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H I G H L I G H T S

• Comprehensive review of the dynamic modeling & control of ORC system is presented.

• The dynamics of the ORC system is mainly governed by the heat exchangers.

• Heat exchangers are modeled using moving-boundary, finite-volume & two-volume models.

• Time constants for pump and expander are small compared to those of the heat exchangers.

• Complexity of the control strategy depends on the operation of the ORC system.

• MPC provides excellent control performance compared to PI and PID controller.
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A B S T R A C T

Organic Rankine cycle systems are suitable technologies for utilization of low/medium-temperature heat
sources, especially for small-scale systems. Waste heat from engines in the transportation sector, solar energy,
and intermittent industrial waste heat are by nature transient heat sources, making it a challenging task to design
and operate the organic Rankine cycle system safely and efficiently for these heat sources. Therefore, it is of
crucial importance to investigate the dynamic behavior of the organic Rankine cycle system and develop suitable
control strategies. This paper provides a comprehensive review of the previous studies in the area of dynamic
modeling and control of the organic Rankine cycle system. The most common dynamic modeling approaches,
typical issues during dynamic simulations, and different control strategies are discussed in detail. The most
suitable dynamic modeling approaches of each component, solutions to common problems, and optimal control
approaches are identified. Directions for future research are provided. The review indicates that the dynamics of
the organic Rankine cycle system is mainly governed by the heat exchangers. Depending on the level of accuracy
and computational effort, a moving boundary approach, a finite volume method or a two-volume simplification
can be used for the modeling of the heat exchangers. From the control perspective, the model predictive con-
trollers, especially improved model predictive controllers (e.g. the multiple model predictive control, switching
model predictive control, and non-linear model predictive control approach), provide excellent control perfor-
mance compared to conventional control strategies (e.g. proportional–integral controller, proportional–der-
ivative controller, and proportional–integral–derivative controllers). We recommend that future research focuses
on the integrated design and optimization, especially considering the design of the heat exchangers, the dynamic
response of the system and its controllability.

1. Introduction

The future energy demand of the ever-increasing global population
requires efficient utilization of current energy resources as well as the

development of sustainable energy solutions. The conversion of energy,
from primary energy sources to end use, involves several losses that
result in waste heat to the environment. Waste heat resources for or-
ganic Rankine cycle (ORC) systems are normally classified into three
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categories [1]:

(1) Low-grade or low-temperature waste heat (ambient – 250 °C);
(2) Medium temperature waste heat (250–500 °C);
(3) High temperature waste heat (> 500 °C).

It is estimated that 72% of the primary energy consumption is dis-
carded as waste heat, and about 78% of the waste heat is low-grade
heat or low-temperature heat [2]. For energy efficiency improvement
and reduction of the overall energy consumption, the conversion of
waste heat to power can play an important role. The low-grade thermal

Nomenclature

Abbreviations

AC Adaptive control
ADRC Active disturbance rejection controller
BPNN Back propagation neural network
CC Cascade control
CVr Control variable
CARMA Controlled autoregressive moving average
DC Decoupling compensator
DNI Direct normal irradiance
DNRGA Dynamic non-square relative gain array
DP Dynamic programming
EGR Exhaust gas recirculation
FF Feed-forward controller
FCL Following connected load
FTE Following thermal energy
FV Finite volume method
EKF Extended Kalman filters
GS Gain scheduling
GMV Generalized minimum variance
ICE Internal combustion engine
LLC Lead-lag compensator
LMPC Linear model predictive controller
LQ Linear quadratic
LQI Linear quadratic integral
LQR Linear quadratic regulator
MAC Model algorithmic control
MB Moving boundary method
MPC Model predictive controller
NC Neuro control
NGS Non-gaussian system control
NRGA Non-square relative gain array
OC Optimum control
ORC Organic Rankine cycle
PR Pressure ratio
PVr Process variable
PID Proportional integral derivative
PI Proportional integral
PMSG Permanent magnet synchronous generator
RC Robust control
RLS Recursive least squares
SH Superheat
TIT Turbine inlet temperature
WHR Waste heat recovery

