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Non-Fragile Dissipative Fuzzy PID Control with
Mixed Fading Measurements
Yezheng Wang, Zidong Wang, Lei Zou and Hongli Dong

Abstract—This paper is concerned with the extended dissipa-
tive fuzzy proportional-integral-derivative (PID) control problem
for nonlinear systems subject to controller parameter perturba-
tions over a class of mixed fading channels. The sensors of plant
are divided into two groups according to engineering practice,
where the individual sensor group transmits the measurements to
the controller via a respective communication channel undergoing
specific fading effects. Considering the complicated nature of the
signal fading with the transmission channels, two stochastic mod-
els (i.e. the independent and identically distributed fading model
and the Markov fading model) are simultaneously employed
to describe the mixed fading effects of the two communication
channels corresponding to the two sensor groups. The objective
of this paper is to design a non-fragile PID controller such that
the closed-loop system is exponentially stable in mean square
and extended stochastically dissipative. With the assistance of
the Lyapunov stability theory and stochastic analysis method,
sufficient conditions are obtained to analyze the system per-
formance. Then, within the established theoretical framework,
an iterative optimization algorithm is proposed to design the
desired controller parameters by using the convex optimization
technique. Finally, two simulation examples are given to verify
the effectiveness of the proposed control schemes.

Index Terms—Fuzzy systems, non-fragile control, channel
fading, extended dissipativity, PID control.

I. I NTRODUCTION

Since its first introduction in [1], the theory of dissi-
pative systems has become a powerful tool to deal with
the analysis/synthesis problems in system science. From a
systematic perspective of input-output energy, the dissipativ-
ity performance is capable of reflecting many fundamental
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system behaviors such as stability, passivity andH∞ dis-
turbance rejection/attenuation level. Because the dissipative
theory provides a unified and concise framework for studying
the system performance, the past decades have witnessed a
rapid development of dissipative control/filtering theories and a
large number of representative results have been reported in the
literature [2]–[5]. Note that, to further extend the application
scope of the dissipative theory, a new index called extended
dissipativity was first proposed in [6] for continuous-time
systems and, by adjusting its weight parameters, this modified
index indicates not only the standard dissipativity but also the
L2-L∞ performance. Since then, the extended-dissipativity-
based techniques have attracted considerable research attention
and plenty of results have been reported for continuous-time
systems [7], [8] and discrete-time systems [9]–[12].

The Takagi-Sugeno (T-S) fuzzy technique is known to be
an effective means to deal with control problems for general
nonlinear systems. By establishing the T-S fuzzy model, many
complex nonlinear functions can be approximated by some
linear ones with nonlinear weight parameters subject to any
desired approximation accuracy. Such characteristics of local
linearity and global nonlinearity facilitate researchers to study
the nonlinear control systems by using the T-S fuzzy tech-
nique. In the past decades, there has been a rich body of liter-
ature concerning the T-S-fuzzy-model-based nonlinear control
issues, where multifarious parallel-distributed-compensation
(PDC) or non-PDC fuzzy controllers have been designed. To
mention a few, those popular fuzzy controllers include fuzzy
sliding controllers [13], [14], fuzzy fault-tolerant controllers
[15], fuzzy piecewise controllers [16], [17], adaptive fuzzy
controllers [18], [19] and modified repetitive fuzzy controllers
[20].

Most existing fuzzy controllers are of the proportional
type since they are designed based on a proportional relation
with respect to the current system states/measurements, which
enjoy the convenience in design and implementation. On the
other hand, the proportional-integral-derivative (PID) control
scheme, which exploits the full information about the past, the
current and the future situations of the system dynamics, can
find its successful application in almost all industrial systems.
For decades, the PID control strategy is known to possess clear
engineering background, enhanced robustness, inherent fault-
tolerant capability, reliable operation, and concise structure,
and has provided engineers with clear guidance on achieving
various system performance [21]–[24]. Even with today’s
popularity of intelligent control, more than90% practical
controllers are still designed in terms of the PID control theory
[25], which shows the irreplaceable vitality of the PID-type
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controllers.
Along with the rapid development of automation and mod-

ernization, most of industrial systems involve severe nonlinear-
ities, strong coupling, high level of integration and large scale,
all of which bring in inevitable difficulties to the controller
design issues. Traditional PID controllers, which work well
with a linear and time-invariant structure, might not be able to
provide satisfactory control performance for complex system.
As such, much attention has been paid to the improvement
of the applicability of the PID control schemes and, among
various improved PID control schemes, the T-S fuzzy PID
controller has attracted a particular research interest as it
combines the advantages of T-S fuzzy control and PID control
techniques. Generally speaking, a T-S fuzzy PID controller is
designed based on the obtained T-S fuzzy model, and such a
controller is inherently time-varying due to the introduction
of the time-varying fuzzy membership functions. Actually,
the fuzzy PID control takes advantage of several linear PID
controllers working together (under appropriate weights) to
give rise to the improvement of the control performance. With
respect to the T-S fuzzy PID control problems, some recent
works can be found in [26]–[29].

An implicit assumption with almost all existing works
concerning the T-S fuzzy PID control problems is that the
designed controller can be precisely implemented in practice.
Such an assumption is, however, not always true for many rea-
sons such as the round-off error in numerical computation, the
finite precision of measuring equipment and the aging/failures
of the system components [30]. These limitations on the soft-
ware/hardware would result in controller parameter perturba-
tions (CPPs) and further degrade the control performance. As
such, many researchers make efforts to design the controllers
by taking the underlying CPPs into consideration, which is
referred to as the non-fragile control problem. Nevertheless,
the design of such non-fragile controller is non-trivial in the
context of fuzzy PID control because the parameter pertur-
bations may occursimultaneouslyin proportional, integral
and derivative terms of all fuzzy submodels of a fuzzy PID
controller.

On another research forefront, because of the large scale
of the communication network and the quick development
of network technology, the networked control systems have
received considerable attention from both theorists and engi-
neers. On one hand, introducing the communication network
makes it possible to conduct information exchange between
system components with high flexibility, low cost, simple
installation/maintenance, and few wiring requirements [31]–
[34]. On the other hand, due to the distinctive network features
(e.g. limited bandwidth, massive data to be processed, open
transmission environment, wide distribution and high internal
complexity), the system performance would be largely affected
by certain network-induced phenomena (e.g. packet dropouts,
transmission delays and channel fadings) which, in turn, leads
to great challenges in the control tasks.

As a kind of commonly encountered phenomenon in the
wireless network communication, the channel fadings have
attracted special attention in recent years. Once the channel
fading occurs, the amplitude and/or the phase of the trans-

mitted signals would undergo some distortions. Such a less-
than-ideal phenomenon, if not properly handled, would di-
rectly affect the communication performance between system
components and further degrade the system performance. Note
that, to reflect the time-varying feature of channel fadings,
two effective fading models have been widely employed in
the communication and control areas. These two models
are the finite-state Markov channel fadings (FSMCFs) and
the independent and identically distributed channel fadings
(i.i.d.CFs). For the case of FSMCFs, the network (or channel)
is thought to have several modes according to the different
configurations of the overall physical environment, where a
finite-state Markov process is utilized to describe the mode
switching. This model is capable of capturing the temporal
correlations of channel conditions and has been used to repre-
sent many typical communication models such as the Gilbert-
Elliott channel model [35]. For the case of i.i.d.CFs, several
i.i.d. stochastic variables are employed to reflect the fading
level of the network, and this model is capable of describing
the communication environment where a set of memoryless
parallel independent channels is deployed. A typical example
of the i.i.d.CFs is the Erasure channel where the channel
coefficients are specialized to the binary value for representing
the packet dropouts [36].

So far, much attention has been devoted to the con-
trol/filtering problems subject to channel fadings and a great
deal of literature has been published on this topic. For exam-
ple, in [36]–[39], the control problems subject to the i.i.d.CFs
have been addressed via some effective methods including
fuzzy control, sliding mode control and stochastic control. For
FSMCFs, some seminal theoretical results have been reported
in [40]–[44] where the controller/filter synthesis and system
performance analysis have been discussed in detail.

