
Extrinsic Evolution of Finite State Machine

A. Belgasem1 , T. Kalganova 2 , A. E. A. Almaini 3

3,1 School of Engineering
Napier University
10 Colinton Road, Edinburgh, UK, EH10 5DT
(b.ali1, a.almaini3) @napier.ac.uk

2 Electrical and Computer Engineering Department

 Brunel University, Uxbridge
 Middlesex, UK, UB8 3PH
 tatiana.kalganova @brunel.ac.uk

Abstract

The paper outlines the use of the extrinsic evolvable hardware approach to evolve
finite state machines (FSM). Both the genetic algorithm (GA) and Evolvable
Hardware (EHW) are combined together to produce optimal logic circuit. GA is
used to optimise the state assignment problem. EHW is used to design the
combinational parts of the desired circuit. The approach is tested on a number of
finite state machines from MCNC benchmark set. These circuits have been evolved
using different functional sets of logic gates and GA parameters. The results show
promise for the use of this approach as a design method for sequential logic
circuits.

Keywords: Sequential logic circuits, evolutionary algorithm, extrinsic evolvable
hardware.

1 Introduction

Automatic synthesis of digital logic to satisfy the functional specifications is a well-
researched area [1]. Automating the synthesis and optimisation of the circuits can
significantly improve the quality of the implementation. Various techniques have
been developed over the years to optimise combinational and sequential logic
circuits [2].
Recently a new area to design both combinational and sequential logic circuits
known as evolvable hardware has been introduced [3]. EHW technique is based on
evolving the functionality and connectivity of the rectangular array of logic cells in
addition to the layout of this array [4]. There are different definitions of EHW
depending on its purpose. One view regards EHW as application of evaluation
techniques to circuit synthesis. Circuits generated by EHW are evaluated by one of

Tatiana Kalganova
Text Box
Belgasem A., T. Kalganova and A. Almaini (2002) Extrinsic Evolution of Finite State Machine. ACDM2002, UK. I. C. Parmee (Ed.) Published by Springer. pp. 157-168.

two methods: extrinsic evaluation and direct intrinsic evaluation. The extrinsic
evaluation is implemented using software simulation. By contrast, in intrinsic
evolution the circuit is downloaded into reconfigurable hardware devices and then
evaluated [5].
Many papers have discussed the use of extrinsic EHW for the implementation of
combinational logic circuit, and different approaches have been proposed [6, 7].
One of the advantages of EHW is that if hardware errors occur or a new hardware
functionality is required, EHW can alter its own hardware structure in order to
accommodate such changes. EHW approach has begun to show that it is possible to
evolve sequential logic circuits in a radically different way [8,9,10]. Thus, it has
been proposed that the design of sequential logic circuit can be obtained using
entirely only evolvable hardware [3]. In this case the state transition table has been
used in order to evaluate the functionality of each chromosome represented as
sequential circuit. Higuchi et al. have successfully evolved such sequential logic
circuits as 4-state machine, 3-bit counter. It has been appeared only one more
approach that attempted to evolve sequential logic circuits from the partial
input/output sequence [8, 11]. The circuits evolved include reversible 8-counter,
reversible 4-counter, modulo-4 counter, 0101 detector, 1010 detector, serial adder
[12]. The simulated evolution has been used to synthesize finite state machine in
[17, 18], where the resulting FSM can predict the output symbol based on the
sequence of input symbols observed. One may make the conclusion that the
complexity of circuit connections and encoding chromosomes to evolve the
sequential logic circuit may be one of the reasons that not much work has been
done in this area.
There is a clear distinction between a conventional hardware and evolvable
hardware design methods. A designer can begin to design a conventional hardware
only after its detailed specification is given. EHW is applicable even when no
hardware specification is known beforehand [12]. The sequential logic circuits are
modelled by FSMs. FSMs are typically used for the control portion of a design,
where sequences of instructions and conditions are interpreted to create a sequence
of output actions. Circuit sizes of synthesised FSMs are strongly dependent on the
number of inputs, outputs, and states as well as on the used state-encoding scheme
[2, 13]. These dependencies were investigated and quantified based on FSM
synthesis results obtained by the extrinsic EHW logic synthesiser. The approach is
divided into two stages using GA as encoding scheme and evolutionary algorithm
to evolve general FSMs from MCNC benchmark set [14]. The developed approach
is the first attempt to evolve sequential logic circuits from the standard benchmark
set.

