
Novel Sparse OBC based Distributed Arithmetic
Architecture for Matrix Transforms

S.Chandrasekaran and A.Amira
Electronic and Computer Engineering,

School of Engineering and Design
Brunel University, West London, UB8 3PH, UK

Email: shrutisagar.chandrasekaran@brunel.ac.uk, abbes.amira@brunel.ac.uk

Abstract— Inner Product (IP) forms the basis of a number of
signal processing algorithms and applications such as transforms,
filters, communication systems etc. Distributed Arithmetic (DA)
provides an effective methodology to implement IP of vectors
and matrices using a simple combination of memory elements,
adders and shifters instead of lumped multipliers. This bit level
rearrangement results in much higher computational efficiencies
and yields compact designs highly suited for high performance
resource constrained applications. Offset Binary Coding (OBC)
is an effective technique to further optimize the DA, and allows
us to reduce the memory requirements by a factor of two, with
minimum additional computational complexity. This makes OBC-
DA attractive for applications that are both resource and memory
constrained. In addition, sparse matrix factorization techniques
can be exploited to further reduce the size of the DA-ROMs. In
this paper, the design and implementation of a novel OBC based
DA is demonstrated using a generic architecture for implement-
ing Discrete Orthogonal Transforms (DOTs). Implementation is
performed on the Xilinx Virtex-II Pro Field Programmable Gate
Array (FPGA), and a detailed comparison between conventional
and OBC based DA is presented to highlight the trade offs in
various design metrics including performance, area and power.

I. INTRODUCTION

Matrix multiplication forms the basic building block
of a number of signal processing algorithms, including
transformation kernels that are used in a number of image
and signal processing applications. Key among these are
Discrete Orthogonal Transforms (DOTs) that belong to the
domain of linear transformations, which are mathematically
well-founded [1]. Commonly used DOTs include the Discrete
Fourier Transform (DFT), Walsh Hadamard Transform
(WHT), Haar Wavelet Transform (HWT), Karhunen Loeve
Transform (KLT) and Discrete Cosine Transform (DCT).
Other orthogonal factorisation techniques such as Singular
SVD are also based on matrix multiplication. The DFT
is an indispensable tool for processing images and signals
in the spectral domain. The WHT is among the simplest
of the class of DOTs, and is widely used in compression,
communication and encoding applications. The KLT is a
statistically optimised transform that is used primarily for
approximating a set of vectors, and finds applications in
image processing and computer vision. The DCT is widely
used in image processing and is one of the most popular
techniques used in various compression algorithms [2].

Since DOTs are linear transformations on matrices, they
are essentially composed of matrix-matrix or matrix-vector
multiplications, which are computationally expensive. To
process a K-length vector denoted by φ according to a
transformation function given by g = A · φ (where A is a
square matrix) requires O(K2) operations. For large values of
K, this is clearly a problem. There is a real need for dedicated
processors for high speed computation of the transform to
meet the requirements of real time signal processing. The
choice of suitable arithmetic techniques for performing Inner
Product (IP) is also an important factor.
For System on Chip (SoC) Application Specific Integrated
Circuit (ASIC) architectures, Distributed Arithmetic (DA)
has been regarded as an important tool for computing IP.
ROM-based DA uses a ROM table to store the pre-computed
data, which makes it regular and efficient in the use of
silicon area [3][4]. The basic operations required for DA
are a sequence of ROM accesses, addition, subtraction and
shift operations of the input data sequence. All of these
functions are efficiently mapped to FPGA structures [5].
However, when the size of the inner products increases the
ROM area increases exponentially and becomes impractically
large, even when using ROM partitions [6]. Reducing vector
lengths by means of matrix factorisation to split the matrix
multiplication into smaller blocks allows us to achieve
compact area efficient designs. Additionally, mathematical
transformations such as Offset Binary Coding (OBC) can be
efficiently exploited for reducing the ROM size by a factor of
two, with a marginal increase in computational complexity.
In this paper, a mathematical framework for implementation
of OBC based DA, in conjunction with matrix factorisation
and sparse matrix techniques is discussed. Tradeoffs between
various performance metrics and power are evaluated, and a
comparison is made with the standard DA approach in order
to quantify the gains achieved through the transformation
processes.

The rest of the paper is organised as follows. Mathematical
background behind DA, OBC-DA and factorisation techniques
are described in Section II. The proposed architecture for
factorised matrix OBC-DA is presented in Section III. FPGA
implementation results are provided in Section IV. Concluding
remarks are presented in Section V.

32071-4244-0921-7/07 $25.00 © 2007 IEEE.

