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Abstract 

Three-phase power imbalances may occur in the distribution network due to high 

electric vehicle (EV) charging demand. The imbalances become severe with the 

increasing number of EVs in the future and may be addressed with coordinated charging 

strategies. In this paper, we propose a phase-balancing and peak-shaving scheme for a 

community in the three-phase power distribution system by managing the charging and 

discharging strategies for EVs and grid battery energy storage systems (BESS). The 

proposed scheme includes energy transactions and distributed optimization models. In the 

transaction model, vehicle-to-vehicle (V2V) energy trading is considered. In the 

optimization model, the distribution system operator (DSO) optimizes the energy 

management strategy of the grid BESS while the EV owners optimize their charging 

strategies. Financial incentives are introduced to encourage the EV owners to assist the 

distribution system operator in reducing the phase imbalance. Simulation results show 

that the proposed scheme could mitigate the phase imbalance and reduce the difference 

between peak and valley load of the load curves in the three-phase distribution system. 

Both EV owners and the distribution system benefit financially. Moreover, the power 

quality and system reliability of the distribution network can also be improved. 
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1. Introduction 

Three-phase four-wire networks are widely used in power distribution systems [1]. 

Residential customers are usually connected to the distribution system through single-

phase lines. Due to the uneven allocation of single-phase load among three phases and 

the randomness of load behavior, phase imbalance is common in the distribution network. 

Phase balancing, i.e., keeping the load balanced in each phase is essential for the reliable 

and economic operation of the distribution system. This is because severe three-phase 

power imbalance will 1. increase line and transformer energy losses; 2. increase the risk 

of line tripping; 3. reduce power quality, energy efficiency, and the lifetime of induction 

motors. Ref. [2] provides a comprehensive review of the causes, consequences, and 

traditional solutions of phase imbalance in distribution networks.  

In recent years, electric vehicles (EVs) are gaining popularity as the technology can 

potentially address internal combustion engine vehicle issues which contributes to fossil-

fuel depletion, environmental problems, and lower running costs. As the number of plug-

in EVs in the distribution system increases, the phase imbalance problem becomes 

increasingly serious due to the random nature of the travel and charging behavior of EV 

users [3]. A literature review on the impact of EV charging on the distribution network is 

presented in [4]. As the goal to achieve "carbon neutrality" as early as possible has 

become the consensus of most countries in the world, the number of EVs [5] connected 

to power grids will increase significantly in the future and the phase imbalance problem 



may be aggravated and thus deserves more careful study. Coordinated charging strategies 

for EVs are needed. This not only helps to avoid phase imbalance caused by the EV users 

themselves but also helps to mitigate phase imbalance caused by other infeasible loads.  

Many research projects have been done to solve the phase balancing problem. 

Traditionally, phase rebalancing techniques, such as phase swapping [6] and feeder 

reconfiguration [7] are widely used. However, these methods consider manual rephasing 

operation, which may be ineffective or can incur additional costs on human resources, 

maintenance expenses, and planned power outages. Recently, demand-side energy 

management strategies to mitigate phase imbalances have been investigated. The key idea 

is to use the power consumption flexibility of demand-side resources to balance the load. 

In [8], an active load control strategy is proposed to transfer load from the heavily loaded 

phase to the lightly loaded phase. As mentioned above, due to the presence of many plug-

in EVs in the distribution system, strategies for coordinating EV charging are needed to 

avoid and mitigate the three-phase imbalance problem. Several studies have focused on 

this topic. In [9], the authors proposed an ordered charging strategy for electric vehicles 

in which the charging time, the size of charging power, and the amount of charging energy 

of each electric vehicle are uniformly scheduled to reduce the three-phase power 

imbalance. In [10], a real-time multilevel energy management strategy for EV charging 

is proposed. In this paper, both active and reactive charging power of EV chargers is 

optimized to balance power consumption in the three phases. In [11], the authors proposed 

a robust allocation approach of battery energy storage systems to improve the hosting 

capacity of unbalanced distribution networks including renewable energy generators. The 



approaches mentioned above are all based on solving a centralized optimization problem. 

Although the centralized method is straightforward, two problems are associated with it. 

First, the customers are usually very careful while allowing the distribution system 

operator (DSO) to directly control their appliance because of privacy protection. Second, 

centralized optimization models suffer from "dimensional difficulties". As the number of 

customers increases, the efficiency of the solution decreases. To overcome these problems, 

distributed optimization models have been developed. In [12], a phase distributed 

balancing scheme based on the game-theoretic is proposed. The optimal control of energy 

storage systems has also been investigated to mitigate the power imbalance among phases 

in distribution networks. In [13], a stochastic optimization model for scheduling the 

charging and discharging power of the battery energy storage systems (BESS) is proposed 

to mitigate the phase imbalance in substations. Both centralized and distributed models 

are discussed in this paper. A distributed energy management strategy for community 

microgrids including energy storage systems is proposed in [14], where the maximum 

phase imbalance at the point of common coupling is constrained. The above literature 

shows that an ordered energy management strategy for EVs and BESS facilitates load 

balancing in the distribution system. However, there are still some shortcomings in the 

existing research work. In most of the distributed models presented in the above papers, 

the load balance constraint of the load bus and the power flow constraint of the 

distribution feeder are usually ignored, such as [10] and [12]. The optimal solutions 

obtained from these models may affect the reliable operation of the distribution system. 

In addition, none of these papers consider the cooperation of EVs and BESS to achieve 



phase balancing. Although EVs and BESS have similar operation constraints, there are 

some differences in their models. Moreover, the randomness of EV charging also has 

negative impacts on the peak-valley difference of the load curve [15], [16], and [17]. The 

reduction of the peak-to-valley differences of active power consumption on each phase 

should be considered while dealing with the phase imbalance problem. 