Symbols

A Area, m2

cp Specific heat capacity, J/kg·K
Deq Effective flow path diameter
f Frequency, Hz
J Total recovered energy, J
h Specific enthalpy, kJ/kg
L Length, m
m Mass flow rate, kg/s
N Speed, rpm

p Pressure, Pa
Q Heat transfer rate, kJ/s
r Non-dimensional pressure ratio
T Temperature, °C
t Time, seconds
U Overall heat transfer coefficient, W/(m2·K)

Internal energy, J
V Volume, m3

Vs Swept volume, m3

v Velocity, m/s
x Quality, –
Y Level of saturated liquid in storage tank, –
W Power, W

Subscripts and superscripts

Bpv Turbine bypass valve
Co Condenser
cv Control valve
Corr Correlation
Const Constant
Ev Evaporator, evaporation
eng Engine
exp Expander
f Single-phase state (liquid)
g Single-phase state (gas)
hs Heat source
i Cell index i
in In
is Isentropic
liq Liquid state
n Nominal condition
net Net (with reference to net power output)
out Out
pd Pump displacement
pu Pump
sw Swept volume
ss Sink source
tv Throttle valve
tp Two-phase
vp Vapor state
vol Volumetric
w Wall
wf Working fluid
XA Cross-sectional area
z Spatial position

Greek letters

Efficiency, %
Heat transfer coefficient, W/(m2·K)
Density, kg/m3

Filling Factor, –
Heat capacity ratio, –
Difference
Heat exchanger efficiency multiplier, %

µ Valve position, –
Torque, N·m
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energy cannot be converted efficiently to electrical power by conven-
tional energy conversion technologies (Steam Rankine or Brayton
cycle), and a large amount of low-temperature heat sources remain
untapped. These low-grade thermal energy and waste heat resources
include heat from energy conversion plants based on renewable energy
sources as well as waste heat from industries, thermal power plants, and
the transportation sector.

The conversion of low-grade thermal energy and waste heat to
power can provide financial benefits for the plant owner, as well as
improve energy efficiency and reduce CO2 emissions of the plant [3].
Among the existing technologies to convert low-grade heat to power,
the organic Rankine cycle (ORC) can be considered an ideal technology.
The ORC systems have the following unique features:

• Adaptability to various heat sources
• Advantages with respect to common steam Rankine cycle systems
for heat source temperature below 300–400 °C and small scale
(below 5 MW)
• Proven technology
• Suitability for distributed power generation
• Usable over a wide capacity range (a few kW to a few MW)
• Good part-load performance
• Low complexity
• Experienced manufacturers and technology providers
• Extensive market potential
Geothermal energy, waste heat from various thermal processes,

biomass combustion, solar energy and ocean thermal energy are the
major heat sources for the ORC technology [4]. A number of review
studies have been reported for the ORC technology regarding waste
heat recovery (WHR) from internal-combustion engines (ICE) [5], and
for maritime applications [6].

WHR from gas turbines in compressed gas stations is also an im-
portant field of application for ORC, as reported in [7] and [8]. Hoang
[9] presented a comprehensive review of the component design and
economic feasibility of ORC for waste heat recovery from diesel en-
gines. Shi et al. [10] reviewed the different configurations of the ORC
system based on heat source temperature and nature of the working
fluids for waste heat recovery from internal-combustion engines. Lion
et al. [11] provided a comprehensive review of the application of ORC
technology on a heavy-duty diesel engine with particular focus on ve-
hicle applications for on and off highway sectors. The paper also pro-
vided operating profiles (engine torque and speed) and used them to
assess the emissions with and without an ORC system. Zhou et al. [12]
provided a detailed review of the ORC system for passenger vehicles
and outlined the major challenges for ORC integration. Zhai et al. [13]
provided a theoretical categorization of heat sources based on the heat
source availability, and the type, temperature, capacity, and dynamics
of the heat source. Lecompte et al. [14] reviewed the typical and in-
novative ORC architectures for WHR. The authors identified the diffi-
culty in assessing the additional complexity and the importance of
evaluating also the economic feasibility of new architectures rather
than focusing only on thermodynamic analysis.