II. MATHEMATICAL BACKGROUND

A. Standard DA

Direct applications of the standard DA algorithm is mathe-
matically presented as follows. Consider an IP of two vectors
represented as the following sum of products:

Y =
K∑

k=1

AkXk (1)

where A is the constant vector, X is the input vector, and Y is
the transformed vector. If we consider Xk to be in the form of
a scaled 2’s complement binary number, it can be represented
as:

Xk = −bk0 +
N−1∑
n=1

bkn2−n (2)

Substituting Eq. 2 in 1 we get:

Y =
K∑

k=1

Ak

[
−bk0 +

N−1∑
n=1

bkn2−n

]
(3)

By rearranging the order of summations in order to convert
the conventional sum of products into a “distributed” form,
we get:

Y =
N−1∑
n=1

[
K∑

k=1

Akbkn

]
2−n +

K∑
k=1

Ak(−bk0) (4)

The term
K∑

k=1

Akbkn can have only 2k possible values, it is

possible to precompute and store these values in a ROM. By
addressing this ROM through N cycles using the input data
and performing simple shift-accumulate operations, the IP can
be calculated. In order to accommodate both the terms in Eq.
3, a 2 · 2k word ROM is required to store the precomputed
data. By using an adder/subtractor block; this can be reduced
to a size of 2k. By using DA, we can clearly see that a typical
IP has been reduced in complexity from O(K) multipliers to
just O(K − 1) additions and shift operations. This represents
an order of magnitude reduction in computational circuit
complexity, which is traded off for memory of size 2k, making
DA ideal for resource constrained systems. However, the keen
observer would notice that the reduction in computational
complexity by offloading logic to memory does not necessarily
result in a reduction of area complexity. This makes reduction
of ROM size, without significant increase in control overhead
a key requirement for efficient hardware implementation of
DA.

B. OBC based DA

The ROM size of standard DA can be further reduced to
2k−1 by applying OBC technique. It is worth mentioning that
OBC-DA does not necessitate recoding inputs or outputs, since
it is only used to interpret and not convert the input data to
be in OBC form [4]. An element of the input vector can be
alternatively expressed as:

Xk =
1
2

[Xk − (−Xk)] (5)

Substituting Eq. 2 in 5 we get:

Xk =
1
2

[
−(bk0 − bk0) +

N−1∑
n=1

(bkn − bkn)2−n − 2−(N−1)

]
(6)

Let ckn = bkn − bkn n �= 0 and ck0 = −(bkn − bkn). Eq.
6 is now expressed as:

Xk =
1
2

[
N−1∑
n=0

ckn2−n − 2−(N−1)

]
(7)

Substituting Eq. 7 in Eq. 1 we get:

Y =
N−1∑
n=0

Q(bn)2−n + 2−(N−1)Q(0) (8)

where

Q (bn) =
K∑

k=1

Ak

2 ckn and Q (0) =
K∑

k=1

Ak

2 . The lower half

of the ROM table obtained from the precomputation of the
OBC DA combinations is a mirror image of the upper half,
with sign reversed. By using the most significant address
line (first element in the input vector) as an inverting signal,
it is possible to reduce the ROM size by a factor of two,
when compared to regular DA. Theoretically, it is possible to
recursively apply OBC to reduce the ROM size, at the expense
of additional logic. For the maximum case of recursion, the
logic depth becomes extremely large, and the purpose of
trading computational complexity for memory is defeated.

C. DOT Manipulation for Complexity Reduction

For most unitary transforms (and for K an integral power of
2) with the exception of KLT (because of data dependency),
fast algorithms exist. They are essentially based on the fact
that the transformation kernel can be partitioned into some
intermediate steps which can be subsequently reused in further
iterations. The factorisation and partitioning techniques for
each individual DOT is specific to the kernel structure, and
must be applied on a case to case basis. For example, in the
case of the DFT, Cooley-Tukey factorisation is used as follows:

A = A1A2...Am (9)

where and A1, A2....Am−1 are 2-sparse matrices and Am is
K/(

2(m−1)
) sparse. For a 1-D DFT the area complexity of the

OBC-DA is now reduced to:

O
(
2
[
(m − 1) + 2(K

2m−1 −2)
])

(10)

For a 2 dimensional case (matrix-vector), such as the K-point
WHT or K-point HWT, sparse matrix factorization can be
effectively exploited for reducing the ROM size to:

O

(
4(m − 1) +

K

2m−1

(K

2m−1 −1)
)

(11)

as compared to O(2K) for the conventional DA approach. In
the case of 8-point DCT, Chen’s algorithm is used to exploit
symmetry of the coefficients effectively reducing an 8 × 8
matrix operation into two 4× 4 operations. This is effectively

3208

the same as ROM decomposition which is also an effective
technique for minimising ROM size in DA. Further reduction
in ROM size when compared to conventional DA can be
achieved by applying OBC technique. Quantitatively, for an
L-point DCT, applying Chen’s decomposition in conjunction
with OBC reduces the area complexity of the algorithm to
O(K(2

K
2 −1)).

