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Abstract

Fractional calculus constitutive models are of wide applicability. They have been used, for example, for: xanthan gum,
read dough, synthetic polymers (e.g. nylon), single collagen fibrils, semi-hard zero-fat cheese, pure ice at −35◦C, asphalt
ealants, epithelial cells, gels, polymers, concrete, asphalt, rock mass, waxy crude oil, breast tissue cells, lung parenchyma,
nd red blood cell membranes (e.g. Bonfanti et al. (2020)). In this note we are motivated by applications to dispersive media
uch as lossy dielectrics and viscoelastic polymers, both of which involve constitutive laws with fading memory convolution
olterra integrals, and both of which have been modelled by fractional calculus — which implies a weakly singular Volterra
ernel. To step forward in time with such a model the entire hereditary Volterra integral needs to be numerically re-computed
t each time step. Done naïvely with standard quadrature this involves O(N 2) operations and O(N ) storage to compute over

N time steps, and this severely limits the usefulness of such simple methods in large scale computations. Several alternatives
ddressing these shortcomings of this naïve approach have been offered in the literature, all of which can provide remedies.
ere we propose another method, but ours is rather different in that we use a Fourier series proxy over much of the integration

ange. This allows for a recursive update to the ‘history integral’, with a much smaller effort expended in standard quadrature
ear the singularity. The recursive update is basically the same as that used when the Volterra kernel comprises decaying
xponentials, a method which is already employed in some commercial codes. Given that this partial implementation is already
n use, we intend that our method therefore has a lower ‘barrier to entry’ for incorporating fractional calculus models into
ommercial codes: it requires only minor surgery on the weakly singular kernel in order to apply the Fourier series proxy. This
tudy is presented in the spirit of a discussion piece — there are several directions one could take from the basic observations
resented here. We have aimed for simplicity and economy of presentation, and included just enough numerical results to give
vidence that the method works. In summary, our method mitigates the O(N ) storage and O(N 2) storage issues using an easily
mplemented proxy. It can also be implemented for variable time steps. The code is available from https://github.com/variatio
alform/fouvol and https://hub.docker.com/u/variationalform.
2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Fractional calculus constitutive models for physical materials involve a quantity at current time being expressed
on-locally in terms of a convolution Volterra integral of another quantity over the time history. The kernel in the
ntegral is weakly singular, which has led some authors to call these ‘power law’ materials e.g. [1].

There are many references we could give but here, to set the wider context, we recall from [2] that among
xamples of such materials we have the food additive xanthan gum, bread dough, synthetic polymers (e.g. nylon),
ingle collagen fibrils, semi-hard zero-fat cheese, pure ice at −35 ◦C, asphalt sealants, epithelial cells, gels, polymers,
oncrete, asphalt, rock mass, waxy crude oil, breast tissue cells, lung parenchyma, and red blood cell membranes.

To fix our ideas and provide a narrower context we are motivated here by the physical description of dispersive
edia such as lossy dielectrics or viscoelastic polymers. Both of which involve constitutive laws with fading memory

onvolution Volterra integrals and are described, for example, in [1,3,4].
Typically, in viscoelasticity for example, the constitutive law relating stress at time t , σ (t), to strain, ϵ, is given

s

σ (t) =

∫ t

−∞

ϕ(t − s)ϵ′(s) ds (1)

ith the prime denoting differentiation. Here, the convolution kernel is called a stress relaxation function and is
sually either a Prony series of decaying exponentials or is weakly-singular:

ϕ(t) = ϕ0 +

Q∑
q=1

ϕqe−t/τq or ϕ(t) = ϕ0tα (2)

or Q ∈ N, ϕq ⩾ 0 and (relaxation times) τq > 0 for each q in the first case, and for ϕ0 > 0 and α ∈ (−1, 0) in
he second.

The ‘power law’, on the right above, is of course connected to the fractional calculus (even though irrational
is also allowed) where, for example, the Riemann–Liouville integral for Re(β) > 0, and lower limit of zero, is

efined by

D−βu(t) =

∫ t

0

(t − s)β−1

Γ (β)
u(s) ds, or D−α−1u(t) =

∫ t

0

(t − s)α

Γ (1 + α)
u(s) ds (3)

here β = 1 + α ∈ (0, 1).
On the other hand, in the modelling of Cole–Cole dielectrics Petropoulous in [5] introduced a Caputo fractional

erivative, while Li et al. in [6] worked with the Letnikov fractional derivative, defined for α ∈ (−1, 0) by,

∂−α P
∂t−α

=
1

Γ (1 + α)
d
dt

∫ t

0
(t − s)α P(s) ds (4)

o express polarization in terms of electric field, permittivities and relaxation time as

τ−α ∂
−α P
∂t−α

+ P(t) = ϵ0(ϵs − ϵ∞)E(t). (5)

If we have the initial condition P(0) = 0 then we can integrate by parts in (4) and take the time derivative through
to get,

∂−α P
∂t−α

=
1

Γ (1 + α)
d
dt

(
(t − s)1+α

1 + α
P(s)

