Dynamic dataset constraint coverage effect, GK01 SAM-0.02 dataset, items range 13-21 inclusive.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

13

example figures, the higher value items are significantly more likely to
be included in the optimal result decision vector than lower value items.
However, the item’s size does not appear to impact the likelihood to be
included in the optimal result decision vector.

5.3. Dynamic dataset constraint coverage effect

This visualization chart is a group of line graphs where each line
represents an item of the dynamic dataset. The line shows the path of the
item that has been moved through the dataset constraint space. The
chart can display up to 20 items at once, and it can limit the number of

Fig. 17. Dynamic dataset constraint coverage effect, GK01 SAM-0.05 dataset, items range 13-21 inclusive.

Fig. 18. Dynamic dataset optimal result coverage effect, GK01 SAM-0.02 dataset, items range 7-21 inclusive.

J. Skackauskas and T. Kalganova

Systems and Soft Computing 4 (2022) 200041

14

dynamic states range for a more transparent comparison of each item’s
path.

For example, the dataset constraint coverage paths are displayed for
items 13 to 21 inclusive and span through all states from 0 to 100 in
Figs. 16 and 17. The GK01 dataset generated using SAM-0.02 has all
items cover a smaller, more localized constraint space than GK01 SAM-
0.05. Items in the GK01 SAM-0.05 dataset has a broader coverage and
has more overlap in the constraint space among the items.

5.4. Dynamic dataset optimal result coverage effect

For the dynamic datasets with optimal results, the optimal result
coverage of every state can be displayed. This chart displays for all states
whether the item belongs in the decision vector of optimal solution or
not. Orange color represents an item in the optimal set and blue color
represents a not optimal item. The chart also differentiates the items
always part of the optimal set with green color series and items that are
never part of the optimal set with black color series.

For example, optimal item’s decisions are displayed for items 7 to 21
inclusive and span through all states from 0 to 100 in Figs. 18 and 19. In
dataset GK01 SAM-0.01, where each item has mutated the least, more
items have remained always optimal or never optimal compared to
dataset GK01 SAM-0.02, where items cover larger constraint area and
therefore larger changes in size and value have an effect on the optimal
solution.

6. Conclusion

This research has pointed out that there is a critical gap in discrete
Dynamic Optimization Problem (DOP) research. There are no fully
defined DOP datasets upon which the research can be based. Previous
works have used stochastic generation methods and have not preserved
the optimization states or random operator seed values to compare the
optimization results directly. Therefore, it is impossible to evaluate
dynamic optimization algorithms fairly or conduct a repeatability study.

To solve that problem, this research proposes a non-stochastic dy-

namic dataset generation method that can consistently generate the next
state of dynamic MKP based on nothing but input dataset and Δ value.
The generated dataset will always be identical based on the input
dataset. Therefore, dynamic optimization algorithms can be cross-
compared in future research by any research work.

Using this dynamic dataset generation method, 1405 fully defined
Dynamic MKP benchmark instances have been generated from the
existing static MKP benchmark dataset library. Then those dynamic
datasets have been published to be used as Dynamic MKP benchmark.

This work also provides Dynamic MKP benchmark datasets analysis.
The quantitative analysis shows the range of dynamism of all dataset
parameters. Optimal result dynamics are analyzed of 455 datasets with
low combinatorial complexity of 100 items, where all states have been
solved to optimal result using linear solver. Then developed an inter-
active tool for an additional dynamic demonstration which helps to do
more analysis and develop an intuitive understanding of the dynamics of
the datasets. -

Conflicts of interest

We have no conflicts of interest to disclose.

References

[1] C. Arango, P. Cortés, L. Onieva, A. Escudero, Simulation-Optimization Models for
the Dynamic Berth Allocation Problem, Computer-Aided Civil and Infrastructure
Engineering 28 (10) (2013) 769–779.

[2] Z. Yao, Y. Jiang, B. Zhao, X. Luo, B. Peng, A dynamic optimization method for
adaptive signal control in a connected vehicle environment, Journal of Intelligent
Transportation Systems 24 (2) (2020) 184–200.

