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The task of generating photorealistic images from their textual descriptions is quite challenging. Most 
existing tasks in this domain are focused on the generation of images such as flowers or birds from their 
textual description, especially for validating the generative models based on Generative Adversarial 
Network (GAN) variants and for recreational purposes. However, such work is limited in the domain of 
photorealistic face image generation and the results obtained have not been satisfactory. This is partly 
due to the absence of concrete data in this domain and a large number of highly specific features/at-
tributes involved in face generation compared to birds or flowers. In this paper, we propose an 
Attention Generative Adversarial Network (AttnGAN) for a fine-grained text-to-face generation that 
enables attention-driven multi-stage refinement by employing Deep Attentional Multimodal Similarity 
Model (DAMSM). Through extensive experimentation on the CelebA dataset, we evaluated our approach 
using the Frechet Inception Distance (FID) score. The output files for the Face2Text Dataset are also com-
pare with that of the T2F Github project. According to the visual comparison, AttnGAN generated higher-
quality images than T2F. Additionally, we compare our methodology with existing approaches with a 
specific focus on CelebA dataset and demonstrate that our approach generates a better FID score facilitat-
ing more realistic image generation. The application of such an approach can be found in criminal iden-
tification, where faces are generated from the textual description from an eyewitness. Such a method can 
bring consistency and eliminate the individual biases of an artist drawing the faces from the description 
given by the eyewitness. Finally, we discuss the deployment of the models on a Raspberry Pi to test how 
effective the models would be on a standalone device to facilitate portability and timely task completion. 
1. Introduction and scope

Reed et al. [1] first introduced text-to-image synthesis in 2016,
and it is a fundamental and novel research area in computer vision
[2]. It is similar to reverse image captioning in that it aims to create
natural images from input sentences. Text-to-image synthesis,
including image caption, explores the visual semantic process of
the human brain by mining the connection between text and
image. Furthermore, it has enormous potential for art production,
computer-aided design [3], image searching, and other areas such
as image analysis of gold immunochromatographic strip [4–6].
Recently, methods for text-to-image synthesis based on Generative
Adversarial Networks (GANs) [7] have been suggested. It is com-
mon to encode the entire text meaning into a global sentence vec-
tor as a prerequisite for GAN-based image production [1,8–11].
Despite its promising results, conditioning a GAN only on the glo-
bal sentence vector has certain limitations and is inadequate in
taking into consideration the crucial fine-grained details at the
word stage. This limitation is even more evident when creating
complex scenes like those in the COCO dataset [12] or the CelebA
dataset [13].

Text-to-face synthesis is a subdivision of text-to-image synthe-
sis that aims to create face images from human descriptions. Text-
to-face synthesis, similar to text-to-image synthesis, has two key
goals: (1) to produce high-quality images and (2) to generate
images that correspond to the input descriptions.
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� Text-to-image:

Despite the fact that there are a variety of networks for text-to-
image synthesis tasks, the majority of them are built on the
encoder-decoder structure and conditional GAN [14]. Text-
encoder and image-decoder are used in this encoder-decoder sys-
tem. The text encoder converts input definitions into semantic vec-
tors, which are then decoded into natural images by the image
decoder. Text-to-image synthesis has two key goals: to create
high-quality images and to create images that complement the
provided descriptions. These two goals serve as the foundation
for all advances in text-to-image synthesis.

Text-to-image synthesis research in its early stages has primar-
ily focused on improving the quality of produced photographs.
Reed et al. proposed the text-to-image challenge for the first time
in 2016 and created two end-to-end networks focused on condi-
tional GAN to complete it [1]. Reed used a pre-trained Char-CNN-
RNN network for text encoding and a DCGAN-like network [15]
for image decoding to create natural images from vectors. Follow-

1.1. Related work

Text-to-face synthesis is divided into two categories: (1) text-
to-image synthesis and (2) text-to-face synthesis. Fig. 1 sum-
marises the previous work carried out in both these categories.
Fig. 1. Previous work in T
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ing that, several scholars made advancements as a result of his
study [16]. Zhang et al. published one of the most influential stud-
ies on this subject, proposing a two-stage network called StackGAN
[8] to solve the problem and for producing high-quality photos and
improving the Inception Score. Later studies [3,10,17,18] inherit
this network as well.

Researchers gradually concentrated on achieving another goal:
enhancing the resemblance between input text and produced pho-
tos because the network had already shown the ability to produce
realistic images. Reed et al. suggested a network for generating
images from a box that was created first. This approach assisted
in producing more precise data on the output photographs [9]. A
GAN network built on a related concept was also created by [19].
Sharma et al., on the other hand, used dialogue to aid interpreta-
tion of the description, which allows synthesising visuals that are
more relevant to the input document [20].

Dong et al. suggested a method for creating new images based
on the input picture and explanations, which would produce
images that complement the input descriptions [16]. They also
proposed Image-Text-Image (I2T2I), a new training approach that
combines text-to-image and image-to-text (image captioning) syn-
thesis to increase text-to-image synthesis accuracy [21]. Attention
processes have already made significant progress in the text- and
image-related activities [22–25] and they are now being used in
GANs to generate text-to-image conversions. [3] constructed Attn-
ext-to-Face synthesis.



