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Abstract - Monitoring and controlling a large number 
of geographically distributed scientific instruments is a 
challenging task. Some operations on these instruments 
require real-time (or quasi real-time) response which 
make it even more difficult. In this paper, we describe the 
requirements of distributed monitoring for a possible 
future Electrical Power Grid based on real-time exten-
sions to Grid computing. We examine several standards 
and publish/subscribe middleware candidates, some of 
which were specially designed and developed for Grid 
monitoring. We analyze their architecture and function-
ality, and discuss the advantages and disadvantages. We 
report on a series of tests to measure their real-time per-
formance and scalability.  
 

Index terms – monitoring, real time systems, distrib-
uted computing, Grid Computing, publish/subscribe sys-
tems 

I. INTRODUCTION 
In the foreseeable future, there will be a larger num-

ber of small power generators that use renewable en-
ergy sources. They will be highly dispersed in different 
physical locations. Monitoring and control of the ordi-
nary activities of such generators will become an im-
portant issue [1]. Power generators typically produce 
data for monitoring that can be collected remotely and 
updated frequently. Up to tens of thousands of power 
generators will be distributed all over the UK, some of 
them will only be connected through a low speed 
ADSL line. Data monitoring must be processed in real-
time in order to accurately coordinate and control the 
generators. For example, if a power generator has been 
switched on but does not respond for a long time then 
it will be considered to be malfunctioning. A real-time 
system does not need to be very fast but should be sta-
ble and respond within a reasonable predefined time 
limit. Power Grid monitoring is a distributed soft real-
time monitoring system. Most of the data for monitor-
ing should be received within a time limit (e.g. 5 sec-
onds). A small number of delays are sometimes al-
lowed (e.g. less than 0.5%). Traditional monitoring 
systems are highly centralized and run on dedicated 
Wide Area Networks (WANs). Considering the distrib-
uted nature and the large number of the generators, this 
solution is expensive and will not scale very well. 

The GRIDCC (Grid enabled Remote Instrumenta-
tion with Distributed Control and Computation) project 
[2] aims to realize distributed monitoring and control 
via Grid Computing. Other use cases include CMS 
data acquisition system and Synchrotron Radiation 
Storage Ring Elettra [3]. One of the objectives is to 
find a scalable distributed monitoring solution that 
could satisfy the soft real-time requirements. 

The paper is organized as follows: We examine and 
analyze the functionality and architecture of pub-
lish/subscribe middleware candidates in section II, 
describe the experiments and analyze the results in 
section III, review related work in section IV and con-
clude in section V. 

II. PUBLISH/SUBSCRIBE SYSTEMS 
A publish/subscribe (pub/sub) system is a many-to-

many data dissemination system. Publishers publish 
data and subscribers receive data that they are inter-
ested in. Publishers and subscribers are independent 
and need to know nothing about each other. The mid-
dleware delivers data to its destination. The middle-
ware’s functionality is more than forwarding data from 
source to destination. It provides advanced functions 
like data discovery, dissemination, filtering, persis-
tence and reliability, etc. Data are discovered through 
the middleware and can be transferred either directly 
from publisher to subscriber or via a broker. The sub-
scriber can be automatically notified when new data 
becomes available.  Compared to a traditional central-
ized client/server communication model, pub/sub sys-
tem is asynchronous and is usually distributed and 
scalable. 

Considering the distributed nature of the information 
provider and consumer, and the high performance re-
quirement of our problem, pub/sub systems seem to be 
the best solution towards distributed monitoring. Sev-
eral proposals and implementations have been devel-
oped for Grid monitoring. We examine these candi-
dates in the following sections. 

A. GMA and R-GMA 
Recognizing the complicated nature of a monitoring 

system for Grid Computing, the Global Grid Forum 
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(GGF) proposed the Grid Monitoring Architecture 
(GMA) [4] as a solution. The objective of GMA is to 
facilitate the development of interoperable and high 
performance monitoring middleware. 