Note that, in the exiting works concerning control problems
under channel fadings, only a single type of fading effect
(i.e., either FSMCFs or i.i.d.CFs) has been considered, which
is actually based on the implicit assumption that all system
information is transmitted viasametype of communication
channels undergoing thesametype of fadings. Such an as-
sumption is, unfortunately, no longer valid in complicated
transmission environments. For example, in heterogeneous cel-
lular networks [45], the macrocell base stations and small base
stations are employed together to improve the communication
quality, where different types of links exist between user
equipment units and base stations. In this case, the signal
transmissions in different links would experience different
fadings. Such kind ofmixedfading phenomena also appears in
relay-based networks as different paths follow different fading
characteristics [46], [47]. Themixed fading measurements
would greatly complicate the controller design especially for
fuzzy PID control problem and, therefore, we are motivated to
conduct the current study to deal with mixed channel fading
issues.

Summarizing the discussions made so far, we are interested
in dealing with the non-fragile fuzzy PID control problems
subject to the mixed fading effects. To do this, we are facing
two substantial challenges identified as follows: 1) how to es-
tablish an appropriate analysis method to explore the extended
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dissipativity for T-S fuzzy systems subject to the coexistence
of the FSMCFs, i.i.d.CFs and CPPs? and 2) how to design
mode-dependent PID controllers by using faded measurements
and observed network modes? Correspondingly, the main
contributions of this paper are highlighted from the following
three aspects: 1) the dissipative fuzzy PID control problem is,
for the first time, investigated for a class of discrete-time T-S
fuzzy systems subject to mixed channel fadings and the CPPs;
2) a novel mode-dependent non-fragile fuzzy PID controller
is proposed by using the observed network modes; and 3)
the desired controller parameters are obtained via solving an
optimization problem.

The rest of this paper is arranged as follows. In Section
II, the considered nonlinear plant, the signal transmission
model, the adopted fuzzy PID controller and the performance
index are given in detail. Section III gives the main results
concerning the system analysis and controller synthesis. In
Section IV, two simulation results and some discussions are
presented to verify the obtained theoretical results. Finally, the
conclusion is made in Section V.

Notations: In this paper,Rn represents then-dimensional
Euclidean space. The transposition and trace of a matrixA
are denoted byAT andtr(A), respectively.l2[0,∞) refers to
the space of square summable sequences. A block-diagonal
matrix D with blocks d11, d22, · · · , dnn in the leading
diagonal is described byD = diag{d11, d22, · · · , dnn}. The
symmetric parts in a symmetric matrix are denoted by an
asterisk “∗”. I and 0 are used to represent, respectively,
the identity matrix and zero matrix of proper dimensions.
Given a matrixB, its maximum and minimum eigenvalue
are denoted byλmax(B) and λmin(B), respectively.E{σ}
is the mathematical expectation of the stochastic variableσ.
Pr{E1|E2} represents the conditional probability of the event
E1 under the eventE2. If two real matricesE = [eij ]m×n and
F = [fij ]m×n have the same dimensions, then the Hadamard
productE ◦ F is defined asE ◦ F , [eijfij ]m×n.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Fuzzy Plants

We consider a kind of nonlinear systems whose sensors
are divided into two groups according to the different spatial
distribution. The nonlinear systems can be described by the
following T-S fuzzy models:

System Rule i: IF ρ1(k) is Wi1, andρ2(k) is Wi2, and· · · ,
andρs(k) is Wis, THEN







x(k + 1) =Aix(k) +Biu(k) + Eiω(k)

y1(k) =C1x(k) + F1ω(k)

y2(k) =C2x(k) + F2ω(k)

z(k) =Gix(k), i ∈ I , {1, 2, · · · , r}

(1)

where r is the number of fuzzy rules;Wi1, · · · ,Wis

are fuzzy sets;x(k) ∈ R
nx is the system state;ρi(k)

(i = 1, 2, · · · , s) is the measurable variable;ρ(k) ,
[
ρ1(k) ρ2(k) · · · ρs(k)

]T ∈ R
s is the premise variable

vector; u(k) ∈ R
nu is the control input to be designed;

y1(k) ∈ R
n1 and y2(k) ∈ R

n2 are measurement outputs

from Sensor Groups I and II, respectively.z(k) ∈ R
nz

is the controlled output;ω(k) ∈ (Rnω , l2[0,+∞)) is the
energy-bounded external noise (including process noise and
measurement noise);Ai, Bi, Ei, C1, C2, F1, F2 andGi are
real constant matrices of appropriate dimensions.

By using the standard fuzzy inference technique, the fuzzy
system (1) can be described by






x(k + 1) =
r∑

i=1

φi(ρ(k))
(

Aix(k) +Biu(k) + Eiω(k)
)

y1(k) =C1x(k) + F1ω(k)

y2(k) =C2x(k) + F2ω(k)

z(k) =

r∑

i=1

φi(ρ(k))Gix(k)

(2)

whereφi(ρ(k)) (i ∈ I) is called the normalized membership
function calculated by

φi(ρ(k)) ,

∏s
j=1 Wij(ρj(k))

∑r
i=1

∏s
j=1 Wij(ρj(k))

with 0 ≤ Wij(ρj(k)) ≤ 1 being the membership grade of
ρj(k) in Wij . Meanwhile, for∀k ≥ 0, the following properties
hold:

φi(ρ(k)) ≥ 0, i ∈ I,

r∑

i=1

φi(ρ(k)) = 1. (3)

B. Communication Network

In this paper, the sensors are classified into two groups
that are located in two different regions, and the signal
transmissions from these two sensor groups to the controller
are achieved via two different dedicated communication chan-
nels with limited communication capability. For presentation
convenience, we label the channel for Sensor Group I (II)
as Channel I (II). To account for the diverse transmission
environment, two types of channel fading models will be
considered in the following.

1) FSMCFs:For Sensor Group I with Channel I, the trans-
mitted information via wireless network would undergo the
effects of the FSMCFs. Denote the network mode asσ(k) ∈
L , {1, 2, · · · , l̄} which is a discrete-time Markov stochastic
process with the transition probability matrixΠ , [πab]a,b∈L

(πab ∈ [0, 1]). Then, for σ(k), the transition probabilities
between modes can be described by

Pr{σ(k + 1) = b|σ(k) = a} , πab, ∀a, b ∈ L. (4)

Under the effects of channel fadings, the signals after being
transmitted are of the following form:

ȳ1(k) = Λσ(k)y1(k) (5)

whereȳ1(k) is the transmitted measurement output of Sensor
Group I. The channel fading phenomenon is reflected inΛσ(k),
which is a stochastic diagonal matrix given by

Λσ(k) , diag
{
λ1,σ(k), λ2,σ(k), · · · , λn1,σ(k)

}
(6)
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where0 ≤ λc,σ(k) ≤ 1 (c = 1, 2, · · · , n1) is a known scalar
representing the fading level.

Remark 1: In the finite-state Markov fading model (5),
the network is regarded to have finite modes that may result
from different configuration of the overall physical environ-
ment [41]. In different network mode, the fading level may
be different. Furthermore, a Markov stochastic process is
employed to describe the mode switching in different time
instants that can effectively capture the time-varying features
of the transmission environment.

In engineering practice, it is difficult to obtain the accurate
modes of the network in a timely manner due to the com-
plicated network environment and the limited measurement
capability. In this case, in order to facilitate the design of a
mode-dependent controller, we introduce an observed mode
signal on the controller side. It is assumed thatθ(k) ∈
L̄ , {1, 2, · · · , s̄} is the available mode information for the
controller and satisfies

δef , Pr{θ(k) = f |σ(k) = e}, e ∈ L, f ∈ L̄ (7)

whereδef ∈ [0, 1] and
∑s̄

f=1 δef = 1.
Remark 2:In engineering practice, the mode information

θ(k) can be obtained through several mode detection tech-
niques [41], [44], [48]. The description of the observed mode
information with conditional probability (7) is of a general
form that covers the following three situations as special
cases: a) Ifl̄ = s̄ with δee = 1 for ∀e ∈ L, then we
have the synchronous case where the real modes are available
or the detected modes are completely accurate; b) ifl̄ 6= s̄
with δef ∈ (0, 1) for ∀e ∈ L, f ∈ L̄, then we have the
asynchronous case where the estimated modes may differ from
the actual modes; and c) if̄L = {1}, then we come up with
the case that no detection scheme is deployed.

