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ABSTRACT Remaining Useful Life (RUL) is used to provide an early indication of failures that required
performing maintenance and/or replacement of the system in advance. Accurate RUL prediction offers
cost-effective operation for decision-makers in the industry. The availability of data using intelligence
sensors leverages the power of data-driven methods for RUL estimation. Deep Learning is one example
of a data-driven method that has a lot of applications in the industry. One of these applications is the RUL
prediction where DL algorithms achieved good results. This paper presents an Autoencoder-based Deep
Belief Network (AE-DBN) model for Aircraft engines’ RUL estimation. The AE-DBN DL model is utilized
the feature extraction characteristic of AE and superiority in learning long-range dependencies of DBN. The
efficiency of the proposed DL algorithm is evaluated by comparison between the proposed AE-DBRN and
the state-of-the-art related method for RUL perdition for four datasets. Based on the Root Mean Square Error
(RMSE) and Score indices, the outcomes reveal that the AE-DBN RUL prediction model is superior to other
DL approaches.

INDEX TERMS Artificial intelligence, deep learning, remaining useful life, Autoencoder, deep belief
network, aircraft engine.

I. INTRODUCTION

Remaining Useful Life (RUL) is used to ensure the safety
and reliability of the aircraft equipment. It is used to decide
whether to perform maintenance or not and how many spare
parts should be ordered such as the overall maintenance
cost is reduced [1]. If the lifetime of the aircraft equipment
cannot be known with certainty, it is recommended to keep
monitoring the life and state of operating equipment. Hence,
monitoring of the equipment gives the required information
on the current working age and state by measuring certain
variables that may affect its operation work [2].
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Existing research on the methods of the RUL estima-
tion of the aircraft equipment can be generally grouped
into physics-based methods and data-driven methods. In the
physics-based approach, the RUL estimation model is devel-
oped using damage propagation to identify potential failure
for the equipment. However, the complexity of the dam-
age propagation as well as the uncertainty of the operat-
ing environment makes it extremely difficult to identify the
potential failure mechanism for many components and sys-
tems. On the other side, data-driven methods employ data
collected from sensors that are integrated with equipment
to develop the RUL prediction model [3]. Aircraft are now
fully integrated with advanced sensors that continually collect
information regarding the operation condition of the aircraft.
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This data helps for the transition from physics-based methods
to data-driven methods for RUL estimation of the aircraft
equipment [4]. The power of data-driven methods for RUL
estimation is arisen due to the rapid development of Internet-
of-Things (IoT) and cyber physic technique which provides
a massive amount of data. This data allows possibilities for
Artificial Neural Network (ANN) methods such as Deep
Learning (DL) to be applied [5]. In this aspect, the RUL pre-
diction can be considered as time series regression problem.

DL utilizes multiple layers of neurons to learn complex
models. Recently, DL has had a lot of applications in the
industry [6] [7]. One of these applications is the RUL predic-
tion where DL algorithms achieved good results. For exam-
ple, authors in [8] developed an extended recurrent neural
network (ERNN) algorithm for the RUL prediction model
using vibration data collected from a gearbox experimental
system. Deutsch and He in [9] proposed Restricted Boltzman
Machine (RBM) algorithm for the RUL prediction model
using data collected from bearing run-to-failure tests. Authors
in [10] employed Long Short-Term Memory (LSTM) with
Recurrent Neural Network (RNN) (LSTM-RNN) method for
the RUL prediction model of the capacity degradation trajec-
tories of lithium-ion batteries.

As shown above, DL methods have received a huge interest
in RUL prediction for various applications. However, the
prediction performance of these methods depends on the
features, dependencies, and dimensionality of the input time-
series data that is used to impellent the DL models for RUL
prediction.

One of the advantages of Autoencoder (AE) DL archi-
tecture is its ability to capture and extract useful features
from the input data. On the other hand, Deep Belief Net-
work (DBN) architecture has the capabilities of deep hier-
archical learning which allows it to capture the long-range
dependence characteristic to learn sophisticated features from
the input data. These features of DBN compared with the
traditional shallow learning approaches yield improvement
in prediction accuracy while keeping the prediction system
simple.