� Face Synthesis:

Image synthesis has been a popular subject in deep learning
since Goodfellow suggested GAN in 2014 [7,26]. Face synthesis is
a common research area since there are two broad-scale public
datasets: CelebA [13] and Face2Text [27]. Almost all state-of-the-
art networks, like networks based on GAN and networks based
on both conditional GAN and conditional GAN, demonstrates their
model’s dominance on face synthesis (such as PGGAN [11], DCGAN
[15,28] CycleGAN [29], BigGAN [30], StyleGAN [31], StarGAN [32]
to name the few). With the advancement of these networks, the
quality of produced face images is steadily improving. Some net-
works now generate 1024� 1024 face pictures, which is far greater
than the face dataset’s initial picture resolution. These models
attempt to learn a mapping between a noise vector and real face
images that follows the Normal distribution. However, they are
unable to command the network to produce the particular face pic-
ture that they need.

Face synthesis has derived many interesting applications about
faces using conditional GAN, such as translating edges to natural
face images [33], exchanging the attributes of two face images
[34], generating a positive face from the side face [35], generating
a full face from the eyes’ region only [36], from face attributes to
sketches to natural face images synthesis [37], and face in space
[38]. By applying a condition vector to the synthesised face images,
such networks attempt to monitor them and produce face images
that meet the needs of various circumstances. The activities that
use the input descriptions as the control condition are identical
to text to face synthesis.

In the context of face generation from the textual description,
one of the most relevant applications is to develop criminal images
from the textual description from an eyewitness. In the public
safety context, this task has more relative values than text-to-
image synthesis. Drawing an image for a criminal solely relying
on eyewitness descriptions is a daunting process that takes techni-
cal knowledge and extensive practice. Additionally, the individual
biases of the eyewitness as well as the artist may creep into the
process. E.g., different artists may have a different notion of ‘attrac-
tive’ or ‘dark skin’ based on their social and ethnic background.
Such biases may bring inconsistency in the images created and
delay the process of finding the criminals. On the other hand, a per-
son who is not an artist can also easily produce photorealistic faces
of criminals based on eyewitness reports using a well-trained text-
to-face model.

To address this problem, we employ the Attentional Generative
Adversarial Network (AttnGAN) [3], which enables fine-grained
text-to-image creation through attention-driven multi-stage
refinement. The model is made up of two unique elements. The
attentional generative network is the first part, in which the Gen-
erator generates an attention system that enables it to draw differ-
ent sub-regions of the image by concentrating on words that are
more relevant to the sub-region that is being drawn. In addition
to the natural language summary being encoded into a global sen-
tence vector, each word in the sentence is encoded into a word vec-

GAN to create an attention mechanism that allows GANs to create 
fine-grained high-resolution photographs from natural language 
descriptions. MirrorGAN [17] is a text-to-image-to-text network 
suggested by Qiao et al., which uses a global–local collaborative 
focus paradigm. [18] proposed a visual-semantic similarity mea-
sure as an aid to measurement metrics since there are no available 
criteria on how the produced images represent the input descrip-
tions. These findings indicate a pattern in which researchers are 
increasingly concentrating on improving the accuracy of produced 
images and input sentences. With this, we can use it for scripts-to-
storyboard, text-to-architecture and much more.
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tor. The other part of the AttnGAN includes a Deep Attentional
Multimodal Similarity Model (DAMSM). With the aid of an atten-
tion mechanism, the DAMSM computes the similarity between
the generated image and the sentence using both global
sentence-level details and fine-grained word-level information.
Consequently, the DAMSM modifies the Generator’s preparation
by adding a finer-grained image-text matching loss. We consider
birds [39], flowers [40], CelebA [13] and Face2Text [27] datasets
for the study and experimentation.

1.2. Contribution and novelty

In summary, the main contributions of this work are:

(i) The study, comparison and analysis of various GAN models
for photorealistic image generation from textual descrip-
tions by experimentation on birds, flowers, and human faces
datasets.

(ii) Implementation of the Text-To-Face synthesis using Attn-
GAN through attention-driven multi-stage refinement for
photorealistic face image generation and optimisation of
the model by employing DAMSM loss. A model architecture
is proposed based on the AttnGAN employing the DAMSM
loss.

(iii) Implementation of the trained models on a standalone Rasp-
berry Pi device to ensure more portability, useability and
accessibility of such an approach.

1.3. Novelty

1. Experimentation for identifying various aspects of Generative
models for photorealistic face image generation. This includes
the in-depth analysis of the effect of FID scores and DAMSM loss
on image quality and realism.

2. Comparison and analysis of the results obtained with existing
methods on CelebA dataset.

3. Generation of distinct variations in the images as a result of
semantic alterations in the input text.

4. Implementation on a standalone portable hardware system for
easy application and usability.

1.4. Outline

The paper is organised as: Section 2 presents the methods and
the background of the architectures employed in detail, followed
by Section 3, which describes the experiments, evaluations, and
results. Section 4 presents the discussion on experiments and the
results. The paper concludes with an overview and future scope
in Section 5.