2) i.i.d.CFs: For Sensor Group II, it is assumed that the
related measurements may experience the i.i.d.CFs. Define
ȳ2(k) as the outputs transmitted via channel 2. Then,ȳ2(k)
can be described by

ȳ2(k) = Ξ(k)y2(k) (8)

whereΞ(k) is a stochastic diagonal matrix with the following
structure:

Ξ(k) , diag {ξ1(k), ξ2(k), · · · , ξn2
(k)} (9)

whereξd(k) (d = 1, 2, · · · , n2) represent the channel coeffi-
cients. For each time instantk, ξd(k) are the i.i.d. stochastic
variables with the following statistical properties:

ξ̄d , E{ξd(k)},
ξ∗cd , E{(ξc(k)− ξ̄c)(ξd(k)− ξ̄d)},

where, for∀c, d = 1, 2, · · · , n2, ξ̄d > 0 andξ∗cd > 0 are known
scalars withξ∗cd = ξ∗dc.

To facilitate the later analysis, we denote some auxiliary
matrices as follows:

Ξ̄ , diag
{
ξ̄1, ξ̄2, · · · , ξ̄n2

}
,

Υ , diag
{
ξ∗11, ξ

∗
22, · · · , ξ∗n2n2

}
,

Ῡ , [ξ∗cd]c,d=1,2,··· ,n2
.

It is easy to see that̄Ξ > 0, Υ > 0 and Ῡ ≥ 0.
By defining ȳ(k) ,

[
ȳT1 (k) ȳT2 (k)

]T
as the whole sys-

tem measurements after transmitted via the communication
network, we have from (5) and (8) that

ȳ(k) =
(
C̄σ(k) + C̃(k)

)
x(k) +

(
F̄σ(k) + F̃ (k)

)
ω(k) (10)

where

C̄σ(k) ,

[
Λσ(k)C1

Ξ̄C2

]

, C̃(k) ,

[
0

Ξ̃(k)C2

]

,

F̄σ(k) ,

[
Λσ(k)F1

Ξ̄F2

]

, F̃ (k) ,

[
0

Ξ̃(k)F2

]

,

Ξ̃(k) ,diag
{
ξ1(k)− ξ̄1, ξ2(k)− ξ̄2, · · · , ξn2

(k)− ξ̄n2

}
.

Remark 3: Until now, we have established the signal
transmission model for fuzzy system (2). In particular, the
effects caused by the complex transmission environment for
two sensor groups are characterized by two kinds of channel
fadings. In this sense, the considered channel fadings are called
to bemixedones, and the proposed mixed fading models (5)
and (8) would better reflect the engineering practice, thereby
broadening the application scope of our obtained results. For
example, if we letn1 = ny andn2 = 0 whereny denotes the
dimension of the whole measurement output, then our results
reduce to those subject to the single FSMCFs. Similarly, if we
let n1 = 0 andn2 = ny, then our results specialize to those
for the single i.i.d.CFs.

C. Fuzzy PID Controller

In this paper, by utilizing the available outputs̄y(k) and
the observed mode informationθ(k), we adopt a discrete-type
fuzzy PID controller as follows.

Controller Rule j: IF ρ̄1(k) is W̄j1, and ρ̄2(k) is W̄j2, and
· · · , and ρ̄s̃(k) is W̄js̃, THEN

u(k) =KP
jθ(k)ȳ(k) +KI

jθ(k)

k−1∑

τ=0

ȳ(τ)

+KD
jθ(k)

(
ȳ(k)− ȳ(k − 1)

)
(11)

where KP
jθ(k), KI

jθ(k) and KD
jθ(k) (j ∈ {1, 2, · · · , r̄} ,

I1, θ(k) ∈ L̄) are controller gains to be designed.
Taking the phenomenon of the CPPs into account, the

controller (11) can be further described by the following
compact form:

u(k) =

r̄∑

j=1

ϕj(ρ̄(k))

(
(
KP

jθ(k) +∆KP
jθ(k)(k)

)
ȳ(k)

+
(
KI

jθ(k) +∆KI
jθ(k)(k)

)
k−1∑

τ=0

ȳ(τ)

+
(
KD

jθ(k) +∆KD
jθ(k)(k)

)(
ȳ(k)− ȳ(k − 1)

)
)

(12)

where

ρ̄(k) ,
[
ρ̄1(k) ρ̄2(k) · · · ρ̄s̃(k)

]T
,

ϕj(ρ̄(k)) ,

∏s̃
n=1 W̄jn(ρ̄n(k))

∑r̄
j=1

∏s̃
n=1 W̄jn(ρ̄n(k))

,
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∆KP
jθ(k)(k) ,MP

jθ(k)∆P (k)NP ,

∆KI
jθ(k)(k) ,M I

jθ(k)∆I(k)NI ,

∆KD
jθ(k)(k) ,MD

jθ(k)∆D(k)ND

and ρ̄(k) is the premise vector of the controller. It is as-
sumed thatρ(k) and ρ̄(k) are independent ofξa(k) (a =
1, 2, · · · , n2). W̄ij is the fuzzy set.MP

jθ(k), M
I
jθ(k), M

D
jθ(k),

NP , NI and ND are known constant matrices of proper
dimensions.∆P (k), ∆I(k), ∆D(k) are unknown time-varying
functions that satisfy [30]:

∆T
P (k)∆P (k) ≤ I, ∆T

I (k)∆I(k) ≤ I, ∆T
D(k)∆D(k) ≤ I.

Remark 4:In the non-fragile fuzzy PID controller (12), the
underlying parameter perturbations in proportional, integral
and derivative terms of all fuzzy submodels are all taken
into account. Obviously, the design of such a controller is
more difficult than that of non-fragile state-feedback one or
static output-feedback one, where the CPPs only appear in the
proportional term [49], [50]. In addition, different from the
existing fuzzy PID controllers [26]–[29], the proposed fuzzy
controller is not required to share the same premise variables
and fuzzy rules with the fuzzy plant. In fact, such a controller
can be regarded as a kind of non-PDC one that would increase
the design flexibility [51].

To facilitate the system analysis and the controller synthesis,
we define the following variable:

xI(k) ,

{
0, k = 0
∑k−1

τ=0 ȳ(τ), k > 0.
(13)

Then, we have

xI(k + 1) =

k∑

τ=0

ȳ(τ) = xI(k) + ȳ(k). (14)

Considering (2), (12) and (14), we obtain the closed-loop
system as follows:






η(k + 1) =

r∑

i=1

r̄∑

j=1

φi(ρ(k))ϕj(ρ̄(k))

×
((

Aij

σ(k)θ(k)(k) + Bij

θ(k)(k)ĨΞ̃(k)C2Ī
)

η(k)

+
(

E ij

σ(k)θ(k)(k) + Bij

θ(k)(k)ĨΞ̃(k)F2

)

ω(k)

)

z(k) =

r∑

i=1

φi(ρ(k))Giη(k)

(15)

where

η(k) ,
[
xT (k) xT

I (k) ȳT (k − 1)
]T

,

Aij

σ(k)θ(k)(k) ,





Aij11
σ(k)θ(k)(k) Aij12

θ(k)(k) Aij13
θ(k)(k)

C̄σ(k) I 0
C̄σ(k) 0 0



 ,

Aij11
σ(k)θ(k)(k) ,Ai +BiK̄jθ(k)(k)C̄σ(k), Gi ,

[
Gi 0 0

]
,

K̄jθ(k)(k) ,KP
jθ(k) +∆KP

jθ(k)(k) +KD
jθ(k) +∆KD

jθ(k)(k),

Aij12
θ(k)(k) ,BiK

I
jθ(k) +Bi∆KI

jθ(k)(k),

Aij13
θ(k)(k) , −BiK

D
jθ(k) −Bi∆KD

jθ(k)(k),

Bij

θ(k)(k) ,





BiK̄jθ(k)(k)
I
I



 , Ī ,
[
I 0 0

]
,

E ij

σ(k)θ(k)(k) ,





Ei +BiK̄jθ(k)(k)Ξσ(k)F
Ξσ(k)F
Ξσ(k)F



 , Ĩ ,

[
0
I

]

.

