
Engineering High Performance Legacy Codes

as CORBA Components for Problem Solving

Environments

M. Li ∗
Dept. of Electronic and Computer Engineering, Brunel University, Uxbridge,

Middlesex, UB8 3PH, UK

D. W. Walker, O. F. Rana and Y. Huang

Dept. of Computer Science, Cardiff University, P.O.Box 916, CF24 3XF, UK

P. T. Williams and R. C. Ward

Computational Sciences and Engineering Division, Oak Ridge National
Laboratory, P.O.Box 2008, Oak Ridge, TN 37831-6359, USA

Abstract

This paper describes techniques used to leverage high performance legacy codes as
CORBA components to a distributed problem solving environment. It first briefly
introduces the software architecture adopted by the environment. Then it presents a
CORBA oriented wrapper generator (COWG) which can be used to automatically
wrap high performance legacy codes as CORBA components. Two legacy codes have
been wrapped with COWG. One is an MPI-based molecular dynamic simulation
(MDS) code, the other is a finite element based computational fluid dynamics (CFD)
code for simulating incompressible Navier-Stokes flows. Performance comparisons
between runs of the MDS CORBA component and the original MDS legacy code on
a cluster of workstations and on a parallel computer are also presented. Wrapped as
CORBA components, these legacy codes can be reused in a distributed computing
environment. The first case shows that high performance can be maintained with
the wrapped MDS component. The second case shows that a Web user can submit
a task to the wrapped CFD component through a Web page without knowing the
exact implementation of the component. In this way, a user’s desktop computing
environment can be extended to a high performance computing environment using
a cluster of workstations or a parallel computer.

Key words: Problem Solving Environments, High Performance Legacy Codes,
CORBA Components, Wrapper Generator, Parallel and Distributed Computing

Preprint submitted to Elsevier Science 2 October 2003

1 Introduction

A problem-solving environment (PSE) is a complete, integrated computing
environment that provides all the computational facilities necessary to solve
a target class of problems [5,13]. The main motivation for developing PSEs
is that they provide software tools and expert assistance to computational
scientists in a user-friendly environment, allowing more rapid prototyping of
ideas and higher research productivity. By relieving scientists of the burdens
associated with the inessential and often arcane details of specific hardware
and software systems, the PSE leaves them free to concentrate on the sci-
ence. Construction of PSEs through software components is an approach that
has engendered much recent interest [6,10,15,25]. Our CORBA [23] compliant
component model guarantees that components written in different program-
ming languages can interoperate with each other.

The remainder of the paper is structured as follows. Section 2 briefly introduces
the software architecture of the PSE. Section 3 presents COWG, a CORBA
Oriented Wrapper Generator which can be used to automatically wrap high
performance legacy codes in C or Fortran as CORBA components for reuse in
the PSE. Section 4 describes case study one in which a MDS code is wrapped
as a CORBA component with COWG and performance comparisons between
runs of the MDS CORBA component and the original legacy code on a clus-
ter of workstations and on a parallel computer are also presented. Section 5
describes case study two, using COWG to wrap a CFD code as a CORBA
component. A Web user can submit a task through a Web page to invoke the
CFD component without knowing the exact implementation of the compo-
nent. Section 6 presents some related work on leveraging legacy codes to a
distributed computing environment. Section 7 concludes the paper and gives
future work on the wrapper generator.

2 The Software Architecture of the PSE

There are two major parts in the PSE, the Visual Component Composition En-
vironment (VCCE) and the Intelligent Resource Management System (IRMS).
The VCCE is primarily used to construct applications from software com-
ponents, and supports the location of components and the transfer of data
between them. In the VCCE, a user can visually construct scientific applica-
tions by plugging together components, which can range in granularity from
simple tasks, such as matrix manipulation, to complete application programs.
Each component is a CORBA component and has an XML [24] interface de-

∗ Maozhen.Li@brunel.ac.uk

2

scribed using a common data model, as specified in [4]. A component may
contain sequential code written in Java, Fortran, or C, or it may be a parallel
code based on a SPMD implementation using MPI [29], or it may contain
array-based parallelism using language extensions such as HPJava [22].

After an application is constructed, the VCCE generates a task graph de-
scribed in XML which is later passed to the IRMS. The IRMS then makes
use of a resource management system, such as Intrepid [28] or Globus [31], to
run the application on distributed computing resources, subject to constraints
defined by the user. Figure 1 shows the constitution of the PSE.

VCCE
Task Graph

IRMS

Computational
Reosurces

Fig. 1. The constitution of the PSE.

Walker [2] gives a detailed description on the software architecture of the PSE.