The core research in the field of ORC technology can be broadly
classified into working fluids, expansion machines, cycle configuration,
design, experimental investigation, optimization, and dynamic mod-
eling and control of the ORC system [15]; see Table 1. It can be ob-
served that a significantly large area of work is within the domain of
optimization and design. However, in the open literature, the dynamic
modeling and control studies constitute less than 10% of the total
number of publications in the area of ORC technology [16,17].

The dynamic modeling and control aspects are critically important
for ORC systems that are subjected to changes in the heat source or cold
sink conditions. ORC systems operated in off-grid/island-mode need to
react to load changes as well. Fluctuating primary heat sources (mass
flow rate or temperature) include solar thermal, waste heat recovery

from industries, waste heat recovery from internal-combustion engines
of heavy-duty vehicles and gas turbines in compressed gas stations. The
use of transient heat sources can lead to over-heating, causing fluid
decomposition of the working fluid of the ORC, and component failure
of the ORC due to stalling or temperature shocks. With respect to WHR
from a diesel engine, the transient heat source may result in operational
difficulties of the emission-control system during start-up and shutdown
procedures. In addition, frequent and rapid changes of the heat source
force the ORC system to operate far from the design-point, thus dete-
riorating its performance and economic potential. Storage solutions
might be used, but the additional capital costs for the storage might
affect the economic feasibility of the WHR.

Furthermore, it is known that for isentropic or dry working fluids, a
decrease in the degree of working fluid superheating at the turbine inlet
leads to an increase in the thermal efficiency, if the ORC does not
preheat the working fluid with an internal heat exchanger (recuperator)
[18]. However, operating the ORC using a turbo-expander with a very
small degree of superheating may lead to erosion on the turbine blades
as the fluctuations in the heat source conditions may lead to incomplete
evaporation of the working fluid. The potential occurrence of turbine
erosion is governed by the system thermal inertia and configuration.
Thus, the estimation of operational parameters such as superheating
and its sensitivity to heat source fluctuation and load conditions require
rigorous analysis of the process dynamics. The data for such dynamic
studies can be obtained from experimental work, but the cost of con-
structing test rigs is generally high. Moreover, often sub-optimal control
schemes are employed in experimental work for safety concerns. In
order to resolve the aforementioned barriers, it is of crucial importance
to understand the dynamic response of the system and develop suitable
controllers ensuring safe operation, long life of the ORC unit and
maximum performance under varying heat source and cold sink con-
ditions.

To some extent, the expertise and guidelines concerning the dy-
namic modeling of ORC systems can be obtained from the fields of
steam power plants, gas turbine engines, and combined cycle power
plants [19,20]. However, these power plants typically operate close to
the design point, whereas ORC systems utilizing fluctuating heat
sources often operate far from the design point depending on the heat
source, cold sink and loading conditions.

A literature review indicates that the dynamic modeling and control
of ORC systems have evolved from component-level analyses in the last
decade and are now mature enough to simulate complex ORC systems
with the integration of components. However, despite the availability
of specific studies, there is no previous work presenting a holistic pic-
ture of the state-of-the-art on the topic.

The lack of a review critically evaluating and comparing the dif-
ferent dynamic modeling and control approaches, makes it difficult for
researchers and industry developers to make the appropriate choices
with regards to these methods, hindering the development of optimal
controllers for ORC systems that encounter highly transient heat

Table 1
Major research areas in ORC technology, Park et al. [17].