Before proceeding further, we introduce the following def-
initions.

Definition 1: [30] The closed-loop system (15) is said to
be exponentially mean-square stable if, forω(k) = 0, there
exist constantss1 > 0 ands2 ∈ (0, 1) such that

E
{
‖η(k)‖2

}
≤ s1s

k
2E

{
‖η(0)‖2

}
. (16)

Definition 2: [9] For given real matricesS1 = ST
1 ≤ 0,

S3 = ST
3 > 0, S4 = ST

4 ≥ 0 and arbitrary matrixS2

satisfying (‖S1‖ + ‖S2‖) · ‖S4‖ = 0, the fuzzy system (15)
is said to be extended stochastically dissipative if, for any
ω(k) ∈ l2[0,+∞), any integerT > 0 and under the zero initial
conditionη(0) = 0 , the following inequality is satisfied:

E

{
T∑

k=0

J(S1, S2, S3, k)

}

≥ sup
0≤k≤T

E
{
zT (k)S4z(k)

}
(17)

where

J(S1, S2, S3, k) , zT (k)S1z(k) + 2zT (k)S2ω(k)

+ ωT (k)S3ω(k).

Remark 5:The fulfillment of the inequality (17) implies
the achievement of theH∞, l2-l∞, passivity and standard
dissipativity performance. To be more specific, we have the
following:

1) if we setS1 = S2 = 0, S3 > 0 andS4 > 0, then (17)
reduces to thel2-l∞ performance index;

2) if we setS2 = S4 = 0, S1 < 0 andS3 > 0, then (17)
reduces to theH∞ performance index; and

3) if we setS4 = 0, S1 ≤ 0 andS3 > 0, then (17) reduces
to the standard dissipativity/passivity performance index.

In this paper, we aim to design the non-fragile fuzzy PID
controller such that the following two requirements are met
simultaneously:

R1) the closed-loop system (15) is exponentially mean-
square stable in the sense of Definition 1; and

R2) the closed-loop system (15) is extended stochastically
dissipative in the sense of Definition 2.

III. M AIN RESULTS

In order to derive the main results, we first define the
following notations and introduce some helpful lemmas.

r∑

i=1

r̄∑

j=1

φiϕj ,

r∑

i=1

r̄∑

j=1

φi(ρ(k))ϕj(ρ̄(k)),

r∑

i=1

r̄∑

j=1

r∑

l=1

r̄∑

m=1

φiϕjφlϕm
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,

r∑

i=1

r̄∑

j=1

r∑

l=1

r̄∑

m=1

φi(ρ(k))ϕj(ρ̄(k))φl(ρ(k))ϕm(ρ̄(k)).

Lemma 1: [52] For real matricesΩij (i ∈ I, j ∈ I1) and
matrix S > 0, we have

r∑

i=1

r̄∑

j=1

r∑

l=1

r̄∑

m=1

φiϕjφlϕmΩT
ijSΩlm

≤
r∑

i=1

r̄∑

j=1

φiϕjΩ
T
ijSΩij .

Lemma 2: [44] For real matricesA ≥ 0, B ≥ 0 andC ≥ 0,
if the conditionB ≤ C is satisfied, then,A◦B ≤ A◦C holds.

Lemma 3: [30] For real matricesX = XT , M , N with
appropriate dimensions andF satisfyingFTF ≤ I, then, the
following inequality holds

X +MFN +NTFTMT < 0

if and only if there exists a scalarµ > 0 such that




X ∗ ∗
µMT −µI ∗
N 0 −µI



 < 0.

The following theorem is presented for the analysis of the
stability and dissipativity of the closed-loop system (15).

Theorem 1:Consider the fuzzy system (1) and the fuzzy
non-fragile PID controller (12) with the given controller
parameters and matricesS1 = ST

1 ≤ 0, S3 = ST
3 > 0,

S4 = ST
4 ≥ 0, S2. Then, the closed-loop system (15) is

exponentially mean-square stable and extended stochastically
dissipative if there exist matricesPt > 0 and scalarsαijtn > 0
(for ∀i ∈ I, j ∈ I1, t ∈ L andn ∈ L̄) such that

(

Bij
n (k)Ĩ

)T

P̄tBij
n (k)Ĩ ≤ αijtnI (18)

s̄∑

n=1

δtn

[(

Āij
tn(k)

)T

P̃ ij
tnĀij

tn(k) + S̄i
t

]

< 0 (19)

−Pt + GT
i S4Gi < 0 (20)

whereP̄t =
∑l̄

v=1 πtvPv and

Āij
tn(k) ,

[

Ā1ij
tn (k) Ā2ij

tn (k)
]
, Ā1ij

tn (k) ,

[

Aij
tn(k)
C2Ī

]

,

Ā2ij
tn (k) ,

[

E ij
tn(k)
F2

]

, P̃ ij
tn ,

[
P̄t 0
0 αijtnΥt

]

,

S̄i
t ,

[
−Pt − GT

i S1Gi ∗
−ST

2 Gi −S3

]

.

Proof: Choose a mode-dependent Lyapunov function as
follows:

V (k, σ(k)) = ηT (k)Pσ(k)η(k). (21)

For σ(k) = t (t ∈ L), by calculating the difference of
V (k, σ(k)) and applying Lemma 1, we have

∆V (k, σ(k))

=V (k + 1, σ(k + 1))− V (k, σ(k))

=

r∑

i=1

r̄∑

j=1

r∑

l=1

r̄∑

m=1

φiϕjφlϕm

×
[(

Aij

tθ(k)(k) + Bij

θ(k)(k)ĨΞ̃(k)C2Ī
)

η(k)

+
(

E ij

tθ(k)(k) + Bij

θ(k)(k)ĨΞ̃(k)F2

)

ω(k)

]T

Pσ(k+1)

×
[(

Alm
tθ(k)(k) + Blm

θ(k)(k)ĨΞ̃(k)C2Ī
)

η(k)

+
(

E lm
tθ(k)(k) + Blm

θ(k)(k)ĨΞ̃(k)F2

)

ω(k)

]

− ηT (k)Ptη(k)

≤
r∑

i=1

r̄∑

j=1

φiϕj

[(

Aij

tθ(k)(k) + Bij

θ(k)(k)ĨΞ̃(k)C2Ī
)

η(k)

+
(

E ij

tθ(k)(k) + Bij

θ(k)(k)ĨΞ̃(k)F2

)

ω(k)

]T

Pσ(k+1)

×
[(

Aij

tθ(k)(k) + Bij

θ(k)(k)ĨΞ̃(k)C2Ī
)

η(k)

+
(

E ij

tθ(k)(k) + Bij

θ(k)(k)ĨΞ̃(k)F2

)

ω(k)

]

− ηT (k)Ptη(k).

(22)

On the basis of (22), it is calculated that

E{∆V (k, σ(k))|η(k), σ(k) = t}
,E{V (k + 1, σ(k + 1))|η(k), σ(k) = t} − V (k, t)

=E{ηT (k + 1)P̄tη(k + 1)|η(k), σ(k) = t} − V (k, t)

≤
r∑

i=1

r̄∑

j=1

φiϕj

s̄∑

n=1

δtn

× E

{[(

Aij
tn(k) + Bij

n (k)ĨΞ̃(k)C2Ī
)

η(k)

+
(

E ij
tn(k) + Bij

n (k)ĨΞ̃(k)F2

)

ω(k)

]T

P̄t

×
[(

Aij
tn(k) + Bij

n (k)ĨΞ̃(k)C2Ī
)

η(k)

+
(

E ij
tn(k) + Bij

n (k)ĨΞ̃(k)F2

)

ω(k)

]

− ηT (k)Ptη(k)|η(k), σ(k) = t

}

=

r∑

i=1

r̄∑

j=1

φiϕj

s̄∑

n=1

δtn

[(

Aij
tn(k)η(k) + E ij

tn(k)ω(k)
)T

P̄t

×
(

Aij
tn(k)η(k) + E ij

tn(k)ω(k)
)

+
(
C2Īη(k) + F2ω(k)

)T

×
(

Ῡt ◦
(

(Bij
n (k)Ĩ)T P̄tBij

n (k)Ĩ
))(

C2Īη(k) + F2ω(k)
)

− ηT (k)Ptη(k)

]

. (23)

Based on the condition (18), it follows from Lemma 2 that

Ῡt ◦
(

(Bij
n (k)Ĩ)T P̄tBij

n (k)Ĩ
)

≤ Ῡt ◦ αijtnI = αijtnΥt.