There are four common types of components. The main task of compute com-
ponents is to do computational work such as performing a matrix multipli-
cation or a fast Fourier transform. Template components require one or more
components to be inserted into them in order to become fully functional. Tem-
plate components can be used to embody commonly used algorithmic design
patterns. This allows a developer to experiment with different numerical meth-
ods or model physics. Thus, in a partial differential equation solver a template
might require a pre-conditioner to be inserted. Template components can also
be used to introduce control constructs such as loops and conditionals into
a higher-level component. For example, for a simple for loop the initial and
final values of the loop control variable, and its increment, must be speci-
fied, together with a component that represents the body of the loop. For
an if-then-else construct a Boolean expression, and a component for each
branch of the conditional must be given. A template component can be viewed
as a compute component in which one or more of the inputs is a component.
Data management components are used to read and convert between the dif-
ferent types of data format that are held in files and Internet data repositories.
The intention of this type of component is to be able to (1) sample data from
various archives, especially if there is a large quantity of data to be handled,
(2) convert between different data formats,(3) support specialized transports

3

between components if large quantities of data needs to be migrated across
a network,(4) undertake data normalization, and perhaps, also generate SQL
or similar queries to read data from structured databases. The fourth type of
common component is the user interface components which allow a user to
control an application through a graphical user interface, and plays a key role
in computational steering.

Components can be created from scratch, or automatically wrapped from
legacy codes through COWG, as described in section 3.3.

3 Engineering High Performance Legacy Codes as CORBA Com-
ponents

High performance legacy codes are pre-existing codes, mostly in C or Fortran,
that possess the following features:

• They are domain-specific.
• They are not reusable.
• They are still useful.
• They are large, complex monoliths.

One of the important research issue in the PSE is to exploit ways to leverage
these legacy codes to a distributed computing environment and make them be
pluggable and reusable CORBA components. These components can be easily
assembled together to construct applications for solving domain problems.

3.1 The Strategies to Leverage Legacy Codes to a Distributed PSE

According to [27], there are three strategies for leveraging legacy codes to a
distributed computing environment. One strategy is to start from scratch and
redevelop all of the legacy codes with the distributed object concepts. This
approach frees the developers from any consideration of the existing codes.
But, every function must be re-implemented and tested in a new language
and in a new environment, which is expensive and time consuming.

Another strategy is a re-engineering approach. Engineers convert the legacy
codes to distributed objects appropriately. This approach is a promising method
since it is not necessary to re-implement functions whose functionalities are
the same as that of the legacy codes. However, code conversion is not easy.
Few tools and methods are available.

The third strategy is to wrap legacy codes as distributed components and to

4

invoke them from a distributed computing environment. Wrapping is a method
of encapsulation that provides clients with well-known interfaces for accessing
wrapped components. The principal advantage is that behind the interface,
the client need not know the exact implementation Wrapping can be accom-
plished at multiple levels: around data, individual modules, subsystems, or
the entire system. After being wrapped as CORBA components, these legacy
codes can be reused as components in a heterogeneous distributed computing
environment. However, wrapping legacy codes manually is a time consuming
and error-prone task. For example, to wrap a legacy code as a CORBA com-
ponent, developers have to write all the interfaces needed such as an IDL in-
terface, a CORBA implementation code for the legacy code. In addition, they
also need to write interfaces for interactions between the component and other
components. The interfaces and implementation codes are different for differ-
ent legacy codes. Therefore, a wrapper generator is necessary and critical to
reuse high performance legacy codes as CORBA components in a distributed
computing environment. In addition, a component model is needed to man-
age the interactions and data flows between components wrapped from legacy
codes.

3.2 A CORBA Compliant Component Model

CORBA ORB

Data OutputData Input

Component Interoperability

Check
IDLIDL

Publisher

Publisher

XML XML

Listener

Listener Component 2Component 1

Fig. 2. A CORBA compliant component model.

A component model is a framework for assembling applications from compo-
nents. The framework defines a set of rules that specify the precise execution
environment provided to each component and the rules of behavior and spe-
cial design features that components must have in order to be considered true
components. A component model is the software environment that provides
mechanisms to instantiate components, compose them, verify them, and use
them to build applications. In this section, a CORBA based component model
is described. The model defines the interaction and data flow between multiple
components in the PSE.

A component in the PSE has five parts: a Listener, a Publisher, a Body, a

5

CORBA IDL interface, and an XML interface.

• The Listener serves as a trigger to invoke the component, based on a unique
component ID and the notion of an event service. It receives requests from
other components through the CORBA ORB. It is invoked if the compo-
nent ID carried by a call is the same as the one that it holds. A protocol
may be defined to enable communication between a Listener of one com-
ponent and a Publisher of another component. The protocol includes a flag
to determine if large quantities of data need to be transferred, whether
computational steering is required, or if the component needs input to be
obtained as a stream or a data file. In cases where there is a large amount
of data to be transferred, interacting components will set up a direct socket
connection between the Publisher and the Listener for faster data transfer,
which will bypass the CORBA ORB. The Listener first receives data from
the requesting component, and then invokes the Body of the component.
The Listener is the client side implementation of the component.

• The Publisher is used to send requests (events) to other components after
the present component finishes its task. It is the Publisher that sends data
generated by the component of which it is a part to other components.
When a user connects two components together, the PSE will put the ID
of the input component(s) into the Publisher of the output component.
Therefore, the Publisher holds one or more IDs of the components which
will be invoked next.

• The Body is the server side implementation of a component. It receives input
from the Listener of the component, and it sends output to the Publisher
of the component.

• A CORBA IDL interface is generated from the description of a component
provided by its developer. It is used to generate stubs for the Listener and
Publisher, and skeletons for the Body of a component.