In summary, based on the above research gap analysis, this paper proposes a 

coordinated charging and discharging strategy for EVs and grid BESS to reduce the phase 

imbalance and peak-to-valley differences in the three-phase distribution system. This 

work is an extension of our previous work [18], in which an energy transaction model for 

mitigating three-phase power imbalance by scheduling EV charging is presented. 

Compared with existing studies and our previous work, the main contributions of this 

paper are summarized as follows: 

1) We propose a phase-balancing and peak-shaving scheme for a three-phase 

power distribution system by managing the charging and discharging strategies 

for EVs and BESS. In the proposed scheme, an energy transaction model and a 

distributed optimization model are included. 

2) In the transaction model, a vehicle-to-vehicle (V2V) energy trading mechanism 

is proposed. In the optimization model, both the centralized optimization 

method and the distributed optimization approach are proposed. The power flow 

constraints of the distribution feeders and the power balance constraint of the 

load bus are considered in the problem.  

3) Financial incentives are introduced and allocated according to the contribution 



of EVs and BESS to mitigate the three-phase imbalance and peak-to-valley 

differences. The benefits of our proposed scheme for EV owners, BESS, and the 

DSO are illustrated by extensive simulations. 

4) Considering that some EV users may be reluctant to participate in coordinating 

charging strategies for commuting convenience, a scenario-based two-stage 

stochastic optimization model is proposed to cope with the load uncertainty 

caused by these EVs. 

The rest of the paper is organized as follows. Section 2 introduces the system 

modeling and the proposed energy transaction model and optimization model. 

Consequently, a distributed optimization model is developed in Section 3. Section 4 

introduces the scenario-based two-stage stochastic optimization model. Section 5 presents 

numerical results and discussions. Section 6 concludes the paper with future work given. 

2. System Modeling and The Proposed Energy Transaction Model and Optimization 

Model 

Fig. 1 shows a community in which single-phase uncontrollable loads, EV chargers, 

and grid BESS are connected to a load bus, while this bus is connected to the substation 

through the distribution feeder of a three-phase distribution system. Due to the random 

nature of load consumption and EV charging behavior, the power flow in the three-phase 

distribution feeders can be highly unbalanced. Since many EVs especially those used for 

commuting will spend most of their time parked at home or the workplace, their charging 

times can be quite flexible. Therefore, the DSO can take advantage of the timing 

flexibility of EV charging and provide certain incentives to encourage rescheduling of 



EV charging. This not only helps to avoid phase imbalance caused by EVs themselves 

but also helps to mitigate phase imbalance caused by other uncontrollable loads.  

 
Fig. 1. A community connected to a three-phase distribution system 

In this section, we describe the proposed energy transaction model and the 

optimization model. These models help mitigate the phase imbalance and peak-to-valley 

differences in the three-phase load profile, by coordinating the charging and discharging 

of EVs and grid BESS. 

2.1 Energy Transaction Model 

To enhance the three-phase power balancing in the system, there is a requirement for 

additional development for new market designs to increase EVs’ participation [19]. It is 

conceivable that if the price of EV charging from the grid is higher than the price of 

discharging to it, it is expected that electric vehicle owners will use these price signals to 

trade energy to make a profit or reduce charging costs. However, due to the decentralized 

nature of EVs, EVs that reach trading contracts need to trade energy through distribution 

networks. To reduce the three-phase imbalance, an agreement could be formed between 

the DSO and EVs: the DSO would waive the distribution fee for the EVs, while the 

charging and discharging phases for the EVs would be selected by the DSO. Based on the 

above analysis, Fig. 2 presents a V2V energy trading model based on a double auction 
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mechanism. Sellers and buyers are ranked based on the offer information, with sellers 

ranking high if they have a low bid and buyers ranking high if they have a high bid. The 

vertical dashed line indicates the auction breakpoint. The EV user to the left of the auction 

breakpoint will conclude the transaction contract. The DSO will arrange their final 

charging and discharging strategy. For example, if the load on phase A is heavy, the EV 

is scheduled to discharge on phase A. If the load on phase B is light, the EV is scheduled 

to charge on phase B. The EVs to the right of the auction breakpoint did not get a trade 

contract and some EVs do not want to participate in V2V energy trading because frequent 

discharges can affect the life of the battery. These EVs can participate in the optimization 

model to reduce charging costs which will be discussed in the next section.  

 

Fig. 2. Aggregation of bidding curve and determination of the bidding price. 

2.2 The Centralized Optimization Model 

In this section, by coordinating the charging and discharging of EVs and grid BESS, 

we present the mathematical formulation of the centralized optimization problem to 

mitigate the phase imbalance and peak-to-valley differences in the three-phase load 

profile. Before detailing the objectives and constraints of the optimization problem, we 

first describe the mathematical modeling of the system. Fig. 3 shows the power flow 
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distribution of the above distribution system, and the details in phase B are shown as an 

example. Note that for brevity, in the following discussion we use phases 1, 2, and 3 to 

denote phases A, B, and C, respectively. Fig. 3 shows that the power flow in the 

distribution feeders at time slot  is denoted as  . The key idea of this 

work is to minimize the differences between the power flow in each phase and each time 

slot. Note that we assume the value of  is always positive, i.e., the load consumption 

of the distribution system is assumed to be greater than the production. In each phase, the 

amount of active power consumption of the uncontrollable load at time slot  is denoted 

as . Assume that there are  EVs,  grid BESS units in phase . The 

charging power of the  EV of phase  at time slot  is denoted as . The 

charging and discharging power of the  BESS unit of phase  at time slot  are 

denoted as  and , respectively. With these definitions, we then introduce the 

mathematical formulation of the proposed optimization problem. 