(24)

Then, we have from (23) and (24) that

E{V (k + 1, σ(k + 1))|η(k), σ(k) = t} − V (k, t)
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≤
r∑

i=1

r̄∑

j=1

φiϕj

s̄∑

n=1

δtn

× ζT (k)

[(

Āij
tn(k)

)T

P̃ ij
tnĀij

tn(k) + Ŝt

]

ζ(k) (25)

where

ζ(k) ,
[
ηT (k) ωT (k)

]T
, Ŝt ,

[
−Pt 0
0 0

]

.

Now, to deal with the stability analysis, we letω(k) = 0
and then obtain from (25) that

E{V (k + 1, σ(k + 1))|η(k), σ(k) = t} − V (k, t)

≤
r∑

i=1

r̄∑

j=1

φiϕj

s̄∑

n=1

δtn

× ηT (k)

[(

Ā1ij
tn (k)

)T

P̃ ij
tnĀ1ij

tn (k)− Pt

]

η(k)

, ηT (k)

r∑

i=1

r̄∑

j=1

φiϕj

s̄∑

n=1

δtnQijtn(k)η(k). (26)

Next, it is obtained from (19) that
∑s̄

n=1 δtnQijtn(k) < 0 is
satisfied. By further considering the property of membership
functions (3), we know that there always exists a sufficiently
small scalar̺ > 0 such that

r∑

i=1

r̄∑

j=1

φiϕj

s̄∑

n=1

δtnQijtn(k) ≤ −̺I, (27)

which yields

E{V (k + 1, σ(k + 1))|η(k), σ(k) = t} − V (k, σ(k))

≤ − ̺ηT (k)η(k)

= − ̺‖η(k)‖2. (28)

By taking the mathematical expectation on both sides of
(28), we have

E{V (k + 1, σ(k + 1))− V (k, σ(k))} ≤ −̺E{‖η(k)‖2},
(29)

from which we have for any scalarǫ > 0 that

E{ǫk+1V (k + 1, σ(k + 1))} − E{ǫkV (k, σ(k))}
= ǫk+1

E{V (k + 1, σ(k + 1))− V (k, σ(k))}
+ ǫk(ǫ− 1)E{V (k, σ(k))}

≤
(
− ̺ǫk+1 + ǫk(ǫ− 1)λ̄

)
E{‖η(k)‖2}. (30)

where

λ̄ , max {λmax(P1), λmax(P2), · · · , λmax(Pl̄)} .

For any integerN ≥ 1, summing up both sides of (30) from
k = 0 to k = N − 1, we have

N−1∑

k=0

(
E{ǫk+1V (k + 1, σ(k + 1))} − E{ǫkV (k, σ(k)}

)

≤
N−1∑

k=0

ǫk
(
(ǫ− 1)λ̄− ̺ǫ

)
E{‖η(k)‖2} (31)

which implies that

E{ǫNV (N, σ(N))} − E{V (0, σ(0))}

≤
N−1∑

k=0

ǫkα(ǫ)E{‖η(k)‖2} (32)

where

α(ǫ) , (ǫ− 1)λ̄− ̺ǫ.

Sinceα(1) = −̺ < 0 andlimb→+∞ α(b) = +∞, we know
that there exists a scalarǫ0 > 1 such thatα(ǫ0) = 0. Thus,
by considering

E{V (0, σ(0))} ≤ λ̄E{‖η(0)‖2},
E{V (N, σ(N))} ≥ λE{‖η(N)‖2}

where

λ , min{λmin(P1), λmin(P2), · · · , λmin(Pl̄)},
we obtain

E{‖η(N)‖2} ≤ λ̄

λ

(
1

ǫ0

)N

E{‖η(0)‖2}.

By letting N = k and from Definition 1, we know that the
closed-loop system is exponentially mean-square stable.

We are now in a position to show the extended stochas-
tic dissipativity of the closed-loop system. By introducing
J(S1, S2, S3, k) defined in (17), for the case ofω(k) 6= 0,
it follows from (25) that

E{V (k + 1, σ(k + 1))|η(k), σ(k) = t} − V (k, t)

− J(S1, S2, S3, k)

≤
r∑

i=1

r̄∑

j=1

φiϕj

s̄∑

n=1

δtn

× ζT (k)

[(

Āij
tn(k)

)T

P̃ ij
tnĀij

tn(k) + S̄i
t

]

ζ(k). (33)

From (19), the property of membership functions (3) and
through the expectation operation, we deduce from (33) that

E {∆V (k, σ(k)) − J(S1, S2, S3, k)} < 0. (34)

Now, let us prove the extended dissipativity of the system
(15) in two different cases, i.e.,S4 = 0 andS4 > 0.

Case 1:If S4 = 0, then the performance index (17) changes
to

E

{
T∑

k=0

J(S1, S2, S3, k)

}

≥ 0. (35)

It follows from (34) that

E {J(S1, S2, S3, k)−∆V (k, σ(k))} > 0

which implies

T∑

k=0

E {J(S1, S2, S3, k)−∆V (k, σ(k))}

=
T∑

k=0

E {J(S1, S2, S3, k)}+ E {V (0, σ(0))}
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− E {V (T + 1, σ(T + 1))} > 0, ∀T > 0. (36)

SinceE {V (0, σ(0))} = 0 (under the zero initial condition)
andE {V (T + 1, σ(T + 1))} ≥ 0, we can conclude that (35)
is satisfied.

Case 2:If S4 > 0, we haveS1 = S2 = 0 from the constraint
(‖S1‖+ ‖S2‖) · ‖S4‖ = 0. Then, the performance index (17)
is converted to

T∑

k=0

E
{
ωT (k)S3ω(k)

}
≥ sup

0≤k≤T

E
{
zT (k)S4z(k)

}
. (37)

For 0 < k ≤ T , we derive from (34) that
k−1∑

τ=0

E
{
∆V (τ) − ωT (τ)S3ω(τ)

}

=E {V (k)} −
k−1∑

τ=0

E
{
ωT (τ)S3ω(τ)

}
< 0 (38)

which implies

E {V (k, σ(k))} =E
{
ηT (k)Pσ(k)η(k)

}

<
k−1∑

τ=0

E
{
ωT (τ)S3ω(τ)

}

≤
T∑

τ=0

E
{
ωT (τ)S3ω(τ)

}
, 0 < k ≤ T.

(39)

From (21), we also have

E
{
zT (k)S4z(k)

}
− E {V (k, σ(k))}

=

r∑

i=1

r∑

j=1

E
{
φiφjη

T (k)GT
i S4Gjη(k)− ηT (k)Pσ(k)η(k)

}

≤
r∑

i=1

E
{
φiη

T (k)
(
GT
i S4Gi − Pσ(k)

)
η(k)

}
. (40)

By utilizing the condition (20), we arrive at

E
{
zT (k)S4z(k)

}
<E {V (k, σ(k))}

<

T∑

τ=0

E
{
ωT (τ)S3ω(τ)

}
, 0 < k ≤ T

(41)

and therefore (37) is satisfied. The proof is now complete.
Theorem 1 provides a sufficient condition for the analysis

of the system stability as well as the extended dissipativity.
Based on this, we will deal with the controller design problem
in Theorem 2 under the considered performance requirements.

