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Abstract: In a non-orthogonal multiple access (NOMA) system, the successive interference can-
cellation (SIC) procedure is typically employed at the receiver side, where several user’s signals
are decoded in a subsequent manner. Fading channels may disperse the transmitted signal and
originate dependencies among its samples, which may affect the channel estimation procedure and
consequently affect the SIC process and signal detection accuracy. In this work, the impact of Deep
Neural Network (DNN) in explicitly estimating the channel coefficients for each user in NOMA cell
is investigated in both Rayleigh and Rician fading channels. The proposed approach integrates the
Long Short-Term Memory (LSTM) network into the NOMA system where this LSTM network is
utilized to predict the channel coefficients. DNN is trained using different channel statistics and then
utilized to predict the desired channel parameters that will be exploited by the receiver to retrieve the
original data. Furthermore, this work examines how the channel estimation based on Deep Learning
(DL) and power optimization scheme are jointly utilized for multiuser (MU) recognition in downlink
Power Domain Non-Orthogonal Multiple Access (PD-NOMA) system. Power factors are optimized
with a view to maximize the sum rate of the users on the basis of entire power transmitted and
Quality of service (QoS) constraints. An investigation for the optimization problem is given where
Lagrange function and Karush–Kuhn–Tucker (KKT) optimality conditions are applied to deduce the
optimum power coefficients. Simulation results for different metrics, such as bit error rate (BER), sum
rate, outage probability and individual user capacity, have proved the superiority of the proposed
DL-based channel estimation over conventional NOMA approach. Additionally, the performance of
optimized power scheme and fixed power scheme are evaluated when DL-based channel estimation
is implemented.

Keywords: deep learning; LSTM; NOMA; optimization; KKT conditions

1. Introduction

A non-orthogonal multiple access (NOMA) system has been classified as promoting
a multiple access structure for future wireless systems to boost system throughput and
spectral efficacy. NOMA could utilize the present resources more effectively by resource-
fully benefiting from the users’ channel environments and providing numerous users
with distinct quality of service (QoS) demands. NOMA enables several users to achieve
simultaneous arrival to the same time-frequency block by superpositioning them in the
code or power domains [1]. The concept of NOMA is established on that the user with a
weak channel condition can be combined with the user with a good channel condition in
the same time slot and on the same allocated subcarrier to ensure that the bandwidth block
could be effectively exploited [2].
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In the NOMA scheme, receiver equipment will receive the multiplexing of symbols
from different users in the system; therefore, elimination of interference from other users is
necessary for coordinated decoding.

Generally, multiuser detection (MUD) in NOMA can be managed through SIC, which
was carried out in the power domain. In the SIC technique, symbols from several users
are decoded consecutively based on the allocated signal power and the channel state
information (CSI) [3]. Complete realization of CSI or channel status for individual users is
challenging, since pilot symbols that are utilized in channel estimation may interfere with
symbols from other users, thus influencing the performance of classical channel estimation
procedures, such as minimum mean square error and least square estimators [4]. Machine
learning (ML) algorithms have the capability to adapt to variations in channel between
user and base station (BS); therefore, ML is regarded as a strong contender for future radio
networks [5].

1.1. Related Works

In [6], the authors introduced DL-based detector for the multiuser downlink OFDM-
NOMA system. The authors mainly depended on pilot signals for the channel information,
and according to these pilot responses, a DL based joint channel estimation and symbol
detection was achieved without additional processing for channel estimation. The simu-
lation’s outcomes revealed that the proposed DL scheme outperforms the conventional
SIC-based detector. On the other hand, the proposed scheme needed to be initially trained
offline for different channel conditions and the simulation results were presented in terms
of BER only.

In [7], the authors suggested a deep learning framework to perform signal recovery
in the MIMO-NOMA system when the Rayleigh fading channel is considered. The pro-
posed technique can simultaneously carry out the channel estimation process and signal
detection. Simulations were conducted for the proposed DL scheme, and the results were
compared with the conventional SIC procedure in terms of the symbol error rate (SER) and
throughput. According to the simulation results, the proposed DL scheme can address
channel impairment, but the examined NOMA cell was limited for two users and an offline
training stage was also required. Also, the DNN training phase needed two components,
the received signal, and the labels, which were used as supervised data to help the DNN to
optimize the parameters.

In [8], the authors proposed a data-driven deep learning estimator for time- and
frequency-selective channels. The proposed algorithm was designed such that a pre-
training scheme and pilot symbols were utilized as inputs for the DNN to attain a desired
initialization, which can further enhance the performance of the DL estimator. The DNN
was trained offline in both the pre-training and training stages, while in the testing stage,
the channels could be dynamically tracked by the DNN with only pilots identified, and
then the transmitted symbols were detected. The performance of a DL estimator with
different numbers of layers was investigated and the numerical results demonstrated
that the proposed DL estimator outperformed the standard channel estimator in terms of
efficiency and robustness.

In [9], a deep learning approach was employed to estimate the downlink channel
and to reduce the training overhead in a fog radio access network. The Gated Recurrent
Unit (GRU) was utilized to learn the hidden correlations among the channel matrices
from different users, and a bidirectional GRU was also employed to further improve the
estimation performance. Simulation results were provided to demonstrate the performance
gains, but the examined performance metrics were limited to the loss function and mean
square error.

Based on the deep learning (DL) algorithm, the authors in [10] introduced a sliding
window Gated Recurrent Unit (GRU) channel estimator to acquire knowledge for the time-
varying Rayleigh fading channel. Interleaver and channel coding schemes were merged
with the proposed sliding window estimator to further enhance system performance. The
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simulation results proved the ability of the suggested procedure to follow the channel in a
reliable way and achieve better mean square error (MSE). Moreover, the sliding window-
based GRU estimator was examined with different numbers of pilot symbols, and the
robustness against the variations in the channel characteristics was analyzed.

In [11], the authors went to conclude that DL algorithm can be utilized in signal
detection for uplink analysis in NOMA network. The authors proposed a DL approach
to characterize the complex channel parameters, where restricted Boltzmann machines
(RBM) were implemented as a pre-training phase for the original input sequence for the
network. The proposed learning scenario based on LSTM layer could track the environment
statistics automatically via offline learning and an iterative support detection procedure
was suggested to identify the transmitted symbols. Performance analysis for the proposed
DL scheme was evaluated merely in terms of the sum data rate and block error rate.

In [12], a pilot-aided receiver structure was presented for an uplink single input, multi
output (SIMO) NOMA system, which incorporated a combined channel estimation and
signal detection scheme for random channels. The authors brought together a deep learning
model with SIC detection structure to minimize the learnable parameters. Furthermore,
signal detection accuracy improvement and noise interference reduction were achieved by
adding noise and interference elimination factors at the SIC detection stage. The simulation
results indicated that BER performance based on the proposed DL scheme was more
acceptable than the traditional MMSE procedure and the complexity of the receiver was
diminished.