• An XML interface is also generated from the description of a component
provided by its developer. It is used to store information related to each
component. From the XML interface, the properties of a component can be
interrogated, or the interface can be used to identify components of relevance
to a given application. For each computational component, for instance,
there may be a performance model defined in XML for use in scheduling
components for execution. The complexity of this performance model can
range from results of benchmarking, to algebraic complexity metrics related
to the size of the data set, and the data types managed by the component.

Figure 2 shows the component architecture used within PSE. The CORBA
ORB is responsible for managing communication between components. Each
component selected by a user is registered with the Name Server, which helps
the execution environment identify the location of this component. The Com-
ponent Repository (CR) contains the XML interface of a component, and does
not include any executable code (Body) associated with it. Component exe-

6

cutables can be subsequently located based on the references provided within
the XML definition (see [4] for details). There are two kinds of information
in the CR, one is static information about components in XML, the other is
run-time information about components which are currently running, obtained
from the CORBA name service. Components can be hierarchical, and may be
created from a Template component which identifies the use of a combination
of components within a given application. Components may also be gener-
ated directly by the user, or wrapped from legacy codes through the Wrapper
Generator.

The CORBA Component Model (CCM) [19] from CORBA 3 is used to stan-
dardize the component development cycle using CORBA as its middleware
infrastructure. However, the CCM standard and implementations are as im-
mature today as the underlying CORBA standard and ORBs were three to
four years ago. Moreover, the CCM vendor community is largely focusing
on the requirements of e-commerce, workflow, report generation, and other
general-purpose business applications. The middleware requirements for these
applications generally focus on functional interoperability, with little emphasis
on assurance of or control over mission-critical QoS aspects. As a result, it is
not feasible to use off-the-shelf CCM implementations for high-performance
and realtime systems [20]. The CCM requires a significant number of new
classes and interfaces to support its specified features. These requirements
may cause problems for high-performance and real-time applications due to
unnecessary time and space overhead incurred when components are collo-
cated within the same process or machine. Our component model can have a
better performance by directly binding the publisher of a component to the
listener of another component. The publisher and listener are used as CORBA
component ports as described in the CCM. However, they are supported by
component methods inside of a component instead of using extra classes out-
side of a component.

3.3 A CORBA Oriented Wrapper Generator

In order to automatically wrap legacy codes as components, we have imple-
mented COWG, a CORBA oriented wrapper generator [18] on Solaris 2.7
using VisiBroker [37] as the CORBA ORB. Making use of a CORBA ORB as
the communication infrastructure, components are independent of location,
language, and platform. At present, Java is chosen as the language for compo-
nent wrappers generated by COWG, though the wrapped component core can
be C, Fortran, or Java itself. This flexibility facilitates the automatic incorpo-
ration of a wide range of existing legacy codes into the PSE framework. When
using COWG, developers only need to specify the parameters (properties) of
the legacy code they want to wrap, then submit the parameters to COWG

7

which then generates all the interfaces needed to convert the legacy code into
a component. The interfaces include a CORBA IDL interface, an XML defini-
tion, an implementation code (Body), a Listener and a Publisher. The Listener
and Publisher are used to interact with other components. Figure 3 shows the
data flow in COWG.

Developers are different from end users in that developers create components,
whereas end users make use of the components to construct applications. De-
velopers need to know some information about the legacy code, such as its
input(s)/output(s). However, they do not need to know the exact implemen-
tation of the legacy code. The main constraints for a legacy code to be wrapped
as a component with COWG are: (1)The legacy code can be a sequential code
or a parallel code using MPI. (2)The legacy code can be written in C, Fortran
or Java. (3)The legacy code can be located anywhere within a distributed com-
puting network. (4)The legacy code must be a binary code and can perform
certain functions with some input(s)/output(s). When using COWG to wrap
a single legacy code, developers need to supply the following parameters:

IDL

COWG Repository

Component

CORBA Component

PublisherBodyListener

XML

Legacy Code ParametersLegacy Code

Data Input Data Output

Fig. 3. The data flow in COWG.

• The Name of the component generated from the legacy code.
• The Name of the legacy code including the host name and directory in which

the legacy code resides.
• The Name of the ORB Compiler. Since we use VisiBroker, the compiler is

idl2java.
• The Language used by the legacy code. COWG currently supports legacy

codes in C, Java, or Fortran.
• The Type of the legacy code. The legacy code could be a sequential or par-

allel code using message passing libraries such as MPI. A parallel CORBA
component can be wrapped from a parallel legacy code using MPI. COWG
makes use of an MPI run time to manage the intra-communications of multi-
processors within the parallel component.

• The preferred Processors used if the legacy code is a parallel code using

8

MPI to achieve high performance.
• The Number of input parameters used for the legacy code.
• The Type of each input parameter used by the legacy code. COWG supports

seven types currently, file, char, string, int, float, double, and long.
• The Number of outputs generated by the legacy code.
• The Type of each output parameter, same to the Type of input parameter.
• The Data File used to store the data generated by the legacy code.

Input parameters are organized in an input file, and output parameters are
put in an output file. Figure 4 gives the graphic user interface (GUI) of the
wrapper generator.