⏐⏐⏐0
t
+

∫ t

0

(t − s)1+α

1 + α
P ′(s) ds

)
,

=
1

Γ (1 + α)

∫ t

0
(t − s)α P ′(s) ds (6)

nd this is essentially the form used in [5].
In these settings, the stress in a linear viscoelastic body can be thought of as the forcing function in a Volterra

rst-kind equation for the strain rate, while after using (4) or (6) in (5) the polarization and electric field are related
y an (non-fractional) intro-differential equation with some resemblance to a Volterra second-kind problem.
2
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For further details on these physical models we defer to the cited material, here we wanted only to motivate the
umerical evaluation of weakly singular Volterra integrals in the context of solving evolution equations. That said,
e fix on a Volterra second kind problem and now restrict ourselves to the problem of finding u : I = [0, T ] → R

such that

u(t) + (ϕ ∗ u)(t) = f (t) where (ϕ ∗ u)(t) :=

∫ t

0
ϕ(t − s)u(s) ds (7)

ith T > 0 and f given, and with power law kernel, ϕ(t) = ϕ0tα for α ∈ (−1, 0). Therefore, using (3), we see
hat (7) can also be written as

u(t) + ϕ0Γ (1 + α)D−α−1u(t) = f (t) (8)

hich, because −α − 1 ∈ (−1, 0), we can interpret as a fractional–integral equation. In fact, we will generalize
his slightly as follows. The form of ϕ(t) will in practice be obtained from experiments and the singularity at t = 0

ay be an inconvenience in data fitting. After all, infinities are not likely to appear on a measuring device. For this
eason we include an extra parameter, t̄ ⩾ 0, and consider the kernel in the form,

ϕ(t) = ϕ0 · (t + t̄)α. (9)

he case t̄ = 0 matches the discussion above, while if t̄ > 0 we lose the weak singularity and the connection
o fractional calculus, but we retain the flexibility of fitting non-infinite data. Ultimately, t̄ is just a variable in a
omputer code.

The examples just given are usually just pieces in a bigger story involving sets of partial differential field
quations. The fractional constitutive laws are used to provide connections between the field unknowns resulting in
ime dependent partial differential equations containing a Volterra operator which, as we can see above, accumulates
he history of the solution. After a finite element discretization in space the function u in (the analogue of) (7) will
e a vector of degrees of freedom with dimension given by that of the finite element space. Furthermore, when time
s discretized into Nt intervals with time step ∆t = T/Nt the Volterra operator will need to be discretized using,
n the most obvious case, a quadrature rule. With tn = n ∆t and Un ≈ u(tn), the discrete version of (7) then takes
he form,

Un + ∆t
n∑

m=0

ϖnmϕ(tn − tm)Um = f (tn)

or quadrature weights {ϖnm}. Clearly some care is needed when m = n when the power law is used.
The analysis of numerical schemes for problems that take this approach is very advanced for elliptic, parabolic

nd hyperbolic integrodifferential Volterra problems (see e.g. [7–10] as well as the book [11]) with some, but not
ll, of these acknowledging the practical difficulties associated with using the power law in place of the Prony
eries.

For example, if Vn−1 is an approximation to (ϕ ∗ u)(tn−1) with ϕ(t) = ϕ1e−t/τ1 then, obviously, Vn follows from
tn

tn−1
ϕ(tn − s)u(s) ds + e−∆t/τ1 Vn−1 after approximating the first term, and this is used to obtain Un ≈ u(tn). This

ecursion allows us to compute over all Nt time steps with only O(Nt ) operations and O(1) storage associated with
he history integral, and it also allows alternative formulations in which the Volterra term is replaced by temporally
ocal internal variables, each of which evolve according to an ordinary differential equation (see e.g. [12–14]).

The fractional calculus (power law) model does not allow for any such temporal localization and so a naı̈ve
uadrature approximation (requiring a sum over n for each n = 1, 2, . . . , Nt ) needs O(N 2

t ) operations to compute
ver all of the Nt time steps. Moreover, in the Prony series model one need only store a vector of internal variables
or each of the Q ‘relaxation modes’ in the left of (2) and update these with the recursion just outlined. On the other
and, for this naı̈ve discretization of the power law we would have to store a solution vector for every time step,
n O(Nt ) storage burden, in order to recompute the convolution at every time level in the solution time stepping.