2. Methods and background

In this section, we present AttnGAN and the further application
of that for text to face synthesis. We begin by explaining how Gen-
erative Adversarial Networks (GAN) function. Then we describe
AttnGAN and its DAMSM network to carry out text encoding and
compute the attention map. This attention map is then utilised
for the task of generating images from their textual description.
Further, we describe how AttnGAN is helpful for our problem state-
ment. Finally, we describe the FID Score and evaluate our model.

2.1. Generative Adversarial Networks (GAN)

GAN stands for Generative Adversarial Networks, and it is a
framework for learning a function or program that can produce



J Dð Þ ¼ �1
2
Ex�Pdata logD xð Þ � 1

2
Ezlog 1� D G zð Þð Þð Þ ð1Þ

J Gð Þ ¼ �J Dð Þ ð2Þ
Pdata is the probability distribution of given data, and J (D) is the

discriminator cost, and J (G) is the generator cost. The Nash
Equilibrium of this game, according to Goodfellow et al. [7], is
when samples generated by G are indistinguishable from samples
derived from training data (provided G and D have sufficient
capacity).

2.2. StackGAN

This GAN [8] is typically used for synthesising images from tex-
tual description. It breaks down the text-to-image generation pro-
cess into two stages, as mentioned below:

1) Stage-I GAN
Stage-I GAN focuses on drawing only rough shapes and appro-

priate colors from the textual definition. It creates a low-
resolution image by drawing the context layout from a random
noise vector. It generally produces 64x64 images.

2) Stage-II GAN
Stage-II GAN is built upon Stage-I GAN results, and so it pro-

duces high-resolution images. Low-resolution images generated
by Stage-I GAN are generally devoid of realistic object parts and
might have distortions of shape. The Stage-II GAN takes into con-
sideration the text ignored in Stage-I to generate images with more
natural details. It generates 256x256 images.

2.3. PGGAN

PGGAN [11] is short for Progressively Growing GAN. PGGAN is
used to produce ultra-high-resolution images by increasing the
network layers as training goes on by first training a model to gen-
erate 4x4 image and add layers to generate 8x8, 16x16 images and
so on.

The most significant difference between PGGAN and StackGAN
is that the network structure of the latter is fixed. However, in
PGGANs, as the training progresses, the network structure contin-
ues to change. The most significant benefit of doing this is that
most iterations are done at lower resolutions, and the training
speed is faster than traditional GANs.

2.4. AttnGAN

AttnGAN or Attentional Generative Adversarial Network [3] is
an attention-driven architecture that enables text-to-image con-
version. The architecture involves multiple stages for the genera-

samples that are quite similar to samples taken from a specified 
training distribution. GANs have become popular very recently. 
The general architecture of a GAN [7] consists of a Generator(G) 
and a Discriminator(D). Both the Generator and Discriminator are 
separate neural networks. A random input(noise) is given to the 
Generator and it tries to produce an image close to the actual 
image. The output of the Generator is then given to the Discrimina-
tor. The Discriminator tries to tell the difference between natural 
and synthetic training data, whereas the Generator tries to deceive 
the Discriminator. The Discriminator updates the weights depend-
ing on whether it predicts the image generated by the Generator as 
real or fake. If it predicts the image to be fake, then an update in the 
weights takes place. The duty of the Generator here is to keep on 
producing images that seemingly look real. It does so till the time 
that the Discriminator predicts them as real images. So essentially, 
the Generator and Discriminator participate in a minimax game. 
Equations (1) and (2) from [41] describe this minimax game.
4

tion of fine-grained images. It generates high-quality images by
dividing an image into various subregions and then focusing on
specific words from the caption relevant to a particular subregion
of the image.

The models that have so far been used for text-to-image conver-
sion use the entire description and convert it to a vector which is
then used for image generation. In this model, instead of the whole
sentence, we focus on its constituent words to generate various
image subregions. This ensures a generated image that is visually
closer to the actual image. Different words are used to produce dif-
ferent parts of the final image according to the sub-region that they
are most relevant to. The detailed architecture for AttnGAN is
shown in Fig. 2.

The text description, containing T words, is input to the text
encoder. The text encoder is a bidirectional LSTM. This means that
the input caption is trained on two LSTMs instead of the usual one
LSTM. Essentially this does the job of concatenating the hidden
states from the forward and backward direction for all timesteps
and outputs a final hidden state. This final hidden state in the case
of this architecture is the sentence feature, represented by
e e 2 RD� �

. HereD represents the working dimension for the words.
Since there are T words, hence another matrix ewith the dimension
e 2 RD�Trepresents the word features. In a nutshell, sentence fea-
tures may be considered as the final hidden state, while the word
features are the hidden states from all timesteps.

The sentence features are passed on to Fca for conditional aug-
mentation. Fca is modelled as a neural network. All the equations
in this section are based on the mathematical discussion presented
in [3].