Owing to feature extraction characteristic of AE and supe-
riority in learning long-range dependencies of DBN, this
paper presents a combined Autoencoder and Deep Belief
Network (AE-DBN) based model for RUL estimation. In the
proposed architecture the AE model is used to extract the
abstract features from the input data while a Deep Belief
Network model is used as a predictor for the time series RUL
of the aircraft engine.

The remainder of this paper is organized according to the
following. Section 2 investigates the related works regarding
DL methods that are applied to perform an RUL prediction
for aircraft. The proposed hybrid DL approach for RUL
estimation is described in Section 3. The experiment study
and comparisons with other DL methods using the C-MAPSS
dataset are provided in Section 4. Finally, the paper concludes
in Section 5.
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Il. RELATED WORKS

With the help of advanced sensors that are integrated with the
aircraft equipment, the data that represents the status of the
aircraft becomes available. This data allows accurate RUL
data-driven prediction models for an aircraft based on DL
methods to be applied [4]. This section aims to review the
related work of DL methods that are applied to aircraft for
RUL prediction.

The early promising results to apply DL algorithms into
RUL prediction of the engine of the aircraft were found
by [11]. The Authors proposed Convolutional Neural Net-
work (CNN) based regression approach for estimating the
RUL. In this work, the structure of the CNN incorporates an
automated feature learning from raw sensor signals. Later, the
authors of [12] developed long short-term memory (LSTM)
for estimating the RUL of the engine aircraft data. By com-
paring the result obtained from the LSTM with the results
obtained from CNN, LSTM shows better performance.

The authors in [13] introduced a data-driven approach for
RUL prediction based on Deep Convolution Neural Networks
(DCNN). Raw collected data for the aero-engine unit is used
to show the effectiveness of the proposed approach. The
work in [14] used a stacked Sparse Autoencoder (SAE) for
RUL prediction. The hyperparameters of the SSAE were
determined based on the grid search method. The authors in
[15] presented a combined DL algorithm for RUL prediction
to predict multiple multivariate time series of the data col-
lected from aircraft sensors was performed by LSTM based
recurrent network. Moreover, Deep Belief Network (DBN)
was utilized to assess system working conditions and cat-
egorize faults of aircraft equipment. In the same direction
of using hybrid methods, the authors in [16] proposed a
directed acyclic graph (DAG) network. This model combines
long short term memory (LSTM) with the convolutional
neural network (CNN) to predict the RUL. Based on the
features of the training data collected from aircraft sensors,
the method proposed in [17] utilized a modified Denois-
ing Autoencoder (DAE) for robust feature extraction. The
authors integrated an Updated Selection Strategy (USS) to
ensure that the valuable data is passed through the training
process. In terms of trucking the new rising data and for-
getting gradually the old ones, Online Sequential Extreme
Learning Machine (OS-ELM) was proposed with double
dynamic forgetting factors (DDFF). Unlike the methods pre-
sented in [17], authors in [18] used LSTM to learn sequential
features collected from aircraft sensors. Then, an attention
mechanism with a feature fusion method is proposed for
RUL estimation. A combined CNN with Bi-directional Long
Short-Term Memory (BDLSTM) networks is presented in
[19] for RUL prediction for aircraft. The CNN was used to
extract spatial features while BDLSTM was utilized to extract
temporal features. To improve the capability of the combi-
nation of CNN with LSTM, the work presents in [20] pro-
posed a double-channel hybrid prediction model based on the
CNN and a bidirectional LSTM network (CNN +BiLSTM).
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Besides, the work in [21] presented a new model combining
between the parallel branches of CNN in series with LSTM.
The model named multi-head CNN-LSTM. Recently, the
authors in [22] proposed a new deep learning model combines
between the transformer encoder and temporal convolution
neural network (Trans.+TCNN). The transformer encoder is
used a scaled dot-product attention to extract dependencies
across distances in time series, whereas the temporal convo-
lution neural network is built to fix the insensitivity of the
self-attention mechanism to local features.