Theorem 2:Consider the fuzzy system (1) and the non-
fragile fuzzy PID controller. Let matricesS1 = ST

1 ≤ 0, S3 =
ST
3 > 0, S4 = ST

4 ≥ 0 andS2 be given. Then, the closed-loop
system (15) is exponentially mean-square stable and extended
stochastically dissipative if there exist matricesPt > 0, Xt >
0, Rijtn > 0, KP

jn, KI
jn, KD

jn, scalarsαijtn > 0, µa
ijtn > 0

and µb
ijtn > 0 satisfying the following conditions for∀i ∈

I, j ∈ I1, t ∈ L, n ∈ L̄:




Γ̃ijtn ∗ ∗
µa
ijtnM̃

T
ijtn −µa

ijtnI ∗
Ñ 0 −µa

ijtnI



 < 0 (42)





Γ̄ijtn ∗ ∗
µb
ijtnM̄

T
ijtn −µb

ijtnI ∗
N̄t 0 −µb

ijtnI



 < 0 (43)

s̄∑

n=1

δtn
(
Rijtn + S̄i

t

)
< 0 (44)

−Pt + GT
i S4Gi < 0 (45)

PtXt = I (46)

where

Γ̄22
ijtn , diag

{
X̄,−αijtnΥ

−1
t

}
,

X̄ , diag {−X1,−X2, · · · ,−Xl̄} ,

Γ̄ijtn ,

[
−Rijtn ∗
Γ̄21
ijtn Γ̄22

ijtn

]

, M̄ijtn ,
[

M̄ ij11
tn M̄ ij12

tn

]
,

M̄ ij11
tn ,

[

Î1B̂iM
P
jn Î1B̂iM

D
jn Î1B̂iM

I
jn

]

,

M̄ ij12
tn ,

[

Î1B̂iM
D
jn Î1B̂iM

P
jn Î1B̂iM

D
jn

]

,

Î1 ,
[
0 0 I I · · · I

︸ ︷︷ ︸

l̄

0
]T

, N̄t ,

[
N̄11

t

N̄12
t

]

,

N̄11
t ,





NP C̄tĪ1Î2
NDC̄tĪ1Î2
NI Ī2Î2



 , N̄12
t ,





ND Ī3Î2
NP F̄tÎ3
NDF̄tÎ3



 ,

Ī1 ,
[
I 0 0

]
, Ī2 ,

[
0 I 0

]
,

Ī3 ,
[
0 0 −I

]
, Î2 , [I 0 0 · · · 0

︸ ︷︷ ︸

l̄+2

]

Î3 , [0 I 0 0 · · · 0
︸ ︷︷ ︸

l̄+1

],

B̄ij
n ,





BiK
P
jn +BiK

D
jn

I
I



 , B̂i ,





Bi

0
0



 ,

Γ̄21
ijtn ,










√
πt1

~Aij
tn

√
πt1

~Eij
tn√

πt2
~Aij
tn

√
πt2

~Eij
tn

...
...√

πtl̄
~Aij
tn

√
π
t~l
~Eij
tn

αijtnC2Ī αijtnF2










,

M̃ijtn ,










0 0√
πt1B̂iM

P
jn

√
πt1B̂iM

D
jn√

πt2B̂iM
P
jn

√
πt2B̂iM

D
jn

...
...√

πtl̄B̂iM
P
jn

√
πtl̄B̂iM

D
jn










,

Ñ ,

[
NP Ĩ 0 0 · · · 0

ND Ĩ 0 0 · · · 0

]

,

~Aij
tn ,





~Aij11
tn BiK

I
jn −BiK

D
jn

C̄t I 0
C̄t 0 0



 ,

~Aij11
tn ,Ai +BiK

P
jnC̄t +BiK

D
jnC̄t,
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publication. Citation information: DOI10.1109/TFUZZ.2022.3165691, IEEE Transactions on Fuzzy Systems



FINAL VERSION 9

~Eij
tn ,





Ei +BiK
P
jnF̄t +BiK

D
jnF̄t

F̄t

F̄t



 ,

Γ̃ijtn ,










−αijtnI ∗ ∗ · · · ∗√
πt1B̄

ij
n Ĩ −X1 ∗ · · · ∗√

πt2B̄
ij
n Ĩ 0 −X2 · · · ∗

...
...

...
. . .

...√
πtl̄B̄

ij
n Ĩ 0 0 · · · −Xl̄










.

Furthermore, if the conditions (42)-(46) are solvable, then the
desired controller gains are obtained byKP

jn, KI
jn andKD

jn

directly.
Proof: It is straightforward to see that
(
Bij
n (k)Ĩ

)T
P̄tBij

n (k)Ĩ − αijtnI

=








√
πt1Bij

n (k)Ĩ√
πt2Bij

n (k)Ĩ
...√

πtl̄Bij
n (k)Ĩ








T

P̃








√
πt1Bij

n (k)Ĩ√
πt2Bij

n (k)Ĩ
...√

πtl̄Bij
n (k)Ĩ







− αijtnI

,Φijtn(k). (47)

where

P̃ , diag{P1, P2, · · · , Pl̄}.

According to the Schur Complement Lemma,Φijtn(k) < 0
if and only if the following holds:










−αijtnI ∗ ∗ · · · ∗√
πt1Bij

n (k)Ĩ −P−1
1 ∗ · · · ∗√

πt2Bij
n (k)Ĩ 0 −P−1

2 · · · ∗
...

...
...

. . .
√
πtl̄Bij

n (k)Ĩ 0 0 · · · −P−1
l̄










= Γ̃a
ijtn + M̃ijtn∆̃(k)Ñ + ÑT ∆̃T (k)M̃T

ijtn < 0 (48)

where

∆̃(k) ,diag{∆P (k),∆D(k)},

Γ̃a
ijtn ,










−αijtnI ∗ ∗ · · · ∗√
πt1B̄

ij
n Ĩ −P−1

1 ∗ · · · ∗√
πt2B̄

ij
n Ĩ 0 −P−1

2 · · · ∗
...

...
...

. . .
...√

πtl̄B̄
ij
n Ĩ 0 0 · · · −P−1

l̄










.

In terms of Lemma 3 and the condition (42), we obtain
Φijtn(k) < 0 and thus (18) is satisfied. In addition, by further
using the Schur Complement Lemma, we know that

(

Āij
tn(k)

)T

P̃ ij
tnĀij

tn(k)−Rijtn < 0 (49)

if and only if the following inequality holds
[−Rijtn ∗
~Γ21
ijtn(k) Γ̄22a

ijtn

]

= Γ̄ijtn + M̄ijtn∆̄(k)N̄t + N̄T
t ∆̄T (k)M̄T

ijtn

,Ψijtn(k) < 0 (50)

where

Γ̄22a
ijtn ,diag

{

−P̃−1,−αijtnΥ
−1
t

}

,

∆̄(k) ,diag
{
∆̄1(k), ∆̄2(k)

}
,

∆̄1(k) ,diag {∆P (k),∆D(k),∆I(k)} ,
∆̄2(k) ,diag {∆D(k),∆P (k),∆D(k)} ,

~Γ21
ijtn(k) ,










√
πt1Aij

tn(k)
√
πt1E ij

tn(k)√
πt2Aij

tn(k)
√
πt2E ij

tn(k)
...

...√
πtl̄Aij

tn(k)
√
πtl̄E ij

tn(k)
αijtnC2Ī αijtnF2










.

From Lemma 3,Ψijtn(k) < 0 holds under the condition
(43) and the inequality (49) is thus satisfied. Furthermore,
under the condition (44), we have

s̄∑

n=1

δtn

[(

Āij
tn(k)

)T

P̃ ij
tnĀij

tn(k) + S̄i
t

]

<

s̄∑

n=1

δtn
(
Rijtn + S̄i

t

)
< 0. (51)

Based on the above analysis, it is clear that the conditions
(18)-(20) in Theorem 1 are ensured by the conditions (42)-(46)
presented in Theorem 2. Therefore, the proof is complete.

Note that the equality (46) in Theorem 2, which results
from the consideration of fading channels and the PID control
strategy, renders the related conditionsnon-convex, and it is
therefore difficult to apply Theorem 2 directly based on the
available computing software. As such, in order to facili-
tate the design of the controller gains, the well-known cone
complementarity linearization algorithm will be employed to
transform non-convex conditions into strict convex ones via
an optimization procedure. By following the similar ideas in
[16], our focus is now to solve the optimization problem of
minimizing tr

(∑

t∈L
PtXt

)
subject to LMI constraints (42)-

(45) andΩt ,

[
Pt I
I Xt

]

> 0 for t ∈ L.