Research area Number of publications in ORC technology
(normalized number of papers published in the area
divided by total papers published in the ORC field)

Design/Modeling/
Analysis

0.369

Optimization 0.139
Expander/Turbine 0.148
Working fluid 0.126
Dynamics 0.031
Control 0.030
Pump 0.018
Heat exchanger 0.016
Cycle configuration 0.009
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sources. Consequently, the lack of a holistic review may impede the
commercialization of ORC systems for applications characterized by
highly transient heat sources (e.g. the truck industry).

This paper provides a comprehensive review of the dynamic mod-
eling and control of ORC systems. The component-level modeling is
discussed, as well as the integration of components to form and model
complex systems; the technical difficulties, simulation pitfalls, best
practices, and different modeling techniques are presented in detail.
Various control schemes are compared, and the advantages, dis-
advantages and maturity level for each of them are discussed. The more
suitable dynamic models of each component, solutions to common
problems, and optimal control approaches are identified. Directions for
future research are provided. Overall, the paper provides a unique,
unified reference benchmark for future work concerning dynamic
modeling and control of ORC systems.

The paper consists of five sections. The introduction and state-of-
the-art review are presented in Section 1. Section 2 discusses the
common dynamic modeling approaches of ORC systems, both at the
component and the system-level. The control approaches for ORC

systems and their merits and demerits are discussed in Section 3. Dy-
namic modeling and controller development tools and software are
covered in Section 4. Finally, the concluding remarks are presented in
Section 5.

2. Dynamic modeling

This section provides a detailed description of the methodology and
state-of-the-art approach used for the dynamic modeling of the ORC
components, namely, the heat exchangers (evaporator and condenser),
expander, pump, control valves, and storage tank. The modeling of
single-phase heat exchangers, such as preheaters, subcoolers and re-
cuperators, can be derived from the evaporator and condenser models,
considering that the working fluid is found only at the liquid or only at
the vapor phase under normal operation.

The control of the ORC system is based on its dynamic response.
Therefore, understanding the process dynamics plays a critical role for a
successful controller design. The dynamic response of the ORC system
depends on a number of factors, such as cycle configuration, type of the

Table 2
List of dynamic modeling studies in the area of organic Rankine cycle technology.

Ref. Application Software Cycle Modeling approach

Configuration Working fluid Evap. Cond. Pump Exp.