In [13], the authors proposed a semi-blind mutual detection scheme-based DL to
distinguish users’ symbols in the co-operative NOMA system. The proposed method was
capable of detecting the signal without the need for further channel estimation process
since it could achieve a simultaneous detection on the basis of pilot responses. The DL
model was trained offline over a Rayleigh fading channel and the trained network was
deployed in the online detection phase. In addition, the trained model was inspected using
Rician and Na-agami-m fading channels and simulation outcomes proved the capability of
the proposed scheme in outperforming conventional detectors.

In [14], the authors examined deep neural network (DNN) for combined channel
estimation and signal detection in an OFDM system. This approach considered OFDM
system and fading channel as a black box and the presented DNN network is trained offline
using simulated data. The simulation results revealed that the proposed DL approach had
the capability to learn and investigate the complicated attributes of the wireless channels. In
addition, the results of the DL approach proved its dominance over conventional methods
when fewer pilot symbols were utilized, and cyclic prefix was ignored.

1.2. Research Gap and Motivation

Based on the previous works, many deep neural networks (DNN) approaches have
been proposed explicitly to address the issues associated with channel state information
(CSI), channel estimation, and signal detection. To the best of authors’ knowledge, there
has been no study that has investigated the combination between Deep learning (DL)-
based channel estimation algorithm and the optimal power allocation scheme for multiuser
detection in a downlink non-orthogonal multiple access (NOMA) system in fading channels.
Most of the works are managing the issues of power optimization and deep learning-based
channel estimation separately.

In addition, many of the proposed DNN approaches for channel estimation require
pre-training to obtain the appropriate DNN weights initialization, which may lead to an
increase of the number of hidden layers with a huge number of neurons in each layer. In or-
der to enhance the aforementioned schemes, this work proposes a framework that examine
the integration between DNN-based channel estimation and the optimum power allocation
scheme in a multiuser NOMA system and then inspect the system performance. Further-
more, in our proposed system structure, we manage to eliminate the need for a pre-training
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stage, minimize the number of DNN layers, and minimize the number of pilot symbols,
and at the same time, we can realize a notable improvement in network convergence.

1.3. Contributions to Knowledge

The detailed contributions of this work are outlined as follows:

• In this work, a framework is proposed that highlights how the channel estimation-
based Deep Learning (DL) and power optimization scheme are jointly utilized for
multiuser (MU) detection in the PD-NOMA system.

• A structured and mathematical analysis is introduced to derive a non-complex analyt-
ical form for the optimum power coefficient for each user on the basis of maximizing
the sum rates in a downlink NOMA system.

• An optimized power scheme and fixed power scheme are both evaluated and compared
when the proposed Deep Learning-based channel estimation scheme is implemented.

• To validate the efficiency of the proposed Deep Learning channel estimation scheme,
the DNN model is inspected using a Rayleigh fading channel and Rician fading channel.

• As a benchmark comparison, we have also conducted the simulation environment
related to the work that consider the DL for joint channel estimation and signal
detection and compared it with our proposed DL scheme. The simulation results
emphasized that reliability can be guaranteed by our proposed DL channel estimation
scheme even when cell capacity is increased.

• In addition, different from the aforementioned works, in our proposed DL chan-
nel estimation algorithm, we implement a minimum number of DNN layers and a
minimum number of pilot symbols to achieve a remarkable improvement in system
performance. Moreover, no additional interference cancelation or noise elimination
factors are utilized on the receiver side.

The rest of this paper is organized as follows. Section 2 presents the system model. In
Section 3, the characterization for the optimization problem is introduced. In Section 4, the
optimization analysis is discussed in detail. In Section 5, RNN and LSTM DL schemes are
described. Section 6 discusses the LSTM and NOMA framework. The channel estimation
algorithm is summarized in Section 7. In Section 8, the simulation environment is described.
In Section 9, the simulation results are discussed. Finally, the conclusions and future work
are drawn in Section 10.

2. System Model

The downlink NOMA system is examined in this section, where the base station (BS)
and users come across various channel gains. In this system, the NOMA cell is considered,
where one BS with a single antenna is assumed to serve three users concurrently and every
user equipment also has a single antenna. Typically, in NOMA scheme each user receives
the combined signal sent from BS that comprise a target signal and interfering signal sent
through the same time-frequency block. Consequently, multiplexing a number of signals
using distinct power levels is essential to distinguish the signals and to reinforce the SIC
procedure at the receiver side [15]. In PD-NOMA, users that are characterized by good
channel environments are usually allocated low power, while users with poor channel
conditions can share high power levels.

Users are labeled in accordance with their fading channel and the separation from
base station. In the examined cell, the nearby device is indicated as near user and the device
at the edge of the cell is viewed as far user. In this work, we assume that we have three
users in the cell and Rayleigh fading channel is considered with zero mean. Hence, the
fading channel for each user can be mathematically characterized as follows, for the near
user hn ∼

(
0, d−k

n

)
, for the middle user hm ∼

(
0, d−k

m

)
, and for the far user h f ∼

(
0, d−k

f

)
,

where hi denotes the fading channel between the BS and the user i and k represents the
path loss exponent [16].
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In this paper, Additive White Gaussian Noise (AWGN) is assumed at the receiver side
of each user, and the noise power is indicated as σ2. Without loss of generality, it can be

assumed that |hn|2 > |hm|2 >
∣∣∣h f

∣∣∣2. Total power transferred from BS to all devices in the
cell is specified as Pt. In the NOMA system, the receiver at each user has the ability to carry
out SIC to eliminate signals associated to other users with poor channel environments. On
the other hand, symbols from users with good channel conditions could not be removed
and treated as interference. In the downlink scenario, the BS can send the superposition
coded signal x that can be expressed as [12,16]:

x =
√

Pt

(√
αnxn +

√
αmxm +

√
α f x f

)
(1)

where αn, αm, and α f are the power coefficients allocated to the near user, middle user,
and far user individually. Likewise, xn, xm, and x f denote the desired symbols concerned
to near, middle, and far user, respectively. Hence, the signal received at far user can be
represented as [17]:

y f = xh f + z f (2)

where h f represent the fading channel among BS and far user, while z f represents AWGN
noise component at far user with zero mean and σ2 variance. The far user is usually de-
scribed by poor channel condition, and their particular signal x f can be assigned additional
power by BS compared to other users. Thus, according to SIC scheme, the far user can
directly decode their own signal x f from received signal y f . The received signal for a far
user device can be easily represented as [17]:

y f =
√

Pt

(√
αnxn +

√
αmxm +

√
α f x f

)
h f + z f

y f =
√

Ptα f x f h f +
√

Pt(
√

αmxm +
√

αnxn)h f + z f
(3)

The first term in (3) represents the required signal for a far user, while the second
term denotes the interference term from middle and near users. Based on Equation (3), the
possible rate for far user could be expressed as [18]:

R f = log2

1 +

∣∣∣h f

∣∣∣2Ptα f∣∣∣h f

∣∣∣2Pt(αn + αm) + σ2

 (4)