To simplify the presentation when summarizing the con-
troller design algorithm, we denote some auxiliary matrices:

Φ̄ijtn ,





Γ̃a
ijtn ∗ ∗

µa
ijtnM̃

T
ijtn −µa

ijtnI ∗
Ñ 0 −µa

ijtnI



 ,

Ψ̄ijtn ,





Γ̄a
ijtn ∗ ∗

µb
ijtnM̄

T
ijtn −µb

ijtnI ∗
N̄t 0 −µb

ijtnI





where

Γ̄a
ijtn ,

[
−Rijtn ∗
Γ̄21
ijtn Γ̄22a

ijtn

]

and other internal variables are defined in Theorem 2, (47),
(48) and (50).

Finally, we give Algorithm 1 to show the complete process
of designing the non-fragile dissipative PID controller over
fading channels.

Note that in Algorithm 1, we present the solving process of
controller gains under the performance index of dissipativity

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
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Algorithm 1: Non-fragile Dissipative Fuzzy PID control
Step 1. Set ι = 0. Obtain a set of initial solutions(Pt(0),Xt(0), K

P
jn(0)

,

KI
jn(0)

, KD
jn(0)

, Rijtn(0), αijtn(0), µ
a
ijtn(0)

, µb
ijtn(0)

) by
solving (42)-(45) andΩt > 0.

Step 2. Solve the problem:min tr
∑

t∈L
(PtXt(ι) + Pt(ι)Xt) subject

to (42)-(45) andΩt > 0 to derive an array of feasible solutions
(Pt,Xt,K

P
jn,K

I
jn, K

D
jn, Rijtn, αijtn, µ

a
ijtn, µ

b
ijtn). Set

t̄ = |tr
∑

t∈L
(PtXt)− l̄nx − 2l̄ny |.

Step 3. Substitute the obtained matrix variables(Pt, Xt,K
P
jn, K

I
jn, K

D
jn,

Rijtn, αijtn, µ
a
ijtn, µ

b
ijtn) into Φ̄ijtn < 0 and Ψ̄ijtn < 0.

If these inequalities are satisfied andt̄ is less than a small
constant numberv > 0, then, these obtained variables are
solutions we needed. Exit.

Step 4. If ι > H, whereH is the maximum number of iterations
allowed, exit. Else, setι = ι+ 1 and go toStep 2.

with the given index parametersS1, S2, S3 and S4. As
discussed in Remark 5, such a performance index can be
reduced to other commonly used ones (e.g. the well-known
H∞ performance index) by adjusting the index parameters.
In order to show the extensibility of this paper, we set
S2 = S4 = 0, S1 = −I andS3 = γ2 (denoting the disturbance
attenuation level), and give Algorithm 2 to deal with the
H∞ fuzzy PID control issue with the minimum disturbance
attenuation level by solving an optimization problem. Then,
based on Algorithm 2, the optimization strategy for controller
gains can be derived.

Algorithm 2: Non-fragileH∞ Fuzzy PID control
Step 1. Choose a sufficiently large initialγ2 > 0, such that there exists a

feasible solution to (42)-(45). Setγ2
min = γ2.

Step 2. Setι = 0. Obtain a set of initial solutions(Pt(0),Xt(0), K
P
jn(0)

,

KI
jn(0)

, KD
jn(0)

, Rijtn(0), αijtn(0), µ
a
ijtn(0)

, µb
ijtn(0)

) by
solving (42)-(45) andΩt > 0.

Step 3. Solve the problem:min tr
∑

t∈L
(PtXt(ι) + Pt(ι)Xt) subject

to (42)-(45) andΩt > 0 to derive an array of feasible solutions
(Pt,Xt,K

P
jn,K

I
jn, K

D
jn, Rijtn, αijtn, µ

a
ijtn, µ

b
ijtn).

Step 4. Substitute the obtained gain matricesKP
jn, KI

jn, KD
jn into

Φ̄ijtn < 0 and Ψ̄ijtn < 0. If these inequalities are satisfied,
then decreaseγ2 to some extent and setγ2

min = γ2. Go to
Step 2. If Φ̄ijtn < 0 and Ψ̄ijtn < 0 are infeasible within the
maximum number of iteration that is allowed, then exit.
Otherwise, setι = ι+ 1 and go toStep 3.

Remark 6:So far, we have solved the extended dissipative
fuzzy control problems with the coexistence of the FSMCFs,
i.i.d.CFs and the CPPs. Specifically, we have designed the
non-fragile fuzzy PID controller in the presence of the mixed
fading effects by 1) developing an appropriate analysis method
to explore the extended dissipativity for T-S fuzzy systems
and 2) designing mode-dependent PID controllers by using
faded measurements and observed network modes. With the
assistance of the Lyapunov stability theory and stochastic
analysis method, sufficient conditions have been obtained to
ensure the stochastic stability as well as the stochastically
extended dissipativity. An iterative optimization algorithm has
been proposed to design the desired controller parameters by
using the convex optimization technique.

Remark 7:Compared with the numerous results concerning
the T-S fuzzy control problems, the main novelties of this
paper are indicated as follows: 1) the problem investigated is
new as the mixed fading effects are considered, for the first

time, for general nonlinear systems represented by T-S fuzzy
models; and 2) a novel non-fragile fuzzy PID controller is
designed with ensured non-fragility and enhanced flexibility,
thereby achieving the control tasks under the performance
index of extended dissipativity. Furthermore, since we consider
a general performance index, our results can be easily extended
to control problems under other performance requirements
such as theH∞, l2-l∞ and passivity.

IV. SIMULATION EXAMPLES

In this section, one numerical example and one application-
motivated example are given to verify the theoretical results
obtained in this paper.

A. Example1

Consider a two-rules fuzzy system in the form of (2) whose
system matrices and fuzzy membership functions are given by

A1 =

[
0.5 0.2
0.3 0.9

]

, A2 =

[
0.5 0.2
0.3 1

]

, B1 =

[
0.5
0.9

]

,

B2 =

[
0.7
0.5

]

, E1 =

[
0.4
0.5

]

, E2 =

[
0.4
0.7

]

, F1 = 0.2,

F2 =0.5 C1 =
[
0.1 0.6

]
, C2 =

[
0.6 0.4

]
,

G1 =
[
0.1 0.6

]
, G2 =

[
0.4 −0.1

]
,

h1 (ρ(k)) =
1 + sin(x1(k))

2
, h2(ρ(k)) = 1− h1(ρ(k)).

Considering the complex transmission requirement in prac-
tice, two types of channels are used to transmit the measure-
ment outputy1(k) andy2(k), which would undergo FSMCFs
and i.i.d.CFs, respectively. For Channel I, it is assumed that
the communication network has two modes called respectively,
the “good mode” and the “bad mode” which impliesσ(k) ∈
{1, 2}. The fading coefficients are assumed to beλ1,1 = 0.5
andλ1,2 = 0.2.

The transition probability matrix of this Markov channel is
described by

Π =

[
0.4 0.6
0.7 0.3

]

.

It is also assumed that on the controller side, two modes
can be observed successfully, i.e.,θ(k) ∈ {1, 2} with the
conditional probabilities given by

Pr {θ(k) = 1|σ(k) = 1} =0.4,

Pr {θ(k) = 2|σ(k) = 1} =0.6,

Pr {θ(k) = 1|σ(k) = 2} =0.5,

Pr {θ(k) = 2|σ(k) = 2} =0.5.

For Channel II, the fading coefficient is denoted byξ1(k)
with the following statistical properties:

ξ̄1 , E{ξ1(k)} = 0.5,

ξ∗11 , E{(ξ1(k)− ξ̄1)(ξ1(k)− ξ̄1)} = 0.1.

Other parameters in the performance index R2) are chosen
asS1 = −1, S2 = 0.5, S3 = 2, S4 = 0.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
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The CPPs in (12) are assumed to beMP
jn = M I

jn = MD
jn =

0.1 (j = 1, 2; n = 1, 2), NP = NI = ND =
[
0.1 0.1

]
and

∆P (k) = ∆I(k) = ∆D(k) = sin(k), where∆P (k), ∆I(k)
and ∆D(k) are unknown for the designer. The aim of this
example is to use the obtained theoretical results to design a
non-fragile fuzzy PID controller, such that requirements R1)
and R2) are satisfied simultaneously.