Fig. 4. The COWG GUI.

After receiving the parameters from a developer, COWG will check the valid-
ity of these parameters, such as the validity of the component directory, and
whether the input types belong to the types it supports. COWG will then
generate a CORBA IDL and an XML interface based on the input param-
eters. Using an IDL compiler, COWG generates stubs and skeleton for the
Listener and Publisher of the component. Based on the specified parameters,
COWG knows how to generate the Listener. If there are no data input to
the component, the generated Listener will automatically invoke the Body of
the component once a request has been received. Otherwise, the generated
Listener will first finish receiving data from another component, and then it
invokes the Body of the component. Input data may either be streamed to the
component, or read from a file. The Publisher is generated in a similar way
to the Listener. The generation of the Body is completed by a Body template
within COWG, making use of the skeleton created by the IDL compiler. The

9

main function of the Body is to invoke the legacy code wrapped inside it. After
generating all the interfaces needed to wrap the legacy code as a component,
COWG stores the component in the component repository in XML for future
use.

4 Case Study 1: A Molecular Dynamic Simulation (MDS) Appli-
cation

In this section an example of the use of COWG to automatically generate
wrappers for wrapping an MPI-based legacy code as a CORBA component
is discussed. We have constructed an application for the molecular dynamics
simulations in the PSE. There are two components in the application, one is a
User Interface(UI) component, the other is the MDS component automatically
wrapped from a MDS legacy code with COWG. These two components can
be geographically distributed.

4.1 The MDS Legacy Code

The legacy code used is a three-dimensional molecular dynamics code for
simulating a Lennard-Jones fluid. The code has been parallelized, and makes
use of the MPI message passing library for inter-processor communication. The
code models short range atomic interactions by using a link-cell (geometric
hashing) algorithm where all particles are hashed into a three-dimensional
mesh of Nb ×Nb ×Nb cells. The cell size must be no smaller than the cut-off
distance (rc) used in the short-range force evaluation so that each particle
interacts only with particles in the same cell or in the neighbouring cells.
The symmetry of Newton’s Third Law is exploited so that atoms in only 13
(instead of 26) neighbouring cells need to be examined. The code assumes
an Nc ×Nc ×Nc Face Centered Cubic (FCC) periodic lattice with a total of
N = 4N3

c atoms. A “shifted-force” [32] Lennard-Jones 6-12 potential ensures
that the potential and its first derivative are continuous at the cut-off distance.
Particle positions are updated at each time step using a simple Verlet [33]
leap-frog scheme. Further details of the molecular dynamics algorithms can
be found in the book Computer Simulation of Liquids [34].

A spatial decomposition [35] is used which distributes the cells in blocks over
a three-dimensional mesh of processes so that each process is responsible for
the particles in a rectangular sub-domain. Point-to-point message passing is
necessary to perform two tasks in the algorithm. First, particle information
in cells lying at the boundaries of a process must be communicated to one or
more neighbouring processes. This is necessary because these particles must

10

</outports>

 <preface>

 <name alt="MDS" id="MDS">MDSComponent</name>

 <component−des>Molecular Dynamics</component−des>

 <component−directory>/home/Component</component−directory>

 <legacy−code>/home/MDS/moldyn</legacy−code>

<inportnum>1</inportnum>

<inport id="1">file</inport>

 <outportnum>6</outportnum>

 <outport id="1">int</outport>

 <outport id="2">float</outport>

 <outport id="3">float</outport>

 <outport id="4">float</outport>

 <outport id="5">float</outport>

 <outport id="6">float</outport>

 <os−type>Solaris 2.7</os−type>

 <code−type>MPI</code−type>

 <href name="file://home/pse/help/mds.txt" value="NIL"/>

<ORB−Compiler>idl2java</ORB−Compiler>

<language>C</language>

<processors>8</processors>

</preface>

<port>

</ports>

<execution id="platform">

</execution>

<help context="instantiate">

</help>

</pse−component>

<pse−component>

 <inports>

</inports>

<outports>

 <href name="file://home/Component/output.dat" value="output"/>

Fig. 5. The XML description of the MDS legacy code.

interact with particles in neighbouring processes. The standard approach of
creating “ghost” cells around the boundary of each process is used, and the
communication can then be performed in a series of six shift operations (one
for each face of the rectangular sub-domain). The second type of point-to-
point communication arises when particles migrate from the sub-domain of
one process to that of another. Again this communication can be performed
in a series of shift operations. In the message passing code the communication

11

of boundary data and particle migration are combined to reduce the frequency
(and hence the overhead) of message-passing.

The MDS legacy code description in XML is given in figure 5, and provides
an example of the ‘Legacy Code Description’ used in figure 3.

The legacy code called “moldyn” is an MPI-based code making use of 8 proces-
sors. It has one input and six outputs (time step, total energy, kinetic energy,
potential energy, pressure, and temperature). The legacy code can run on a
cluster of workstations or on a dedicated parallel machine. The IDL interface
generated by COWG for the MDS legacy code is given in figure 6.

module MDS

 };

 };

 void Publisher(out string ComponentID, out string OutputFile);

 void Body(string parameters);

 void Listener(in string ComponentID, in string InputFile);

 {

 interface MDSComponent

{

Fig. 6. The IDL interface of the MDS CORBA component.