2 Concept Overview

An evolutionary algorithm is an extremely flexible technique when applied to
optimisation applications in electronic circuit design in that the fitness function may
be easily modified to accommodate new design criteria. The synthesis based on
GAs allows a designer to minimize the actual area (in our case, the number of gates

to implement the circuit). The search space is defined by a number of different
components: (1) building blocks presented to the framework; (2) the number of
logic elements used to generate the circuit; (3) the application for which the circuit
is being evolved. The architecture of the genetic synthesis of sequential logic
circuits is shown in Fig. 1. Stage 1 (Fig. 1) represents the target FSM benchmark
specification using symbolic state transition table. The state minimization, if
required, can be done using existing tools [15]. In the next stage (see Stage 2, Fig.
1), the genetic algorithm uses this state transition table (STT) to generate optimal
state assignment to assign binary code for each state. Therefore, the STT of the
MCNC benchmark is formatted as two-level logic PLA file [15]. GA is used to
generate the state assignment aiming to reduce the circuit area. The objective
function of GA leads to simpler equations and therefore smaller area designs.
Finally, the processing of genetic algorithm for state assignment and EHW to
design the desired circuit are combined together to produce optimum logic circuit
(Stage 3, Fig. 1). This combined process leads to clear interface among
components.

State Minimization

EHW
logic level

Benchmark specification

State Assignment
STT

Stage 1

Stage 2

Stage 3

Figure1: Procedure of the proposed approach to design sequential logic circuit
using genetic algorithm and extrinsic evolvable hardware

3 Evolution of FSM

In order to evolve the MCNC FSMs benchmarks, two stages are combined. The
first stage depends on the state table to represent the chromosome for state
assignment. The second stage depends on the layout structure of the circuit at the
functional level.

3.1 Genetic Algorithm for the state assignment problem

One of the problems that should be solved in sequential logic design is the state
assignment problem. In our case, the optimal state assignment is defined by GA.

The chromosome is encoded in such way that the solution space increases
exponentially with the number of states. The only restriction for a valid state
assignment is that each state has to be assigned a unique binary value. Further, if
the FSM has n states, then the code length b is equal to [n2log] bits long, where
[g] is the smallest integer that is equals to or greater than g. The total number of

possible unique assignments [2] is given by
!)2(!

!)12(),(
nb b

b

bnA
−

−= . GA is used to

effectively search for an efficient state assignment by using recombination
operation over a number of generations.

3.1.1 Chromosome representation
The chromosome represents the states of a FSM as a string of integers. The length
of the chromosome is equal to the number of the states. The initial population of
chromosomes is generated randomly. Each chromosome represents a solution to the
problem. The duplicate chromosomes are discarded.

Figure2: Chromosome representation of state assignment

Let us consider the example in Fig. 2, where the genotype of the chromosome has
been generated randomly and the genotype of a problem is represented by array of
integers. The chromosome is decimal representation of the state assignment for the
FSM. The random function generates six integers (2,4,5,2,4,2). The i-th element of

the string is an integer in the range from 1 to (b2 - i +1). The state assignments list
starts with zero and contains all the states of the FSM using minimum length. It
works through the status-validity table where the initial validity of all numbers is 1.
The numbers are counted from left to right. The procedure starts by taking the first
random number 2 and mapping it into second number of possible state assignment
list 1 and set validity to 0, so that it is not used for future selections. The next
number 4 is mapped to possible state list number 4 and removed from the list by
setting the validity to 0. The procedure continues in the same way for the remaining
numbers in the list. It can be seen from the Fig.2 that the random string 2,4,5,2,4,2
maps the states 0,1,2,3,4,5,6,7 to the assignments 1, 4, 6, 2, 7, 3 respectively and
assigns unique code to each state. In this case, the assignments 0 and 5 are not used.