GMA divides a pub/sub middleware into three basic 
components: producer, consumer and directory service. 
A producer gathers data from various sources, such as 
an instrument or computer server. A consumer receives 
data from a producer and forwards them to destination. 
By separating data discovery from data transfer, GMA 
ensures scalability and performance. Data discovery is 
through a directory service. The directory service is an 
information service where a producer or consumer 
publishes its existence and relevant metadata to. Con-
sumer may search directory for the producer that it is 
interested in. Then they can establish a connection and 
transfer data directly. GMA proposes three data trans-
fer modes between producer and consumer: pub-
lish/subscribe, query/response, and notification. In the 
publish/subscribe mode, either a producer or consumer 
can initiate data transfer. The producer sends data con-
tinuously and either side can terminate. In the 
query/response mode, a consumer initiates communi-
cation and the producer sends all the data to the con-
sumer in one response. In the notification mode, the 
producer must be the initiator. The producer sends all 
the data to the consumer in one notification. 

The Relational Grid Monitoring Architecture (R-
GMA) [5] is an implementation of GMA. The novel 
design of R-GMA is that it has a large virtual database 
(Fig. 2) which looks and operates like a conventional 
relational database. It supports a subset of the standard 
SQL language. Data are published using SQL INSERT 
statement and queried using SQL SELECT statement. 
The difference between a virtual database and conven-
tional relational database is that a virtual database has 
no central storage and data are distributed all over the 
network. 

 Data discovery is through registry and schema. Pro-
ducers and consumers register their addresses in the 

registry. Data must be disseminated via the producer 
and consumer to reach destination. Data transfer be-
tween consumer and destination is query/response 
only. 

R-GMA conforms to Web Services Architecture. It 
uses SOAP messaging over HTTP/HTTPS and Java 
Servlet technology to exchange request/response (ex-
cept data streaming which is implemented in a more 
efficient way). R-GMA APIs are available in Java, C, 
C++ and Python. 

B. JMS and NaradaBrokering 
Java Message Service (JMS) [6] is a widely ac-

cepted industry standard that aims to simplify the effort 
needed for applications to use Message Oriented Mid-
dleware (MOM). JMS defines a set of Java APIs (Ap-
plication Programming Interfaces), with which Java 
programmers can send and receive messages via MOM 
in a uniform and vendor-neutral way regardless of 
what the actual underlying middleware is. 

 Data are discovered by destination. There are two 
kinds of destinations: queue and topic. Data are 
wrapped in a JMS message. JMS supports two data 
dissemination modes: Point-To-Point (PTP) (broker-
less) and publish/subscribe (brokered). Messages are 
delivered via a topic. JMS supports synchronous and 

asynchronous data transfers. For synchronous transfer, 
the subscriber can either poll or wait for the next mes-
sage. For asynchronous delivery, the subscriber regis-
ters itself as a listening object, and the publisher will 
automatically send message by invoking a method of 
the subscriber (callback). 

NaradaBrokering [7] is an open source, distributed 
messaging infrastructure. It is fully compliant with 
JMS. NaradaBrokering supports SOAP message, JMS 
message and complicated events. NaradaBrokering 
supports PTP and pub/sub data dissemination modes, 
and synchronous and asynchronous data transfer 
modes proposed by JMS. NaradaBrokering supports a 

 
Fig. 1.  NaradaBrokering network map 

 
Fig. 2.  R-GMA virtual database 
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number of Web Services and Grid Services specifica-
tions, such as WS-Resource Framework (WSRF), WS-
Notification and WS-Eventing. 

 Several brokers can form a Broker Network Map 
(BNM) (Fig. 1). A specialized node called Broker Dis-
covery Node (BDN) can discover new brokers. Na-
radaBrokering has a very efficient algorithm to find a 
shortest route to send the events to the destination in a 
BNM. NaradaBrokering is a very fast message dis-
semination middleware and it has been successfully 
adopted for audio/video conferencing. NaradaBroker-
ing supports a number of underlying data transport 
protocols, including blocking and non-blocking TCP, 
UDP, multicast, SSL, HTTP, HTTPS and Parallel TCP 
streams.  

III. EXPERIMENTS 

We chose NaradaBrokering and R-GMA as candi-
dates because NaradaBrokering is an open-source, high 
performance middleware. It is JMS compliant and has 
been successfully used for video/audio conferencing. 
R-GMA has been developed for Grid monitoring. It 
has very good scalability and provides useful function-
ality like latest and historical query, content based fil-
tering, etc. We developed Power Grid simulation pro-
grams. We also measured the real-time performance, 
throughput and scalability of the candidates. 