To see the effect of this naı̈ve approach consider a computational grid on Ω = (0, 1)d
⊂ Rd (for d = 2, 3) having

N −1 intervals in each coordinate direction. Disregarding the negligible effect of the boundary values, a scalar PDE
e.g. involving ∇

2u with piecewise linears) discretized on this grid has a solution vector of length N d which, in
ight-byte (double) precision, requires 8N d bytes of RAM. If N = 500, which is realistic – maybe even modest –

2
or hi-fidelity simulations in many cases of interest, then a single solution vector requires 8 × 500 bytes in 2D and

3
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8 × 5003 bytes in 3D, or about 2 MB in 2D and 1 GB in 3D. Assuming the atypical luxury of hardware with 64 GB
of RAM, and disregarding all other storage demands made by the numerical scheme, we could therefore store a
maximum of 32,000 grid vectors in 2D, but only 64 in 3D. This puts a hard limit on the potential for hi-fidelity time
stepping of power law models with naı̈ve quadrature discretization: a maximum of 32,000 time steps in 2D (which
may be satisfactory) but only 64 in 3D! A more typical situation with 16 GB of RAM reduces the 2D capability
to 8000 time steps, with no realistic possibility of 3D time domain simulation capability.

It would seem then that the choice of Prony series for the Volterra kernel should be routine, even automatic,
for scientific computing — but this is not the case. We compute to solve physical problems and in so doing
we need our model to fit the physics of interest, and cannot expect these physics to fit our preferred model. In
particular, and in reference to experimental data in viscoelasticity, it has often been observed (e.g. [2], [1, §1.6.5] and
[15, §2.5]) that the power law does a much better job of describing both the short and long-time creep in rigid and
high polymers.

For this reason it is important for power law kernels to derive non-naı̈ve approximations to the weakly-singular
Volterra integral both to save on the storage requirements and, preferably, also to save on the quadratically increasing
execution time when time stepping. In this direction Sloan & Thomée in [9] proposed a sparse quadrature rule that
increased in order as the integration time variable increased backwards, and yet only matched the accuracy of the
lower order rule at the frontier of the time stepping. The quadrature points became sparse in the history of the
quadrature and so the operation counts and storage requirements drop significantly. (See the ‘economical’ rules
in [11], which is also a good overview source for problems involving Volterra ‘histories’)

This sparse scheme was extended to incorporate weakly singular kernels by Adolfsson et al. and then studied
and used in [16,17].

Later Schädle, López-Fernández and Lubich [18] developed the well-known convolution quadrature method, and
there is also McLean’s interval clustering method as presented in [19]. These also dramatically reduce storage and
arithmetic requirements and can be applied to weakly singular kernels.

These methods are well documented and work well, but they do not seem to have been widely adopted for
practical problems of the type we mentioned earlier. Perhaps this is because they require specialist, and in places,
non-trivial coding.

The purpose of this note is to point out that the recursion mentioned earlier, based on Vn = approx of(∫ tn
tn−1

ϕ(tn − s)u(s) ds
)

+ e−∆t/τ1 Vn−1, applies also to complex exponentials, and therefore also to Fourier series
see later in (15)). This suggests use of a Fourier series approximation of the weakly singular power law kernel to
btain a recursive history updating algorithm with economical storage requirements, exactly as for the exponential
rony series. Some care needs to be taken with the singularity – where the Fourier series cannot be used – and that

s why we call this method an approximate Fourier series recursion
With this observation in mind, our idea is then simple: to solve our problem over [0, T ], we choose a T1 ∈ (0, T )

and define an extended time Tx = T + T1. On [0, T1] ∪ [T, Tx ] the power law kernel is replaced by Hermite splines
which are constructed in such a way that the even periodic extension, called ψ later, of this piecewise [0, Tx ] → R
function is Cm(R) for some chosen m ∈ N. We then numerically compute the complex exponential Fourier series,
Fψ , for this [0, Tx ] piecewise function ψ (to a chosen number of terms — this is L in (14)) and use this as a proxy
for ϕ on [T1, T ]. See Figs. 1 and 2. We never require the segment on [T, Tx ] in the solve, while the segment on
[0, T1] must be dealt with in a way that respects the weak singularity.

Herein we choose a simple quadrature using an ‘open’ rectangle rule over the last interval [tn − ∆t, tn]. The
‘open-ness’ means we never need to evaluate the kernel at the singularity. So, once the time stepping using naı̈ve
quadrature over t1, t2, . . ., has advanced so far that tn > T1, the computation of

∫ tn
0 ϕ(tn − s)u(s) ds is effected by

etaining the naı̈ve quadrature rule over [T1, tn], with a one-sided rectangle rule on [tn−1, tn] so as to avoid needing
(0). We then use the Fourier series proxy in place of the weakly singular kernel and employ the recursive update
f the ‘tail’ integral

∫ tn−T1
0 ϕ(tn − s)u(s) ds as furnished by the complex exponentials. The detail is given below and

ulminates in the formula in (15).
The result is an algorithm that has a variational structure for the Fourier series, with a clear path to error

stimation, along with reduced storage requirements and increased speed (a decreased operation count). It is
mportant to realize that in this method T1 is fixed. This implies that the operation count remains O(N 2

t ) for this
cheme and the storage requirement remains O(Nt ) (this was also noted for the sparse method in [16]). However,

he gains can be significant and could mean the difference between a practical computation and an impractical one.