 
Fig. 3. Power flow distribution modeling of the three-phase distribution system. 

The objective terms to minimize the phase imbalance and peak-to-valley differences 

of the three-phase load curves in the time horizon  are shown in Equation (1). 
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reflects the variance of the power flow for different time slots in the time horizon. The 

smaller these two terms are, the more balanced the power flow is for the three phases and 

for all time slots. Thus, by minimizing them, we can reduce the phase imbalance and the 

peak-to-valley differences of the three-phase load curves. Together with the operating 

costs of EVs and BESS, the objective function of the proposed optimization model is 

shown in Equation (2). 

  (2) 

The second row of the objective function is the total charging cost of all EVs. The 

third and fourth rows are the cost of BESS, which is equal to the charging cost minus the 

discharge revenue, and then add the battery degradation cost [20]. For the constraints, the 

proposed model considers the power balance of the load bus and the flow limitations of 

each phase feeder, as well as the operating constraints of the EVs and BESS, as shown in 

Equations (3)-(17). 
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The power balance of each time slot in each phase is ensured by Equation (3). 

Constraint Equation (4) ensures power flow limitation of distribution feeders. For each 

EV, the minimum and maximum charging power are constrained by Equation (5), and 

the energy in the EV battery at the end of each time slot is calculated by Equations (6) 

and (7), and constrained by Equation (8). Constraint Equation (9) ensures that the final 

stored energy of the EV battery is greater than the expected value of the EV owner. For 

each BESS system, the constraints Equation (10) and Equation (11) limit the charging 

and discharging power of the BESS to the allowed range. Two integer variables are used 

to ensure that only one state, i.e., charging or discharging, is true during each time interval. 

Equation (14) calculates the energy in the BESS for each period considering the 

efficiency of charging and discharging, and Equation (15) ensures that the final stored 

energy in the BESS is equal to the initial energy. Constraint Equation (17) ensures that 
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the energy stored in the BESS is within the allowable operating range. 

3. Distributed Optimization Algorithm for the Centralized Model  

The centralized optimization model proposed in Section 2.2 is straightforward to 

implement. However, privacy issues may arise in practical implementation, as EV users 

may be unwilling to provide their information to the DSO. In addition, the solving 

efficiency of this model may decrease as the number of EVs increases. In this section, we 

provide a distributed algorithm to solve this centralized optimization model, where only 

a limited exchange of information is required. The distributed algorithm is based on the 

alternating direction method of multiplier (ADMM) [21]. In this paper, we decompose 

the centralized optimization model into optimization subproblems at the DSO and EV 

owner levels. The DSO optimizes the charging and discharging of the grid BESS and the 

power input from the grid, while the EV users optimize their charging power. The optimal 

solution can be found by iteratively exchanging and updating their solution results. As 

shown in Section 2, only the power balance constraint Equation (3) is a complex 

constraint that involves variables at both levels mentioned above. According to the scaled 

form of ADMM, by introducing a scaled dual variable , we could decompose the 

centralized optimization problem into a set of optimization subproblems without coupling 

constraint Equation (3). The complete procedure of the proposed distributed optimization 

algorithm is shown in Algorithm 1. 
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Algorithm 1: Distributed Optimization Algorithm for the Proposed Model 
1:  Initialization: , , , ,  , , , , , ,

 
2:  Set the counter ,  , , , . 
3:  repeat 
4:    Solve SubP1 Equation (18) for each EV and get the result . Pass the 
solution result to SubP2. 
5:    Solve SubP2 Equation (19) and get the result ,  and 

. Pass the solution result to SubP1. 
6:    Update , and  by Equations (20) and (21). 
7:     
8:  Until and  
9:  Return , , , and . 

In iteration , the optimization subproblem for the  EV on phase  is as 

follows. 

  (18) 

s.t. (5)-(9) 

In iteration , the optimization subproblem for the DSO is as follows: 
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s.t. (4), (10)-(17) 

In iteration , the update formula for  is as follows: 

  (20) 

In iteration , the primal and dual residuals used to check convergence are 

EVmax
,p iP

EVch
,p ih EVmin

,p iE EVmax
,p iE EVexp

,p iE BSch
,p jh BSdis

,p jh BSmax
,p jP BSmax

,p jE BS
, ,0p jE

GridMax
pP

0k = ( )EVch,
, , =0k
p i tP ( )BSch,

, , 0k
p j tP = ( )BSdis,

, , 0k
p j tP = ( )Grid,

, 0k
p tP = ( )

, 0k
p tu =

( )EVch, 1
, ,

k
p i tP +

( )BSch, 1
, ,

k
p j tP + ( )BSdis, 1

, ,
k

p j tP +

( )Grid, 1
,

k
p tP

+

( )1
,
k
p tu
+ 1

,
k
p tr
+ 1

,
k
p ts
+

1k k= +
1
,
k pri
p tr e+ £ 1

,
k dual
p ts e+ £

EVch
, ,p i tP BSch

, ,p j tP BSdis
, ,p j tP Grid

,p tP

1k + -thi p

( ) ( ) ( )( ) ( ) ( )

Price EVch
, ,

1
2

3
EVch, BSch, BSdis, Grid,EVch Load

, , , , , , , , , , ,
1 1 1, 1 2

 min 

+
2

p p

T

t p i t
t

NEV NBST
k k k k k

p i t p n t p j t p j t p t p t p t
t p n n i j

p P t

P P P P P P ur

=

= = = ¹ =

D

+ + + - - +

å

åå å å

SubP1 : 