This method is applied to each individual to generate randomly the initial
generation.

3.1.2 Fitness function
The fitness function is defined by the number of 2-input AND/OR logic gates that
are used in the logic equations after being minimised using conventional methods
[2].

3.1.3 Genetic operators
Once gate count has been carried out for every chromosome, the fitness value is
assigned to each individual in the population. Roulette wheel selection is used to
select the chromosomes from the previous population. Once the new generation is
created, the recombination operations are applied. In this case, the two-point
crossover operation is used. A crossover operator that randomly selects two
crossover points within a chromosome then interchanges the two chromosome
genes between these points to produce two new offspring. The “|” symbols indicate
the randomly chosen crossover points. This illustrated as shown in Fig. 3.

Before Crossover
Chromosome 1= 2 1 | 3 5 | 6
Chromosome 2= 4 2 | 7 3 | 1

After Crossover
Offspring1= 2 1 | 7 3 | 6
Offspring2= 4 2 | 3 5 | 1

Figure 3: Two-point crossover operators.

The mutation operation chosen is based on the interchange of two genes (states) in
each chromosome. However, when creating a new population using crossover and
mutation operators, the best chromosome can be lost. In order to prevent these,
elitism has been utilised. The best chromosome is preserved in new population
because of elitism technique. Elitism rapidly increases the performance of the GA,
by preventing the loss of the best-found solutions. Several parameters control the
way GA optimises the state assignment of the FSM, allowing the users to vary their
value. The parameters are:
• the population size of the genetic algorithm;
• the number of generations of the GA around the main loop;
• the initial number of runs of the GA to perform optimisation;
• the probabilities of crossover rate (cP) and mutation rate (mP).

The mutation rate is variable and has been increased with each generation if there
had been no improvement in the number of gates count for the best chromosome.

3.2 EHW to design the combinational part of the circuit

For efficiency, a simple tabular representation for the FSMs is chosen. Rows in a
table correspond to states, and columns correspond to inputs. This circuit layout of
FSMs is represented as a rectangular array of building blocks. These building
blocks are uncommitted and can be removed from the actual circuit design if they
prove to be redundant. The building blocks can implement any primary logic
operation defined in Table 1. The genetic synthesis creates circuits at the gate-level

using a library of logic gates such as AND, OR, XOR, NOT and D flip-flops. It is
up to the evolutionary algorithm to choose among these building blocks to create
the best possible desired circuits.

3.2.1 Chromosome representation
Chromosome is represented by rectangular array [6, 7]. Fig. 4 shows the
rectangular array representation where the number of rows and columns are defined
as (cN , rN). The building block which form the array are numbered column wise

from n to (n+ cN x rN -1). The example to encode the outputs of logic gates is

shown in Fig. 4. The circuit layout is chosen to be 3x4. The data describing the cell
contain the number of inputs, the array of inputs and the functional gene. The value
of functional gene is defined according to Table 1.

3.2.2 Fitness function
Dynamic fitness function (1F + 2F) is used to evaluate the circuit [6]. 1F uses
Hamming distances to measure the 100% functionality of the circuit between a
given set of outputs and real implementation of function outputs. 2F defines the

number of primitive logic cells that are used in the circuit. 2F is activated when

1F reaches 100% functionality.

Table 1: Functional set of logic gates used in EHW

Gene Function

gene

Gene Function gene Gene Function gene Gene Function gene

0 “0” 4 !a NOT(a) 8 !ab AND(!a, b) 13 !a|b OR(!a, b)

1 “1” 5 !b NOT(b) 9 !a!b AND(!a, !b) 14 !a|!b OR(!a, !b)

2 “a” wire 6 ab AND(a, b) 10 a|b OR(a, b) 15 a^b XOR(a, b)

3 “b” wire 7 a!b AND(a, !b) 11 a| !b OR(a, !b) 16 !a^!b XOR(!a, !b)