Likewise, the attainable bit rate for middle user can also be expressed as:

Rm = log2

(
1 +

|hm|2Ptαm

|hm|2Pt(αn) + σ2

)
(5)

Typically, the near user has good channel condition along with BS; thus, their signal xn
is assigned low power, and therefore, the received signal for the near user can be shown as:

yn = xhn + zn

yn =
√

Ptαnxnhn +
√

Pt

(√
αmxm +

√
α f x f

)
hn + zn

(6)

The first term in Equation (6) represents the near user expected signal, while the
second term denotes the interfering term from middle and far users. On the other hand,
it can be observed from Equation (6) that the interfering term is predominant due to the
additional power that can be assigned to the far user. Therefore, at the near user side, SIC is
performed, where immediate decoding for far user signal x f is accomplished, then removed
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from the composite signal. Next, the middle user signal xm is decoded and removed from
the remaining signal. Finally, the near user achieved rate Rn can be expressed as [18]:

Rn = log2

(
1 +
|hn|2Ptαn

σ2

)
(7)

3. Optimization Problem

The aim here is to maximize the sum rate for users in NOMA system on the basis of
optimizing the power factors for each user in accordance with the channel conditions. The
sum of the above-mentioned possible rates for N users downlink NOMA network can be
written as follows [19,20]:

Rsum =
N

∑
k=1

log2

1 +
|hk|2Ptαk

|hk|2 ∑k−1
j=1 Ptαj + σ2

 (8)

In the proposed system, the objective function and the constraints considered for the
optimization problem can be clarified in the following sections.

3.1. Power Constraint

The allocated power for each user in the cell is a percentage of the overall power Pt
transferred from base station; thus, the allocated power fraction for each user equipment
must complies with [21]:

N

∑
x=1

αx ≤ 1 (9)

where αx is the power portion for the xth ser in the N-user NOMA cell.

3.2. QoS Constraints

To enhance user fairness, it is assumed that the weak user in each cell has a QoS re-
quirement, which implies that a minimum rate Rmin needs to be guaranteed corresponding
to the optimization problem considered, which can be expressed as follows [22]:

log2(1 + δn) ≥ Rmin (10)

where δn is the SINR for nth user and Rmin is the minimum transmission rate required in
the system [23]. This constraint can be simplified in many ways, suppose we have Rm→k
which is the rate of user k to detect the signal of user m, where 1 ≤ k ≤ m and Rm = Rmin.
When user k is not able to detect the message of user m with rate Rmin, this can be indicated
as Rm→k < Rmin [23]. The complement of this event can be formulated as follows:

|hk|2Ptαm

|hk|2Pt ∑m−1
i=1 αi + σ2

> (2Rmin − 1) (11)

where αi is the power factor for ith user in the system. By dividing both the numerator and
denominator of left-hand side of Equation (11) by the noise power σ2, Equation (11) can be
reformulated as:

|hk|2ρ

(
αm − (2Rmin − 1)

m−1

∑
i=1

αi

)
> (2Rmin − 1) (12)
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where ρ represent the signal power to noise power ratio. Equation (12), also declares that
in order to satisfy the minimum transmission rate and avert that mth user being in outage,
the following condition must be achieved:

αm >
(

2Rmin − 1
) m−1

∑
i=1

αi (13)

where αm is the power assigned for mth user in the system.

3.3. Sum Rate

On the basis of the aforementioned constraints in Equations (9) and (10) and sum rate
representation and the fact that there is a single antenna at the BS and user equipment, the
standard optimization problem can be normally expressed as follows [21,22]:

max
α

Rsum =
N

∑
k=1

log2

 |hk|2Pt ∑k−1
j=1 αj + σ2 + |hk|2Ptαk

|hk|2Pt ∑k−1
j=1 αj + σ2

 (14)

such that:
N
∑

x=1
αx ≤ 1

log2(1 + δn) ≥ Rmin
αk ≥ 0 ∀k = 1, 2, . . . , N

4. Optimization Analysis

In this part, the optimization analysis is realized with regards to three users in the
NOMA system and the objective function can simply reformulated as follows [24]:

max
α

RSum = Rn + Rm + R f (15)

S.t.

(2Rmin − 1)− |hk|2ρ

(
αm − (2Rmin − 1)

m−1
∑

i=1
αi

)
≤ 0

αn + αm + α f − 1 ≤ 0
αn, αm, α f ≥ 0

where m = 2, 3 and Rmin is the lowest rate required in the system. According to the analysis
above, the constraints can also be represented as follows:

C1(α) = αn + αm + α f − 1 (16)

C2(α) = (2Rmin − 1)− ρ
∣∣∣h f

∣∣∣2(α f − (2Rmin − 1)(αn + αm

)
(17)

C3(α) = (2Rmin − 1)− ρ|hm|2
(

αm − (2Rmin − 1)(αn

)
(18)

The constraints C1(α), C2(α) & C3(α) are linear in terms of α, then C1(α), C2(α) & C3(α)
are convex. Hence, ∇RSum(α) & ∇2RSum(α) need to be calculated [21]. Initially, we can
find the first derivative for RSum(α) in Equation (14) with respect to each of the power coef-
ficients αn, αm, and α f . After some mathematical processing, ∇RSum(α) can be represented
as follows [24,25]:
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∂RSum
∂αn

= 1
ln2

(
|hn |2Pt

|hn|2Ptαn+σ2 −
(|hm|2Pt)

2αm

(|hm|2Pt(αn+αm)+σ2)(|hm|2Pt(αn)+σ2)

− (|h f |2Pt)
2
α f

(|h f |2Pt(αn+αm+α f )+σ2)(|h f |2Pt(αn+αm)+σ2)

) (19)

∂RSum
∂αm

= 1
ln2

(
|hm |2Pt

|hm |2Pt(αn+αm)+σ2

−
(
|h f |2Pt

)2
α f(

|h f |2Pt(αn+αm+α f )+σ2
)(
|h f |2Pt(αn+αm)+σ2

)
) (20)

∂RSum
∂α f

=
1

ln2


∣∣∣h f

∣∣∣2Pt∣∣∣h f

∣∣∣2Pt(αn + αm + α f ) + σ2

 (21)

At this point, a general formula can be derived for the first derivative of the objective
function in terms of α [24,25]:

∂RSum(α)
∂αi

= 1
ln2

(
|hi |2Pt

|hi |2Pt ∑i
j=1 αj+σ2

)
−

1
ln2

N−i
∑

k=1

{( (
|h(i+k)|2Pt

)2
αi+k(

|h(i+k)|2Pt ∑i+k
j=1 αj+σ2

)
)
×
(

1(
|h(i+k)|2Pt ∑i+k−1

j=1 αj+σ2
)
)} (22)

The second derivative of the objective function RSum(α) with respect to each of the
power coefficients αn, αm, and α f can also be derived as follows:

∂2RSum
∂α2

n
= − 1

ln2

{(
(|hn |2Pt)

2

(|hn|2Ptαn+σ2)
2

)
−
(

(|hm |2Pt)
3αm [ 2(

∣∣∣hm

∣∣∣2Ptαn+σ2)+
∣∣∣hm

∣∣∣2Ptαm ]

(|hm|2Pt(αn+αm)+σ2)
2
(|hm|2Pt(αn)+σ2)

2

)

−
(

(|h f |2Pt)
3
α f [2(

∣∣∣h f

∣∣∣2Pt(αn+αm)+σ2)+
∣∣∣h f

∣∣∣2Ptα f ]

(|h f |2Pt(αn+αm+α f )+σ2)
2
(|h f |2Pt(αn+αm)+σ2)

2

)
}

(23)

∂2RSum
∂α2

n
= 1

ln2

{(
(|hm |2Pt)

2

(|hn|2Pt(αn+αm) +σ2)
2

)
−
(

(|h f |2Pt)
3
α f [ 2(

∣∣∣h f

∣∣∣2Pt(αn+αm)+σ2)+
∣∣∣h f

∣∣∣2Ptα f ]

(|h f |2Pt(αn+αm+α f )+σ2)
2
(|h f |2Pt(αn+αm)+σ2)

2

)
}

(24)

∂2RSum

∂α2
f

= − 1
ln2




(∣∣∣h f

∣∣∣2Pt

)2

(∣∣∣h f

∣∣∣2Pt(αn + αm + α f ) + σ2
)2


 (25)

A general formula can also be found for the second derivative of the objective function
in terms of α as follows:

∂2RSum(α)
∂αi

2 = − 1
ln2

{(
(|hi |2Pt)

2(
|hi |2Pt ∑i

j=1 αj+σ2
)2

)

−
N−i
∑

k=1

{( (
|h(i+k)|2Pt

)3
αi+k

[
2
(
|h(i+k)|2Pt ∑k+i−1

j=1 αj+σ2
)
+|h(i+k)|2Ptαi+k

]
(
|h(i+k)|2Pt ∑i+k

j=1 αj+σ2
)2

)

×
(

1(
|h(i+k)|2Pt ∑i+k−1

j=1 αj+σ2
)2

)}} (26)
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Based on the objective function, and ∂RSum(α)
∂αi

and ∂2RSum(α)
∂αi

2 , it can be proved that
the objective function is concave and has a unique global maximum [23]. The Lagrange
function and the KKT necessary conditions could be employed to achieve optimal power
factors [25,26]:

L
(

αn, αm, α f , µ1, µ2,, µ3

)
= RSum − µ1C1(α)− µ2C2(α)− µ3C3(α) (27)

where µ1, µ2, and µ3 represent Lagrange multipliers for the three user scenarios.
Optimality conditions can be written as follows:

∂RSum
∂αn

− µ1
∂C1(α)

∂αn
− µ2

∂C2(α)

∂αn
− µ3

∂C3(α)

∂αn
= 0 (28)

∂RSum
∂αm

− µ1
∂C1(α)

∂αm
− µ2

∂C2(α)

∂αm
− µ3

∂C3(α)

∂αm
= 0 (29)

∂RSum
∂α f

− µ1
∂C1(α)

∂α f
− µ2

∂C2(α)

∂α f
− µ3

∂C3(α)

∂α f
= 0 (30)

Slackness conditions can be represented as follows:

µ1

(
αn + αm + α f − 1

)
= 0 (31)

µ2

(
(2Rmin − 1)− ρ

∣∣∣h f

∣∣∣2(α f − (2Rmin − 1)(αn + αm

))
= 0 (32)

µ3

(
(2Rmin − 1)− ρ|hm|2

(
αm − (2Rmin − 1)(αn

))
= 0 (33)

Lagrange multipliers also need to satisfy the following:

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0 (34)

In the subsequent steps, Lagrange multipliers should be proved to be positive. This
could be accomplished as follows:

∂C1(α)

∂αn
=

∂C1(α)

∂αm
=

∂C1(α)

∂α f
= 1 (35)

∂C2(α)

∂αn
=

∂C2(α)

∂αm
= ρ

∣∣∣h f

∣∣∣2(2Rmin − 1) (36)

∂C3(α)

∂αn
= ρ|hm|2(2Rmin − 1) (37)

∂C2(α)

∂α f
= −ρ

∣∣∣h f

∣∣∣2 (38)

∂C3(α)

∂αm
= −ρ|hm|2 (39)

Based on Equations (35)–(39), this can be substituted in the optimality conditions for
Lagrange as follows:

∂RSum
∂αn
− µ1(1)− µ2ρ

∣∣∣h f

∣∣∣2(2Rmin − 1) − µ3ρ|hm|2(2Rmin − 1) = 0

∂RSum
∂αm
− µ1(1)− µ2ρ

∣∣∣h f

∣∣∣2(2Rmin − 1)− µ3

(
−ρ|hm|2

)
= 0

∂RSum
∂α f
− µ1(1)− µ2

(
−ρ
∣∣∣h f

∣∣∣2)− µ3(0) = 0
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Let β1 = ρ
∣∣∣h f

∣∣∣2(2Rmin − 1), β2 = ρ|hm|2(2Rmin − 1), γ1 =

(
−ρ
∣∣∣h f

∣∣∣2), and

γ2 =
(
−ρ|hm|2

)
. Therefore, the above written optimality conditions for Lagrange can

be rewritten as:
∂RSum

∂αn
− µ1 − µ2 β1− µ3 β2 = 0 (40)

∂RSum
∂αm

− µ1 − µ2 β1− µ3 γ2 = 0 (41)

∂RSum
∂α f

− µ1 − µ2 γ1 = 0 (42)

Based on Equation (40) and after few mathematical substitutions, the following ex-
pression can be written as:(

∂RSum
∂αm

− ∂RSum
∂α f

)
−
(

∂RSum
∂αn

− ∂RSum
∂α f

)(
γ2
β2

)
= µ2

(
−γ1 + β1 + (γ1− β1)

(
γ1
β1

))
(43)

Performing a few mathematical analyses and based on the fact that |hn|2 > |hm|2 >
∣∣∣h f

∣∣∣2, we

can simply prove that
(

∂RSum
∂αm
− ∂RSum

∂α f

)
and

(
∂RSum

∂αn
− ∂RSum

∂α f

)
are positive and the left-hand side of

Equation (43) is positive. Furthermore, since
(

γ1
β1

)
are negative scalar, the right-hand side of Equation

(43) can be proved to be positive, which concludes that µ2 is positive. Additionally, Equation (42) can
be reformulated as follows:

∂RSum
∂α f

− µ2 γ1 = µ1

where ∂RSum
∂α f

is positive by inspection and (µ2γ1) is negative quantity; therefore, the left-hand side
must be positive, which implies that µ1 is positive quantity.