[3] Y. Zhou, X. Liu, Control Parameterization-Based Adaptive Particle Swarm
Approach for Solving Chemical Dynamic Optimization Problems, Chemical
Engineering & Technology 37 (4) (2014) 692–702.

[4] A.A. Ateya, A. Muthanna, A. Vybornova, A.D. Algarni, A. Abuarqoub,
Y. Koucheryavy, A. Koucheryavy, Chaotic salp swarm algorithm for SDN multi-
controller networks, Engineering Science and Technology, an International Journal
22 (4) (2019) 1001–1012.

[5] G.-G. Wang, C.-L. Wei, Y. Wang, W. Pedrycz, Improving distributed anti-flocking
algorithm for dynamic coverage of mobile wireless networks with obstacle
avoidance, Knowledge-based systems 225 (2021), 107133.

Fig. 19. Dynamic dataset optimal result coverage effect, GK01 SAM-0.01 dataset, items range 7-21 inclusive.

J. Skackauskas and T. Kalganova

http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0001
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0001
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0001
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0002
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0002
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0002
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0003
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0003
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0003
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0004
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0004
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0004
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0004
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0005
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0005
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0005

Systems and Soft Computing 4 (2022) 200041

15

[6] J. Eaton, S. Yang, M. Gongora, Ant Colony Optimization for Simulated Dynamic
Multi-Objective Railway Junction Rescheduling, IEEE Transactions on Intelligent
Transportation Systems 18 (11) (2017) 2980–2992.

[7] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization
test problems, in: Proceedings of the 2002 Congress on Evolutionary Computation
1, 2002, pp. 825–830.

[8] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, A New Prediction Approach for Dynamic
Multiobjective Optimization, IEEE Congress on Evolutionary Computation (2019)
2268–2275.

[9] A. Sharifi, J. Kazemi Kordestani, M. Mahdaviani, M.R. Meybodi, A novel hybrid
adaptive collaborative approach based on particle swarm optimization and local
search for dynamic optimization problems, Applied Soft Computing 32 (2015)
432–448.

[10] T. Friedrich, T. Kroeger, F. Neumann, Weighted preferences in evolutionary multi-
objective optimization, Machine Learning and Cybernetics 4 (2) (04/2013)
139–148.

[11] M.E. Breaban, A. Iftene, Dynamic Objective Sampling in Many-objective
Optimization, Procedia Computer Science 60 (2015) 178–187.

[12] H. Zhang, G.-G. Wang, Improved NSGA-III using transfer learning and centroid
distance for dynamic multi-objective optimization, Complex & intelligent systems
(2021).

[13] S. Rostami, A. Shenfield, A multi-tier adaptive grid algorithm for the evolutionary
multi-objective optimisation of complex problems, Soft Computing 21 (17) (09/
2017) 4963–4979.

[14] G. Li, G.-G. Wang, J. Dong, W.-C. Yeh, K. Li, DLEA: A dynamic learning evolution
algorithm for many-objective optimization, Information sciences 574 (2021)
567–589.

[15] H. Abbass, R. Sarker, C. Newton, PDE: a Pareto-frontier differential evolution
approach for multi-objective optimization problems, Evolutionary Computation,
2001. Proceedings of the 2001 Congress 2 (2001) 971–978.

[16] F.B. Ozsoydan, A. Baykasoğlu, Quantum firefly swarms for multimodal dynamic
optimization problems, Expert Systems With Applications 115 (01/2019) 189–199.

[17] R. Liu, X. Song, L. Fang, More..., “An r-dominance-based preference multi-objective
optimization for many-objective optimization, Soft Computing 21 (17) (09/2017)
5003–5024.

[18] D. Yazdani, M.N. Omidvar, J. Branke, T.T. Nguyen, X. Yao, Scaling Up Dynamic
Optimization Problems: A Divide-and-Conquer Approach, IEEE Transactions on
Evolutionary Computation 24 (1) (2020) 1–15.