[28] WHR (ICE) gPROMS Basic Ethanol MB MB is is
[33] Solar Matlab/Simulink Basic R245fa FV FV is is
[34] Solar Matlab/Simulink Basic R245fa MB MB is is
[35] WHR (ICE) Matlab/Simulink Dual evap. R245fa FV FV Pr. Map Pr. Map
[35] WHR (ICE) GT-POWER Dual evap. Ethanol FV FV Pr. Map Pr. Map
[29] WHR (ICE) Matlab/Simulink Basic 14 Pure fluids MB MB is is
[36] WHR (ICE) Matlab/Simulink Dual evap. R245fa MB MB Pr. Map Pr. Map
[37] WHR Matlab/Simulink Basic R123 FV FV is Pr. Map
[38] WHR Matlab/Simulink Recuperated R134a MB MB Pr. Map Pr. Map
[39] WHR (ICE) Matlab/Simulink Dual evap. Ethanol MB MB Pr. Map Pr. Map
[40] WHR (ICE) Matlab/Simulink Basic NA MB MB is is
[41] WHR (ICE) Modelica Basic R245fa FV FV Pr. Map Pr. Map
[42] WHR (ICE) LMS Imagine.Lab Basic Ethanol FV FV Pr. Map Pr. Map
[43] WHR (ICE) Matlab/Simulink Dual loop Toluene MB MB is is
[44] WHR Matlab/Simulink Basic NA MB MB is is
[45] WHR (ICE) NA Basic Acetone FV FV Pr. Map Pr. Map
[46] WHR (ICE) NA Basic R134a MB MB is is
[47] WHR Modelica Recuperated SES36 FV FV Pr. Map Pr. Map
[31] WHR (ICE) NA Basic R245fa MB MB is is
[48] WHR (ICE) Matlab/Simulink Dual evap. Ethanol MB MB NA NA
[49] Geothermal VMGSim Recuperated n-Pentane MB MB Pr. Map Pr. Map
[50] WHR (ICE) Matlab/Simulink Dual evap. NA FV FV is is
[51] WHR (ICE) Matlab/Simulink Basic Ethanol FV FV NA NA
[52] WHR (ICE) NA Recuperated R245fa FV FV is is
[53] WHR (ICE) Modelica Basic NA FV FV NA NA
[54] WHR NA Basic NA FV FV is is
[55] WHR Matlab/Simulink Basic R245fa FV FV NA NA
[56] WHR (ICE) Matlab/Simulink Dual evap. Ethanol FV FV is is
[57] WHR Matlab/Simulink Basic R245fa MB MB is is
[58] WHR (ICE) Matlab/Simulink Basic Ethanol MB MB is is
[59] WHR (ICE) Matlab/Simulink Basic R245fa MB MB is is
[60] WHR (ICE) Matlab/Simulink Basic R245fa MB MB is is
[61] WHR (ICE) Matlab/Simulink Basic R123 FV FV is is
[62] Geothermal Matlab/Simulink Recuperated R245fa MB MB is is
[63] WHR (ICE) Matlab/Simulink Basic Ethanol MB MB NA NA
[64] WHR Matlab/Simulink Basic R245fa MB MB is is
[65] WHR (ICE) Matlab/Simulink Supercritical R134a FV FV is is
[66] WHR (ICE) GT-Power Basic R245fa FV FV is is
[22] WHR Modelica Basic R245fa FV FV Pr. Map Pr. Map
[21] WHR Modelica Basic R245fa MB MB Pr. Map Pr. Map
[67] WHR Modelica Basic R245fa FV FV Pr. Map Pr. Map
[68] Geothermal VMGSim Basic NA MB MB is is
[69] Geothermal Modelica Dual evap. R245fa TV – – –

NA = not available; MB = moving boundary approach; FV = finite volume approach; TV = two-volume approach; Pr. Map = performance map; is = isentropic
efficiency.
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components, and working fluid.
The modeling paradigm to study the dynamics of the ORC tech-

nology used today is mostly modular, rather than simultaneous. The
principle of modularity implies that the outputs of a module (compo-
nent model) must be dependent on the inputs of the module and be a
function of internal parameters only. This allows for the reusability of a
model and for using a bottom-up approach to develop libraries of
components for easy application and reconfiguration. On the other
hand, the use of a simultaneous modeling approach fixes the system as a
whole and generates a computationally efficient code; however, this
technique does not allow modifications to be easily done to the model,
and the set of equations needs to be rewritten if a component is added.

The interest in dynamic modeling goes back to 2007 when Colonna
et al. [19,20] presented a dynamic modeling paradigm for a steam
Rankine cycle and experimentally validated the results against mea-
surements from a steam power plant. Wei et al. [21] presented two
alternative approaches for a dynamic model for the design of heat ex-
changers of an ORC unit in 2007. Quoilin et al. [22] presented a dy-
namic model and control strategy for a varying heat source in 2011. In
2013, Casella at al. [23] presented a software library [24] including
modular, reusable ORC components which were experimentally vali-
dated against a commercial ORC unit. Later, Quoilin et al. [25] reported
the development of a library for the dynamic simulation of thermo-
dynamic systems in the object-oriented language Modelica. Pierobon
et al. [26] presented a novel approach to integrate the dynamic per-
formance of the ORC system into the preliminary design phase. The
numerical model performed the thermodynamic cycle calculation and
the design of the components of the system. The results of these si-
mulations were used within the framework of a multi-objective opti-
mization procedure to identify a number of equally optimal system
configurations. A dynamic model of each of these systems was auto-
matically parameterized, by inheriting its parameter values from the
design model. Lakhani et al. [27] presented a dynamic modeling
scheme of an ORC-based solar thermal power system with an integrated
multi-tube shell and tube thermal storage system in 2017. Recently,
Hustler et al. [28] presented a validated dynamic model of an ORC unit
for waste heat recovery in a diesel truck. In addition, the thermo-phy-
sical properties of the working fluids (such as heat capacity, latent heat,
critical temperature, and density) affect the dynamic response of the
ORC system. Shu et al. [29] investigated the dynamic response of 14
different working fluids based on the rise time, settling time and time
constant. The results suggest that the working fluids with low critical
temperature provide a faster response than those of working fluids with
a high critical temperature.