4
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Fig. 1. An example of the proxy for ϕ(t) = 0.2t−0.5 for Tx = T + T1, for T = 10 and T1 = 0.5. The solid green line shows ϕ over [1, 10],
nd the dashed green line shows ϕ in (0, 1], asymptoting to ∞ at t = 0. The blue and red lines show the Hermite spline surgery (for
= 3), and the black line shows the 33-term (L = 16 in (14)) even Fourier series proxy. The value of FSerror is a crude approximation

o the L∞(T1, T ) error between ϕ and the proxy. (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

Fig. 2. An illustration of the proxy over a longer time domain. Here we see four periods for the same data as in Fig. 1.

To see this let us return to the examples above. Suppose we set T1 = ξT for ξ ∈ [0, 1] and also require that
∆t = T/Nt = T1/N1 so that N1 = ξNt . Then, ignoring the bounded storage and operation counts associated with
recursing the Fourier series proxy, in the 2D case above we can still store 32,000 solution vectors but these need
only be for the N1 intervals for which we use quadrature. Therefore the number of permitted time steps, with 64 GB
of RAM, magnifies to Nt = 32, 000/ξ . If ξ is 5% then ∆t can be made 20 times smaller with Nt = 640, 000. In
the 3D example, the 64 permitted time steps becomes Nt = 64/ξ , or 1280. For ξ = 1% these 2D and 3D figures
move from 32,000 to 3, 200, 000 and from 64 to 6400. The point is that ξ is fixed, but ours to choose.

For an audience used to high order methods, asymptotically optimal estimates, and rigorous proofs this may seem
unsatisfactory and imprecise. In some sense it is, of course, but here we are adopting the view that for practical real
life simulations where h + ∆t → 0 never happens, and in large application codes where software maintenance is
5
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very difficult and time consuming, this easy-to-code enhancement can readily furnish fractional calculus constitutive
model enhancements capable of delivering engineering accuracy in an easy to implement framework.

We can also note that if experimental data implies that in practice we can expect t̄ > 0 in (9), then there is
o weak singularity and we could allow T1 to be proportional to ∆t , thus significantly ameliorating the already
itigated storage and operation count burdens. This seems very worthy of future investigation.
We further note the related work in [20] in the context of the Havriliak–Negami dielectric model of induced

olarization. There the integral over the most recent time step is dealt with using a local approximation based on
n asymptotic expansion, as opposed to the ‘open quadrature’ used here. For the historical integral over times up to

T −∆t the kernel is approximated by decaying exponentials, exactly as here – and for the same reason – although
ot with Fourier approximation. Instead a generalized Gaussian quadrature is used to approximate the kernel, which
s then approximated by a sum-of-exponentials to a given accuracy. The Singular Value Decomposition (SVD) is

used to reduce the number of resulting exponentials to a constant M . This method has strong similarities to the one
we develop below.

To give full details of our approach along with illustrative numerical results we stay with the scalar second-
kind Volterra problem in (8), which is described in just enough detail for our needs in Section 2. The algorithm
described above is then developed in detail in Section 3 and followed with an example numerical implementation
in Section 4, where we combine the Fourier proxy with the product rectangle rule (see e.g. Linz, [21]), and then
with some illustrative numerical results in Section 5. We then finish with a discussion in Section 6. The notation is
standard throughout.

2. Volterra equations of the second kind

As already stated, we consider the problem of finding u : I := [0, T ] → R such that

u(t) +

∫ t

0
ϕ(t − s)u(s) ds = f (t) (10)

for the kernel ϕ(t) = ϕ0(t + t̄)α with α ∈ (−1, 0), t̄ ⩾ 0 and ϕ0 > 0. In the computations that come later we will
take t̄ = 0 so as to retain the connection to fractional calculus. It is included here for the algorithm development
and for incorporation in the code. In order to observe the convergence rates suggested by our numerical schemes
we will need an exact solution. For this we take u(t) = t−α and then, with t̄ = 0,

f (t) = u(t) +

∫ t

0
ϕ(t − s)u(s) ds = t−α

+ ϕ0

∫ t

0
(t − s)αs−α ds,

= t−α
+
ϕ0tαπ

sin(απ )
(11)

ecause tα ∗ t−α
= tαπ/ sin(απ ). This is most easily seen using the Laplace convolution formula: the inverse

aplace transform of the product of the transforms of tα and t−α is tΓ (1−α)Γ (1+α) and then Γ (1−α)Γ (1+α) =

Γ (α)Γ (1 − α) = απ/ sin(απ ).

. The Fourier series approximation

Given T1 ∈ (0, T ) and some Tx > T (we take Tx = T + T1) the general idea is to consider the Volterra integral
n two pieces, so that for t ∈ [0, T ],∫ t

0
ϕ(t − s)u(s) ds =

∫ min{T1,t}

0
ϕ(t − s)u(s) ds +

∫ t

min{T1,t}
ϕ(t − s)u(s) ds,

=

∫ min{T1,t}

0
ϕ(t − s)u(s) ds +

∫ t

min{T1,t}
ψ(t − s)u(s) ds,

here ψ ∈ Cm
2Tx −ev−per(R) (the space of m-times continuously differentiable even 2Tx -periodic R → R functions) is

n even function constructed so that ψ |[T1,T ] = ϕ|[T1,T ]. As such, a Fourier series for ψ , denoted Fψ for example,
an serve as a proxy for ϕ on [T1, T ].