For simulation purpose, let the external noise asω(k) =
sin(k)

k
, and the initial state asx(0) =

[
−0.1 0.1

]T
. By setting

the simulation run length to be150 and utilizing the controller
gains obtained via Algorithm 1, simulation results are given
in Figs. 1-5. Fig. 1 plots the state evolution trajectory of the
given fuzzy system without any control strategy, from which
we can see that the open-loop system is unstable. Fig. 2 depicts
the state trajectory of the closed-loop fuzzy system with the
designed non-fragile PID controller. It can be observed that the
proposed control scheme performs well under the coexistence
of mixed channel fadings and the CPPs. In Figs. 3-4, the
measurement outputs and the transmitted outputs of two sensor
groups are displayed that show the effects caused by channel
fadings.

Define an auxiliary variable:

J̄(k) ,
k∑

m=0

(
zT (m)S1z(m) + 2zT (m)S2ω(m)

+ ωT (m)S3ω(m)
)
.

Then, to verify the robustness of the proposed control strategy,
we give Fig. 5 to show the value of̄J(k) under several
types of bounded CPPs. From this figure, we can observe
that J̄(k) > 0 in all cases, reflecting that the considered
dissipativity (17) is achieved. In addition, we can also see
that three curves in three different cases are almost overlapped
(meaning the similar control performance), that tells us the
desired robustness against the bounded CPPs. In Fig. 6, we
plot J̄(k) under three different energy-bounded noises, from
which we can see that̄J(k) > 0 always holds. Thus, the
desired dissipativity is satisfied. All simulation results verify
the effectiveness of the proposed control scheme.
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Time (k)

-100
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300
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p
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x1(k)

x2(k)

Fig. 1: State trajectory of the open-loop system

B. Example2

In this example, we consider a wireless-network-based
truck-trailer control system whose modified model is given
as follows [16]:

θ1(k + 1) =

(

1− vT

N

)

θ1(k) +
vT

n
u(k) + 0.1ω(k) (52)
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Fig. 2: State trajectory of the closed-loop system
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Fig. 3: Measurement output and fading output of Sensor Group I
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Fig. 4: Measurement output and fading output of Sensor Group II
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∆P (k) = ∆I (k) = ∆D(k) = sin(k)
∆P (k) = ∆I (k) = ∆D(k) = 0.5 cos(k)
∆P (k) = ∆I (k) = ∆D(k) = −0.6
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2.06

2.07

Fig. 5: Value ofJ̄(k) under different CPPs

θ2(k + 1) =
vT

N
θ1(k) + θ2(k) + 0.1ω(k) (53)

l(k + 1) = vT sin

(
vT

2N
θ1(k) + θ2(k)

)

+ l(k) (54)
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Fig. 6: Value ofJ̄(k) under different noises

whereθ1(k) is the angle difference between the truck and the
trailer; θ2(k) is the angle of the trailer;l(k) is the vertical
position of the rear end of the trailer;u(k) is the steering
angle;ω(k) = 10 sin(k)

k
is the external disturbance;n = 2.8m

is the length of the truck;N = 5.5m is the length of the
trailer; T = 2s is the sampling time; andv = −1m/s is the
constant speed of backing up.

To apply the proposed fuzzy PID control scheme to the
above nonlinear system, we need to establish a T-S fuzzy
model according to the nonlinear termsin( vT2N θ1(k) + θ2(k)).
In terms of the key points0 rad, ±π

6 rad, ±π rad and by
using the standard fuzzy modeling technique, we can obtain
the following discrete-time T-S fuzzy model:

x(k + 1) =

3∑

i=1

φi(ρ(k))
(

Aix(k) +Bu(k) + Eω(k)
)

(55)

y(k) =Cx(k) + Fω(k) (56)

z(k) =Gx(k) (57)

where

A1 ,





1− vT
N

0 0
vT
N

1 0
v2T 2

2N vT 1



 , A2 ,





1− vT
N

0 0
v
N

1 0
3v2T 2

2πN
3vT
π

1



 ,

A3 ,





1− vT
N

0 0
vT
N

1 0
v2T

200N2

v
100N 1



 , x(k) ,





x1(k)
x2(k)
x3(k)



 ,





θ1(k)
θ2(k)
l(k)



 ,

B ,





vt
n

0
0



 , ρ(k) ,
vT

2N
x1(k) + x2(k), E ,





0.1
0.1
0



 ,

F1 , 0.2, F2 , 0.5, G ,
[
1 0.1 0

]
, C ,

[
C1

C2

]

,

C1 ,
[
9 −2 0.03

]
, C2 ,

[
7 −1 0.05

]
,

and the normalized membership functions of the plant are
displayed in Fig. 7.

The relevant parameters of channel I and channel II are
chosen as same as those in Example1. It is assumed that
∆P (k) = ∆I(k) = ∆D(k) = 0. The parameters in perfor-
mance index are chosen asS1 = −1, S2 = 0, S3 = 4 and
S4 = 0. It can be seen that the considered performance index
in (2) changes to the followingH∞ one:

E

{
T∑

k=0

zT (k)z(k)

}

≤ E

{

γ2
T∑

k=0

ωT (k)ω(k)

}

(58)

whereγ2 , S3 represents the disturbance attenuation level.
Our aim in this example is to design a fuzzy PID controller

with two-rules to back up the truck-trailer with a desired dis-
turbance attenuation levelγ2 = 4. The membership functions
of the controller are shown in Fig. 8. By using the controller
gains obtained with the help of Algorithm 1, simulation
results are presented in Figs. 9-10. The state evolution of the
uncontrolled truck-trailer is given in Fig. 9. The changes of
angle and location of the controlled truck-trailer are given in
Fig. 10, from which we can see that the closed-loop system is
stable under the proposed fuzzy PID controller in the existence
of channel fadings.

In Table I, we also give the comparing results of the attained

disturbance rejection levelγ∗ ,
∑kf

s=0
zT (s)z(s)

∑kf
s=0

ωT (s)ω(s)
under the

proposed fuzzy PID controller and the fuzzy P-type one (where
kf denotes the terminal time of simulation). Note that a smaller
γ∗ implies a higher disturbance attenuation capability. From
this table, we can conclude that 1) the attainedγ∗ in all cases
is less than the prescribedγ = 2, thus showing the desired
robustness against energy-bounded noises; and 2) with the
assistance of the proposed fuzzy PID controller, the closed-
loop system has a betterH∞ performance, therefore verifying
the effectiveness of the proposed fuzzy PID control scheme.
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Fig. 7: Membership functions of plant
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Fig. 8: Membership functions of controller

TABLE I: The Attained γ∗ under Fuzzy PID Control and
Fuzzy P-type Control Subject to Different Noises

Noiseω(k) sin k
k

5 sin k
k

10 sin k
k

20 sin k
k

γ∗ (fuzzy PID) 0.1677 0.0241 0.0157 0.0110
γ∗ (fuzzy P-type) 0.6506 0.0463 0.0202 0.0207
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Fig. 9: State trajectory of the open-loop system
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Fig. 10: State trajectory of the closed-loop system

V. CONCLUSION

In this article, we have addressed the system analysis and
PID controller design problems for nonlinear systems with
mixed fading effects. To reflect the complex transmission en-
vironment, sensors are divided into two groups equipped with
two types of specialized wireless channels for transmitting
data. Both FSMCFs and i.i.d.CFs have been considered in
such a networked transmission environment, and a unified
fading model has been established to describe the underlying
mixed channel fadings. Then, a non-fragile mode-dependent
fuzzy PID controller has been designed based on the observed
mode with the improved flexibility. Such a controller is more
convenient to be implemented in the practice. With the help of
matrix Hadamard product and stochastic analysis method, suf-
ficient conditions have been obtained to check the dissipativity
of the system, based on which the controller parameters have
been characterized by solving an optimization problem. Final-
ly, two examples have been presented to validate the proposed
control schemes. Future research topics include the adaptive
fuzzy PID tacking control problems for switched nonlinear
systems subject to other network-induced phenomena [18],
[19], [31].
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