A. Test environment 
The Hydra cluster consists of 8 identical computer 

nodes, (Hydra1 to Hydra8). They are interconnected 
with each other using a 100Mbps switch to setup a 
private LAN. The LAN is isolated from outside to en-
sure the validity of the test results. The actual data 
transfer rate within the LAN is 7 ~ 8 Mbytes per sec-
ond (tested and reported by Linux sftp). Our tests were 
all performed in Hydra cluster. We installed Linux, 
Java and testing software on Hydra nodes. The hard-
ware specifications and software versions are listed in 
Table I. NaradaBrokering is written in Java and re-
quires Java Virtual Machine. R-GMA is implemented 
as a Java Servlet and requires Tomcat, MySQL and the 
Java Virtual Machine. 

B. Power Grid simulation 
We have developed a Java program to simulate the 

activities of a large number of distributed power gen-
erators. It could fork into a large number of threads. 
Each thread may simulate one power generator and 
generate monitoring data, such as power output and 
voltage. These monitoring data were published to the 
middleware periodically at a specified frequency (e.g. 
every 10 seconds). Another Java program received data 

from the middleware. Information of the monitoring 
data (such as sending and receiving time, etc) was 
dumped into a local text file for later analysis. Data 
dumping used highly efficient logging APIs which 
were mainly cached hard-drive write operations, so the 
overhead was negligible. When simulating 750 genera-
tors on one computer, the publishing rate was 75 mes-
sages per second and the throughput was less than 
50Kbytes per second. The CPU idle time was above 
85%. For most tests, we simulated no more than 750 
generators on one computer. We simulated 1000 gen-
erators per computer in only one test and the result 
seemed to be consistent. 

C. Performance metrics 
We used the following parameters to measure per-

formance [8] [10]: Round-Trip Time (RTT), RTT 
variation, loss rate and percentile of RTT. RTT was 
calculated as the mean round-trip time of all the mes-
sages. The round-trip time of each message was the 
difference between sending and receiving time. RTT 
variation was calculated as the standard deviation 
(STDDEV) of all the round-trip times. Percentile of 
RTT was the percentage of the round-trip times.  

Publishing and subscribing are asynchronous opera-
tions, which consist of two synchronous operations. 
Response time is the time to complete one synchronous 
operation, which is the time it takes to send or receive 
a message. 

We recorded CPU idle time and memory consump-
tion using Linux tool vmstat. CPU idle time was calcu-
lated as the average of CPU idle time during the tests. 
Memory consumption was calculated as the difference 
between peak and bottom values. It should be noted 
that memory consumption was sometimes not very 
accurate because Linux used some memory as cache. 

D. Why not Web Services 
We did not use Web Services to test the candidate 

middlewares mainly for the reason of performance. 
Web Services are known to be slow and not suitable 
for high performance scientific computing [9]. The 
serialization and de-serialization of XML and floating 
point value/ASCII conversion are the bottlenecks. The 
interoperability issue can be compensated by introduc-
ing a proxy that has a Web Services interface [3]. 

TABLE I HARDWARE SPECIFICATIONS AND SOFTWARE VERSIONS 
CPU and 
memory 

OS and JVM Middleware 

PentiumIII 
866MHz, 2GB 

Sci Linux, kernel 
2.4.21, Sun Hotspot 
JVM 1.4.2 

NaradaBrokering 
v1.1.3, RGMA gLite 
v3.0, Tomcat v5.0.28 
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E. NaradaBrokering tests 
Simulated power generators were created at the in-

terval of 0.5 second. Each generator first slept for a 
random time between 10 to 20 seconds to allow the 
monitoring data to distribute evenly, it then used a JMS 
TopicPublisher to publish data to a JMS topic at the 
interval of 10 seconds. Two integer, five float, two 
long, three double and four string values were pack-
aged in a JMS MapMessage as monitoring data. An-
other Java program used JMS notification mechanism 
to receive monitoring data from the same topic. It cre-
ated a listener and subscribed to the topic with a simple 
JMS selector (e.g. “id<10000”). This selector did not 
filter out any data but just to simulate real uses. The 
listener would be automatically notified by Narada 
broker when new messages become available. All the 
tests used non-persistent delivery, non-durable sub-
scription, non-transaction, non-priority and 
AUTO_ACKNOWLEDGE settings unless otherwise 
indicated. 