 Circuit Outputs
Gate connectivity

Circuit connectivityInputs Outputs

"0"
"1"
x 1
x 2
x 3

y1
y2

Circuit size

columns
rows

Gate structure

Gate type
Gate inputs

i1
i2

4

5

8 12

9 13

6 10 14

7 11 15

Figure 4: Schematic of the chromosome structure used in EHW approach with

circuit layout equalled to 3x4

3.2.3 Genetic operators
The circuit evolution is performed using a rudimentary)1(+λ evolutionary
strategy with uniform mutation [16]. The parameter circuit mutation is used to
change the type of genes in chromosome excluding the number of columns and
rows. The mutation rate defines how many genes in the population are involved in
mutation.

4 Motivating Example

The proposed approach described in Fig. 1 is tested against dk27 benchmark with
seven states (S0, S1, S2, S3, S4, S5, S6), one input and two outputs. The
experimental plan is outlined and results are given. A number of experiments have
been carried out in order to investigate the specific features of the proposed
method.
The initial data for the experiment are given in Table 2 for both GA state
assignment and EHW. The benchmark is given to the system in a file containing the
objective state table in the form of a programmable logic array (PLA). The
structure of dk27 circuit in the proposed approach contains 3 sub-circuits. Fig. 5
shows the decomposition of the combinational part of the benchmark circuit into
sub-circuits A and B. Sub-circuit C represents the D flip-flops (Dff).

Table 2: Initial parameter used to evolve sequential logic circuit (Dk27.kiss2)

Problem State assignment Combinational logic design

(EHW)
 Population size 20 15
 The number of generations 100 50000
 The number of GA runs 10 100
 Type of crossover Two-point -
 Crossover rate 0.25 -
 Mutation rate 0.015 0.05
 The number of rows - 4 , 8
 The number of columns - 3 , 8
 Target function Dk27.kiss2 Dk27.kiss2

Dff

in0

in1

in3
in2

inputs

present
states

Combinational
Circuit

outputs

out1
out2 A C B

 Combinational
Circuit

Figure 5: Description the circuit parts

Each sub-circuit has been evolved separately using the EHW approach. In Fig. 6,
step1 shows the valid encoding for the benchmark by simply replacing the symbols
of the states in the SST by the respective state binary code generated by GA. Step2
generates the state assignment. Step 3 partitions the STT of the benchmark circuit
into input combinational logic circuit A and output combinational logic circuit B.
Once the EHW decomposition is completed, the fully functional circuit can be
generated. The obtained experimental results are shown in Fig. 7 (a) and Fig.7 (b).
In Fig. 7 (a), the circuit has been evolved using functional set (0-6, 10) and the
circuit consists of 11 gates in sub-circuit A, 10 gates in sub-circuit B and 3 D flip-
flops in sub-circuit C. The total number of logic gates in assembled circuit is 21 (12
AND, 7 OR, 2 NOT). Fig. 7 (b) shows the circuit evolved using functional set (0-6,
10,15). The most efficient evolved circuit consists of 11 logic gates in sub-circuit
A, 5 gates in sub-circuit B and 3 D flip-flops. The total number of logic gates in the
circuit is 16 (5 AND, 3 OR, 4 XOR, 4 NOT). The two circuits discussed above
illustrate how choosing the functional set of logic gates affects the evolved circuit
structures. The functional genes are encoded according to Table 1.

5 Experimental results

EHW begins from randomly connected and randomly chosen logic gates and
gradually evolves the target functionality. The evolutionary algorithms does not
guarantee that 100% functionality circuit of the resulting connections will be
achieved in all cases. So, the results reported here are the average from 100 runs. In
this section, some experimental results obtained for the MCNC benchmark circuits
are given.
The experimental results obtained are summarised in Table 3. The table shows the
numbers of gates used to evolve each subcircuit after 100 runs. The particular set of
logic gates used is fixed in advance, but whether or not any particular gate is used,
or how many time a gate is used, is entirely free. The advantage of this approach is
that it allows us to synthesis the benchmarks circuit using any set of logic gates.
Consequently, it permits the synthesis of compact and unusual circuit structures.