The method of construction of ψ is to define a Hermite polynomial on [0, T1], denoted pL : [0, T1] → R, and
f degree 2m + 1, where we choose m ∈ N, such that p(k)(0) = 0 for k = 1, . . . ,m with p (0) chosen between
L L

6
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ϕ(T1) and the t = 0 intercept of the tangent of ϕ at T1, and p(k)(T1) = ϕ(k)(T1) for k = 0, 1, . . . ,m. Further, on the
ight, we define another Hermite polynomial, pR : [T, Tx ] → R, also of degree 2m + 1 such that p(k)

R (T ) = ϕ(k)(T )
or k = 0, 1, . . . ,m and p(k)

R (Tx ) = 0 for k = 1, . . . ,m with pR(Tx ) chosen to lie between ϕ(T ) and the t = Tx

ntercept of the tangent to ϕ at T . These polynomials are extended into [T1, T ] by ϕ and the resulting [0, Tx ] → R
unction is reflected into t = 0 to form an even C[−Tx , Tx ] ∩ Cm(−Tx , Tx ) function which is then periodically
xtended to R. This is ψ .

The next step is to replace ψ in the Volterra integral with its Fourier series, Fψ . For this we recall first that

ψ(t) =

∞∑
k=−∞

ckeiπkt/Tx where ck =
1

2Tx

∫ Tx

−Tx

ψ(t)e−iπkt/Tx dt,

or −∞ < k < ∞. Next, because ψ is even and real, we note that ck ∈ R and c−k = ck for every k and obtain

ψ(t) =

∞∑
k=0

ckeiπkt/Tx where ck =

⎧⎪⎪⎨⎪⎪⎩
2
Tx

∫ Tx

0
ψ(t) cos (πkt/Tx ) dt for k ̸= 0;

1
Tx

∫ Tx

0
ψ(t) dt for k = 0.

. Implementation: the rectangle-Fourier rule

Recall that we allow t̄ ⩾ 0 in this for generality in the formulation and for inclusion in the code. Recall also that
e set ∆t = T/Nt for some Nt ∈ N, so that tn = n∆t , and also we require T1 ∈ (0, T ] such that N1 = T1/∆t ∈ N.

We use product quadrature rules, see e.g. Linz [21], whereby ϕ is integrated exactly near the singularity.
We will assume that u(0) is not available to allow for the possibility that f (0) is undefined. This is not important

o the method presented below, and may not even be relevant to the background PDE problems we have in mind
here, at least for parabolic and hyperbolic problems, u(0) will stem from an initial condition.
The product-rectangle rule approximation to the Volterra equation problem in (10) is, for u(tn) ≈ Un , and then

n = 1, 2, . . . in turn, find Un such that,

Un +

n∑
j=1

U j

∫ t j

t j−1

ϕ(tn − s) ds = f (tn).

Using (since α ̸= −1),

ϕ0

∫ t j

t j−1

(t̄ + tn − s)α ds =
ϕ0

α + 1

(
(t̄ + tn − t j−1)α+1

− (t̄ + tn − t j )α+1
)
,

=
ϕ0

α + 1

((
t̄ + (n − j + 1)∆t

)α+1
−
(
t̄ + (n − j)∆t

)α+1
)
,

e then get,

Un =

f (tn) −
∑n−1

j=1 U j
∫ t j

t j−1
ϕ(tn − s) ds

1 +
∫ tn

tn−1
ϕ(tn − s) ds

,

=

f (tn) −

n−1∑
j=1

ϕ0U j

α + 1

(
(t̄ + (n − j + 1)∆t)α+1

− (t̄ + (n − j)∆t)α+1
)

1 +
ϕ0

α + 1

(
(t̄ + ∆t)α+1

− t̄α+1
) ,

= d−1 f (tn) − d−1
n−1∑
j=1

ϕ0U j

α + 1

(
(t̄ + (n − j + 1)∆t)α+1

− (t̄ + (n − j)∆t)α+1
)
, (12)

here

d := 1 +

∫ tn
ϕ(tn − s) ds = 1 +

ϕ0
(

(t̄ + ∆t)α+1
− t̄α+1

)
.

tn−1 α + 1
7
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This is the basic product-rectangle rule approximation and will be applied up to t = T1 in the scheme we develop
here. It can also be applied all the way to t = T , in which case we will simply have a naı̈ve quadrature rule as
discussed earlier in Section 1.