In order to create more than 1000 threads, we used 
Linux command to set file descriptors to 50000 
(‘ulimit -n 50000’). We allocated 1GB memory for 
Java Virtual Machine of NaradaBrokering (‘-
Xms1024m -Xmx1024m’).  

1) Comparison tests: 
The aim of these tests was to measure how different 

underlying transport protocols, payload and concurrent 
connections could affect performance. We simulated 
800 power generators. Each test lasted 30 minutes and 
was performed twice to ensure validity. The settings of 
the tests are listed in TABLE II. All tests used 
AUTO_ACKNOWLEDGE except test 2, which used 
CLIENT_ACKNOWLEDGE. Test 5 (Triple) used 
triple payload and the publishing rate was reduced to 
1/3, therefore the total data delivered remained the 
same. Test 6 (80) used 80 generators (concurrent con-
nections), which is 1/10 of the other test. The publish-
ing rate was increased 10 times, therefore the total data 
delivered remained the same.  

In test 1 (UDP), a total of 144,000 messages were 
sent and 143,914 messages were received. The loss 
rate was 0.06%. In test 2 (UDP CLI), the loss rate was 
0.03%. For all other tests, the loss rate was zero. 

The results of the tests (fig. 3 & fig. 4) show that 
TCP is a very stable transport protocol and has excel-

TABLE II COMPARISON TESTS SETTINGS 
 Transport 

protocol 
ACK 
mode 

comment 

Test1 (UDP) UDP   
Test2 (UDP CLI) UDP CLIENT  
Test3 (NIO) NIO   
Test4 (TCP) TCP   
Test5 (Triple) TCP  Triple payload 
Test6 (80) TCP  80 connections 
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Fig. 3.  Narada comparison tests 
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lent performance. The results of UDP test are surpris-
ingly high. The possible reason is that we used JMS 
over UDP. UDP is connectionless which has no guar-
antee whether a packet will be received or not, but JMS 
requires an acknowledgement. The way that Narada 
acknowledges the messages severely slows the per-
formance down. Test 5 (Triple) and test 6 (80) were 
aimed to compare the effect of the size of the messages 
and the number of concurrent connections to perform-
ance. The performance slowed down with large pay-
load. This implies that Narada is good at small sized 
messages. The percentile of RTT is shown in fig. 6. 

2) Performance and scalability tests:  
We simulated a number of generators to test the per-

formance of a single Narada broker and Distributed 
Broker Network. The test settings were the same as 
previous TCP test (test 4). 

We setup a distributed topology which could take 
advantage of middleware’s capability to efficiently 
route messages to destinations. This topology is scal-
able. It can sustain an even larger number of concur-
rent connections and maintain a good performance (fig. 
5). Brokers are components of pub/sub middleware. 
They are located on different computers and intercon-
nected with each other to comprise a broker network. 
Publishers connect to publishing brokers. Subscribers 
connect to subscribing brokers. Messages published to 

any one of the brokers can be received by any sub-
scriber who is also connected to the network and has 
subscribed data. A publishing broker accepts no more 
than m concurrent connections. A subscribing broker 
accepts throughput of no more than n. If m and n are 
the safe thresholds for a broker and will not cause “out 
of memory” error or severe performance slow down, 
then this topology is able to maintain a large number of 
concurrent connections. We used four nodes to setup a 
Distributed Broker Network (DBN). One of them was 
the unit controller and assigned addresses to the other 
three nodes. We used the other four nodes to simulate 
generators and publish data. Data were received by the 
node where they were sent and there was no time syn-
chronization problem. 

Fig. 7, fig. 8 and fig. 9 show the test results. Narada 
performed very well. 99.8% of messages arrived within 
100 milliseconds. There was a smooth increase of 
round-trip time according to the number of concurrent 
connections. Both round-trip time and standard devia-
tion were very low. Our tests also showed that on our 
testbed a single Narada broker cannot accept 4000 
concurrent connections. It ran out of memory to create 
new threads to serve more incoming connections. The 
DBN could accept more than 4000 concurrent connec-
tions and maintain a good performance. 