The quality of evolved circuits is defined by the number of logic gates in the
circuit. It can be seen from Table 3 that large FSM benchmarks (dk16) is difficult
to evolve with one valid solution after 100 runs. These benchmark sets results are
compared against SIS [15] for sequential logic synthesis and optimisation. The
inputs to SIS are given in state table format and the library is given in genlib
format. The output is a netlist of gates for the target technology. It can be seen that
in some cases the evolved circuits are much better then the one generated by SIS.

Figure 6: The procedure of generation the *.pla file from the state transition table
based on the example of dk27 (Kiss2 benchmark). Step1 shows the initial symbolic State
Transition Table, Step2 generates State Assignments using the genetic algorithm and Step 3
generates the PLA files (*.pla) based on the state assignments obtained.

.i 4

.o 3

.p 14

.i 3

.o 2

.p 14

step1

step2

st
ep

3

.e

number of inputs
number of outputs

number of states
number of products

.e

(a)

(b)

Figure 7: Evolved dk27 design using (a) functional set (0-6, 10) (b) functional set
(0-6, 10,15)

Table 3: Experimental results of extrinsic EHW approach. #in, #out and #stat are the
number of inputs, outputs and states respectively. #100 cases is the number of fully
functional solutions obtained after 100 runs of GA. The evolved circuits which are
more optimal in comparison with SIS[15] are shown in bold.

Specification Estimation of the best SIS
[15] Benchmark

.kiss
#in #out #stat

Functional
set Sub-

circuit A
Sub-

circuit B
Sub-

circuit C Total

#100
cases

Bbara 4 2 10 0-5, 6, 10,15 32 28 3 60 7 79

Bbtas 2 2 6 2-7, 10, 11, 15,
16 15 4 3 19 24 28

dk15 3 5 4 0,1, 6, 7, 10, 11-
16 20 33 2 53 11 66

dk16 2 3 27 0-6, 8, 10, 11,
13, 14, 15 265 40 5 305 1 285

dk27 1 2 7 0- 6, 10, 15 11 5 3 16 28 20
dk512 1 3 14 2-6, 9-14, 16 25 22 4 47 31 58
Lion9 2 1 9 0-6, 10,15 29 21 4 50 7 25

Shiftreg 1 1 8 0-13,15 13 5 3 18 21 9
Tav 4 4 4 0-6, 10,15,16 3 23 2 26 9 29

out1

out2

outputs

inputs
 Subcircuit BSubcircuit A Subcircuit C

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

out1

out2

outputs
inputs

 Subcircuit BSubcircuit A Subcircuit C

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

6 Conclusions

This paper proposes a new approach to evolve sequential logic circuits. The basic
idea of this approach is to use the strength of genetic algorithm at both state
assignment and circuit design stages. The standard genetic algorithm has been used
in order to identify the optimal state assignment for the given problem. The
extrinsic evolvable hardware with rudimentary evolutionary strategy has been
applied to synthesise the combinational parts of the sequential circuit. Former
results are associated with an evolutionary process in which each evolved FSM
benchmark circuit is built and tested in software using computer simulations. The
implemented GA is able to design logic circuits with size and complexity, which
have not been demonstrated in published work so far on structural genetic and
evolutionary algorithms. This automated approach has the added advantage of
reduced dependency on the designers’ knowledge and experience. The proposed
method to synthesise the sequential logic circuits has been tested on the standard
benchmarks. It can be concluded that not enough work has been done in this
direction and it is necessary to investigate the evolution of sequential logic circuits
more closely. Future work will concentrate on the development of a tool to evolve
large state machines without excessive use of memory or CPU time. Further, the
optimisation could be tailored to target area, power dissipation or both.