We now use the proxy and introduce the Fourier series approximation for when t > T1. The infinite Fourier sum
s replaced by a sum over the integers in [0, L], for L ∈ N of our choosing. This results in,(

1 +

∫ tn

tn−1

ϕ(tn − s) ds

)
Un

= f (tn) −

n−1∑
j=1

U j

∫ t j

t j−1

ϕ(tn − s) ds, (13)

= f (tn) −

n−1∑
j=n−N1+1

U j

∫ t j

t j−1

ϕ(tn − s) ds −

n−N1∑
j=1

U j

∫ t j

t j−1

ϕ(tn − s) ds,

= f (tn) −

n−1∑
j=n−N1+1

U j

∫ t j

t j−1

ϕ(tn − s) ds −

n−N1∑
j=1

U j

∫ t j

t j−1

ψ(tn − s) ds,

≈ f (tn) −

n−1∑
j=n−N1+1

U j

∫ t j

t j−1

ϕ(tn − s) ds −

L∑
k=0

ck

n−N1∑
j=1

U j

∫ t j

t j−1

eiπk(tn−s)/Tx ds. (14)

efine

Hk(n) := ck

n−N1∑
j=1

U j

∫ t j

t j−1

eiπk(tn−s)/Tx ds

o that

Hk(n − 1) := ck

(n−1)−N1∑
j=1

U j

∫ t j

t j−1

eiπk(tn−1−s)/Tx ds.

It then follows that

Hk(n) = ckUn−N1

∫ tn−N1

tn−N1−1

eiπk(tn−s)/Tx ds + ck

(n−1)−N1∑
j=1

U j

∫ t j

t j−1

eiπk(tn−tn−1+tn−1−s)/Tx ds,

= ckUn−N1

∫ tn−N1

tn−N1−1

eiπk(tn−s)/Tx ds + eiπk∆t ck

(n−1)−N1∑
j=1

U j

∫ t j

t j−1

eiπk(tn−1−s)/Tx ds,

= ckUn−N1

∫ tn−N1

tn−N1−1

eiπk(tn−s)/Tx ds + eiπk∆t Hk(n − 1). (15)

eturning to (14), and accepting the approximation resulting from selecting L < ∞, then gives,

Un = d−1 f (tn) − d−1
n−1∑

j=n−N1+1

U j

∫ t j

t j−1

ϕ(tn − s) ds − d−1
L∑

k=0

Hk(n) (16)

The time marching scheme is therefore:

• Use (12) to determine Un for n = 1, 2, . . . , N1.
• Initialize each Hk(N1) = 0.
• For n = N1 + 1, N1 + 2, . . . , N :

◦ Use (15) to determine each Hk(n).
◦ Use (16) to determine U for n = N + 1, N + 2, . . . , N .
n 1 1 t

8
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Fig. 3. Tabulated and graphical errors (left) and timings (right) for the product-Rectangle method with α = −0.5 and T = 10.

In code the 2L +1 quantities Hk can be updated for each n, overwriting the previous values according to (15). The
peration counts and storage associated with these terms are then bounded independently of N . The storage and
peration count burden, as discussed earlier, is carried by the middle term on the right of (16).

Note that in the formulae above there is no deep requirement placed on the time step ∆t and so this scheme
could be easily adapted to a variable time step algorithm.

5. Numerical experiments

In this section we give a few illustrative numerical results. There are many possible parameter combinations as
we can vary ϕ0, α and t̄ in the kernel, along with T , T1, Nt , L and m in the algorithm. To catalogue the results
cross this entire parameter range would require too much time and space and so we will report on just a few cases
o show how the scheme works.

In particular, we have chosen the values ϕ0 = 0.2, α = −0.5 and t̄ = 0 in the kernel, and taken T = 10. We
ive results for the cases T1 = 0.5, T1 = 0.1 and T1 = 0.05 (i.e. ξ = 5%, 1% and 0.5% in the earlier discussion),
nd explore the errors and timings over ranges Nt ∈ {2n

: n = 5, 6, . . . , 16} and L ∈ {22n+1
: n = 1, 2, . . . , 5}.

To give a reference point we show in Fig. 3 the results for the pure naı̈ve rectangle quadrature rule (i.e. (12)),
nd then give comparison results for the proxy, with T1 = 0.5, in Figs. 4–7 for the cases m = 1, 5, 10, 15. The
all-clock timings are in seconds and the error is |u(T ) − UNt |. Similar results are given in Figs. 8 and 9, for

T1 = 0.1, and in Figs. 10 and 11 for T1 = 0.05, but just for m = 1, 5 in each case.
The results for the proxy calculations show both tabulated errors and timings and also their graphical represen-

ation. These make it easier to see where the convergence stalls for the lower order Fourier series approximations,
nd also how the set-up time overhead for larger L at small Nt becomes negligible for larger Nt . These figures also
how an error/time comparison where the error and time values for each Nt are plotted for each L and also for
he reference naı̈ve rectangle quadrature rule. Note that the reference line is not useful at larger errors due to the
egligible run time not fitting into the logarithmic axis.