Round-trip time and standard deviation are com-
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pared in fig. 7. We expected the results of DBN tests to 
be better than single server. However, they are a little 
disappointing and are higher than single server. We 
have monitored unnecessary data flow between nodes, 
that is, data flowed to a node even if there was no sub-
scriber linked to it. This unnecessary data flow slowed 
performance down. CPU idle and memory consump-
tion were recorded in fig. 6. CPU load of the DBN 
tests was higher than single server. All these strongly 
suggested that data were broadcast and not diverged to 
different routes. It would be difficult for Narada DBN 
to accept more connections and higher throughput. 

3) Summary: 
Narada has excellent real-time performance and high 

throughput. We recommend TCP as the underlying 
transport protocol to reach high performance. Both 
message size and publishing rate affect performance. A 
single Narada broker could not accept more than 2500 
concurrent connections on our testbed. A Distributed 
Broker Network could support a larger number of con-
current connections. But the current version has some 
deficiency that limits its scalability.  

F. R-GMA tests 
Simulated power generators were created at an in-

terval of 1 second. Each generator waited for a random 
time between 10 to 20 seconds to allow publishing data 
to distribute evenly and to allow R-GMA server 
enough time to ‘warm up’. The generator then used 
Primary Producer API to publish monitoring data into 
a table at the interval of 10 seconds. Primary Producers 
used memory storage to allow fast query. The latest 
retention period was set to 30 seconds and history re-
tention period was set to 1 minute. We used four inte-
ger, eight double and four char (length 20) values, 
which were wrapped in an SQL statement, as monitor-
ing data. Consumer used continuous query to receive 
data from Primary Producers. Another Java program 
(subscriber) used Consumer API to receive data from 
the Consumer. The subscriber could not be automati-
cally notified by the Consumer and it queried the Con-
sumer at the interval of 100 milliseconds. Therefore 
there was a 100 millisecond error. Monitoring data 
were received by the machine where they were sent 
and there was no time synchronization problem. 

R-GMA server ran within Tomcat. The number of 
concurrent connection of Tomcat was increased to 
1000. Memory allocated to Java Virtual Machine was 
increased to 1GB (‘-Xmx1024m’). R-GMA used non-
secure mode and the underlying transport protocol was 
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HTTP.  
1) Performance and scalability tests: 
We simulated a number of generators to test R-

GMA components on a single server and a distributed 
R-GMA architecture. 

R-GMA has a natural way to implement a distrib-
uted architecture. The R-GMA Producer, Consumer 
and Registry can be installed onto different machines. 
The Producer gathers monitoring data and the Con-
sumer sends data to the subscribers. R-GMA was in-
stalled onto four Hydra nodes: two Producer nodes and 
two Consumer nodes. R-GMA client and power gen-
erator simulation programs were installed on the other 
four Hydra nodes, two nodes published data and two 
received data. The time of the computers were syn-
chronized by NTP (Network Time Protocol). 

R-GMA supports two underlying application layer 
protocols for message transfer: HTTP and HTTPS. We 
did not use HTTPS because of the encryption over-
head. In our tests we found that when creating a large 
number of Primary Producers, each thread must wait 
for a short time (5 ~ 10 seconds) before publishing data 
otherwise data will probably be lost. This is probably 
because it took some time for the producer to look for 
the consumer. We have tested 400 generators publish-
ing data without waiting for the server to ‘warm up’. A 
total of 72,000 messages were sent and 71,876 mes-
sages were received. The loss rate was 0.17%. 

The results of the Primary Producer and Secondary 
Producer tests are shown in fig. 10. The delays were up 
to 35 seconds. The results of the Primary Producer and 
Consumer tests are shown in fig. 11, fig. 12 and fig. 
14. The loss rates were zero for all tests. Both round-
trip time and standard deviation were higher than those 
of Narada tests. 99% of messages arrived within 4000 
milliseconds. Our tests also showed that one R-GMA 
server cannot accept 800 concurrent connections. It ran 
out of memory to create new threads to serve incoming 
connections. 

Comparing the results, distributed architecture per-
forms better than a single server. The distributed archi-
tecture can accept up to 1000 concurrent connections 
(and could be even more). CPU idle and memory con-
sumption are shown in fig. 13. CPU load of a distrib-
uted architecture is lower than a single server. The re-
sults strongly suggest that R-GMA scales very well.  