The UI component provides a graphical front end to receive inputs from a user
and then sends a call to the MDS component through its Publisher. The Lis-
tener of the MDS component is then triggered and receives messages from the
UI component based on protocols used for interactions among components.
After the Listener finishes its task, it then invokes the Body of the MDS com-
ponent which in turn starts to execute the MDS legacy code using a command
such as “mpirun -np 8 moldyn”. When there is an output, the Body invokes
the Publisher to make a callback to the UI component to display simulation
results to the user. The implementation code for the MDS CORBA compo-
nent generated by COWG is briefly described in figure 7.

4.2 Performance Comparisons

It is important to minimize performance overheads when using wrapped legacy
codes as components for use in the PSE. In order to measure and compare
performance between the wrapped MDS CORBA component and the legacy
code itself we carried out a number of experiments running the MDS CORBA
component and the legacy code on a cluster of workstations and on a dedicated

12

 invoke the OutputUIComponent with outputs;

 invoke the Publisher of the MDSComponent with output.dat;

 execute "mpirun −np 8 inputs output.dat";

 invoke the body of the MDSComponent;

 if (ComponentID=="MDS")

class MDSComponent extends _MDSComponentImplBase

{

 public void Listener(String ComponentID, String inputs)

 {

 }

 public void Body(String inputs)

 {

 }

 public void Publisher(String ComponentID, String outputs)

 {

 }

 }

 read inputs from an InputUIComponent;

 ComponentID="OutputUIComponent";

Fig. 7. The implementation segment of the MDS CORBA component.

parallel machine (named cspace). The cluster runs Solaris2.7 and MPICH1.2.0,
connected over an intranet (with shared file space) with 10Mb/s Ethernet. The
parallel machine is a Sun E6500 with thirty 336MHz Ultra Sparc II proces-
sors, running Solaris2.7 and using MPI libraries from Sun Microsystems. We
increased the number of molecules from 2048 to 256,000, using 8 workstations
in the cluster and 8 processors in cspace. We use the Visibroker ORB from
Inprise on both cspace and the workstation cluster. The results are illustrated
in figure 8. We find that there is almost no loss of performance between the
CORBA component wrapped from the native code, and the native code it-
self. These results are observed on both the cluster of workstations, and on
the dedicated parallel machine. We do however see a significant difference be-
tween execution speeds on cspace and the network of workstations when using
CORBA.

Our results suggest that parallel CORBA components wrapped from parallel
legacy codes using MPI can still maintain high performance. We attribute this
to improved implementation of data management within the Visibroker ORB,
and the use of a shared file space in our experiments. We also reached a similar
conclusion in a previous study where we have compared the performance of an
MDS code wrapped as a single CORBA component, versus the performance

13

0 50000 100000 150000 200000 250000 300000
0

100

200

300

400

500

600

700

800

900

1000

CORBA
No CORBA

Number of molecules

Sun E6500 (cspace)

Cluster

Ex
ec

ut
io

n
tim

e i
n

se
co

nd
s

Fig. 8. Performance comparisons running the wrapped MDS CORBA component
and the MDS legacy code itself on a cluster of workstations and on a dedicated
parallel machine.

of the MDS code divided into a collection of co-operating CORBA compo-
nents [1]. Making use of CORBA to manage the inter-communications among
components and a MPI runtime to manage the intra-communications within
a parallel object is a feasible approach for distributed parallel computing.

5 Case Study 2: A Computational Fluid Dynamics (CFD) Appli-
cation

The CFD code called PHI3D [3] written in Fortran is a finite element based
computational fluid dynamics code for simulating incompressible Navier-Stokes
flows, and is being used to model flow in the lung and upper respiratory system.
The theoretical basis for the new continuity constraint method consists of a
finite-element spatial semi-discretization of a Galerkin weak statement, equal-
order interpolation for all state-variables, a q-implicit time-integration scheme,
and a quasi-Newton iterative procedure extended by a Taylor Weak State-
ment (TWS) formulation for dispersion error control and stabilization.Using
a finite-element methodology, complex geometries can be easily simulated with
PHI3D using unstructured grids. A time-accurate integration scheme allows
the simulation of both transient and steady-state flows. Verification and vali-
dation studies have been completed for 3-dimensional laminar problem classes
including heavily separated and buoyancy-driven flow fields. Available finite-
elements include linear 8-node hexahedra, 6-node prisms, and 4-node tetra-
hedra, allowing the application of structured, unstructured, and hybrid mesh

14

Fig. 9. A task submission Web page for the CFD CORBA component.

configurations to simulate complex geometries.

The CFD code has been wrapped as another CORBA component with COWG
and can be invoked in a Web based computing environment. The wrapped
CFD component can be assembled with different UI components in the PSE
to provide different views for the output. Figure 9 shows the Web page by
which a Web user submits a task to the CFD component. Figure 10 shows
the output of the CFD component invoked by the Web user. In this way,
users can share the legacy code to request services in a distributed computing
environment.