Similarly, µ3 can be proved to be positive value. In accordance with the above-mentioned
analysis, the examined constraints are feasible, and the closed form representation for the power
factors can be determined from the slackness conditions as follows:

αn + αm + α f = 1 (44)

(2Rmin − 1) = ρ
∣∣∣h f

∣∣∣2(α f − (2Rmin − 1)(αn + αm)
)

(45)

(2Rmin − 1) = ρ|hm|2
(

αm − (2Rmin − 1)(αn)
)

(46)

For the following analysis, it can be assumed that A1 = (2Rmin − 1) and A2 = ρ
∣∣∣h f

∣∣∣2, A3 =

ρ|hm|2, then Equation (45) can be written as A1 = A2

(
α f − A1(αn + αm)

)
and Equation (46) can be

rewritten as A1 = A3

(
α f − A1(αn)

)
.

Based on mathematical substitutions and arrangements, the closed form representation for each
of the power coefficients can be derived as follows:
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α f =

(
A1
A2

)(
1 + A2
1 + A1

)
=

(
(2Rmin − 1)

2Rmin

)1 +
1

ρ
∣∣∣h f

∣∣∣2
 (47)

αm =

(
1+ 1

A3
−α f

1+ 1
A1

)
αm =

((
(2Rmin−1)

2Rmin

)(
1 + 1

ρ|hm |2

)
−
(

2Rmin−1
2Rmin

)2
(

1 + 1
ρ|h f |2

)) (48)

αn = 1−
(

αm + α f

)
αn =

(
1

A2

)(
1+A2
1+A1

)
−
(

A3−A1 A2
A2 A3

)
1+A1

αn = 1
(2Rmin )

((
1+ρ|h f |2

(2Rmin )ρ|h f |2
)
+

(
(2Rmin−1)

ρ|hm |2
− 1

ρ|h f |2
)) (49)

5. RNNs and LSTM
Recurrent Neural Networks (RNNs) are regarded as a class of supervised learning procedures,

and they can develop successive sequences for prediction and detection [27]. As shown in Figure 1,
RNNs involve hidden layers composed of artificial neurons with feedback loops; therefore, they have
dual inputs, i.e., the present and the recent previous response.
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In RNNs, hidden layers are capable to act as storage for the network at a specific time; this
structure enables the RNNs to handle the preceding data for a prolonged period of time; additionally,
RNNs can represent time dependencies for any sequence with a lower numeral of neurons. On the
other hand, traditional RNN based on backpropagation through time (BTT) experiences slow learning
and a vanishing gradient problem [28].

Therefore, RNNs will not be the best candidate for signals that may be sent through fading
channels that may disperse the signal and originate long-term dependencies among its samples [5].
Long short-term memory (LSTM) network, which is a one category of RNNs, is frequently used with
sequences and time series data for categorization, where it can take advantage of time dependencies
between sequences [5].

LSTM network can develop knowledge among time steps of the data sequence and manage
the long-term dependency process of time series data. Based on their underlying design, the LSTM
network includes LSTM cells, and each cell contains a set of gates that are capable of saving and
gaining access to data over extended periods of time and of counteracting the error from backpropa-
gation [5,28]. LSTM is able to receive a vector complex data, hence integrating the magnitude and
phase parts of the received sequence concurrently. LSTM network can be considered as a proper
selection to realize multiuser detection (MUD) and prediction when time series data are available [29].
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6. Proposed DL Network Architecture and Framework
A framework that incorporates the LSTM model with NOMA system is discussed in this section,

where the LSTM network is mainly utilized to perform training, updating, and prediction for the
channel coefficients. Data-driven communication usually depends on empirical observations to
determine the amount of LSTM cells in each layer and the numerals of LSTM layers that are needed
in the implementation stage. Additionally, it is important to take in consideration that adding more
LSTM layers may not offer a noticeable gain in learning phase, or it may not significantly affect the
network convergence [30].

6.1. DL Network Architecture
Figure 2 illustrates the architecture of the proposed DL network that consists of four layers,

while each layer is supported with several neurons, and the weighted sum of each neuron will be the
input to a nonlinear function. The dimension of each training sequence is indicated as L, which is the
length of the input layer. The input layer includes 128 neurons, where the inputs to the network are
shifted to the subsequent layer with updated weight parameters.
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Figure 2. Architecture of the proposed DL network.

In the second layer, one LSTM layer is implemented that includes 300 hidden units. The
learnable weights of LSTM layer are the input weights W, the recurrent weights R, and the bias
b. The third layer is a fully connected layer that processes the outputs of the LSTM layer. A fully
connected layer multiplies the input by a weight matrix W and then adds a bias vector b. All neurons
in a fully connected layer are connected to all the neurons in the preceding layer, and this layer bring
together all of the characteristics and internal information gathered by the prior layers. In a DL-based
LSTM network, the fully-connected layer behaves separately on each time step.

The last layer is the regression layer, which is responsible to improve the cell status, network
weights, and biases. A regression layer can predict responses of a trained regression network and
computes the MSE for regression tasks. Normalizing the responses mainly facilitates stabilizing and
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accelerating training of neural networks for regression. For a single observation, the mean square
error can be calculated as [31]:

MSE =
r

∑
j=1

(
yTj − yPj

)2

r
(50)

where r is the number of responses, yTj is the target output, and yPj is the predicted output at response
j.

In case of sequence regression networks, the loss function can be represented as the half MSE of
the predicted responses for each time step:

loss =
1
2

L

∑
i=1

R

∑
j=1

(
yTij − yPij

)2

L
(51)

where L is the sequence length.

6.2. LSTM Cell Structure and Mechanism
In LSTM cell, the output is generated based on the current input and the preceding cell state.

In order to remember the previous cell state and determine if the prior state will be used or not, the
LSTM cell consists of different types of gates, these gates are the forget gate, the input gate, and the
output gate. In LSTM, there are two states, the cell state Ct−1, which is called internal memory where
all information is stored, and the hidden state ht−1, which is used for computing the output.

Figure 3 illustrates the internal structure of LSTM cell [32], where t represent the time instant,
xt is the current input, and hti represent the current output channel coefficients for user i at time
t. In addition, Ct−1 represents the previous cell state, which is shifted from a hidden layer to the
next every single iteration. At every time step, the LSTM cell can add up information or remove
information from the cell state. LSTM cell can regulate these updates using several gates that can be
briefly described as follows:

1. The forget gate is responsible for controlling the level of cell state that need to be reset: ft =

σ
(

W f xt + R f ht−1 + b f

)
;

2. The input gate is responsible for controlling the level of cell state that need to be updated:
it = σ(Wixt + Riht−1 + bi);

3. The candidate state is responsible for adding information to the cell state:
gt = tanh

(
Wgxt + Rght−1 + bg

)
;

4. Updated cell state: Ct = (Ct−1 � ft) + (it � gt), where � is element-wise multiplication.
5. The output gate is responsible for controlling the level of cell state added to hidden state:

Ot = σ(Woxt + Roht−1 + bo);
6. Estimated output coefficients: ht = Ot � tanh(Ct).
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7. Channel Estimation-Based DL Algorithm
The transmitted frame involves data and pilot symbols. The applied channel model is assumed

to be constant during one frame of pilot and data symbols and the channel coefficients are changing
from one frame to another. In the proposed DL scheme, two major stages are implemented to achieve
an effective DNN model for channel estimation. The first stage involves both training and testing,
where the DNN model is trained and tested with the samples that are created based on variety of
distinct Rayleigh channel coefficients [24,33]. In the second stage, the trained DNN model is utilized
to explicitly predict the channel taps for each user and these estimated taps will be employed to
recover the desired transmitted data symbols for each user.