Owing to feature extraction characteristic of AE and supe-
riority in learning long-range dependencies of DBN, this
paper presents a combined Autoencoder and Deep Belief
Network (AE-DBN) based model for RUL estimation. In the
proposed architecture the AE model is used to extract the
abstract features from the input data while a Deep Belief
Network model is used as a predictor for time series RUL
of aircraft engine.

To improve the prediction accuracy and the performance
of aircraft engines RUL prediction a combined deep learning
architecture based on AE for feature extraction and DBN for
RUL time series prediction is proposed in this work.

1Il. PROPOSED DEEP LEARNING ARCHITECTURE
This section presents the description of the proposed
Autoencoder-based Deep Belief Network (AE-DBN).

A. ADEEP BELIEF NETWORKS

The Deep Belief Networks (DBN) can be viewed as a combi-
nation of simple unsupervised networks such as the Restricted
Boltzmann Machine (RBM), which act as the hidden layer of
each subnet and the visible layer of the next layer. The layer in
the DBN structure has an efficient layer-by-layer procedure
that determines how variables depend on variables in the layer
above [23].

The developed DBN network consists of multiple visible
and hidden RBM layers and logistic regression for classifi-
cation in the last layer. In the first step of the development
process, different feature spaces of the vectors are mapped,
after that each layer of the RBM network is trained in an
unsupervised way, respectively, to preserve the feature infor-
mation of all. In the second step, fine adjustments are made.
In the last step, the output feature vector of the RBM is taken
as the input feature vector for the next RBM. The architecture
of DBN is shown in Figure 1 [24].

In the RBM model, the v; in the visible layer and each
hidden layer are represented by h;. Weights between v; and &;
are guided and displayed with w;;. Visible and hidden nodes
have biases represented by vectors ¢ and b. The b;, ¢; and
wij values of all RBMs in the model form the 6 parameter
in the DBN. This parameter 6 appears in the model with the
probability of common states of the hidden layers and an
energy function [25]. This energy function is given as in Eq.1.

m n
E@,v,h) = — Zi:l Vici — Zj:l hjb;
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FIGURE 1. DBN architecture.
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Since there is no inter-layer connection in the DBN network,
the probability distributions of the visible and hidden layers
are calculated as given in Eq. 2 and Eq. 3

P(vi=11h) = 1/1 o bi X by o
Phi=1l) = 1/1 4 oG Sy 4

After the weight calculations are completed, the recon-
structed data is returned and can be determined by the p(v|h)
calculation. Output o occurs when data is transmitted back to
the hidden layer. Here, the logistic function o is defined as in
Eq. 4.

cx)=1+e¢7! 4

Likewise, in the case of v; = 1, the conditional probability of
v; is calculated as given in Eq.5.

Phi=1=o@+) W) )

B. DEEP AUTOENCODERS

Autoencoder (AE) is a three-layer unsupervised neural net-
work. It is considered the most basic form of neural networks,
which is used for representation learning such as feature
selection or size reduction and tries to reconstruct the input
patterns in the output layer [26].

The general feature of AE is that the input and output layer
size is the same as with symmetrical architecture. The hidden
layer in the network model typically contains fewer neurons
compared to the visible layer. By using a small number of
neurons, an attempt is made to encode or represent the input
in a more compact way, capturing the meaningful properties
of the input vectors. Figure 2 shows a basic AE and deep AE
(DAE) network architecture [27].

Training of AE is carried out by applying a backpropa-
gation algorithm as in feedforward neural networks based
on Mean-Squared Error (MSE) loss function. The training
process consists of two stages, coding, and decoding. In the
coding phase, while trying to encode the inputs in a hidden
representation by using the weight criteria of the lower half
layer. In the decoding phase, the same input is tried to be
reconstructed from the coding representation using the cri-
teria of the upper half layer. Therefore, the encoding and
decoding weights are forced to be transposed of each other.
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FIGURE 2. AE architecture.