References

[1] Darringer, J., et. Al., (1984.) LSS: A system for production of logic

synthesis. IBM J. Res. Develop. vol. 28, pp. 537-545.
[2] Almaini A.E.A, (1994) Electronic logic systems”, 3rd Edition, Prentice–

Hall International.
[3] Higuchi T., Iba H. and Manderick B. (1994) Evolvable Hardware with

Genetic Lerning in Massively Parallel Artificial Intelligence, eds. H.
Kitano, MIT Press, pp. 398-421.

[4] Kalganova T. and Miller J. (1999) Evolving More Efficient Digital
Circuits by Allowing Circuit Layout Evolution and Multi-Objective
Fitness. Proc. of the First NASA/DoD Workshop on Evolvable Hardware,
eds. Stoica A., Keymeulen D. and Lohn J., IEEE Computer Society, pp.
54-63

[5] Thompson A., (1996) Silicon evolution. In Koza, J. R., editor, Proc. of the
Int. Conference on Genetic Programming, MIT Press, pp. 444-452.

[6] Kalganova T., (2000) Bidirectional Incremental Evolution in Evolvable
Hardware. Proc. of The second NASA/DOD Workshop on Evolvable
hardware, Palo Alto, California, USA, Published by IEEE Computer
Society.

[7] Kalganova T., J. Miller and T. Fogarty, (1998) Some Aspects of an
Evolvable Hardware Approach for Multiple-Valued Combinational Circuit
Design. Proc. of the Second International Conference on Evolvable
Systems (ICES 98), Springer-Verlag, Lausanne, Switzerland.

[8] Manovit C., C. Aporntewan, and P. Chongstitvatana, (1998) Synthesis of
synchronous sequential logic circuits from partial input/output sequence.
In Proceedings of International Conference on Evolvable Systems, pp. 98-
105,

[9] Thompson A., (1995) Evolving electronic robot controllers that exploit
hardware resources. Proc. of the 3rd European Conf. on Artificial Life, vol.
929, pp. 640-656.

[10] Higuchi T., M. Murakawa, M. Iwata, I. Kajitani, W. Liu, and M. Salami
(1997) Evolvable Hardware at Function Level" Proc. of the 1997 IEEE
Int. Conf. on Evolutionary Computation (ICEC97), pp. 187-192.

[11] Manovit C., C. Aporntewan, and P. Chongstitvatana (1998) Comparison
of Technology-Based and State-Based Representations for the Synthesis of
Synchronous Sequential Logic from Partial Input/Output Sequence Proc.
of Nat. Conf. on Electrical Engineering (EECON-21), Bangkok, Thailand,
pp. 210-213

[12] Chongstitvatana P. and C. Aporntewan (1999) Improving Correctness of
Finite-State Machine Synthesis from Multiple Partial Input/Output
Sequences Proc. of the First NASA/DoD Workshop on Evolvable
Hardware, Pasadena, California, pp. 262-266

[12] Koza J., F. Bennett, D. Andre, and M. Keane (1999) Genetic
Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufman.

[13] Villa T, and A. Sangiovanni-Vincentelli, (1990) NOVA: state assignment
of finite state machines for optimal two level logic implementation. IEEE
Trans., C-9, pp 905-924.

[14] Yang S., (1991) Logic synthesis and optimisation benchmark user guide
version 3.0, MCNC.

[15] Sentovich E. M., K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, et al., (1992) SIS. A System for Sequential Circuit
Synthesis. Tech. Rep. UCB/ERL M92/41,Electronics Research Lab, CA
94720, Univ. of California, Berkeley.

[16] Kalganova T., J. Miller, (1999) Evolving More Efficient Digital Circuits
by Allowing Circuit Layout Evolution and Multi-Objective Fitness. Proc.
of the First NASA/DoD Workshop on Evolvable Hardware. eds. Stoica
A., Keymeulen D. and Lohn J., IEEE Computer Society, pp. 54-63

[17] Angeline P.J., D.B. Fogel and L.J. Fogel (1996) A comparison of self-
adaptation methods for finite-state machines in a dynamic environment.
Proc. of the 5th Annual Conf. On Evolutionary Programming, pp.441-449.

[18] Fogel L.J. Autonomous automata. in Industrial Research, 4 :14-19, 1962.