The output after Conditional Augmentation, c, is given by:

c ¼ lþ re; e � N 0; Ið Þ ð3Þ
Since the same description can describe several images, e noiseð Þis

added here to introduce variation in the generated images.
Typically, the input to the Generator in a GAN is only a noise

vector (z). But since to generate the final image, the Generator
needs to be conditioned on the input description, so here we use
Conditional GANs. Accordingly, cand z(noise vector) are concate-
nated and are fed as input to the generator network.

The architecture can be considered to have mgenerators.
F0 is responsible for most of the upsampling. The scale factor for

upsampling is 2. F0 does not use word-level features. The context
vector at this stage, h0, is given by:

h0 ¼ F0 z; Fca eð Þ� � ð4Þ
The output from F0 i:e:h0ð Þ along with the word features (e) is

taken as input by the attention network. To do this, a perceptron
layer is added to transform the word features into a common
semantic space of image features. This may be represented as:

e0 ¼ Ue; where U 2 R
bD�D. Here bD represents the network’s internal

working dimension.
Together with h0, e

0 is given as input to the attention network.
Thus, we get a word-context vector for every subregion.

The word-context vector may be understood as a score to relate
all T words to all N subregions and is a measure of how relevant a
word would be to a particular region. This is how specific words
are selected for generating specific regions of the final image. The

word context vector for the jth subregion is given as:

cj ¼
XT�1

i¼0
bj;ie

0
i; where bj;i ¼

exp s
0
j;i

� �
PT�1

k¼0 exp s0j;k
� � and s

0
j;i ¼ hT

j e
0
i ð5Þ

On doing this for each region, we get the output for the atten-
tion network, which is:



Fig. 2. The Architecture for AttnGAN for text-to-face synthesis. Each attention model automatically retrieves the conditions (i.e., the most critical word vectors) for generating
various sub-regions of the image; the DAMSM provides the fine-grained image-text matching failure for the generative network.
Fattn e;hð Þ ¼ c0; c1; ::::; cN�1ð Þ 2 R
bD�N ð6Þ

For F1, there are two inputs, h0 from F0 and the word-context
vector from the attention network. It consists of residual blocks,
which make the network deeper, and an upsampling layer. It uses
word-level features from Fattn

1 : Here Fattn
i is the attention model at

ith stage of AttnGAN. The context vectors henceforth may be gener-
alised as:

hi ¼ Fi hi�1; F
attn
i e;hi�1ð Þ� �

fori ¼ 1;2; :::;m� 1; ð7Þ
The second attention network, Fattn

2 and F2 have the exact func-
tionality and structure as Fattn

1 and F1. They only differ in inputs.
The number of generators can be adjusted according to the size

of the image to be produced. The more the number of generators,
the more is the size of the image.

Each of the F generators is associated with a G generator. They
consist of convolutional blocks which bring down the number of
channels to, i.e., an RGB image. The generated image, bxi , is given
by:

bxi ¼ Gi hið Þ ð8Þ
The overall generator loss is the summation of all themgenera-

tors present in the network this is given by

LG ¼
Xm�1

i¼0
LGi

ð9Þ
The discriminators placed after the generated image represent

whether or not the generated image justifies the input caption.
For this, one of its inputs is c, which is the output after conditional
augmentation. The other input is the generated image.

Losses:

The adversarial loss for ith generator, Gi, is:

LGi
¼ �1

2
Ebxi�PGi

log Di bxi� �� �� 1
2
Ebxi�PGi

log Di bxi ; e� �� ���
ð10Þ

Here the unconditional loss tells whether or not the image is
real, and the conditional part tells whether the generated image
and the input description belong to the same pair.

Cross entropy loss for Discriminator,
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LDi
¼ �1

2
Exi�Pdatai log Di xið Þð � � 1

2
Ebxi�PGi

�

log 1� Di bxi� �� �þ�1
2
Exi�Pdatai log Di xi; eð Þð � � 1

2
Ebxi�PGi

��
log 1� Di bxi ; e� �� �� ð11Þ

The attentional network’s final objective function is provided
by:

L ¼ LG þ kLDAMSM; where LG ¼
Xm�1

i¼0
LGi

ð12Þ
2.5. Deep attentional multimodal similarity model (DAMSM) model

The paper [3] also introduces a deep attentional multimodal
similarity model to determine a loss indicating how the generated
fine-grained image matches its corresponding text/caption. This is
used for training the Generator.

DAMSM tries to check whether the generated images follow the
written textual description. It does so with the help of two neural
networks. Essentially, it tries to calculate the similarity between
the image and the text to generate an image with better detailing.

An image encoder is required to compute the DAMSM loss. It
takes the generated image as input. It is based on the Inception-
v3 model [42], which has been pre-trained on ImageNet [43]. Then,
from the ‘‘mixed_6e” layer of Inception-v3, we extract the local
feature matrix f 2 R768�289 (reshaped from 768� 17� 17). The fea-
ture vector of a local image area is represented by each column of f .
The local function vector has a dimension of 768, and the picture

has289regions. Meanwhile, the global function vector f 2 R2048 is
derived from Inception-v30s last average pooling layer. All equa-
tions in this section are proposed in [3].