Dataset Generation
At the beginning of every training stage, the weights and bias values of LSTM layer are

initialized, and during the training phase, weights and biases are modified according to a gradient
descent procedure [5,30]. The distance of each user from the BS and the path loss exponent needs to
be assigned in the dataset, so that the channel coefficients for each user are randomly generated to
model the Rayleigh fading channel between the user and BS. Pilot symbols are generated at random
and recognized at the BS and at the receiver side of each user.

On the basis of the initial channel factors generated and the pilot symbols, the size of the
training and testing frames can be identified. The training model are carefully established based on
the selected layers, the hidden units assigned for each layer, and the training parameters. In order to
further accelerate and stabilize the training process of the training network, we choose to normalize
the training data.

Throughout the training phase, the performance of the proposed DNN model-based LSTM
layer is assessed using RMSE and loss functions. In the testing period, new fading coefficients will
be randomly generated, such that these coefficients are not the same as those generated for training.
Once the training and testing sequences are inspected using the training network, the trained model
will be employed as online channel estimator for the users. The proposed DL technique for channel
estimation can be outlined as shown in Algorithm 1.
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Algorithm 1 Proposed DL Channel Estimation scheme

1. Initialize the learnable parameters of an LSTM layer (W, R, b), where W is the input
weights, R is the recurrent weights, and b is the bias.
Inputs

� Number of Iterations.
� The distance of each user from the BS.
� Path loss exponent.
� Generate Initial random Rayleigh channel coefficients for each user based on the channel

model.
� Generate known pilot symbols.
� Assign the initial power factors for each user.
� Identify the size of training sequence (LT) and size of testing sequence (LS).

Procedure
2. Assign the training sequence (ZT), testing sequence (ZS), and the desired coefficients (ZD).
3. Calculate the mean and variance (µT, σ2

T) for channel coefficients in training sequence at
each iteration.

4. Normalizing the training data ZT → ZNT based on (µT, σ2
T).

5. Characterize the relationship between consecutive normalized training sequences as
ZNT≈(XNT, YNT).

6. Initialize the training network (Tnet) and assign the following:
� Number of layers.
� Number of hidden units.
� Training parameters.
7. Use (XNT, YNT) as inputs for the training model (Tnet).
8. Predict the output normalized coefficients (YNP) .
9. Update the state of training model (Tnet).

For i = 1: LT
[Tnet, YNP] = Predict and Update state (Tnet, ZNT)
End

10. Denormalize YNP → YP .
11. Calculate RMSE (ZD − YP) and Loss function.
12. Update the state of (Tnet ) and reset the values for YP.
13. Normalize testing data ZS → ZNS , using (µT, σ2

T).
14. Use normalized testing data (ZNS) as inputs for updated trained network (Tnet).

For i = 1: LS
[Tnet, YNP] = Predict and Update state (Tnet, ZNS)
End
Outputs

15. Predicted normalized channel coefficients YNP.
16. Denormalize YNP → YP .
17. Calculate RMSE (ZD − YP) & Loss function.
18. Estimate channel taps (trained DNN model, pilot symbols).

8. Simulation Environment
In this section, a description of the simulation settings and parameters is introduced. Our

examined downlink NOMA cell contains one base station (BS) and three distinct users in which
the BS and each user in the cell is supplied with one antenna. For the downlink NOMA scenario,
the modulated signals are superimposed and transmitted by BS to the users through uncorrelated
Rayleigh and Rician fading channels affected by additive white gaussian noise (AWGN), where the
noise spectral density N0 = −174 dBm and path loss exponent is 4.

In this paper, simulations are conducted using MATLAB to simulate and to emphasize the
following: first, to evaluate the effectiveness of embedding the proposed DL-based LSTM network
to accurately estimate the channel parameters for each user in downlink NOMA cell. Second, to
integrate the proposed DL channel estimation algorithm with the derived optimized power allocation
scheme and compare it with the NOMA system when fixed power factors are considered along with
the proposed DL scheme. Monte-Carlo simulations are conducted with N = 106 iterations, and at the
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start of every single set of iterations, pilot symbols are generated at random and recognized at the BS
and at the receiver side of each user. The main simulation parameters are summarized in Table 1.

Table 1. Summary of the simulation parameters.

Parameter Value

Simulation Tool MATLAB
Modulation type QPSK
Number of Users 3, [2–10]

System Bandwidth 1 MHz
Fading and channel (Rayleigh + AWGN), (Rician + AWGN)

No. DNN layers 4
Number of Iterations 106

Optimizer ADAM
Learning Rate 0.001

Number of neurons/layer (LSTM) 300
Number of pilots 4

In our simulation environment, we assume that the channel state information (CSI) is not
available at the receiver side. Therefore, for the sake of comparison and in order to investigate the
efficiency of the proposed DL algorithm, two methods for channel estimation are implemented at
the receiver side for each user. The first method, which is the proposed scheme, uses DNN-based
LSTM layer to estimate the desired channel coefficients. The gradient descent algorithm is applied in
conjunction with LSTM layer, and the LSTM layer is attached to a fully connected layer, where each
neuron in the former layer is fully connected to every neuron in the consequent layer. The second
channel estimation scheme implemented at each receiver side is initiated based on the minimum
mean square error (MMSE) [33]. The MMSE technique will be applied as a conventional channel
estimation technique for each user in NOMA cell, and in the simulations results, we refer to the
MMSE scheme as conventional NOMA, to clarify that users are using the MMSE procedure for
estimating the channel coefficients before recovering the original signal.

Channel taps that are employed to model the Rayleigh fading wireless channel are generated
on the basis of ITU channel models. Throughout the simulations, NOMA system parameters are em-
ployed on the basis of the long-term evolution (LTE) standard [34]. Both training and implementation
phases are conducted online throughout the simulations, and the fading coefficients in the testing
stage are generated such that these coefficients are not the same as in the training stage. At the end
of the training stage, which includes training and testing data, the trained network will be utilized
as online channel estimator for the users rather than the conventional NOMA scheme that use the
MMSE procedure for channel estimation.