1k +

( )

2 23 3 3
Pib Grid Grid Tib Grid Grid

, , , ,
1 1 1 1 1 1

3
Price BSch BSdis

, , , ,
1 1 1

BSch BSch
, , . , ,

1 1   min 
3

        

        +0.5

p

T T T

p t p t p t p t
t p p t p t

NBST

t p j t p j t
t p j

p j p j t p j t

k P P k P P
T

p P P t

P Ph

= = = = = =

= = =

æ ö æ ö
- + -ç ÷ ç ÷

è øè ø

+ - D

-
´

åå å åå å

ååå

SubP2 :

( ) ( ) ( )

BSdis BSdis3
, Price

80%
1 1 1

2
3

EVch, 1 BSch BSdis Grid Load
, , , , , , , , ,

1 1 1 1 2

/

L

       +
2

p

p p

NBST
p j

bat
t p j cyc

NEV NBST
k k

p i t p j t p j t p t p t p t
t p i j

t
p

P P P P P u

h

r

= = =

+

= = = =

´D
´

+ + - - +

ååå

åå å å

1k + ,p tu

( ) ( ) ( ) ( ) ( )( ) ( )1 , EVch, 1 BSch, 1 BSdis, 1 Grid, 1 Load
, , , , , , , , , ,

1 1

p pNEV NBS
k k t k k k k
p t p t p i t p j t p j t p t p t

i j
u u P P P P P+ + + + +

= =

= + + - - +å å

1k +



calculated as follows: 

 (21) 

After obtaining the optimal solution of the model, we can allocate incentive 

payments based on the contribution of EVs and BESS to mitigate the three-phase 

imbalance and peak-to-valley differences, according to Equations (22)-(24).  

  (22) 

  (23) 

  (24) 

 and  are calculated according to Equation (1).  is the value of  

when only the charging solutions of EVs are used to calculate . ,  and 

 have similar definitions to . Each EV owner acquires an equal share of the 

gross remuneration . The DSO acquires the remuneration of BESS . 

4. Stochastic Optimization Considering the Uncertainty of EV Charging 

The deterministic model presented in Section 3 assumes that all plug-in EVs in the 

community will participate in the coordinating charging strategy and comply with the 

agreement, which is a bit idealistic. In practice, some EV users may be reluctant to 

participate in the scheme for commuting convenience or do not comply with the 

agreement after participating in the program. In this section, a scenario-based two-stage 

stochastic optimization model is proposed to cope with the load uncertainty caused by 

these EVs. Next, we will first describe the scenario generation and reduction methods, 

and then propose the model. 
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4.1 Uncertainty Scenario Generation and Reduction Methods 

In this paper, a Monte Carlo simulation method is used to generate scenarios that 

reflect the uncertainty of EV charging. The uncertainty of EV charging is reflected in the 

uncertainty of EV arrival time and departure time at the charging station, and initial SoC 

level. Suppose that the DSO has the probability density functions for these three 

uncertainty parameters are ,  and . It is assumed that 

each EV starts charging on arrival and charges at rated power until fully charged or left. 

Then, the total charging power of all EVs at each moment can be calculated based on the 

arrival and departure times and the initial SoC level. Equation (25) is used to generate a 

certain number of scenarios that reflect the uncertainty of EV charging. 

  (25) 

where ,  and  are three random numbers that obey a uniform 

distribution on [0,1]; ,  and  are the arrival time, departure time, and 

initial SoC level of EV  in one of the scenarios generated by the simulation, 

respectively.  

If there are  EVs on the grid that do not participate in the coordinated 

charging strategy presented in Section 3, then the grid needs to consider the uncertainty 

of these EV charging. By sampling the arrival and departure times and the initial SoC 

level of these EVs, according to Equation (25), then, the total charging load required by 

these EVs on each phase at each moment can be calculated based on the second 
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assumption above. An example of a scenario is given in Equation (26). 

  (26) 

For an optimization problem, if the number of scenarios is too large, it will increase 

the computational complexity. If the number of scenarios is too small, the accuracy of 

simulation results will not be high. To overcome this difficulty, we use the scenario 

reduction method based on probability metrics to eliminate scenarios with small 

probability and collect similar scenarios. Simultaneous Backward Reduction is used in 

this paper, the detailed processes are shown below: 

1) Suppose that we have obtained  scenarios , each with an occurrence 

probability of ; we expect to reduce the number of scenarios to . 

We set up two sets, a set  that holds the initial scenarios and an empty set 

 that is used to hold the scenarios to be eliminated later. Calculate the 

distance  between each pair of scenarios in , according to 

Equation (27) 

  (27) 

2) For each scenario  in , find the scenario  that has the shortest distance 

from scenario , according to Equation (28). 

  (28) 

3) After finding the shortest distance scenario  for each scenario , 

calculate  according to . Find the scenario  

that has the smallest value of , according to . 

4) Eliminate scenario , and update sets  and , according to 
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. Recalculate the probability of scenario  that 

has the shortest distance from scenario , according to . 

5) Repeat steps 2)-4) until the total number of remaining scenarios is . 

4.2 Scenario-based Two-stage Stochastic Optimization Model 

In this section, a scenario-based two-stage stochastic optimization model is proposed 

to cope with the load uncertainty caused by these EVs. The first stage decision is made 

before uncertainty is known and the second stage decision is made after uncertainty is 

observed. The first stage simulates the day-ahead operation plan of the grid, and the 

second stage simulates the real-time operation. In the first stage, in addition to optimizing 

the charging and discharging strategies for those EVs and BESS participating in the 

energy management program, the grid's power reserve allocation strategy will be 

optimized to ensure that sufficient reserves can be provided for the second stage to cope 

with the load uncertainty caused by those EVs not participating in the coordinated 

charging strategy. In the second stage, the power provided by the grid and the charging 

and discharging power of the BESS are adjusted to deal with each of the uncertain 

scenarios obtained above, based on the optimization results of the first stage. The power 

adjustment for each scenario is less than the reserve provided in the first stage. The 

mathematical formulation of the proposed scenario-based two-stage stochastic 

optimization model is shown in Equations (29)-(53). 