Finally, as seen in below Eq, we bring the image features to a
common space.

t ¼ Wf ; t 2 RD�289 ð13Þ

t ¼ Wf ; t ¼ RD ð14Þ
After this, the similarity matrix is computed, which is given by:



ð15Þ
It was found that normalising the similarity matrix gives better

results, so the normalised matrix is:

si;j ¼
exp si;j

� �
PT�1

k¼0exp sk;j
� � ð16Þ

Here, a region context vector,ci, is calculated. This is different
from the word-context vector. In the word-context vector, we were
looking at all the words and estimating how relevant they would
be to a particular region so that they may be used to generate that
sub-region. As opposed to that, in the regional context vector (cal-
culated for a word), we look at a single word at a time and look at
all the sub-regions. This is done to understand whether that partic-
ular word was significant in the generation of a particular subre-
gion. The region context vector is defined as follows:

ci ¼
X288

j¼0
ajmj; where aj ¼

exp c1si;j
� �

P288
k¼0exp c1si;k

� � c1
: attention scaling factor ð17Þ

The relevance between ithword and the image is also calculated.
This tells us how important each word is in the generation of the
image:

R ci; eið Þ ¼ cTi ei
cij jj j eij jj j ð18Þ

Finally, the attention-driven image-text matching score
between the image and its text description is given by:

R Q ;Dð Þ ¼ log
XT�1

i¼1
exp c2R ci; eið Þð Þ

� � 1
c2

c2 : word� to� region context pair vector ð19Þ
A similar score is calculated on the sentence level as well. It is

given by :

R Q ;Dð Þ ¼ vTe
vj jj j ej jj jð Þ ð20Þ

The final DAMSM loss is given by:

LDAMSM ¼ Lw1 þ Lw2 þ Ls1 þ Ls2 ð21Þ

Lw
1 ¼ �

XM

i¼1
logP DijQið Þ ð22Þ

s ¼ eT t; s 2 RT�289
Fig. 3. Some examples of our generated images (64x64) by Stac
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Lw
2 ¼ �

XM

i¼1
logP QijDið Þ;where P QijDið Þ

¼ exp c3R Qi;Dið Þð ÞPM
j¼1exp c3R Qj;Di

� �� � ð23Þ

here P DijQið Þ is the posterior probability of the sentence Di being
matched with the image Qi. It is given by

P DijQið Þ ¼ exp c3R Qi;Dið Þð ÞPM
j¼1exp c3R Qi;Dj

� �� � ð24Þ
3. Experiments

In this section, we begin by studying the important components
of StackGAN and PGGAN to understand the architecture for text-
to-image synthesis. We also look at AttnGAN’s key components,
such as the attentional generative network and the DAMSM. Addi-
tionally, we analyse why AttnGAN is a better architecture for com-
plex scenes by implementing a specific application, namely, text-
to-face synthesis and implementing it in Raspberry Pi.
3.1. Experiments on CUB-200 and Oxford-102 flowers dataset

To understand the architecture for generating images from their
textual descriptions, we experimented with StackGAN and PGGAN
[44]. The experiments were carried out using the Caltech CUB-200
dataset [39] and Oxford-102 Flower’s dataset [40], for which the
results are shown in Figs. 3, 4 and 5.

Although StackGAN and PGGAN work well on datasets of birds
and flowers, they cease to produce visually satisfactory results on
complex datasets like the COCO dataset or CelebA dataset. This
can be observed from the results provided in previous studies [45].
3.2. Experiments on CelebA and Face2Text datasets

While StackGAN and PGGAN lack performance on the COCO
dataset, AttnGAN has been used on the COCO dataset [12]. This
dataset on [3] produced an Inception Score of 25.89 ± 0.47 as
opposed to 8.45 ± 0.03 and 9.58 ± 0.21, respectively, on the former
two architectures. Based on this, we deciphered that AttnGAN
would work well for the Faces dataset as well.

Initially, our methodology is evaluated using CelebA datasets.
We adopted and preprocessed the CelebA and Face2Text dataset
kGAN Stage-I on Caltech CUB-200 and Oxford-102 datasets.



Fig. 4. Some examples of our generated images (256x256) by StackGAN Stage-II on Caltech CUB-200 and Oxford-102 flowers dataset.

Fig. 5. Some examples of our generated images by the PGGAN Oxford-102 flowers dataset.
using the methods described in [3] to assess the efficacy of our
approach.

The Face2Text Dataset [27] was utilised as an experiment to see
how AttnGAN could handle generating images for the face dataset.
The dataset contains 400 images, the majority of which have three
captions per image. We later reduced this to 2 captions per image
by increasing the number of words in a sentence and thereby
7

reducing the number of captions to be tested by the Generator dur-
ing training. The output files were compared with that of the T2F
Project on Github [45]. According to the visual comparison, Attn-
GAN generated higher-quality images than T2F (as shown in Fig. 6)

Since our results on the Face2Text dataset were visually
promising, as seen from Fig. 6, we carried out further experiments
with a bigger dataset, namely the CelebA dataset [13].