[19] H. Fu, B. Sendhoff, K. Tang, X. Yao, Robust Optimization Over Time: Problem
Difficulties and Benchmark Problems, IEEE Transactions on Evolutionary
Computation 19 (5) (2015) 731–745.

[20] A.Ş. Uyar, Experimental Comparison of Replacement Strategies in Steady State
Genetic Algorithms for the Dynamic MKP, Applications of Evolutinary Computing
4448 (2007) 647–656.

[21] Ł. Strąk, R. Skinderowicz, U. Boryczka, Adjustability of a discrete particle swarm
optimization for the dynamic TSP, Soft computing (Berlin, Germany) 22 (22)
(2018) 7633–7648.

[22] Ł. Strąk, R. Skinderowicz, U. Boryczka, A. Nowakowski, A Self-Adaptive Discrete
PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP, Entropy
(Basel, Switzerland) 21 (8) (2019).

[23] N. Ouertani, H.B. Ramdhan, S. Krichen, I. Nouaouri, H. Allaoui, A New
Evolutionary Method to Deal with the Dynamic Vehicle Routing Problem, in: 2018

IEEE International Conference on Technology Management, Operations and
Decisions (ICTMOD), 2018, pp. 1–5.

[24] C. Groba, A. Sartal, X.H. Vázquez, Solving the dynamic traveling salesman problem
using a genetic algorithm with trajectory prediction: An application to fish
aggregating devices, Computers & Operations Research 56 (2015) 22–32.

[25] B.H. Nguyen, B. Xue, P. Andreae, M. Zhang, A New Binary Particle Swarm
Optimization Approach: Momentum and Dynamic Balance Between Exploration
and Exploitation, IEEE Transactions on Cybernetics 51 (2) (2021) 589–603.

[26] J. Skackauskas, T. Kalganova, I. Dear, M. Janakiram, Dynamic impact for ant
colony optimization algorithm, Swarm and Evolutionary Computation 69 (2022),
100993.

[27] Y. Feng, G.-G. Wang, L. Wang, Solving randomized time-varying knapsack
problems by a novel global firefly algorithm, Engineering with Computers 34 (3)
(2017) 621–635.

[28] Y. Feng, G.-G. Wang, S. Deb, M. Lu, X.-J. Zhao, Solving 0–1 knapsack problem by a
novel binary monarch butterfly optimization, Neural Computing and Applications
28 (7) (2015) 1619–1634.

[29] Y. Feng, G.-G. Wang, X.-Z. Gao, A Novel Hybrid Cuckoo Search Algorithm with
Global Harmony Search for 0-1 Knapsack Problems, International Journal of
Computational Intelligence Systems 9 (6) (2016) 1174.

[30] J. Cao, B. Yin, X. Lu, Y. Kang, X. Chen, A modified artificial bee colony approach
for the 0-1 knapsack problem, Applied intelligence 48 (6) (2017) 1582–1595.

[31] Y. Feng, G.-G. Wang, A binary moth search algorithm based on self-learning for
multidimensional knapsack problems, Future Generation Computer Systems 126
(2022) 48–64.

[32] B. Abdollahzadeh, S. Barshandeh, H. Javadi, N. Epicoco, An enhanced binary slime
mould algorithm for solving the 0–1 knapsack problem, Engineering with
Computers (2021).

[33] J. Skackauskas, GitHub-Dynamic MKP Datasets Generator (2021) [Online].
Available, https://github.com/jonasska/Dynamic-MKP-Datasets-Generator
[Accessed 24 2 2021].

[34] J. Skackauskas, GitHub (2021) [Online]. Available, https://github.com/jonassk
a/Dynamic-MKP-Benchmark-Datasets [Accessed 14 4 2021].

[35] J. Skackauskas, GitHub-Dynamic MKP Datasets Visualization (2021) [Online].
Available, https://github.com/jonasska/Dynamic-MKP-Datasets-Visualization
[Accessed 1 1 2021].