Consider X is data with n samples and m features. Y is the
output of the encoder (i.e. reduced representation of X). The
mathematical representations of the encoding and decoding
operations for a basic AE are given in Eq. 6 and Eq.7, respec-
tively [28].

Y = f(wX + b) (6)
X = g(WY +b) @)

In Eq. 6 and Eq. 7, w and b represent the adjustable param-
eters, f and g are the activation function, W is the weights
(X) transpose, and X is the reconstructed input vector in the
output layer.

Training an autoencoder involves finding parameters w and
b that minimizes the error between the input data X and the
reconstruction data X.

C. THE PROPOSED AE-DBN ARCHITECTURE FOR RUL
PREDICTION

The proposed AE-DBN architecture is shown in Figure 3.
It is consisting of two main parts. In the first part, the
AE is used as a deep learning model for feature extrac-
tion from the input data. The second part is represented
by a deep learning model based on DBN for predicting
the RUL.

The encoder part of the AE is responsible for extract-
ing the features which represent the characteristics of the
input data. These extracted features are feed to the DBN
part of the proposed architecture which is used to predict
the RUL. Initially, the AE is trained separately to obtain
the weight matrix before training the DBN RUL perdition
model. The decoder part of AE is used to verify the extracted
features’ validity to reconstruct the original data. Then the
obtained weight matrix for AE is combined with the DBN
model which is finally trained using the input data for RUL
prediction.
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IV. EXPERMENTAL STUDY

A. DATASET

The widely used dataset for predictive maintenance in aircraft
health systems in the literature is NASA Turbofan Engine
Corruption Simulation dataset [29]. The dataset was created
by NASA engineers using commercial simulation software
called C-MAPSS. A turbofan engine with a capability of
producing 90,000 pounds of power is simulated at altitudes
of 0-40,000 ft., Mach number range of 0-0.9 and ambient
temperatures range of -60 to 103 degrees F. The attributes
of aircraft engines used for experimentation were the engine
core speed, engine fan speed, pressure at fan inlet, High-
Pressure Turbine (HPT) exit temperature, pressure at the
High-Pressure Compressor (HPC), and engine-pressure ratio.
To monitor these engine’s attributes, a total of 21 onboard
sensors monitoring temperature, pressure, and speed are dis-
tributed at various locations as shown in Figure 4.

The C-MAPSS software also has various regulators and
limiters that prevent the engine from being taken out of the
operating range specified by the manufacturer.

During creating the dataset, the engine was operated
together with the control system. When the health index of
the motor dropped to zero, the simulation was stopped and
the obtained sensor data were recorded as a time series. The
engine health index is determined to be 1 for each of the
parts that make up the engine, and 0 when it goes out of
the specified operating conditions. While the training data
was continued until the motor health index was 0, the test
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TABLE 1. Evaluation datasets description.

Dataset FD001 FDO002 FD003 FD004
Operating conditions 1 6 1 6
Fault modes 1 1 2 2

Train samples (number of
. 100 260 100 248
engines)

Test samples (number of
. 100 259 100 249
engines)

TABLE 2. AE models parameters.

Hyperparameter Value

Hidden layers 5

Neurons 21,10,10,10,21

Number of Epochs 500

Loss function MSE

Activation function ReLU

TABLE 3. DBN models parameters.

Hyperparameter Value
Number of layers 3 RBMs
Hidden layers per RBM 10
Batch size 64
Window with 50 samples
Optimizer SGD
Epochs 250
Learning rate 0.001

and verification data were terminated before the motor broke
down in order to measure RUL. The difference between the
cycles in which the engine health index falls to zero at any
given moment gives the RUL value of the engine.

Four different datasets are considered which are prepared
for different operating conditions and different scenarios in
the dataset. The FDOO1 and FDOO3 contain a single oper-
ation condition and fault type for 100 engines. The FD002
includes six operation conditions and 260 engines. The
FDO004 includes six operation conditions and 249 engines.
The datasets samples contain the records of sensors data at
each run to fail cycles for each engine which is used to train
the model for predicting the RUL. The details of each dataset
used to train and evaluate the proposed method for RUL
prediction are shown in Table 1 below.