{ } { },   S S d DS DS d= - = + r

d r r dp p p= +

NR



  (29) 

Constraints (3), (5)-(9), (12)-(17) 

  (30) 

  (31) 

  (32) 

  (33) 

  (34) 

  (35) 

  (36) 

  (37) 

  (38) 

  (39) 

where , , , , , and  are up-spinning and down-

spinning reserve provided by the grid and BESS, respectively. Constraints (30)-(32) are 

used to ensure the power flow limits of the distribution feeders. Constraints (33)-(39) are 

operating limits of BESS, including charging and discharging power limits, energy 

capacity.  

In the second stage, the scenarios generated by methods shown in Section 4.1 are 
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used. The uncertainty of EV charging mathematically makes  an uncertain 

parameter in the optimization model. By adding the EV charging load in each scenario to 

the original uncontrollable load in the community, we can obtain the total load in each 

scenario . Therefore, the constraints for the second stage are shown as follows:  

  (40) 

  (41) 

  (42) 

  (43) 

  (44) 

  (45) 

  (46) 

  (47) 

  (48) 

  (49) 

  (50) 

  (51) 

  (52) 

  (53) 

where ,   are power provided by the grid, charging and 

discharging power of BESS in the real-time stage. , , , , 

, and  are up-power or down-power adjustments from the grid and 

Load
,p tP

Load
, ,p t sP

( )GridReal Load EVch BSchReal BSdisReal

1 1
=  

p pNEV NBS

p,t ,s p ,t ,s p ,i ,t p , j ,t ,s p , j ,t ,s
i j

P P P P P , p, t , s
= =

+ + - " " "å å

GridReal Grid GridRealU GridRealD= +p,t ,s p ,t ,s p ,t ,s p ,t ,sP P R R-

GridRealU GridU0  p,t ,s p ,tR R , p, t , s£ £ " " "

GridRealD GridD0  p,t ,s p ,tR R , p, t , s£ £ " " "

BSchReal BSch BSchRealU BSchRealD  p, j ,t ,s p , j ,t p , j ,t ,s p , j ,t ,sP P R R , p, j, t , s= + - " " " "

BSdisReal BSdis BSdisRealU BSdisRealD  p, j ,t ,s p , j ,t p , j ,t ,s p , j ,t ,sP P R R , p, j, t , s= + - " " " "

BSchReal BSch BSmax0  p, j ,t ,s p , j ,t p , jP y P , p, j, t , s£ £ × " " " "

BSdisReal BSdis BSmax0  p, j ,t ,s p , j ,t p , jP y P , p, j, t , s£ £ × " " " "

BSchRealU BSchU0  p, j ,t ,s p , j ,tR R , p, j, t , s£ £ " " " "

BSchRealD BSchD0  p, j ,t ,s p , j ,tR R , p, j, t , s£ £ " " " "

BSdisRealU BSdisU0  p, j ,t ,s p , j ,tR R , p, j, t , s£ £ " " " "

BSdisRealD BSdisD0  p, j ,t ,s p , j ,tR R , p, j, t , s£ £ " " " "

BSdisReal
BSReal BSReal BSchReal BSchReal

1 BSdis 0  p, j ,t ,s
p , j ,t ,s p , j ,t ,s p , j p , j ,t ,s

p , j

P
E E t P t , p, j, t , sh

h-- -D × × +D × = " " " "

BSmin BSReal BSmax  p, j p , j ,t ,s p , jE E E , p, j, t , s£ £ " " " "

GridReal
p,t ,sP BSchReal

p, j ,t ,sP BSdisReal
p , j ,t ,sP

GridRealU
p,t ,sR GridRealD

p,t ,sR BSchRealU
p , j ,t ,sR BSchRealD

p , j ,t ,sR

BSdisRealU
p , j ,t ,sR BSdisRealD

p, j ,t ,sR



BESS in the real-time stage, respectively. They must be smaller than the up-spinning and 

down-spinning reserve provided by the grid and BESS. Constraints (42)-(43) are power 

adjustment limits of the grid. Constraints (48)-(51) are charging and discharging power 

adjustment and energy capacity limits of BESS. 

With the above model, we can get a coordinated charging and discharging strategy 

for EVs and BESS that reduces the three-phase power imbalance and peak-to-valley 

difference, and a reserve scheme that can cope with the uncertainty of the load. 

5. Numerical Results 

To verify the effectiveness and efficiency of the proposed energy management 

scheme and distributed optimization algorithm for EVs and BESSs, the IEEE 34-node 

test feeder [22] as shown in Fig. 4(a) is modified for numerical simulation. In the 

deterministic model, it is assumed that: 

（1） Node 890 (marked in red in Fig. 4(a)) is chosen to serve as the three-phase 

distribution system described in Section 2.1. There are 300 EV chargers and a BESS 

connected to each phase of node 890.  

（2） All EVs are willing to participate in the proposed energy management scheme. 

The maximum charging rate of each EV is fixed at 2.3 kW and the battery capacity is 17 

kWh [23].  