[36] J. Branke, M. Orbayı, Ş. Uyar, The Role of Representations in Dynamic Knapsack
Problems, Applications of Evolutionary Computing (2006) 764–775.

[37] A. Baykasoğlu, F.B. Ozsoydan, Evolutionary and population-based methods versus
constructive search strategies in dynamic combinatorial optimization, Information
Sciences 420 (2017) 159–183.

[38] J.H. Drake, Benchmark instances for the Multidimensional Knapsack Problem
(2015) [Online]. Available, https://www.researchgate.net/publication/27
1198281_Benchmark_instances_for_the_Multidimensional_Knapsack_Problem
[Accessed 30 04 2019].

[39] Google, GitHub-or-tools, Google (2015) [Online]. Available, https://github.
com/google/or-tools [Accessed 16 12 2021].

[40] D. Angus, T. Hendtlass, Dynamic Ant Colony Optimisation, Applied Intelligence 23
(1) (07/2005) 33–38.

[41] J. Skackauskas, Dynamic MKP Benchmark Best Known Results (6 12 2021)
[Online]. Available, https://github.com/jonasska/Dynamic-MKP-Benchmark
-Best-Known-results [Accessed 7 12 2021].

J. Skackauskas and T. Kalganova

http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0006
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0006
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0006
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0007
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0007
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0007
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0008
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0008
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0008
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0009
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0009
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0009
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0009
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0010
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0010
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0010
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0011
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0011
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0012
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0012
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0012
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0013
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0013
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0013
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0014
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0014
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0014
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0015
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0015
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0015
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0016
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0016
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0017
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0017
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0017
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0018
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0018
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0018
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0019
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0019
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0019
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0020
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0020
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0020
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0021
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0021
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0021
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0022
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0022
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0022
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0023
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0023
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0023
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0023
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0024
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0024
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0024
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0025
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0025
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0025
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0026
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0026
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0026
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0027
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0027
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0027
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0028
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0028
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0028
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0029
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0029
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0029
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0030
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0030
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0031
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0031
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0031
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0032
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0032
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0032
https://github.com/jonasska/Dynamic-MKP-Datasets-Generator
https://github.com/jonasska/Dynamic-MKP-Benchmark-Datasets
https://github.com/jonasska/Dynamic-MKP-Benchmark-Datasets
https://github.com/jonasska/Dynamic-MKP-Datasets-Visualization
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0036
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0036
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0037
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0037
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0037
https://www.researchgate.net/publication/271198281_Benchmark_instances_for_the_Multidimensional_Knapsack_Problem
https://www.researchgate.net/publication/271198281_Benchmark_instances_for_the_Multidimensional_Knapsack_Problem
https://github.com/google/or-tools
https://github.com/google/or-tools
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0040
http://refhub.elsevier.com/S2772-9419(22)00007-2/sbref0040
https://github.com/jonasska/Dynamic-MKP-Benchmark-Best-Known-results
https://github.com/jonasska/Dynamic-MKP-Benchmark-Best-Known-results

	Dynamic Multidimensional Knapsack Problem benchmark datasets
	1 Introduction
	1.1 Dynamic MKP
	1.2 Dynamic MKP definition
	1.3 Dynamic MKP dataset creation using deterministic state generation method
	1.4 Created dataset instances

	2 Dynamic MKP dataset analysis
	2.1 Statistical analysis metrics
	2.2 Example GK01 dynamic dataset statistical analysis

	3 Dynamic MKP dataset result analysis
	3.1 Example GK01 dynamic dataset result analysis
	3.2 Dynamic datasets optimal result scores

	4 Comparative performance analysis
	5 Further dynamic dataset analysis
	5.1 Profit and weight distance effect
	5.2 Optimal result effect
	5.3 Dynamic dataset constraint coverage effect
	5.4 Dynamic dataset optimal result coverage effect

	6 Conclusion
	Conflicts of interest
	References