B. MODEL DESIGN

The proposed AE-DBN architecture contains different key
structure variables such as the number of input nodes, the
number of hidden layers for the AE model, the number
of RBM stages for the DBN model, the number of hidden
layers for the DNB model, and the model’s hyperparameters.
The key structure features that are considered for designing
the proposed model are obtained through experimental trials
where the objective is achieving the best RUL prediction
performance. The parameters for each model are summarized
in Table 2 and Table 3.
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C. PERFORMANCE EVALUATION

In order to verify the effectiveness of the proposed AE-DBRN
method for RUL perdition, the model is trained and evaluated
using the four datasets (FD0O1, FD002, FD003 and FD004)
explained in the previous section. To avoid model overfitting
the datasets are split into 60% for training and 40% for testing
samples. A comparison is carried out between the proposed
AE-DBRN and the state-of-the-art related method for RUL
perdition such as DBN, CNN, LSTM, and attention-based
LSTM. Commonly used evaluation criteria such as Root
Mean Square Error (RMSE), Mean Absolute Error (MAE),
R? and Score are considered to evaluate the model perfor-
mance in terms of RUL prediction accuracy [30]. These
metrics are calculated as given in Eq.8, Eq.9, Eq. 10 and
Eq.11 respectively.

rse = [ (@ = py? ®)

MAE = ZIIV lpi — ail /N )
R =1- lev (ai —pi)z/zllv (i — Pmean)’

Lo (10)

Seore = | 221 (55 =1) forai—p (11)

N aj—pj
Z_ 1(€ 10 —1) for a; > p;
=

where N is the number of samples, a; is the actual value and
pi is the predicted value and pj;eq;, 1S the mean of the predicted
values.

The proposed AE-DBN model is trained and evaluated
using FD0O1, FD002, FD003 and FD004 datasets separately
using the parameters explained in the model design section.
Based on the selected window length the model predicts the
RUL of a particular engine based on the previous 50 samples
of sensors readings. To demonstrate the effectiveness of AE
for extracting the features that provide a better representation
of the data, the proposed AE-DBN is compared with the
regular DBN method that feeds directly with the original data.
The evaluation results are shown in Table 4.

Based on the achieved results for the proposed AE-DBN
model and the regular DBN model it was found that adding
the AE model for features extraction enhanced the overall
model performance in terms of accuracy since it was used to
reduce the original data features to extract the best respective
features. The proposed AE-DBN model achieved better per-
formance using the FDOO1 and FDOO3 dataset compared to
the FD002 and FD004 dataset since it contains more samples
and includes multiple operation conditions which can strain
the model in terms of learning.

The predicted and the actual RUL using the AE-DBN
model on the four datasets for each engine using the previous
50 samples of sensors readings are shown in Figures (5-8).

Based on results shown in Figure (5-8) of the predicted
RUL for each engine matches very well with the actual RUL,
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TABLE 4. Experimental results using FD001 and FD004 datasets.

Dataset Method RMSE  MAE Score R?
FD001  AE-DBN 112700 11.9100 219 0.9545
DBN 134500 141900 228 0.9405
FD002 AE-DBN 14.2400 14.8500 1255  0.9411
DBN 17.5500 19.1500 1379  0.9120
FD003  AE-DBN 111300 11.4800 264 0.9513
DBN 12.3200 13.2500 285 0.9452
FD004 AE-DBN 26.8508 27.3347 2135  0.8999
DBN 28.5444 289798 2147  0.8896

RUL

50
1]

FIGURE 5. Actual RUL and the predicted RUL for FD0O1 dataset.
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FIGURE 6. Actual RUL and the predicted RUL for FD002 dataset.

which indicates the viability of the proposed AE-DBN model
for the RUL prediction.