Initially, different power factors are allocated for each user according to their distance from
the BS and the current channel gain. Power allocation coefficients αn, αm, and α f are defined for
near, middle, and far users, respectively. In the fixed power allocation (FPA) scenario, we can assign
α f = 0.7, αm = 0.2, and αn = 0.1. Alternatively, in the optimized power scheme, power factors are
apportioned between users according to the analytical form derived earlier for each user in Section 4.
The propagation distances for each user with respect to base station are initially assigned in the
simulation files as follows d f = 1000 m, dm = 500 m, and dn = 200 m. Quadrature phase shift keying
QPSK is utilized as a modulation scheme for the data symbols and pilot sequences. The applied
transmitted power mainly varies from 0 to 30 dBm.

9. Simulation Results and Discussion
In Figure 4, the simulation results illustrate the comparison between the proposed DL scheme for

channel estimation and conventional NOMA scheme that employs MMSE procedure for estimating
the channel parameters. The estimated channel coefficients using both schemes will be used in signal
recognition for far, middle, and near users and the simulation results are shown in terms of bit error
rate (BER) versus transmitted power. All users in the NOMA cell-based DL channel estimation show
sufficient improvement in lowering the bit errors compared to the conventional NOMA scenario,
especially when the assigned power is increased. It can be noticed that for certain BER values, such as
10−2, the power saving achieved by DL scheme is approximately 5–8 dBm for far and middle users,
while for the near user, the power saving is up to 4 dBm.
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5–7 dBm approximately, which proves the superiority of the proposed DL estimation 
scheme. 
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Figure 5 demonstrates the results for outage probability metric versus transmitted power for
the three examined users in NOMA system on the basis of DL and conventional NOMA channel
estimator schemes. Far user and near user simulation results indicate an approximately 5 dBm
improvement in power saving to achieve a certain outage probability (10−3) when DL-based channel
estimation scenario is implemented compared to the conventional estimation scheme. Likewise, the
middle user with the DL estimation scheme shows more enhancement in power saving compared to
the MMSE procedure, by 5–7 dBm approximately, which proves the superiority of the proposed DL
estimation scheme.
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Figure 6 displays the simulation results for the sum rate versus the transmitted energy for the
three examined users in the NOMA cell. In this figure, three different channel estimation schemes are
inspected, i.e., the proposed DL approach, conventional NOMA based on the MMSE scheme, and the
DL algorithm for joint channel estimation and signal detection that was applied in [14]. Based on the
simulation results, it can be clearly noticed that the proposed DL channel estimation scheme shows
dominance over the conventional NOMA scenario, with 6 b/s/Hz approximately, and also indicates
an improvement over the DL algorithm implemented in [14] by 2 b/s/Hz. These results verify the
effectiveness of the proposed DL scheme in estimating the channel coefficients before being utilized
in the decoding process.
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Figure 7 illustrates the simulation results for the individual capacity metric for each user in
the NOMA cell when both the proposed DL-assisted channel estimation and conventional NOMA-
based MMSE channel estimation schemes are employed. As expected, when power level starts to
increase, the achieved capacity for the near user shows significant difference by at least 8 b/s/Hz
approximately over far and middle users’ rates. This may be justified by the good channel condition
for the near user compared to other users in the cell. Furthermore, the proposed DL approach still
delivers noticeable enhancements with respect to other users, but with little impact especially for the
far user, due to interference and weak channel conditions.

Figure 8 illustrates the simulation results for BER versus transmitted power when the Rician
channel is implemented. The proposed DL channel estimation scheme and conventional MMSE
scheme will be further inspected by the Rician channel model.
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Rician fading is a stochastic model for radio propagation, where the signal arrives at the receiver
by several different paths, and hence, exhibits multipath interference. Rician fading occurs when one
of the paths, typically a line of sight (LOS) signal or some strong reflection signals, is much stronger
than the others. A Rician fading channel can be described by two parameters The first one is the
Rician factor K defined as the ratio of the signal power in the line-of-sight component to the scattered
power in other components. The other main parameter is Ω, which represents the total power from
both paths and acts as a scaling factor to the distribution. In our simulation file for the Rician channel,
we assign K = 10, sample rate = 9600 Hz, and maximum doppler shift = 100.

In Figure 8, simulation outcomes for near and middle users indicate a noticeable improvement
in lowering the bit errors when the proposed DL scheme is applied compared to the conventional
MMSE scenario. The near user shows a substantial improvement in terms of power saving due to
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the relaxed channel conditions and elimination of interference by the SIC method. In the far user
situation, the impact of DL in tracking the channel parameters is limited due to the interference and
weak channel conditions.

Figure 9 demonstrates the simulation results for outage probability metric versus power trans-
mitted when the Rician channel is considered, and both DL and MMSE channel estimation schemes
are inspected. Far and middle users’ simulation results show an improvement within approximately
4 dBm of power saving to achieve a certain outage probability when the DL-based channel estimation
scenario is conducted compared to the MMSE scheme. In terms of the near user, the simulation
outcomes indicate that the proposed DL channel estimation scheme starts showing improvement
regarding the outage probability when the power allocated to the near user is more than 4 dBm,
which also proves the dominance of the proposed DL method.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26 
 

 

In Figure 8, simulation outcomes for near and middle users indicate a noticeable im-
provement in lowering the bit errors when the proposed DL scheme is applied compared 
to the conventional MMSE scenario. The near user shows a substantial improvement in 
terms of power saving due to the relaxed channel conditions and elimination of interfer-
ence by the SIC method. In the far user situation, the impact of DL in tracking the channel 
parameters is limited due to the interference and weak channel conditions. 

Figure 9 demonstrates the simulation results for outage probability metric versus 
power transmitted when the Rician channel is considered, and both DL and MMSE chan-
nel estimation schemes are inspected. Far and middle users’ simulation results show an 
improvement within approximately 4 dBm of power saving to achieve a certain outage 
probability when the DL-based channel estimation scenario is conducted compared to the 
MMSE scheme. In terms of the near user, the simulation outcomes indicate that the pro-
posed DL channel estimation scheme starts showing improvement regarding the outage 
probability when the power allocated to the near user is more than 4 dBm, which also 
proves the dominance of the proposed DL method. 

 
Figure 9. Outage probability vs. power-based DL and conventional NOMA (Rician channel). 

In Figure 10, the simulation results regarding the individual capacity for each user 
are illustrated when the Rician channel model is employed, and both the DL-assisted 
channel estimation and conventional NOMA based on the MMSE channel estimation 
schemes are applied. It is worth mentioning that for both far and middle users, DL-based 
channel estimation shows comparable capacity compared to the MMSE scheme, which 
can be justified, as the DL scheme is not sufficient enough to mitigate the interference and 
weak channel conditions for far and middle users in the Rician channel. On the other 
hand, comparable to the Rayleigh fading results, the achieved capacity for the near user 
shows a significant difference by at least 6 b/s/Hz compared to far and middle users for 
the same applied power level. This enhancement in capacity can be justified by the line of 
site component between transmitter and receiver in the Rician channel and the relaxed 
fading channel between the near user and BS. 