（3） As for BESS, the maximum charging and discharging rate are fixed at 60 kW 

and the battery capacity is 60 kWh. The initial SoC of the BESS is 60%. The minimum 

and maximum SoC of the BESS are 20% and 100%, respectively.  and  are set 

to be 10000 and 150, respectively. The charging and discharging efficiency of EVs and 

80%Lcyc
Price
batp



BESS is 97.46%  [24].  

We consider an optimization period of 8 hours from 9:00 to 16:00 in hourly intervals. 

The price for each time slot is shown in Fig. 4 (b). In the objective function,  and 

 are set as 0.01. In the distribution algorithm, the value of ,  and are set 

to be 0.1, 0,01, and 0.01, respectively. Based on the above parameters, various case 

studies are conducted to demonstrate the effectiveness of the proposed model in 

mitigating three-phase imbalance and peak-to-valley differences. We expect that loss 

costs will be reduced as well as improving the power quality. The proposed optimization 

model is programmed on MATLAB 2020b platform with Yalmip toolbox and solved by 

Gurobi 9.1.2. 

      
(a)                                       (b) 

Fig. 4. (a) Topology of the IEEE 34-node test feeder; (b) Time-of-use electricity price. 

5.1 Effectiveness in Mitigating Phase Imbalance and Peak-to-valley Differences 

In this subsection, the effectiveness of the proposed model for reducing the three-

phase power imbalance and peak-to-valley differences is investigated. Fig. 5(a) shows the 

active power consumption of the uncontrollable load. The figure shows that the 

uncontrollable load of the three phases is unbalanced. This imbalance may be aggravated 

by the random charging behavior of EVs. Fig. 5(b) shows an example of the active power 

consumption generated by the random charging behavior of the EVs, which is generated 

by randomly sampling the initial SoC level, arrival, and departure times of the EVs. The 
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total active power consumption of the three-phase distribution feeder obtained from the 

uncontrollable load and the EV is shown in Fig. 5(c). The results in Fig. 5(c) show that 

the power imbalance between the three phases increases at certain times of the day due to 

the random charging of EVs. The peak-to-valley difference of the load curve also 

increases. The proposed optimization models described in Sections 2 and 3 are used to 

optimize the charging and discharging strategies of EVs and BESS. The purpose is to 

reduce 1. The random charging behavior of EVs aggravating the phase imbalance; 2. 

phase imbalance caused by uncontrollable loads. 

 
Fig. 5. Active power consumption of (a) the uncontrollable loads; (b) EVs; (c) distribution feeders 

before coordinated optimization. 

Fig. 6(a) shows the optimal active power consumption for EV charging. Note that 

the initial and final SoC of EVs is the same as in Fig. 5(b). Fig. 6(b) shows the optimal 

charging and discharging power and SoC of the BESS. The total active power flow on the 

distribution feeder is shown in Fig. 6(c). Fig. 6(c) shows that the imbalance of the three-

phase active power flow on the distribution feeder is greatly reduced compared to Fig. 

5(c). Figs. 6 (b) and 6 (c) show that the EV and BESS will charge and discharge according 

to the three-phase power imbalance level of the uncontrollable load. For example, as 

shown in Fig. 5(a) at 9:00, phase C has the heaviest active power consumption of 

uncontrollable load, so the EVs in phase C decrease charging while the BESS in phase C 



increases discharging. Conversely, phase A has the lightest active power consumption of 

uncontrollable load, so the EV in phase A increases charging while the BESS decreases 

discharging. Fig. 6(c) also shows that the power imbalance at different time slots is also 

reduced, i.e., the peak-to-valley difference of the load curve is reduced. For quantitative 

analysis, according to Equation (1), we can also calculate the  which reflects the 

variance of the power flow for the three phases, and  which reflects the variance of 

the power flow for different time slots in the time horizon. According to Figs. 5(c) and 

6(c), we can also obtain the maximum power consumption  and the minimum 

power consumption  on each phase before and after optimization. The results are 

shown in Table 1. ,  and  are significantly reduced after optimization 

while the  increases. The maximum power consumption is reduced from 884.2 kW 

to 699.3 kW. The minimum power consumption increases from 439.8 kW to 576.9 kW. 

Therefore, the simulation results discussed above indicate that the proposed model can 

mitigate the imbalance of active power consumption on the three phases and reduce the 

peak-to-valley difference of each phase. These are achieved by optimizing the charging 

and discharging power and time of EVs and BESS. 

 
Fig. 6. Active power consumption of (a) EVs; (b) BESS; (c) distribution feeder after coordinated 

optimization. 

 

PIB

TIB

MAP

MIP

PIB TIB MAP

MIP



Table 1. The phase imbalance and power imbalance index before and after optimization. 

Index PIB (kW2) TIB (kW2) MAP (kW) MIP (kW) 
Before Optimization 116451.1 459150.1 884.2 439.8 
After Optimization 15821.7 28555.8 699.3 576.9 

5.2 Power Quality and Economic Effects 

In this subsection, we investigate the impact of the proposed scheme on the power 

quality and operating cost of the IEEE 34-node test feeder. To perform the above analysis, 

a three-phase power flow calculation is performed. After obtaining the optimal charging 

and discharging power of the EV and BESS at node 890, we calculate the reactive power 

consumption of node 890 based on the power factor of 0.95. The active and reactive 

power consumption at node 890 before the optimization is shown in Table 2. The active 

and reactive power consumption at node 890 after the optimization is shown in Table 3. 

The active and reactive power consumption of other nodes is shown in Table 4. With the 

active and reactive power consumption data, as shown in Tables 2-4, and the impedance 

matrix of the distribution lines, we can calculate the voltage value of each bus in the 

system and the current of each line to analyze the power quality, where the line impedance 

matrix can be calculated based on the methodology presented in [25] and the data in [22]. 

