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ABSTRACT 

Non-data aided channel estimation is discussed in this pa
per to enable blind modulation classification in multiple-input 
multiple-output fading channels. The channel parameters are 
jointly estimated via expectation maximization under each 
modulation hypothesis. Instead of pilot symbols, the initial
ization of the channel matrix is achieved through a combi
nation of fuzzy c-means clustering and maximum likelihood 
mapping. The estimated channel matrix and noise power en
able the blind classification of modulations using a maximum 
likelihood classifier. Digital modulations are tested in simu
lation to validate the proposed classifier. The classifier is able 
to achieve excellent performance when SNR level is above 5 
dB. 

Index Terms- modulation classification, channel esti
mation, fuzzy clustering, Bayesian inference, likelihood clas
sifier, MIMO, Rayleigh fading 

1. INTRODUCTION 

Modulation classification (MC) has received increasing 
amount of attention in the last decade or more from emerg
ing intelligent communication systems, such as cognitive 
radio and software defined radio [1]. The wide application 
of adaptive modulation and coding provides the opportunity 
for further improvement of bandwidth efficiency where MC 
is employed to detect modulation automatically. 

Much effect has been dedicated to MC in single-input and 
single-output systems [2-6]. MIMO systems with associated 
techniques such as spatial multiplexing (SM) and space-time 
coding (STC) provides benefits including array gain and spa
tial gain for improved spectrum efficiency and link reliability. 
Some recent publications address the issue of blind modula
tion classification (BMC) for MIMO systems. Choqueuse et 
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al. developed the average likelihood ratio test (ARLT) classi
fier for MC with perfect channel knowledge [7]. In the same 
paper, they proposed to use independent component analysis 
(ICA) with phase correction for channel matrix estimation in 
order to achieve BMC. The ICA estimator is endorsed by the 
following publications but accompanied with different clas
sifiers [8, 9]. Muhlhaus et al. proposed high order cumu
lants based likelihood ratio test classifier for low complexity 
BMC [8]. Kanterakis and Su suggest complexity reduction 
to the ALRT classifier by treating ICA recovered signal com
ponents at different transmitting antennas as individual pro
cesses [9]. 

In this paper, we propose a BMC solution which is more 
practical in a blind channel with both unknown channel ma
trix and unknow noise power. Given that pilot symbols are not 
available for the classifier, expectation maximization (EM) is 
adopted for non-data aided blind channel estimation. The ini
tialization of EM is achieved using fuzzy c-means clustering 
and maximum likelihood mapping. Compared to the ICA 
estimator, the EM estimator provides the additional estima
tion of noise variance while not needing the phase correction 
for the channel matrix. The resulting estimate is used for the 
maximum likelihood (ML) classifier for decision making. 

2. SIGNAL MODEL 

The MIMO system is composed of Nt transmitting antennas
and Nr receiving antennas. A Rayleigh fading channel with
time invariant path gains is considered. The resulting chan
nel matrix H is given by a Nr x Nt complex matrix with
the element hj,i representing the path gain between ith trans
mitting antenna and jth receiving antenna. Assuming perfect 
synchronization, the nth received MIMO-SM signal sample 
vector rn = [rn(1), rn(2), ... , rn(Nr ) ]T in a total observation
of N samples is expressed as

(1) 

where sn = [sn(1), sn(2) , ... , sn(Nt) ]T is the nth transmitted
signal symbol vector and Wn = [wn(1),wn(2), ... ,wn(Nr) ]T 
is the additive noise observed at the nth signal sample. The 
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(a) Example 1 (b) Example 2 

Fig. 1: Signal received at a receiving antenna in a 2x4 MIMO 
system. 

transmitted symbol vector is assumed to be independent and 
identically distributed with each symbol assigned from the 
modulation alphabet with equal probability. The additive 
noise is assumed to be white Gaussian with zero mean and 
variance (J2 which gives Wn E N(O, (J2INJ , where INr is
the identity matrix of size Nr x Nr. 

3. NON-DATA-AIDED INITIALIZATION 

The channel matrix in a MIMO fading channel is rather com
plex given the number of paths and different channel effects. 
When EM was first proposed for MIMO channel estimation, 
the issue of initialization is achieved with data-aided meth
ods [10]. However, the required pilot symbols may not be 
available in certain applications. The application of MC in 
military warfare, for example, requires the channel estimation 
to be performed in a non-cooperative environment. 

3.1. Fuzzy C-means Clustering 

For MIMO systems, the received signal at each receiver is 
a product of multiple transmission streams and the complex 
channel matrix. While the example in la shows clear sep
aration between received symbols, another example of the 
received signal given in Figure 1b suggest that some of the 
received symbol states maybe very close to each other. For 
this reason, the fuzzy c-means algorithm is adopted. As the 
additive noise is assumed to be Gaussian, we incorporate the 
likelihood function of Gaussian process into the distance mea
surement and membership evaluation. The likelihood of sam
ple r n (j) belonging to the cluster m is given by

where Cm is the mean of mth cluster. As the samples are re
ceived at the same antenna, the noise variance (J2 is identical 
for all clusters. Therefore, we propose the membership calcu
lation of the nth sample in the mth cluster using the following 
equation 

(3) 

The centroid of the mth cluster is calculated using the mean 
of the all samples weighted by their membership. 