Figure 9. Outage probability vs. power-based DL and conventional NOMA (Rician channel).

In Figure 10, the simulation results regarding the individual capacity for each user are illustrated
when the Rician channel model is employed, and both the DL-assisted channel estimation and
conventional NOMA based on the MMSE channel estimation schemes are applied. It is worth
mentioning that for both far and middle users, DL-based channel estimation shows comparable
capacity compared to the MMSE scheme, which can be justified, as the DL scheme is not sufficient
enough to mitigate the interference and weak channel conditions for far and middle users in the
Rician channel. On the other hand, comparable to the Rayleigh fading results, the achieved capacity
for the near user shows a significant difference by at least 6 b/s/Hz compared to far and middle
users for the same applied power level. This enhancement in capacity can be justified by the line
of site component between transmitter and receiver in the Rician channel and the relaxed fading
channel between the near user and BS.

Figure 11 illustrates the simulation results for the sum rate versus the number of users examined
in the NOMA cell when the Rayleigh channel model is implemented. In this figure and as a benchmark
comparison, we have conducted the simulation environment related to the work in [14], which
implements the DL algorithm based on joint channel estimation and signal detection as a one-shot
process. As indicated from the figure, our proposed DL-based channel estimation scheme achieves a
substantial higher sum rate compared to both the conventional NOMA scheme based on the MMSE
procedure, and the DL scheme for joint channel estimation and signal detection discussed in [14].
It can be clearly noticed that as the number of users in the cell increases, our proposed DL channel
estimation scheme remains superior in showing higher rates compared to other schemes. These
results indicate that reliability can be guaranteed by the proposed scheme even when the cell capacity
is increased. On the other hand, it is worth mentioning that as the total number of users keeps
increasing in the cell, the interference will also increase, and consequently, the performance will
degrade, and the sum rate will start to decrease.
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In Figure 12, two different simulation scenarios are conducted here to generate this figure; the
first one when a fixed power allocation (FPA) scheme is applied for each user in the system. The
other scenario is the optimized power scheme that is implemented according to the analytical power
factors derived earlier. Both scenarios are employed in combination with the proposed DL for the
channel estimation scheme. Simulation results for far and middle users prove the superiority of the
power-optimized structure over the FPA structure in terms of BER. For the near user results, the
proposed DL-based channel estimation jointly with FPA provides little enhancement in terms of the
received bits error over the optimized power scheme, which could be justified in that for the near
user scenario, a good channel condition is more beneficial than the allocated power.
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Figure 13 illustrates the outage probability results against the power transmitted for far, middle,
and near users when the optimized power scheme and FPA schemes are applied, and both scenarios
are conducted in combination with the proposed DL-based channel estimation in NOMA cell. Far
user results show an enhancement in outage probability and the power saving is approximately 5–6
dBm when both the DL and optimized scheme are applied compared to the FPA results. Similarly,
for the middle user case, both the DL and optimized scheme provide a noticeable improvement in
the outage probability, but with less power saving, i.e., 2–3 dBm approximately. Alternatively, the
near user with the joint DL channel estimation scenario and FPA scheme show considerable outage
improvement compared to the optimized power case. These results also confirm the results obtained
for the outage propagability metric, which indicates that FPA coefficients, jointly with high channel
gain, are more sufficient for the near user than the power optimization scheme.

In Figure 14, the simulation results for the sum rate for the three examined users in NOMA cell
are shown. Each of the optimized power scheme and FPA scheme is incorporated with the proposed
DL algorithm utilized for estimating the channel coefficients prior to calculating the rate for each
user. On the basis of the simulation outcomes, it can be clearly noticed that the channel estimation
based on DL combined with the optimized power scheme show little improvement in the sum rate
compared to the FPA scenario when the applied power level is low. Starting from 15 dBm, both the
optimized power and FPA schemes provide a comparable sum rate when our proposed DL channel
estimation scheme is implemented.
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In Figure 15, the achievable user’s rates are simulated separately against the transmitted power
when the optimized power and fixed power schemes are implemented, where the proposed DL is
employed for channel parameter prediction for each user in the cell. The simulation outcomes for
far and middle users indicate that both the FPA scheme and the optimized power scheme provide
comparable rates, even when the DL algorithm is considered. This might be interpreted as that the
control of the power is not always adequate to mitigate the effect of the interference, especially for
far and middle users that suffer from fluctuating channel conditions. Unsurprisingly, simulation
results for the near user demonstrate dominance in the attainable rate compared to middle and far
users by more than 6 b/s/Hz. Additionally, near user results related to fixed power factors show a
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noticeably better rate compared to the optimized power scheme, which validate the results obtained
in Figures 12 and 13, for BER and outage probability metrics, where the FPA scheme revealed visible
improvement compared to the optimized power scheme.
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10. Conclusions and Future Work
In this work, the impact of the Deep Neural Network (DNN) in explicitly estimating the channel

coefficients for each user in the NOMA cell is investigated, where the LSTM network is developed
for complex data processing. In the proposed DL algorithm, the DNN model is trained online
based on both the normalized channel statistics and the relationship between successive training
sequences. The validity and efficiency of the proposed DL channel estimation scheme is emphasized
by inspecting the proposed DNN model using the Rayleigh fading channel and Rician fading channel.
Furthermore, we introduce a framework that investigates how the proposed channel estimation
based on the DL and the power optimization scheme are jointly utilized for multiuser detection in the
PD-NOMA system. To maximize the sum rate of the system users, we optimize the power coefficients
allocated for each user on the basis of the overall power transmitted and the QoS constraints. A
systematic mathematical analysis for the optimization problem is introduced and the Lagrange
function and KKT conditions are employed to deduce the optimal power factors. The simulation
results in terms of the BER, outage probability, sum rate, and individual capacity have verified that the
proposed DL model-assisted NOMA can realize reliable performance compared to the conventional
NOMA scheme, even when cell capacity is increased.

In future work, the performance of the proposed DNN model can be further explored in terms
of single input, multi output (SIMO) or multi input, single output (MISO) for different types of fading
channels and modulation schemes.
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Abbreviations

The following abbreviations are used in this manuscript:
AWGN Additive White Gaussian Noise
BER bit error rate
BS Base Station
BTT Backpropagation through time
CSI Channel state information
DL Deep Learning
DNN Deep Neural Network
FPA Fixed Power Allocation
GRU Gated Recurrent Unit
KKT Karush–Kuhn–Tucker
LSTM Long Short-Term Memory
LTE Long Term Evolution
ML Machine Learning
MSE Mean Square Error
MMSE Minimum Mean Square Error
MUD Multiuser detection
OFDM Orthogonal Frequency Division Multiplexing
PD-NOMA Power Domain Non-Orthogonal Multiple Access
QoS Quality of Service
RBM Restricted Boltzmann Machines
RNN Recurrent Neural Networks
SIC Successive interference cancellation
SIMO Single-input, multi-output
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