Colonna et al. [19] recognized a difference between simultaneous
and modular paradigms classifying the causal and non-causal models.
In causal models, the systems are decomposed into computational

blocks with predefined causal interactions. This implies that input
variables to the system must be decided prior to the development of the
overall model, and the resulting model will have certain rigidity tied to
the boundary and initial conditions, resulting in an explicit state-space
form. However, bilateral coupling, discussed in detail in Ref. [19], can
be used to choose input and output variables. The early computer sol-
vers were able to work with causal models only, and often there was a
need to manually reduce differential algebraic equations (DAEs) to
ordinary differential equations (ODE), increasing chances of errors and
modeling efforts. Modern solvers can handle non-causal models and
simplify the models using computer algebra and reorder the equations
depending upon the choice of input and output variables, simplifying
the work for the user.

The ORC component modeling generally involves the solution of
three conservation equations for each component, namely, the energy,
mass and linear momentum balances. In addition, there are often
needed constitutive equations, which can include heat transfer and
pressure drop correlations and thermodynamic fluid property relations.

Depending on the accuracy and computational time, dynamic
models can be classified into two categories: data-driven and physics-
based models [22]. The data-driven models are based on the knowledge
of the system coming from measurements or previous simulations, and
make use of computational methods such as machine learning [30] or
transfer function identification to develop models of high computa-
tional efficiency [31]. The drawback is that the accuracy of the model is
highly dependent on the quality of the data set [32]. Extrapolation out
of the operating range of the data set can lead to poor accuracy and
estimation errors. If there are modifications to the original system, the
model cannot be adapted if physical information is missing. Physics-
based models are component-level models based on the conservation
laws (mass, energy and momentum). For this reason, changes in the
system configuration and tests of the system performance in extreme
operating conditions can be assessed more easily. The complexity of
both data-driven and physics-based models can change according to the
required accuracy and computational time. Low-order models are de-
veloped by doing several simplifications in physics-based models as
well as by selecting a lower number of independent variables for data-
driven models. They can be used for real-time applications and for
longer time simulations, such as annual simulations. High-order models
are suited for shorter time period simulations, spanning from a few
minutes to several hours, when the computation time is not critical, and
these are the ideal choice for the development of controllers of broader
applicability.

A list is shown in Table 2 of the dynamic modeling studies of ORC
systems and the applied modeling approaches.

Fig. 1. Time response of (a) gas turbine and (b) drum pressure of a gas-fired combined cycle power plant [71].
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2.1. Heat exchangers

The dynamic response of the ORC system is mainly governed by the
heat exchangers. The heat exchangers account for the majority of per-
formance lag due to dynamic changes in the operating conditions. This
is because the time constant of the heat exchangers is much larger than
those of expanders and pumps, and mechanical transients are much
faster than heat transfer phenomena. This is valid not only for ORC
systems [22,23], but also for conventional thermal power generation
plants [70]. For instance, Shin et al. [71] studied the response time of a
gas-fired combined cycle power plant to rapid changes in the gas tur-
bine load. As it can be seen in Fig. 1, the gas turbine could reach stable
operation in 4 s, whereas the steam generator required more than 200 s
for the high pressure part and 2000 s for the low pressure part to reach
steady operation.