Fig. 6. The AttnGAN model generates the images on the left and the right images are generated examples from StackGAN and PGGAN models from [45], trained and tested it
on the Face2Text dataset.
The Celeb Faces Attributes Dataset (CelebA) [13] is a large-scale
face attribute dataset. It has over 200 K celebrity images and 40
attribute annotations for each image. The images in this collection
cover a wide range of poses as well as the clutter in the back-
ground. CelebA has rich annotated information. We used 10.2 k
images from the CelebA dataset to train the AttnGAN model. Since
the dataset lacks official captions, captions were sourced from [46].
Each image has ten captions that cover all of the image’s attributes.

An attention map for each word in the input statement, as
shown in Figs. 7 and 8, is generated. In attention maps, words that
are of use while producing a particular sub-region are highlighted.
In the case of text-to-face, these include the words that describe
the attributes of the face. When generating images, this shows
where the network would concentrate with each word. When
responding to certain terms, the induced attention maps essen-
tially fit the concentrating region of the human brain. The gener-
ated face images have a high level of continuity with the input
sentences. However, sometimes the attention maps fail to repre-
sent the captions accurately, as shown in Fig. 9.

The DAMSM Model was initially trained for each dataset until
no significant changes in the sentence and word loss were
Fig. 7. Attention Maps of the Generated example of the text-to-face synthesis. The ima
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observed for real image-text pairs. As a result, the image and text
encoders learned how to extract global feature vectors from pro-
duced images and text descriptions. Further, as the attention
GAN model was being trained, this pre-trained DAMSM model
computed the LDAMSM loss for each iteration.

The DAMSM loss is governed by a parameter k, and the total
loss of the model is given by the equation (12). To test LDAMSM

The value of k is tuned from k = 0 to 5. The results obtained for var-
ious kvalues are shown in Fig. 10.

These results show that appropriately raising LDAMSM weight
results in higher-quality images that are better trained on the given
input descriptions. This is because increased LDAMSM provides word-
level matching information, which helps train the Generator in a
better way. The CelebA dataset was also trained onk = 50. But each
time, the training resulted in a mode collapse which was unlike the
case when AttnGAN was trained on the COCO dataset by [3].

This work aims not only to generate better quality (having more
similarity to the textual description) images but also the images
that retain realism and are visually more realistic. As can be seen
from Fig. 10, the images generated for k ¼ 3are more realistic than
k ¼ 5:
ge shown has the input description as ‘‘woman has bushy eyebrows with a smile.”



Fig. 8. Attention Maps of the Generated example of the text-to-face synthesis. The image shown has the input description as ‘‘The woman wearing earrings has smile arched
eyebrow”.

Fig. 9. The image shown has the input description as ‘‘the attractive man has black hair”. It is observed in the image that the hair attribute has not been correctly represented
through its attention map.
3.3. Evaluation

The FID score [47] is used to assess the image consistency of
synthetically generated faces. Text-to-image synthesis, in general,
uses Inception Score as a metric. Standard practice is to use a
pre-trained Inception-V3 network that is fine-tuned on a specific
images dataset to measure Inception Score to determine network
outcomes. This is reported in [3] for the CUB dataset. However,
there is no pre-trained Inception-V3 model for the face dataset.
As a result, we switched to the FID score, which is another often-
used metric for measuring image synthesis and can be thought of
as a more powerful variant of the Inception Score (IS) as it is
more robust to noise than IS.

FID is a metric for comparing the resemblance between two
image datasets. It is found to associate well with human visual
content judgments and is used to assess the quality of Generative
Adversarial Networks samples. Fréchet distance between two
Gaussians that have been fitted to feature representations of the
Inception network, is used to calculate the FID Score. It is also
essential to test the model with a minimum of 10 k images to
obtain appropriate and truthful FID scores [48]. In this work, we
tested on 11 k images to evaluate the FID SCORE. The best value
of FID is obtained for k ¼ 5; as seen in Table 1. A lower FID score
suggests greater image quality; however, not necessarily better
realism since our images have better realism for k ¼ 3 (Fig. 10)
but a higher FID score (Table 1).

The stop criteria for the GAN model is when it reaches the Nash
Equilibrium. But since we typically employ the SGD, the loss of
both G and D models oscillates and never reach Nash Equilibrium.
So one of the better methods to stop the GAN training is by visually
inspecting the generated images and early stop if there is no visu-
ally perceived improvement in the generated images. In this work,
we applied the early stopping and observed that the FID scores for
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early stopping (450 Epochs) are better than late stopping (650
Epochs) for both k = 3 and k = 5 as shown in Table1.

Since the FID score cannot indicate whether the produced
image from the captions is well conditioned on the text description
provided. Therefore, we use R-precision, an evaluation metric for
rating the retrieval performances, as an additional evaluation met-
ric for the task of text-to-image synthesis. If there are R appropri-
ate documents that are applicable to a query, we review the top ‘R’
ranked obtained results of the method and discover that ‘r’ is rele-
vant, and therefore, R-precision is given by ‘r/R’. We have per-
formed a retrieval experiment in which we have use validation
images to query the text that corresponds to them. To begin with,
the global feature vectors of the output images and their text
descriptions are extracted using the image and text encoders
learned in DAMSM.