The legacy code “PHI3D.x” is a Fortran code making use of 1 processor.
It has one input and twelve outputs (steps, inner steps, Mass, Uvel, Vvel,
Wvel, Temp, PHI, Press, DeltaT, Time, Reyn). The IDL interface generated
by COWG for the CFD legacy code is given in figure 11.

The UI component is an Applet embedded within a Web page provides a

15

Fig. 10. A snapshot of the CFD CORBA component output on the Web.

graphical front end to receive inputs from a user and then sends a call to the
CFD component through its Publisher. The Listener of the CFD component
is then triggered and receives messages from the UI component based on pro-
tocols used for interactions among components. After the Listener finishes its
task, it then invokes the Body of the CFD component which in turn starts
to execute the CFD legacy code using a command such as “PHI3D.x”. When
there is an output, the Body invokes the Publisher to make a callback to the UI
component to display simulation results to the user. The implementation code
for the CFD CORBA component generated by COWG is briefly described in
figure 12.

6 Related Work

There is some prior work that addresses issues for generating wrappers with
semi-automatic generation or meta-wrapper style to leverage legacy codes to a
distributed environment. Vidal [8] suggests wrappers and mediators to access
data from heterogeneous database or legacy servers. Ashish [14] suggests that
information mediator for obtaining information from multiple Web sources.
Sounder [9] provides wrappers for securely integrating legacy systems into
a distributed environment. However, these works are about how to migrate
legacy information systems to a distributed environment mainly on obtaining
information from multiple data sources. A wrapper is provided for each data
source. COWG is about automatically leveraging high performance legacy
codes making use of parallel libraries such as MPI as CORBA components to

16

a parallel and distributed computing environment.

 };

 interface CFDComponent

module CFD

{

 {

 void Listener(in string ComponentID, in string InputFile);

 void Body(string parameters);

 void Publisher(out string ComponentID, out string OutputFile);

 };

Fig. 11. The IDL interface of the CFD CORBA component.

Kim [16] provides a wrapping technique that enables various legacy systems
to be reused on CORBA based distributed environments without any changes
to them. An automatic wrapper generation method based on extensible wrap-
ping template classes is presented for wrapping legacy codes. The legacy codes
in the work are sequential codes. COWG differs from Kim’s work in two ways.
First, the legacy codes in COWG can be sequential codes or parallel codes us-
ing MPI. Second, COWG is a software tool, not just a template class. There-
fore, users do not need to write any codes to use COWG. They only need
to specify the parameters related to a legacy code when wrapping the legacy
code as a CORBA component with COWG.

SWIG [26] is a software tool that provides an interface compiler that con-
nects high legacy codes written in C, C++, and Objective-C with scripting
languages such as Perl, Python, and Tcl/Tk. Legacy codes can be sequential
codes or parallel codes using MPI. Whereas SWIG focuses on manipulat-
ing legacy codes through the use of scripting languages, COWG is used to
automatically wrap legacy codes as CORBA components (IDLs, component
implementations, component dataflow) which can then be plugged together to
create applications for reuse in a distributed problem solving environment.

COWG also provides a method to extend CORBA for parallel computing.
CORBA enables the seamless integration of distributed objects within one
system, and is designed primarily for sequential applications. High perfor-
mance computing applications are mostly parallel programs using message
passing paradigms such as MPI. CORBA cannot replace the MPI communi-
cation layer due to architectural and performance constraints. When wrapping
an MPI based high performance legacy code as a parallel CORBA component,
COWG makes use of an MPI runtime to manage the intra-communication of
multiple processors within the parallel component. The inter-communication
among different components is managed by CORBA. The advantage is that
users can use existing CORBA implementations (such as Visibroker, Orba-

17

 invoke the Publisher of the CFDComponent with output.dat;

 invoke the OutputUIComponent with outputs;

 ComponentID="OutputUIComponent";

 read inputs from an InputUIComponent;

 }

 }

 {

 public void Publisher(String ComponentID, String outputs)

 }

 {

 public void Body(String inputs)

 }

 {

 public void Listener(String ComponentID, String inputs)

{

class CFDComponent extends _CFDComponentImplBase

 if (ComponentID=="CFD")

 execute "PHI3D.x inputs output.dat";

 invoke the body of the CFDComponent;

Fig. 12. The implementation segment of the CFD CORBA component.

cus [38] and others) without any modification to CORBA IDL compilers, as
is done in other projects with a similar objective, such as PARDIS [21] and
Cobra [17].

There are also some projects on parallel CORBA objects without any mod-
ifications to a CORBA IDL compiler [11,12]. However, they use a multi-
threaded mechanism to provide a CORBA Group Communication Service
through which to implement parallel CORBA objects. Our work differs from
the approach in that we combine CORBA and MPI to provide parallel CORBA
objects without modifications to a CORBA IDL compiler. In addition, the
point-to-point communication between two processors in MPI is more efficient
than that of using the multi-threaded mechanism in which the communication
is done through an intermediate node.