It is clear that sparse factorisation and matrix decomposition
techniques when used in conjunction with OBC can yield
highly efficient and compact structures with minimal overhead
and are highly suitable for resource constrained systems [7].
A full discussion of all existing decomposition techniques is
beyond the scope of this paper.

III. PROPOSED ARCHITECTURE AND OBC-DA
OPERATION

Sparse
OBC
DA 1

Sparse
OBC
DA 2

Sparse
OBC
DA m

…..

A11 A12 0 ... 0
A21 A22 0 ... 0
.0. ..0.. 0 ... 0

…………….
…………….

.0. ..0.. 0 ... 0

A11 A12 0 ... 0
.0. ..0.. 0 ... 0
A31 A32 0 ... 0

…………….
…………….

.0. ..0.. 0 ... 0

…..

K
2(m-1)

Sparse
Matrix

Coefficients

X
11

 X
12

 ... X
1K

X
21

 X
22

 ... X
2K

…………….
…………….

X
K1

 X
K2

 ... X
KK

Clock

Sparse
factorised
transform

coefficients

Distributed
Arithmetic

Core

Input Matrix

ROM 1

ROM .K
2(m-1)

ROM 2

Shift
Add/Sub

Shift
Add/Sub

Shift
Add/Sub

Control Logic / Address Logic
Generator

O
/P

 B
uf

fe
r

Y

Fig. 1. Block diagram of the overall OBC-DA-sparse matrix based DOT
implementation

The architecture of the whole system is presented in Fig. 1.
It can be seen that the output of each DA stage is sequentially
passed on to the following stages. It is worthwhile to mention
that complete sparse factorisation, or reducing all but the last
matrix to 2-sparse matrices is not necessary, and the exact level
of factorisation and number of factors need to be evaluated on

a case to case basis for each DOT by the designer, and the
best tradeoff between latency (pipeline length), complexity and
DA size needs to be carefully evaluated. In the case of Fig.
1, a generic architecture for (m− 1) 2-sparse factors and one
additional K/(

2(m−1)
) sparse matrix has been presented.

Mapping the OBC-DA algorithm stated mathematically in
Eq. 8 yields the architecture shown in Fig. 2.

3
-

8
D

e-
M

ux

Parallel in serial out registers

8x1 OBC DA ROM Table

-1/2(A1+A2+A3+A4)
-1/2(A1+A2+A3-A4)
-1/2(A1+A2-A3+A4)
-1/2(A1+A2-A3-A4)
-1/2(A1-A2+A3+A4)
-1/2(A1-A2+A3-A4)
-1/2(A1-A2-A3+A4)
-1/2(A1-A2-A3-A4)

+/- +

Acc
<<

Add/Sub

O/P

X1[8] X1[7] X1[2] X1[1]

X2[8] X2[7] X2[2] X2[1]

X3[8] X3[7] X3[2] X3[1]

X4[8] X4[7] X4[2] X4[1]

Ts1

Q(0)

Ts2

Fig. 2. Architecture for the OBC-DA block for the case K = 4 and N = 8

The operation of the OBC-DA core for an example case
N = 8 and K = 4 is described as follows. During the 1st

clock cycle, the signal Ts2 is asserted and the value Q(0) is
preloaded into the accumulator. For the first 7 clock cycles,
the address locations of the OBC-DA ROM are selected using
a bitwise XOR combination of the first element of the variable
vector in the IP, X1 with all the other elements X2...X4

starting with the LSB of each element. The mode of operation
of the accumulator is controlled by the Add/Sub line. On the
8th Clock cycle, the signal Ts1 is also asserted, and the final
result is obtained at the end of the cycle. At the end of this
process, the input vector of the IP is reloaded, and the entire
operation is repeated. This circuit can be easily generalised
for all feasible values of N and K.

IV. IMPLEMENTATION DETAILS AND RESULTS OBTAINED

The IP cores developed for comparing various metrics of
regular DA and OBC-DA have been implemented on the
Xilinx Virtex-II-Pro xc2vp100 SRAM FPGA which is capable
of handling large, complex designs. It has a total of 44096
slices and 1040 I/O Buffers. The FPGA is also incorporates
embedded PowerPC processors and 3.125 Gbps RocketIO
serial transceivers [8]. The choice of this high performance
platform for prototyping the algorithms presented is influenced
by the fact that IP is a highly computationally intensive
operation.

A. Design Methodology

The hardware is designed using a hybrid combination of
Handel-C [9] and parametrisable VHDL cores. The VHDL
based cores are generated using Xilinx Coregen [8], and are
used for small frequently used blocks in the design such as
shifters, adders etc. Handel-C is used at the top level for

3209

architecture description and integration of the cores. Synthesis
of EDIF netlist from the top level Handel-C code is performed
using Celoxica DK4. Pin assignment details, timing constraints
and hand routing of critical blocks yields highly optimised
design and improves the power and energy consumption
metrics. This is particularly important, as non optimal place
and route tends to use long nets that consume more power
than short nets, due to higher capacitance and DC load. Power
estimation is performed using Xilinx XPower [8].