Table 2. The active and reactive power consumption at node 890 before optimization 

Time 
(Hour) 

Phase A Phase B Phase C 
kW kVAr kW kVAr kW kVAr 

9:00 554.5 182.2 633.2 208.1 662.9 217.8 
10:00 662.6 217.7 879.6 289.1 840.5 276.2 
11:00 872.4 286.7 884.2 290.5 818.1 268.8 
12:00 854.7 280.9 696.1 228.7 607.0 199.5 
13:00 
14:00 
15:00 
16:00 

709.4 
614.0 
592.2 
439.8 

233.1 
201.8 
194.6 
144.5 

579.6 
457.2 
554.9 
520.1 

190.5 
150.2 
182.3 
170.9 

517.5 
473.7 
528.7 
603.3 

170.0 
155.6 
173.7 
198.2 



Table 3. The active and reactive power consumption at node 890 after optimization 

Time 
(Hour) 

Phase A Phase B Phase C 
kW kVAr kW kVAr kW kVAr 

9:00 621.8 204.4 665.4 218.7 659.2 216.6 
10:00 621.2 204.1 665.2 218.6 657.4 216.1 
11:00 699.3 229.9 684.7 225.0 677.0 222.5 
12:00 673.9 221.5 645.0 212.0 579.8 190.5 
13:00 
14:00 
15:00 
16:00 

669.4 
657.2 
689.5 
670.3 

220.0 
216.0 
226.6 
220.3 

611.0 
576.9 
677.8 
681.5 

200.8 
189.6 
222.8 
224.0 

589.4 
580.5 
637.1 
673.8 

193.7 
190.8 
209.4 
221.4 

Table 4. Active and reactive power consumption of the uncontrollable loads at other nodes (non-zero 

elements) 

Phases 
Nodes 

Phase A Phase B Phase C 
kW kVAr kW kVAr kW kVAr 

860 20 16 20 16 20 16 
840 9 7 9 7 9 7 
844 135 105 135 105 135 105 
848 20 16 20 16 20 16 
830 10 5 10 5 10 5 

After obtaining the voltage amplitude and line current, we calculate the voltage 

imbalance at each node and the current imbalance of each line segment with Equation 

(54). The neutral current in a line segment can be calculated with Equation (20) in [25]. 

  (54) 

The voltage imbalance of node 890, current imbalance and neutral current of line 

segment 800-802 are shown in Figs. 7(a), 7(b) and 7(c). The figure shows that after 

optimizing the charging and discharging strategies for EVs and BESS, not only the 

voltage magnitude and line current imbalance are mitigated but also the current in the 

neutral line is reduced. This confirms that the power quality of the distribution system has 
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improved. 

 
Fig. 7. (a) Voltage imbalance at node 890; (b) Current imbalance of line segment 800-802; (c) 

Neutral currents in line segment 800-802 

In the following section, we will discuss the economic effects contributed by the 

proposed model. Based on Equation (24), we can calculate the incentive revenue that 

EVs and BESS receive from the DSO. The final charging cost of the EVs and BESS can 

be obtained by subtracting the incentive revenue from the charging cost of the EVs, as 

shown in (55). 

  (55) 

The operation cost of the DSO is defined as the remuneration provided to the EV 

and BESS pluses the energy loss cost. The energy losses of the three-phase distribution 

system are calculated according to the method proposed in [25].  

  (56) 
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Fig. 8. (a) The final charging cost of EVs; (b) BESS; (c) DSO when the value of varies. 

Figs. 8(a) and 8(b) show the total charging cost of EVs , the total cost of BESS 

 when the value of  varies. Fig. 8(c) shows the increased operation 

cost  of the DSO after the optimization. In Fig. 8(a), we can see that the cost 

of EVs is decreased as  increases due to the payoffs have already been included. EVs 

make some sacrifices in charging flexibility to help the DSO reduce phase and power 

imbalances and in return, EVs get paid to reduce their costs. As shown in Fig. 8(b), the 

BESS has a negative value of , which means BESS is also making a profit. As for 

DSO, it benefits from reduced energy losses and investment costs, as well as improved 

power quality due to reduced phase imbalances and peak-to-valley differences. As shown 

in Fig. 8(c), the negative value of  implies that the DSO can be profitable by 

reducing energy losses. Fig. 9(b) shows the total energy loss of the distribution system as 

the value of  varies. We can see that as  increases, the expected total energy loss of 

this distribution system decreases. The operating cost of the DSO also decreases as the 

energy loss decreases, as shown in Fig. 8(c). Note that the total energy loss no longer 

changes when  increases to a certain value. This is because the power imbalance index 

has no more change, as shown in Fig. 9(a). However, according to Equations (24) and 

(55), the DSO pays more to EVs and BESS as  increases. Thus, by changing the value 
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of , the DSO can control the charging and discharging behavior of the EVs and BESS. 

The DSO can choose an appropriate value of  for its benefits. 

 
Fig. 9. (a) The phase imbalance and power imbalance of the system; (b) Total energy loss in the 

system when the value of k varies. 

As for the convergence speed of the proposed distributed optimization approach, Fig. 

10 shows the maximum primal and dual residuals in each iteration. The figure shows that 

the algorithm converges after 63 iterations and the total simulation time is 216.75s. 

Therefore, our proposed algorithm can converge with an acceptable time practically. 

 
Fig. 10. Convergence curve of the distributed algorithm: the maximum primal and dual residuals. 