L: u;"mrn(j) 
Cm = 

""M U2 L'l-=l n,ffi 
(4) 

3.2. Initial Channel Estimate 

After clustering, the membership set and clustered centroid 
set are used to provide the initial estimate of noise variance at 
the jth receiver and the channel coefficients associated with 
the jth receiver. The noise variance is calculated as 

,2 L�=l L:=l un,mlrn(j) - cml2 (5) (Jj = 

M N 
Lm=l Ln=l un,m

For the initial estimation of the channel coefficient, the 
matter is a bit more complicated because neither the trans
mitted symbol vector nor the cluster centroids are ordered or 
matched up. The relationship between them can be modelled 
as. 

(6) 

where Sk E S is one of the possible sample sets being trans
mitted with k = 1,2, ... , LNt. The goal is to find the match
ing m and k so that the correct channel matrix could be es
timated for EM initialization. In this paper, we have taken 
a semi-exhaustive likelihood based mapping approach to find 
the matching m and k and the subsequent initial channel ma
trix estimate. First, Nt number of estimated centroids are
selected randomly. Correspondingly, all possible combina
tions of subset with Nt elements are constructed from S. For
a MIMO system with Nt transmitter and modulation candi
date with L symbol states, there are a total number of I = 

LNt!j[Nt!(LNt - Nt)!] combinations. For each combina
tion, there exist a set of channel matrix hj,. (i) can be esti
mated from the selected centroids and the transmitted symbol 
set. To find the best match between the selected the transmit
ted sample combination subset, the likelihood value for each 
pairing can be calculated by 

(7) 

Using the maximum likelihood criterion, the final estimate of 
the channel matrix can be determined by find the maximum 
likelihood from all pairings. 

h(j, .) = argmax £(RI(J2, hj,.(i)) (8) 
hj,,(i)Ehj.,(I) 

This process is repeated for each receiver until the entire chan
nel matrix is constructed. 
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4. EM CHANNEL ESTIMATION 

In MIMO systems, we consider the received signal R 
h, r2···r N ] as the observed data. Meanwhile, the member
ship Z of the observed samples is considered as the latent 
variables. Z is a M x N matrix with the (m, n)th element
being the membership of the nth signal sample rn, given
the transmitted symbol vector Sm. The possible transmitted
symbol set S = [SI, S

2 
... SM] gathers all the combinations

of transmitted symbols from Nt number of antennas. Given
a modulation with L number of states, there exist M = LNt 

number of transmitted symbol vectors and a transmitted sym
bol set of size Nt x LNt. With 8 = {H, (J2} representing
the channel parameters, the expected value of the complete 
log-likelihood is derived as 

N M 
Q(R, S18t) = log IT IT p(rn' SmlHt, (J;)Zmn

n=l m=l 

� � [ 2 Ilrn - HtSmll� ] 
= - � 

�1 
Zmn N,.. log( 7!"(Jt ) + (J; (9) 

where p(rn, SmIHt, (Jt) is the probability of the nth received
signal vector being observed given the current estimation of 
channel matrix Ht and noise variance (Jr 11·11 � is the Frobe
nius norm. The soft membership Zmn is evaluated using the
following equation 

Zmn = 

p(rnISm,8t)
M 
L p(rnISm,8t)

m=l 

4.1. Maximization Step 

(10) 

The update of the parameter estimation is achieved through 
the maximization of the current expected log-likelihood (M
step). To derive the close form update function for the chan
nel matrix and noise variance, we first find the derivatives 
of Q(R, S18t) with respect to H and (J2 separately. The
derivative of Q(R, S18t) with respect to the individual ele
ment h(j, i) of the channel matrix is given by

8Q(R, S18t) 

8hj,i 
N M 

Nt 
L hj,i *ISm(i)12 - rn(j)* Sm(i) 

= - L L Zmn .:....i=....:I=-------(J72------
n=l m=l 

(11)

In the same way, the derivative of Q(R, S18t) with respect to
the noise variance (J2 is found as 

8Q(R, S18t) __ � � (_ N,.. Ilrn - HSmll� ) ;:) 2 - � � Zmn 2 + 4 u(J (J (J n=1 m=1 
(12) 

When the derivatives are set to zero, the update functions 
of hj,i and (J2 can be derived from Equation (11) and (12).
However, it is obvious that different channel parameters are 
coupled. To simplify the maximization process, the coupled 
channel parameters are estimated in turns. The path gain hj,i 
is estimated with the rest of the channel matrix known and 
represented with the latest estimate for each path gain. The 
path gains are updated in ascending order with respect to j 
and i. The resulting update function for hj,i is given by

ht+1 
],' 

n�l m�1 
Zmn [rn(j)Sm(i)* - Sm(i)* k=E#i hie'iSm(k)

] 
N M 
L L ZmnISm(i)12
n=1 m=1 

(13) 

where hie,i is the lasted estimate of path gain hk,i. At tth it
eration, hie i = hi i if it has not been updated or hie i = ht�

l 

if it has be�n updated. After the channel matrix is c�mpletdly 
updated, HHl is used to acquire the noise variance estima
tion. 