7 Conclusions and Future Work

High performance legacy codes mostly written in C or Fortran making use
of message passing paradigms such as MPI are very useful computational

18

resources. COWG has been used to automatically wrap such legacy codes
as CORBA components for use in the PSE, a distributed component-based
problem-solving environment. In general, a legacy code can be a whole appli-
cation or a subroutine provided that they meet the requirements of constrains
for wrapping a legacy code as a component with COWG. Since components in
the PSE are CORBA component, they are independent of location, language,
and platform. The wrapped high performance components running on a clus-
ter of workstations or on a parallel machine can be invoked by a user from a
thin desktop computer. The intra-communication within a parallel component
is managed through an MPI runtime and the inter-communication among dif-
ferent components is managed by a CORBA ORB. Our approach does not
make any proprietary extensions to the CORBA IDL or ORB, as in other
similar projects, and therefore can be used with a range of commercial and
research ORBs, such as Visibroker, Orbacus, and TAO [30].

COWG provides a feasible way to automatically wrap high performance legacy
codes as CORBA components, however, it is rather simple and there is still
work that needs to be done to improve it.

• The wrapper generator currently uses a shared file system in an intranet
environment to locate a legacy code. We plan to extend the wrapper gener-
ator to the Internet environment in which a legacy code with a host name
on the Internet, or a legacy code in a virtual library such as Netlib [7]
can be wrapped as a CORBA component and registered with a component
repository in the PSE. The component repository itself works like Netlib,
but the Visual Component Composition Environment (VCCE) in the PSE
provides an integrated environment to access the CORBA components in
the repository.

• Web Services [36] are self-contained, self-describing, modular applications
that can be published, located, and invoked across the Web. Since Web
Services are simple and based on standard Web technologies, they have the
advantage of widespread academic and industrial support, which implies
greater uptake, ease-of-use, and true ubiquity. The work is undergoing to
migrate COWG to a Web Services oriented wrapper generator in which
the XML description of a legacy code will be used to generate a WSDL
interface, the wrapped CORBA code will be used as the core part of a Web
Services object, a UDDI repository will be used to manage the registration
and discovery of components in the PSE.

• The Grid [39] appears to be a promising computing platform for solving
large-scale resource intensive problems. The Grid couples a wide variety of
geographically distributed resources such as PCs, workstations and clusters,
storage systems, data sources, databases and special purpose scientific in-
struments and presents them as a unified integrated resource. The PSE can
be a part of a Grid environment running on top of the Grid to provide high
level services. The CORBA CoG Kit [40] combines CORBA with the Grid

19

to make Grid services accessible through the CORBA programming inter-
face. By wrapping Globus Grid services such as MDS, GRAM, GASS, and
GSI as CORBA objects, the CORBA CoG provides CORBA users the abil-
ity to transparently access these back end Grid services from their CORBA
applications. The CORBA CoG can be integrated with the PSE in which
an application built from CORBA components wrapped from the wrapper
generator can use the CORBA CoG to access Grid services.

References

[1] Maozhen Li, Omer F. Rana and David W. Walker, Wrapping MPI-Based
Legacy Codes as Java/CORBA Components, Future Generation Computer
Systems(FGCS), Vol.18, Issue 2, pp. 213-223, October 2001.

[2] D. W. Walker, M. Li, O. F. Rana, M. S. Shields and Y.Huang, The
Software Architecture of a Distributed Problem Solving Environment,
Concurrency:Practice and Experience, Vol.12, No.15, pp.1455-1480, December
2000.

[3] P. T. Williams and A. J. Baker, Incompressible Computational Fluid Dynamics
andthe Continuity Constraint Method for the 3D Navier-Stokes Equations,
Numerical Heat Transfer, Part B Fundamentals 29, PP. 137-273, 1996.

[4] O. F. Rana, M. Li, D. W. Walker, and M. Shields, An XML Based Component
Model for Generating Scientific Applications and Performing Large Scale
Simulations in a Meta-computing Environment. in ”Proc. of Generative
Component Based Software Engineering”, Erfert, Germany, September 1999.

[5] E. Gallopoulos, E. N. Houstis, and J. R. Rice, Computer
as Thinker/Doer :Problem-Solving Environments for Computational Science,
IEEE Computational Science and Engineering, Vol.1, No.2, pp.11-23, 1994.

[6] Common Component Architecture Forum, See web page on CCA at
http://www.acl.lanl.gov/cca-forum.

[7] http://www.netlib.org

[8] M.E.Vidal, L.Raschid and J.R.Gruser, A Meta-Wrapper for Scaling up to
Multiple Autonomous Distributed Information Sources, in “Proc. of 3rd Int’l
Conf.on Cooperative Information Systems”, pp. 148-157.

[9] T. Souder and S. Mancoridis, A Tool for Securely Integrating Legacy Systems
into a Distributed Environment, in “Proc. of sixth Working Conf. on Reverse
Engineerin”, pp.47-55, 1999.

[10] Katarzyna Keahey, Peter Beckman, and James Ahrens, Component
Architecture for High-Performance Applications, First NASA Workshop on
Performance-Engineered Information Systems, September 28-29, 1998.

20

[11] Richard Cruceau, Felicia Ionescu, Doina Profeta, Parallel Programming with
CORBA Group Communication Service, in Proc. of Int. Workshop on Trend
and Recent Achievements in Information Technology, May 2002, Cluj Napoca,
Romania.