The code is pure python and these results were obtained with python 2.7.17 on an x86 Intel(R) Core(TM)
7-2640M CPU 2.80 GHz, using a linux mint 19.3 installation with kernel version #82~18.04.1-Ubuntu SMP

ri Apr 16 15:10:02 UTC 2021, and kernel release 5.4.0-73-generic. The code can be obtained from
https://github.com/variationalform/fouvol

ith git clone git@github.com:variationalform/fouvol.git. Or, from
https://hub.docker.com/u/variationalform
ith docker pull variationalform/puretime:fouvol.

9
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Fig. 4. Tabulated and graphical errors and timings for the product-Rectangle-Fourier method with T = 10, α = −0.5, T1 = 0.5 and a
ermite smoothness of m = 1.

As an implementation detail the value of T1 may get altered somewhat because we are using constant ∆t in this
ode. Specifically, given T , T1 and Nt we define ∆t = T/Nt and then set N1 = ⌈T1/∆t⌉. The value of T1 is then
djusted so that T1 = N1 ∆t , and then we set the extended time as Tx = T + T1.

We now move on to a discussion of these results.
10
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Fig. 5. Tabulated and graphical errors and timings for the product-Rectangle-Fourier method with T = 10, α = −0.5, T1 = 0.5 and a
ermite smoothness of m = 5.

. Discussion and conclusions

This short note has demonstrated that to within and beyond engineering accuracy a weakly singular Volterra
onvolution kernel can be replaced over much of the temporal domain [0, T ] by a Fourier series proxy. This proxy
as storage and operation count requirements that are bounded independently of N . The algorithm can be used to
t

11
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Fig. 6. Tabulated and graphical errors and timings for the product-Rectangle-Fourier method with T = 10, α = −0.5, T1 = 0.5 and a
ermite smoothness of m = 10.

itigate the O(Nt ) storage and O(N 2
t ) operation count requirement of a naı̈ve quadrature approximation and yet

etain the advantage of allowing variable time stepping.
In the setting described earlier, with N1 = ξNt , the operation count becomes O(N 2

1 ) to reach T1, and thereafter
an be estimated as O

(
(N + L)(N − N )

)
to compute from T to T . The total is therefore reduced (assuming
1 t 1 1

12
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Fig. 7. Tabulated and graphical errors and timings for the product-Rectangle-Fourier method with T = 10, α = −0.5, T1 = 0.5 and a
ermite smoothness of m = 15.

≪ 1 and L ⩽ ξNt ) from O(N 2
t ) to O

(
(ξNt + L)(1 − ξ )Nt

)
= O

(
ξN 2

t

)
, while the storage requirement is reduced

rom O(Nt ) to O(ξNt ). These are asymptotic estimates, of course, and the assumption that L ⩽ ξNt as Nt → ∞

s more than justified by the numerical results presented in Section 5.
Indeed, those results show that comparable accuracy can be obtained with the proxy with a much lower storage
emand, but that there is a break-even point prior to which nothing is gained. To see this, recall that the exact

13
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Fig. 8. Tabulated and graphical errors and timings for the product-Rectangle-Fourier method with T = 10, α = −0.5, T1 = 0.1 and a
ermite smoothness of m = 1.

olution for our numerical results is u(t) = t−α , for which ∥u∥L∞(0,T ) =
√

10 ≈ 3.16. Then, for example, from
igs. 3 and 4 we see that a relative error of around 0.1% (i.e. 0.004741/3.16 ≈ 0.1%) in the naı̈ve rule (Fig. 3)
equires Nt = 128 and negligible time while to reach a comparable relative error of 0.00475/3.16 ≈ 0.1% for the

= 1 proxy (Fig. 4) we still need Nt = 128, with L = 32, but with 4 seconds. The extra time is associated with
he Fourier coefficient set up and may also be spent recursing the proxy as in (15). The longer execution time is
14
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Fig. 9. Tabulated and graphical errors and timings for the product-Rectangle-Fourier method with T = 10, α = −0.5, T1 = 0.1 and a
ermite smoothness of m = 5.

owever offset by the drop in storage: Nt = 128 values for the naı̈ve rule compared to N1 +L +1 = 7+32+1 = 40
or the proxy. On the other hand, for errors around 10−5 we see an order of magnitude difference in speed, and the
torage saving reduces from 65536 to N1 + L + 1 = 3277 + 32 + 1 = 3294 for m = 1.

For T1 = 0.5 the convergence pattern does not seem to be sensitive to m, as shown by comparing Fig. 4 to Figs. 5–
, although there does seem to be some boundary near L = 32 that separates out the regions where convergence
15
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Fig. 10. Tabulated and graphical errors and timings for the product-Rectangle-Fourier method with T = 10, α = −0.5, T1 = 0.05 and a
ermite smoothness of m = 1.

s stalled by the lack of Fourier series accuracy. Then, as we push the method and reduce to T1 = 0.1 we infer
rom Figs. 8 and 9, that this boundary moves up to around L = 128. Further, for T1 = 0.05, in Figs. 10 and 11,
e can just see the stalling initiating for L = 512 but only for m = 5. It is not clear why this deterioration should
appen for larger m – it could be due, for example, to instabilities in computing the Hermite splines, or inaccuracy
n numerical quadrature – and we leave the observation here as an open question for further investigation.
16
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H

i

h

Fig. 11. Tabulated and graphical errors and timings for the product-Rectangle-Fourier method with T = 10, α = −0.5, T1 = 0.05 and a
ermite smoothness of m = 5.