The next step is to compute the cosine similarity between the
global image and global text vector and, lastly to calculate the R-
precision. The candidate texts are ranked for every image in the
order of descending similarity and select the top r valid descrip-
tions. The model produces 11,000 photographs from randomly
chosen unseen captions to calculate the R-precision. For each
query picture, the candidate text descriptions consist of single
ground truth (i.e., R = 1) and 99 randomly selected descriptions
that don’t fit. Table 1 shows the FID scores and R-precision
achieved for different k values.

3.4. Experimental setup for a standalone device

The birds and face trained model was deployed on a Raspberry
Pi 4 Model B (4 GB RAM). The Raspberry Pi was interfaced with the
VNC Viewer App. All the dependencies, PyTorch wheel file, pre-
trained models and the code were put onto a 16 GB MicroSD Card
and the evaluation code was executed from the command window.



Fig. 10. Output image for given captions for different k values.
Due to the restriction of RAM, it generated only three images from
their corresponding captions. Any more input captions resulted in
an ’Out of memory’ error. The response time from the input to out-
10
put was approximately 14 to 15 s. This testing on a standalone
device was done to check how optimised and efficient the models
are. Figs. 11 and 13 show the Input caption and Output image on



Method FID SCORE R-precision (%)

600 epochs
AttnGAN2, k = 0 No DAMSAM 53:11 11:71� 0:01
AttnGAN2, k = 1 50:93 15:33� 0:01
AttnGAN2, k = 3 56:41 26:83� 0:01
AttnGAN2, k = 5 48:27 38:66� 0:01

Early stopping, 450 epochs
k = 3, 450 epochs 55.44 27.30 ± 0.0102
k = 5, 450 epochs 40.73 39.60 ± 0.0203

Table 1
The best FID score and the corresponding R precision rate of the AttnGAN model on 
CelebA dataset. More results in Fig. 10.
the VNC viewer App. Figs. 12 and 14 show the total time for pre-
dicting the output on Raspberry Pi 4 Model B (4 GB RAM).
4. Discussion

4.1. Comparison

Table 2 shows existing work done in the fields of Text-to-image
generation with the CelebA dataset. A number of approaches and
methodologies have been proposed.
Fig. 11. Input caption and Output image for t

Fig. 12. Total time for predicting the output on Ras
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In [49,50], a multimodal CELEBA-HQ dataset is used. The data-
set consists of 30 k high-resolution face images, each having a
high-quality segmentation mask, sketch, and descriptive text. Sty-
leGAN is used for face generation with a FID score reported as
106.37 and 101.42, respectively. In [41], DC GAN is used for face
image generation with IS of 1.4 ± 0.7 and the limitations of using
inception score as an evaluation metric for faces datasets are also
discussed. In [51], a smaller subset of CelebA named as SCU-
Text2face dataset is used. Two hundred samples are used for test-
ing with a reported FID score of 44.49. However, the base FID paper
[48] states that a minimum of 10 k testing images must be used for
generating valid FID scores. As opposed to this, we have used 11 k
testing images from CelebA dataset and obtained a FID score of
40.73 fork ¼ 5
4.2. Effect of semantic alteration on the images

The AttnGAN is not only capable of generating images of high
resolution. In addition, it can also consider all the attributes men-
tioned in the input caption. Removing or replacing a certain key-
word in the input drastically impacts the output image. An
example of this can be seen in Figs. 15 and 16.
he birds dataset on the VNC viewer App.

pberry Pi 4 Model B (4 GB RAM) for birds data.



Fig. 13. Input caption and Output image for CelebA dataset on the VNC viewer App.

Fig. 14. Total time for predicting the output on Raspberry Pi 4 Model B (4 GB RAM) for CelebA data.
By altering some of the words in the input descriptions, we can
observe how responsive the output images are to alterations in the
input sentences. It shows how the generated visuals are altered in
response to alterations in the input phrases, demonstrating that
the model can detect even minor semantic alterations in the writ-
ten description.

4.3. Challenges

4.3.1. Bias in the dataset
Both CelebA and Face2Text datasets are primarily focused on

Caucasian ethnicity and have an over-representation of the same.
However, it does not contain balance samples for fair and dark-
skinned people leading to the under-representation of these ethnic
groups. This is one of the limitations of these datasets [52] and to
remedy this, a balanced dataset that has an equal and unbiased
representation of ethnicity and gender must be developed. This
kind of unbalanced dataset gives rise to unethical outcomes of
the AI models.