2) Round-trip time decomposition: 
In order to further analyze the performance of R-

GMA, we decompose Round-Trip Time into three 
phases. PRT is Publishing Response Time, which is 
how long it takes to publish data. PT is Process Time, 
which is how long it takes to process data in the mid-
dleware. SRT is Subscribing Response Time, which is 

how long it takes to receive data when it is available. 
Their relationship is represented in the following equa-
tion: 

 
RTT = PRT + PT + SRT 
 
Fig. 15 shows these phases of R-GMA and Narada-

Brokering. PRT is before_sending ~ after_sending in 
the graph. PT is after_sending ~ before_receiving. SRT 
is before_receiving ~ after_receiving. As we can see 
from the graph, both Publishing and Subscribing Re-
sponse Time of R-GMA are short, but the Process 
Time is very long. This long delay occurs in the Pri-
mary Producer and Consumer. The three phases of 
NaradaBrokering are very short. 

3) Summary: 
R-GMA has lower performance and throughput than 

NaradaBrokering, because R-GMA takes a long time 
to process data. A Primary Producer should wait for a 
few seconds to let R-GMA server ‘warm up’ to avoid 
data delay and lost. A single R-GMA Producer could 
not accept more than 500 concurrent connections on 
our testbed. R-GMA has very good scalability. A dis-
tributed R-GMA network has better performance and 
can deal with a larger number of concurrent connec-
tions. 

We find discrepancies between our test results and 
[11], where the authors achieved high performance 
with R-GMA. This is because we tested different ver-
sions of R-GMA. They tested an old API of R-GMA 
(Stream Producer and Archiver) and we tested a newer 
version (Primary Producer, Secondary Producer and 
Consumer). We contacted R-GMA developers and 
found that there was now a deliberate delay of 30 sec-
onds in the Secondary Producer. However, the delays 
in the Primary Producer and Consumer need further 
investigation. 
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IV. RELATED WORK 
IBM Reliable Multicast Messaging (RMM) [12] is a 

high-throughput low-latency publish/subscribe middle-
ware. Their tests show that RMM is the fastest Mes-
sage Oriented Middleware (MOM) available in the 
market. The performance of publish/subscribe middle-
ware is usually restricted by the size and quantity of 
the messages delivered. Their study shows that in 
MOM the quantity of the messages is the dominant 
overhead. RMM achieves high performance by using 
message aggregation. Message aggregation is to reduce 
the number of total messages by combining several 
messages addressed to the same destination into one 
big message. Message aggregation can be accom-
plished either at the sender side or the middleware side. 

X. Zhang et al. [13] have tested and compared three 
Grid monitoring systems, which were MDS, R-GMA 
and Hawkeye. They distinguished four components of 
the systems and tested their throughput and response 
time separately. Their test results show that different 
components of different middleware have different 
performance. 

V. CONCLUSION AND FUTURE WORK 
We explained the requirements of real-time monitor-

ing of the future Power Grid. We examined the archi-
tecture and functionality of several standards and 
pub/sub middlewares. The middlewares are all decen-
tralized and Web Service compliant. We carried out 
tests to measure their performance. The test results 
show that NaradaBrokering has very good real-time 
performance, high throughput, and average scalability. 
R-GMA has lower real-time performance, lower 
throughput and very good scalability (Table III). Con-
sidering additional network and application delays, the 
current version of R-GMA is not suitable for real-time 
monitoring. We are working with R-GMA developers 
to improve performance in this area. 

We have found a deficiency in the current version of 
NaradaBrokering, which causes data congestion and 
limits its scalability. We have contacted the developers 
and are going to test the newest release in the future. 
Related work shows that an old version of R-GMA has 
improved performance compared to the current release. 
We have contacted R-GMA developers and so far 
found a performance bottleneck. However, further in-
vestigation needs to be conducted. 

Another important conclusion that can be drawn 
from this research is that when evaluating middleware 
for real-time monitoring applications an important con-
sideration is the efficiency of the middleware to locate 
resources within a predefined time limit. If a real-time 
monitoring resource is not located within a predefined 
time limit then data loss can occur.  

R-GMA has many advantages over other MOM 
middleware. It provides content-based filtering, latest 
and history query, etc. For applications where there is 
no such strict real-time requirement, R-GMA will be 
considered. 
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TABLE III R-GMA AND NARADABROKERING COMPARISON 

 Real-time 
performance 

Concurrent Connec-
tions & Throughput 

Scalability 

R-GMA Average Average Very good 
Narada Very good Very good Average 