[12] Markus Aleksy, and Martin Schader, A CORBA-Based Object Group Service
and a Join Service Providing a Transparent Solution for Parallel Programming,
in Proc. of International Symposium on Software Engineering for Parallel and
Distributed Systems (PDSE 2000), June 2000, Limerick, Ireland.

[13] J. R. Rice and R. F. Boisvert, From Scientific Software Libraries to Problem-
Solving Environments, IEEE Computational Science and Engineering, Vol.3,
No.3, pp.44-53, 1996.

[14] N.Ashish and C.A.Knoblock, Semi-automatic Wrapper Generation for Internet
Information Sources, in “Proc. of 2nd Int’l Conf. on Cooperative Information
System”, pp.160-169, 1997.

[15] Y. N.Lakshman, Bruce Char, and Jeremy Johnson, Software components using
symbolic computation for problem solving environments. in “Proc. of the 1998
International Symposium on Symbolic and Algebraic Computation”, August 13
- 15, 1998.

[16] H. S. Kim and J. Bieman, Migrating legacy systems to CORBA based
distributed environments through an automatic wrapper generation technique.
in “Proc. Joint meeting of the 4th World Multiconference on Systemics,
Cybernetics and Informatics (SCI’2000) and the 6th International Conference
on Information Systems Analysis and Synthesis”, ISAS’2000.

[17] T. Priol and C. Ren, Cobra: A CORBA-compliant Programming Environment
for High-Performance Computing. in “Proc. of Euro-Par’98”, pp. 1114-1122,
1998.

[18] M.Li, O.F.Rana, M.S.Shield and D.Walker, A Wrapper Generator for Wrapping
High Performance Legacy Codes as Java/CORBA Components, in “Proc. of the
ACM/IEEE SuperComputing’00”, Dellas, USA, Nov. 2000.

[19] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan, An Overview of the
CORBA Component Model, in Component-Based Software Engineering (G.
Heineman and B. Councill, eds.), Reading, Massachusetts: Addison-Wesley,
2000.

[20] N. Wang, D. C. Schmidt, and D. Levine, Optimizing the CORBA Component
Model for High-performance and Real-time Applications, in ‘Work-in-Progress’
session at the Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[21] K.Keahey and D. Gannon, PARDIS: A Parallel Approach to CORBA. in “Proc.
of the 6th IEEE International Symposium of High Performance Distributed
Computation”, pp. 31-39, August 1997.

[22] B. Carpenter, Y.-J. Chang, G. Fox, D. Leskiw, and X. Li, Experiments with
HPJava. in “Proc. of Java for High Performance Scientific and Engineering
Computing, Simulation, and Modelling”, Syracuse, New York, 1996.

21

[23] http://www.omg.org.

[24] http://www.w3.org/XML.

[25] C. Szyperski, “Component Software:Beyond Object-Oriented Programming”,
Addison-Wesley,1997.

[26] David M. Beazley and Peter S. Lomdahl, Lightweight Computational
Steering of Very Large Scale Molecular Dynamics Simulations. in “Proc. of
SuperComputing’96”, 1996.

[27] H.M.Sneed and R.Majnar, A Case Study in Software Wrapping, in “Proc. of
ICSM’98”, pp.86-93, 1998.

[28] N. Floros, A. J. G. Hey, K. E. Meacham, J. Papay and M. Surridge, Predictive
resource management for meta-applications, Future Generation Computer
Systems, Vol.15, pp.723-734, 1999.

[29] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org, 1995.

[30] Douglas C. Schmidt, David L. Levine, and Chris Cleeland, Computer
Communications, vol. 21, pp. 294-324, April 1998.

[31] I. Foster and C. Kesselman, The Globus Project: A Status Report, in “Proc. of
IPPS/SPDP’98 Heterogeneous Computing Worksho”, pp4-18, 1998.

[32] J. G. Powles, W. A. B. Evans, and N. Quirke, Non-destructive Molecular
Dynamics Simulation of the Chemical Potential of a Fluid, Mol. Phys., Vol.
46, pp.1347–1370, 1982.

[33] L. Verlet, Computer Experiments on Classical Fluids I. Thermodynamical
Properties of Lennard-Jones Molecules, Phys. Rev., Vol.159, pp. 98-103, 1967.

[34] M. P. Allen and D. Tildesley, Computer Simulation of Liquids, Claredon Press,
Oxford, 1987.

[35] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J.
Comput. Phys., Vol. 117, pp. 1-19, March 1995.

[36] Luis F. G. Sarmenta, Bayanihan Computing .NET: Grid Computing with XML
Web Services, in “Proc. of CCGrid 2002”, Berlin, Germany, May 2002.

[37] http://www.borland.com/visibroker

[38] http://www.ooc.com/ob

[39] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers Inc., San Francisco, USA, 1998.

[40] Snigdha Verma, Manish Parashar, Jarek Gawor and Gregor von Laszewski,
Design and Implementation of a CORBA Commodity Grid Kit, in “Proc. of
GRID2001”, Denver, Colorado, USA, November 2001.

22