For example based on the FD0OO1 dataset, it can be noticed
that the RMSE, MAE and Score are decreased from 13.45,
14.19 and 228 in the case of the standard DBN to 11.27,
11.91 and 219 for the proposed AE-DBN whereas the R? is
increased from 0.9405 in the case of the standard DBN to
0.9545 for the proposed AE-DBN. For FD002 dataset, it can
be noticed that the RMSE, MAE and Score are decreased
from 17.55, 19.15 and 1379 in the case of the standard
DBN to 14.24, 14.85 and 1255 for the proposed AE-DBN
whereas the R? is increased from 0.9120 in the case of the
standard DBN to 0.9411 for the proposed AE-DBN. For
FDO003 dataset, it can be noticed that the RMSE, MAE and
Score are decreased from 12.32, 13.25 and 285 in the case of
the standard DBN to 11.13, 11.48 and 264 for the proposed
AE-DBN whereas the R2 is increased from 0.9452 in the case
of the standard DBN to 0.9513 for the proposed AE-DBN.

In the same way for the FD004 dataset, it can be noticed
that the RMSE, MAE and Score are decreased from 28.5444,
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FIGURE 7. Actual RUL and the predicted RUL for FD003 dataset.
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FIGURE 8. Actual RUL and the predicted RUL for FD004 dataset.

TABLE 5. RMSE comparison between the proposed method and related
works using FD001, FD002, FD003 and FD004 dataset.

RMSE
Methods

FD001 | FD002 | FD003 FDO004
CNN [11] 18.45 30.29 19.82 29.16
LSTM [12] 16.14 24.49 16.18 28.17
DAG network [16] 11.96 20.34 12.466 22.66
Attention-based

14.53 - - 27.08
LSTM [18]
CNN +BiLSTM [20] 12.5 19.34 12.1 20.03
MHCNN-LSTM [21] | 13.27 19.49 13.21 23.89
Trans. + TCNN [22] 12.31 15.35 12.32 18.35
AE-DBN (proposed

11.27 14.24 11.13 26.85
method)

28.9798 and 2147 in the case of the standard DBN to 26.8508,
27.3347 and 2135 for the proposed AE-DBN whereas the R?
is increased from 0.8896 in the case of the standard DBN to
0.8999 for the proposed AE-DBN.

In addition, the proposed AE-DBN performance in terms
of RMSE for RUL prediction is compared with a similar
state-of-the-art method in the literature that used the FDOO1,
FDO002, FD003 and FD004 dataset as shown in Table 5.

Based on the comparison results in Table 5 for the FD0O1
dataset, it can be seen that the proposed model reduces the
RMSE from 18.45 in the case of regular CNN, 16.14 in
the case of regular LSTM, 14.53 in the case of Attention-
based LSTM, 13.27 in the case of MHCNN + LSTM,
12.5 in the case of BILSTM + MSCNN, 12.31 in the case
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TABLE 6. Score comparison between the proposed method and related
works using FD001, FD002, FD003 and FD004 dataset.

Score
Methods
FD001 | FD002 | FD003 FDO004

CNN [11] 1286 13570 | 15962 7886
LSTM [12] 338 4450 852 5550
DAG network [16] 229 2730 535 3370
Attention-based

322 - - 5649
LSTM [18]
CNN +BiLSTM [20] 231 2650 257 3400
MHCNN+LSTM [21] 259 4350 343 4340
Trans. + TCNN [22] 252 1267 296 2120
AE-DBN (proposed

219 1255 264 2135
method)

of Trans. + TCNN, 11.96 in the case of DAG network to
11.27 for the AE-DBN DL model. For FD002, the RMSE
reduces form 30.29 in the case of CNN, 24.49 in the case of
LSTM, 20 in the case of DAG network, 19.49 in the case of
MHCNN++LSTM, 19.34 in the case of BILSTM+MSCNN,
15.35 in the case of Trans.+TCNN to 14.24 for the proposed
AE-DBN DL model.