B. Performance Metrics

Performance metrics obtained for the implementation of
standard DA and OBC-DA are presented graphically in Fig. 3.
The graph yields some interesting insights into the tradeoffs
and general trend for both cases. With respect to area, it can
be clearly seen that for the case K = 4, the area of OBC-DA
implementation is infact marginally higher than standard DA.
This can be attributed to the fact that the increase in circuit
complexity slightly outweighs the influence of reduction of
ROM size. However, for larger values of K, a divergent
trend is clearly observed, and we can see that OBC-DA
implementation consumes less area when compared to the
standard DA implementation. This gap becomes wider as K
increases. In terms of frequency, for all cases of K ≥ 6 it
can be seen that OBC-DA outperforms standard DA. This
indicates that the area reduction achieved in OBC-DA is not
at the expense of performance. The overall trend is similar
for both architectures. This can be explained by the fact that
maximum frequency is a function of logic depth of the critical
path, which increases at the same rate for both architectures,
unlike in the case of area.

Area-Frequency Tradeoffs

0

20

40

60

80

100

120

140

160

180

200

4 6 8 10

Transform Length

A
re

a
(S

lic
es

)
/ F

re
q

u
en

cy
 (

M
H

z)

Area: Std-DA

Freq: Std-DA

Area: OBC-DA

Freq. OBC-DA

Fig. 3. Frequency-Area trends for both architectures for different values of
K and N = 8. Frequency is in MHz and area is represented in FPGA slices.

C. Power Analysis

Power metrics for both architectures at constant frequency
of 50MHz are presented in Table I. Total dynamic power
consumption of both DA implementations is presented in
Fig.4. It can be seen that as K increases, power dissipation
of both cores increases. However, OBC-DA is more energy
efficient than standard DA for any given value of K. I/O power
for both architectures are identical at 3.44 mW for input and

57.58 mW, 60.78 mW, 60.78 mW, 63.98 mW for output at
K = 4, 6, 8, 10 respectively. This is completely in accordance
with expectations as no change has been made to the I/O
sections of the two DA implementations.

TABLE I

ON-CHIP DYNAMIC POWER AT CONSTANT FREQUENCY

Standard DA OBC-DA
K Clock Logic Signal Clock Logic Signal
4 4.68 9.46 11.9 3.93 9.5 12.68
6 12.29 13.37 33.85 13.61 12.86 30.28
8 13.42 16.56 39.67 13.99 15.75 36.93

10 14.55 23.46 61.61 13.47 22.24 49.23

Total Dynamic Power Dissipation

0

20

40

60

80

100

120

4 6 8 10

Vector Length (K)

P
o

w
er

 (
m

W
)

Std-DA

OBC-DA

Fig. 4. Total dynamic power dissipation for different values of K and N = 8.

V. CONCLUSIONS

Novel architectures for resource constrained implementa-
tions of IP, particularly for DOTs based on sparse factorisation
techniques combined with OBC-DA has been presented. It
has been mathematically shown that area complexity can be
greatly reduced by using these techniques in conjunction with
each other. Despite increased complexity of control circuitry,
it has been shown that OBC-DA outperforms standard DA
in all key performance metrics including area, frequency and
power dissipation. This shows that OBC-DA is preferable for
developing the IP core, particularly in resource constrained
systems.

REFERENCES

[1] N. U. Ahmed and K. R. Rao, Orthogonal Transforms for Digital Signal
Processing. Springer-Verlag, 1975.

[2] K. R. Rao and P. Yip, Discrete Cosine Transform, Algorithms, Advantages
and Applications. New York: Academic Press, 1990.

[3] S. A. White, “Applications of distributed arithmetic to digital signal
processing: a tutorial review,” IEEE ASSP Magazine, vol. 6, no. 3, pp.
4–19, July 1989.

[4] K. K. Parhi, VLSI Digital Signal Processing Systems Design and Imple-
mentation. John Wiley and Sons, 1999.

[5] Application Note, “The role of distributed arithmetic in FPGA-based
signal processing,” www.xilinx.com/appnotes/.

[6] S. Chandrasekaran and A. Amira, “An area efficient low power inner
product computation for discrete orthogonal transforms,” in Proceedings
of the IEEE International Conference on Image Processing, September
2005, pp. 1024–1027.

[7] ——, “FPGA implementation and power modeling of the fast walsh
transform,” in Proceedings of the 16th International Conference on Field
Programmable Logic and Applications, August 2006.

[8] [Online]. Available: www.xilinx.com
[9] [Online]. Available: www.celoxica.com

3210