4.3.2. Realism vs quality
We have observed that the AttnGAN occasionally produces pho-

tos that are clear and detailed. However, not necessarily realistic.
FID score serves as a metric to evaluate the quality of the generated
12
images in relation to the ground truth corresponding to the input
textual description. It correlates well with the quality of the image.
However, it does not necessarily represent the realism of the
images. Therefore, the lower FID score, although is a metric of bet-
ter image generation based on the textual description, does not
necessarily mean the more realistic images. This is owing to the
k parameter and its effect on image generation. The qualitative
analysis of generated images shown in Fig. 10 represents that for
k = 3 the images are more real-looking than for k = 5. However,
Table 1 exhibits that the FID score for k = 3 is more than that of
k = 5. The balance between image quality vs realism is an impor-
tant challenge of the generative models.
4.3.3. Use of better text encoding methods
The transformers are typically considered to perform better

than LSTM, as reported in the literature [25]. However, there are
a few approaches reported in recent times which suggest that
transformers may not be the ultimate solution. In [53], authors
propose that in the context of language models, convolutional
models may prove competitive to Transformers when pre-
trained. Also, in [54], it is suggested that replacing BERT with a lin-
ear transform such as Fourier transform proves to be exceptionally
faster in real-time GPU implementations. Also, in [55], an approach



Dataset Approach Highest Output Image Resolution Metrics

Xia et al. [49] MULTI-MODAL CELEBA-HQ
(has 30 k high-resolution
face images, each having a
high-quality segmentation
mask, sketch, and
descriptive text)

StyleGAN inversion module,
visual-linguistic similarity
learning, and instance-level
optimisation.

1024x1024 FID: 106.37
Other Metrics used: LPIPS
(Learned Perceptual Image
Patch Similarity), Accuracy,
Realism

Xia et.al. [50] Multi-Modal CelebA-HQ
((has 30 k high-resolution
face images, each having a
high-quality segmentation
mask, sketch, and
descriptive text)

(Builds on TediGAN-A [49]) 1024x1024 FID:101.42
Other Metrics used: LPIPS
(Learned Perceptual Image
Patch Similarity), Accuracy,
Realism

Nasir et al. [41] CelebA:
7500 training,
2500 testing

DC-GAN with GAN-CLS loss 64x64 IS: 1.4 ± 0.7

Chen et al. [51] SCU-Text2face: 1000
training,
200 testing

FTGAN 256x256 FID: 44.49,Other Metrics
used: IS, FSD, FSS

Ours CelebA: 10.2 k samples,
early stopping.

AttnGAN 256 � 256 FID: 40.73 (best with k ¼ 5
and early stopping after 450
epochs)

Fig. 15. The figure demonstrates the effect of specific words on the output generated. In the image, the word ‘old’ significantly affects how the face of the lady is generated.
This demonstrates how AttnGAN can detect minor semantic alterations.

Fig. 16. Other examples showcasing how the words ‘attractive’ and ‘chubby’ are learned by the AttnGAN model.

Table 2
Prominent work done in the fields of Text-to-image generation with the CelebA dataset.
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based on auto-encoders with transformers is suggested for text-to-
image generation.

In summary, there are multiple approaches to the task of text-
to-image generation in general and text encoding in particular. 
We experimented with the simplest method of text encoding since 
the focus of this work is specifically on understanding the GAN 
models and experimenting with them extensively for face image 
generation. Our contribution lies in identifying various approaches 
of implementations of GANs for better realistic images, comparing 
and analysing the various evaluation and performance methods to 
strike a balance between realism and quality, optimization via 
DAMSM loss and most importantly, handling of the limitations 
posed by inconsistent human participation. Hence we chose to 
implement the text encodings via LSTM. However, we believe that 
replacing the LSTM with the transformer attention model will 
improve the performance, which will be the further extension of 
this work.
5. Conclusion

In general, Photorealistic image generation from its description
is constrained on its dataset. Every word of the caption has an
impact on the quality of the output image. In the case of text-to-
face generation, if the dataset consists of more prior information
on a face rather than focusing on selected attributes, it certainly
increases the quality of the obtained results. Therefore, in this
work, we proposed the implementation of text-to-face synthesis
using AttnGAN. Initially, experiments were conducted on Stack-
GAN and PGGAN for the Birds and Flowers dataset. But owing to
the lack of performance of these architectures on more complex
datasets and lack of focusing attention to a specific attribute, Attn-
GAN was employed. AttnGAN was used on the Face2Text dataset
and CelebA dataset.

The model was first implemented on the Face2Text dataset. Fol-
lowing this, we trained the model on 10.2 k images from the Cel-
ebA dataset. DAMSM loss was considered for optimisation, and
we experimented with variouskvalues. The results obtained by
our model are compared with the existing models employed on
the CelebA dataset. Our model outperforms the other approaches
in terms of using the required number of testing samples and gen-
erating the lowest FID scores. We also studied and demonstrated
the effect of semantic alterations on the generated images. Such
images are very similar to each other. However, they have distinct
variations introduced due to semantic alterations. The effect of FID
and k values on the quality and realism of the image is analysed,
and an early stopping method is implemented to achieve the bal-
ance between the same. Certain challenges, specifically due to
the bias in the datasets, are also discussed. Finally, we deployed
these trained models of the birds and faces dataset on a Raspberry
Pi to achieve real-world usability, accessibility and portability of
this framework. Deploying the model as an API has enormous pro-
mise in the field of public safety and increased useability. Future
work may focus on capturing global coherent structures as well
as employing the attention trasnfromers model for advanced text
encoding.
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