N M Nr 1 Nt 12 

2 n;;1 m;;1 
Zmn;E rn(j) - i� h�-:-/Sm(i) 

(Jt+l = 

N M 
N,.. L L Zmn

n=l m=l 

(14) 

The EM algorithm with such maximization process is known 
as expectation conditional maximization (ECM). ECM shares 
the convergence property of EM [11] and can be constructed 
to converge at similar rate as the EM algorithm [12]. The 
ECM joint estimation of channel parameters has previously 
been successfully applied in BMC for SISO systems [13-15]. 

s. MAXIMUM LIKELIHOOD CLASSIFIER 

For classification likelihood evaluation, average likelihood ra
tio test (ALRT) is adopted [7]. In the case of BMC, the chan
nel matrix and noise variance estimated by EM is used to sub
stitute the known values in the ALRT likelihood evaluation 
for each modulation hypothesis. The likelihood evaluation of 
modulation candidate M is given by 

where S M is the transmitted symbol set defined by modula
tion M and 8 M is the channel estimation for the same mod
ulation candidate. The resulting classification decision M is 
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Fig. 2: The classification results of different modulation sig
nals in Rayleigh fading channel with varying A WGN noise 
level and 512 samples from each transmitter. 

found using the maximum likelihood criterion. 

NI = argmax(log'c(RISM, eM)) (16) 
ME9Jl 

6. SIMULATION AND RESULTS 

To validate the proposed BMC algorithm, MIMO systems in 
Rayleigh fading channel with AWGN noise is simulated for 
BMC. Four popular digital modulations are included in the 
modulation candidate pool: BPSK, QPSK, 8-PSK, 16-QAM. 

First, 1,000 testing realizations of modulation signals are 
generated for each modulation candidate at SNR varying from 
-10 dB to 10 dB. Each signal realization consists of 512 ob
served signal samples at each receiving antenna. In Figure
2, classification results averaged over 1,000 realizations are
listed. BPSK signals can be correctly classified with SNR
above 3 dB. The performance degradation is slow between
-3 dB and 3 dB. However, a dramatic decrease in classifica
tion accuracy is observed below -3 dB. The QPSK signals
require higher SNR (above 8 dB) to achieve perfect classi
fication with. The same pattern is observed for the 8-PSK
signals with misclassification for both modulations accounted
to 16-QAM. The classification result of 16-QAM concurs the
biased behaviour of the classifier. The classification accuracy
sees little degradation between -3 dB and 1 dB. Despite the
decreasing level of SNR, the classification accuracy of 16-
QAM signals remain at around 75%.

Second, 1,000 testing realizations of modulation signals 
are generated for each modulation candidate with signal 
length varying from 25 to 500. The SNR level is fixed at 5 
dB in all experiments. The classification of BPSK is almost 
independent of the signal length. With only 25 samples from 
each receiving antenna, the classification of BPSK signals 
is able to achieve a 100% accuracy as shown in Figure 3. 
The robust performance for BPSK signal is mostly due to its 
lower modulation order. For QPSK, a very slow degradation 
can be observed with reduced signal length. Meanwhile, 

70 

60 

8 � = ill ill = ill = � � 
Number of samples 

Fig. 3: The classification results of different modulation sig
nals in Rayleigh fading channel with varying observation 
length and SNR at 5 dB. 

the degradation is rather moderate giving 84% classification 
accuracy with 25 sample at each receiving antenna. It is ob
vious that limited number of observed samples has a more 
significant impact on the classification of 8-PSK signal. It is 
often observed for high order modulations because of their 
denser symbol population. This, however, is contradicted 
by the classification accuracy of 16-QAM. The amount of 
degradation for successful classification of 16-QAM signal 
with shorter signal is minimal resulting a classification ac
curacy of 89% when given 25 samples for analysis. Given 
that the accuracy surpasses the other modulations, it is fair to 
conclude the classifier biased towards 16-QAM modulations. 

7. CONCLUSION 

A classifier with fuzzy c-means clustering initial channel 
estimation, expectation/conditional maximization channel 
estimation, and maximum likelihood classification is pro
posed. The employment of expectation maximization pro
vides estimation of noise variance which is not enjoyed by 
the popular ICA estimator. The likelihood of each modulation 
candidate is evaluated with channel parameters estimated for 
the specific candidate. The classification of simulated signals 
in various settings shows that the classifier is able to provide 
excellent classification accuracy with SNR above 5 dB for 
BPSK, QPSK, 8-PSK, and 16QAM. In addition, the classifi
cation is robust even with the number of signal samples as low 
as 25 from each transmitter stream. Meanwhile, the classifier 
shows a biased character towards high-order modulations, 
especially 16-QAM modulation. Future research is expected 
to understand better the biased behaviour of the classifier as 
well as reducing its complexity for higher-order modulations 
and high dimension MIMO systems. 
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