5.3 Effectiveness of The Proposed Stochastic Optimization Model to Cope with The 

Uncertainty of EVs 

In this section, we investigate the scenario generation and reduction approach and 

the scenario-based two-stage stochastic optimization model proposed in Section 4 to 

verify its effectiveness in dealing with the uncertainty of EVs. The probability density 

k

k



functions of EV arrival time, departure time, and initial SoC level shown in Fig. 11 were 

used in the simulation. In this paper, 200 uncertainty scenarios were generated and 

reduced to 40 using the scenario generation and reduction methods presented in Section 

4.1. These 40 scenarios are considered in the proposed stochastic optimization model to 

get an optimal reserve schedule. 

 
Fig. 11. The probability density functions of (a) EV arrival time, departure time, and (b) initial SoC 

level. 

Figs. 12(a) and 12(b) show the optimal power flow in the three-phase distribution 

feeders of the optimization model with and without uncertainty scenario constraints, 

respectively. Table 5 demonstrates the phase imbalance and power imbalance index of the 

optimization models with and without scenario constraints. The definition of all indexes 

can be found in Section 5.1. Fig. 13(a) and 13(b) show optimal up-spinning and down-

spinning reserves provided by grid and BESS for the optimization model with uncertainty 

scenario constraints. 



 

Fig. 12. Power flow in the three-phase distribution feeders of the optimization model (a) without and 
(b) with uncertainty scenarios. 

Table 5. The phase imbalance and power imbalance index of the optimization models with and 
without scenario constraints.  

Index PIB (kW2) TIB (kW2) MAP (kW) MIP (kW) 
Without Scenarios 6913.9 13468.2 634.9 542.5 

With Scenarios 7129.3 14247.1 634.9 542.5 

  

Fig. 13. Up-spinning and down-spinning reserve provided by (a) grid and (b) BESS. 

It can be seen from Fig. 12(a) that the three-phase power of the proposed stochastic 

optimization model is generally balanced. However, as seen in Table 5, the three-phase 

power imbalance level ( ) and the variance of the power flow for different time slots 

of all phases ( ) of the optimization model with uncertainty scenario constraint is a bit 

higher than that of the optimization model without uncertainty scenario constraint. This 

is reasonable, because the more constraints there are, the larger the value of the objective 

function will be. Although the three-phase power balance of the optimization model with 
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uncertainty scenario constraints is slightly reduced, a reserve schedule that can cope with 

load uncertainty can be obtained in this model, as shown in Fig. 13. 

To investigate the effectiveness of the reserve schedule to cope with the uncertainty 

of EV charging, we designed a feasible check subproblem as shown in Equations (57)-

(59) below. 

  (57) 

  (58) 

  (59) 

Constraints: (41)-(53) 

In (42)-(43) and (44)-(51) the value of , , , , , , 

, , ,  and  are the optimal results of the stochastic 

optimization model. 

We tested the feasibility of 200 scenarios with different . In some scenarios, if 

the optimization objective  of the feasibility problem is equal to zero, it means that 

there is no violation and the reserve schedule can handle this scenario. Otherwise, it 

means that the reserve schedule cannot maintain the power balance of the real-time state. 

For comparison, we also tested the two cases of 20% reduction and 20% increase in 

reserve, which can be considered as low and high reserve states, keeping the remaining 

parameters constant. The results of feasibility checks for different reserve schedules are 

shown in Table 6.  
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Table 6. Results of feasibility checks for different reserve schedules 

The objective value of the feasibility 
check subproblem 

Optimal reserve 
schedule 

20% reduction in 
reserve 

20% increase in 
reserve 

Number of scenarios =0 89 18 119 
Number of scenarios  111 182 81 

 

As can be seen from Table 6, even in the optimal reserve schedule, the objective 

value of the feasibility check subproblem in some cases is greater than zero. This is 

reasonable because the stochastic optimization model cannot take all the uncertainties 

into account considering the reserve cost and the problem size. In this paper, 40 out of 

200 scenarios are selected for optimization and there is no guarantee that all scenarios 

other than these 40 will be satisfied. However, we can see that the optimal reserve 

schedule obtained from the proposed two-stage scenario-based optimization model can 

handle 89 out of 200 scenarios. This means that the optimal reserve scheme keeps the 

real-time power balanced not only for these 40 scenarios but also for the other 49 

scenarios. This proves that the scenario reduction method used in this paper is effective 

and representative scenarios can be selected.  

As for the other two reserve schedules, when the reserve decreases by 20%, only 18 

scenarios can be handled and 182 scenarios violate the power balance constraint. When 

the reserve is increased by 20%, 119 scenarios can be handled, which is only 20 more 

than the optimal reserve schedule. The fewer reserves the system has, the less reliable the 

system will be, however, the more reserves, the higher the cost. Therefore, by comparing 

the above two reserve schedules, it can be seen that the proposed model can obtain a more 

economical and relatively reliable reserve schedule.  

In summary, with the proposed scenario-based two-stage stochastic optimization 

S
0S >



model, we can obtain a coordinated charging and discharging strategy for EVs and BESSs 

that can reduce three-phase power imbalance and peak-to-valley differences, as well as a 

reserve scheme that can cope with load uncertainty to some extent. 

6. Conclusions 

This paper presents a phase-balancing and peak-shaving energy management 

scheme for the three-phase distribution system, by optimizing the charging and 

discharging strategies for EVs and grid BESS. Both centralized and distributed 

optimization models are examined. Simulation results demonstrate that the phase 

imbalance and peak-to-valley differences of the three-phase load curve are reduced after 

the optimization. The total energy loss of the distribution system is reduced and power 

quality is improved with the mitigation of voltage imbalance and current in the neutral 

line. Both EVs and DSO benefit from the scheme. For future work, we will consider 

power flow constraints based on the three-phase power flow model to make the model 

more suitable for large-scale power distribution systems. Reactive power management 

can also be considered. 
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