Furthermore, and possibly related to this, our results in Figs. 4–7 indicate that convergence begins to stall for

L = 32 for all of m = 1, 5, 10, 15. We expected that as the proxy increased in smoothness so its convergence to

ts subject would increase resulting in us needing smaller values for L . This seems not to be happening and is left

ere as another open question worthy of follow-up investigation.
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The error/time comparison plots have been included for interest. These indicate that there would in all likelihood
e a break-even point for error and time. On the other hand, the timings shown here are probably not that relevant
o the PDE applications that have motivated this study. This code was written in pure python, whereas much faster
ode implementations would be chosen for high fidelity PDE solvers.

Also, in practice we should take account of the time overhead in pre-computing the Fourier series and Hermite
plines for the proxy, but – again – in the context of a large scale PDE solver, this is likely to be a negligible
ne-off cost (at least for linear problems with piecewise constant material data). It is also likely that in this context
t is the storage need that will obviate operation count concerns. This is because the CPU cycles associated with
he Volterra history summation could be easily parallelized, and the accompanying arithmetic demand may not be
ut of line with the linear algebra arithmetic associated with the PDE approximation at each time step (particularly
or implicit solves).

We close with some speculative suggestions and directions for further development.

1. As mentioned above, the usefulness of the proxy rests on the update formula (15), and that can also be used
with variable time steps. In that case though we would need to replace N1 with a margin, T −T1 as in [16,17].
Variable time steps make adaptive time stepping possible.

2. If the storage problem is the key difficulty in working with large scale fractional calculus models then it
would be useful to explore the effect of using low precision data types for the history. Single and even
half precision data types are currently enjoying a re-introduction into modern computing tools due to their
usefulness in data science applications.

3. The O(N 2
1 ) and O(N1) burdens required in our method to deal with the rectangle rule integration near the

weak singularity could be further mitigated by using, say, the product trapezoidal rule up to tn − ∆t , and
the product rectangle rule on the latest time interval. To keep the errors comparable the trapezoidal rule
could have a larger time step of ∆′t to retain consistency with the first order rectangle rule error. This is
essentially the idea put forward in [9], where the choice ∆′t = T/N ′

1 ∼
√
∆t would be made, reducing

N1 to N ′

1 =
√

T1 N1. If, as earlier, N1 = ξNt and T1 = ξT then N ′

1 = ξ
√

T Nt and so with – for example
– Nt = 1000 and T = 10 we get with ξ = 5% that N ′

1 = 5, whereas N1 = 50. The N1 burden for our
approach would therefore reduce dramatically. The higher order Simpson’s and Boole’s Newton–Cotes rules
could also be considered, and the modifications required to the algorithm earlier, and the code, are trivial.

4. On the other hand, as we discussed earlier, in [20] a local expansion was used to approximate this local
integral. Such a method could also be used here to remove any need for numerical quadrature.

5. We also note that these weakly singular kernels will be obtained from fitting constitutive material data, and
that if the data favour t̄ > 0 in (10), then there is no a priori need for the [0, T1] margin employed here. For
example, we can shift ϕ to the right by t̄ and use T1 = t̄ and Tx = T +2T1 in the calculations outlined earlier
to get the proxy. Once we have the proxy we can shift it left by t̄ and then the Fourier series applies over
the entire interval [0, T ], thus removing the entire storage and operation count burden associated with the
naı̈ve quadrature. The scheme is then particularly easy and advantageous to implement and can use the same
routines as used for Prony series type recursion (e.g. [22,23]). We have not tried that here because there is
no exact solution available and so no useful numerical data could be presented.

6. Lastly, we note that an error analysis of this method would comprise three independent contributions: a Taylor
series type of analysis related to the naı̈ve quadrature, a projection analysis related to the Fourier series, and,
another quadrature-error analysis related to determining the Fourier coefficients. We could expect such an
analysis to contribute to solving the open questions posed earlier.

n the last point, to estimate the Fourier coefficients we used the quad routine available from scipy in python
with from scipy.integrate import quad. We are aware that this is yet another area where the algorithm and
results presented here could be improved, but as this study is presented in the spirit of a discussion piece we have
not been able yet to drill down to the fine details. We have aimed for simplicity and economy of presentation,
and included just enough numerical results to give evidence that the method works. There is certainly scope for
improved computation of the Fourier coefficients, and this again may be of relevance to the open questions identified
earlier.

In summary, our method can be used to mitigate the O(Nt ) storage and O(N 2
t ) storage issues using an easily

mplemented proxy. It is, at least as presented here, not a panacea though. These burdens are reduced, not eliminated,
nd there are performance issues to investigate. Nevertheless, the method shows enough promise to justify further

nvestigations.
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