For FD003, the RMSE reduces form 19.82 in the case
of CNN, 16.18 in the case of LSTM, 13.21 in the case
of MHCNN+LSTM, 12.466 in the case of DAG network,
12.32 in the case of Trans.+TCNN, 12.1 in the case of
BiLSTM+MSCNN to 11.13 for the proposed AE-DBN DL
model.

For the FD00O4 dataset, it can be seen that the proposed
model reduces the RMSE from 29.16 in the case of the regular
CNN, 27.08 in the case of Attention-based LSTM to 26.85 for
the proposed AE-DBN DL model. However, DAG network,
BiLSTM+MSCNN, MHCNN+LSTM, Trans.+TCNN have
shown better result than the proposed model.

To end this, the proposed AE-DBN performance in terms
of Score for RUL prediction is compared with a similar
state-of-the-art method in the literature that used the FDO0O1,
FDO002, FD003 and FD004 dataset as shown in Table 6.

Based on the comparison results in Table 6 for the FD0OO1
dataset, it can be seen that the proposed model reduces the
Score from 1286 in the case of regular CNN, 338 in the case
of regular LSTM, 322 in the case of Attention-based LSTM,
259 in the case of MHCNN + LSTM, 231 in the case of
CNN + BiILSTM, 252 in the case of Trans. + TCNN, 229 in
the case of DAG network to 219 for the AE-DBN DL model.
For FD002, the Score reduces form 13570 in the case of
CNN, 4450 in the case of LSTM, 2730 in the case of DAG
network, 4350 in the case of MHCNN+LSTM, 2650 in the
case of CNN + BiLSTM, 1267 in the case of Trans.+TCNN
to 1255 for the proposed AE-DBN DL model.

For the FDOO3 dataset, it can be seen that the proposed
model reduces the Score from 15962in the case of regular
CNN, 852 in the case of regular LSTM, 535 in the case
of DAG network, 343 in the case of MHCNN + LSTM,
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296 in the case of Trans. + TCNN to 264 for the AE-DBN
DL model. However, CNN + BiLSTM have shown better
result than the proposed model with a Score of 257. For
the FD0O4 dataset, it can be seen that the proposed model
reduces the Score from 7886 in the case of regular CNN,
5550 in the case of regular LSTM, 4340 in the case of
MHCNN + LSTM,3400in the case of CNN + BiLSTM,
3370 in the case of DAG network, to 2135 for the AE-DBN
DL model. However, Trans. + TCNN have shown better
result than the proposed model with a Score of 2120.

In general, this comparison proved that the proposed
AE-DBN outperforms the similar related works based on the
three dataset out of four based on the RMSE and two out of
four based on the Score index.

V. CONCLUSION

Deep Learning (DL) based methods have been proven to be
very promising for the Remaining Useful Life (RUL) predic-
tion of equipment. This paper proposed an Autoencoder-based
Deep Belief Network (AE-DBN) based model for RUL
prediction for aircraft engines. An experimental study was
conducted using a published dataset of aircraft engines data
to evaluate the effectiveness of the proposed RUL pre-
diction model. To investigate the estimation performance,
the AE-based DBN is compared with the standard DBN
model. The results show a considerable improvement of the
AE-DBN in comparison with standard DBN in terms of
RMSE, MAE, R? and Score. Moreover, the results are also
compared with other DL algorithms. The results show that
a three out of four dataset (FD00O1, FD002 and FD003), the
RMSE of the proposed AE-DBN model is less than other
state-of-the-art related method for RUL perdition. Besides,
two out of four (FDOO1 and FDO002), the Score of the
proposed AE-DBN model is less than other state-of-the-art
related method for RUL perdition. The overall results reveal
that the AE-DBN RUL prediction model outperforms the
state-of-the-art works and the standard DBN RUL prediction
model. As future research, this work can be extended into
two directions. The first one is to explore the ability to utilize
the swarm-based optimization techniques to determine the
optimal hyperparameters of the DL model to achieve higher
accuracy and less implementation complexity. On other hand,
hybrid with other DL algorithms to boost the performance of
the RUL prediction can be considered as another future work.
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