In the particular case of heat exchangers involving two-phase flows,
two commonly adopted heat exchanger modeling approaches are the
finite volume and the moving boundary methods. Both methods are
based on the conservation laws of energy, mass and momentum for a
defined control volume. A third modeling approach, based on two vo-
lumes in non-equilibrium, is also illustrated. The conservation equa-
tions required to model the heat exchanger are mass, momentum and
energy balances for the heat source and working fluid.

2.1.1. Moving boundary method
In a moving boundary (MB) model, the fluid flow in the heat ex-

changer is divided into as many control volumes as states of matter of
the working fluid (i.e., liquid, two-phase, vapor) in the fluid flow. The
size of the control volumes varies in real time during transient opera-
tion, following the saturated liquid and the saturated vapor boundaries.
A moving boundary model of an evaporator is shown in Fig. 2. Solving a
moving boundary model is a non-linear implicit problem that leads to
convergence issues if proper guessed values are not provided [72].

The issues related to the guessed values decrease the robustness of
the proposed models. The set of non-linear systems of equations of the
MB is generally solved using the Newton solver [73]. However, the
computational effort of the model depends on whether the system of the
equations is presented in a causal formulation or an acausal formula-
tion.

The mass balance of the working fluid is given by:

+ =
A

t
m

z
( )

0
wf XA wf wf,

(1)

Since there is no mass entering and leaving the wall, there is no
need for a mass balance of the wall. Generally, the dynamics of the heat
source are fast enough, leading the term m

z
hs to be close to zero.

Therefore, it is not necessary to apply a mass balance for the heat
source. The energy balance of the working fluid and exhaust gas share
the same general form, given by:

+ = =
A h pA

t
mh

z
D U T T D U T

( )
( )hs XA hs XA

eq w wf eq
, ,

(2)

Deq is the effective flow path diameter for either the working fluid
and exhaust gas, U is the overall heat transfer coefficient, and T is the
temperature difference between the fluid (working fluid or exhaust gas)
and the wall. The energy balance of the wall is given by:

= +A c L dT
dt

U A T U A Tw XA p w w w
w

wf w wf w wf w hs w hs w hs w, , , , , , , , (3)

where subscript w represents the wall, cp is heat capacity, Lw is the
length in the axial direction, Aw,XA is the heat transfer area between
working fluid and the wall, Uwf,w is the heat transfer coefficient between
working fluid and the wall, Twf,w is the temperature difference be-
tween the wall and the working fluid, is the heat exchanger efficiency
multiplier, which accounts for heat loss to the environment, Ahs w, is the
heat transfer area between the exhaust gas and the wall, andUhs w, is the

heat transfer coefficient between the exhaust gas and the wall.
The linear momentum balance is typically considered to be static,

and if the pressure drop is neglected, the balance becomes trivial:

=
p
z

0wf

(4)

Eqs. (1)–(4) represent the generalized forms of the mass, energy and
linear momentum balances of the heat exchangers. These equations
need to be extended to the subcooled, two-phase, and superheated re-
gions in the moving boundary model of the heat exchangers.

2.1.2. Finite volume method
In the finite volume method, the flow length of the heat exchanger is

discretized into n cells in which the energy and mass conservation
equations are applied. The fluid properties are assumed to vary only in
the flow direction. The finite volume model of a heat exchanger is
shown in Fig. 3.

The properties of the fluid for each volume can be calculated either
at the mean states of the two nodes (“central scheme”), or it can be
assumed that the properties of the fluid for each volume are equal to the
properties of the fluid leaving the volume (“upwind scheme”). If the
fluid flows only in one direction, the upwind scheme is more robust.
The central scheme is more computationally intensive than the upwind
scheme, but it deals better with discontinuities in the case of flow re-
versal [74]. The properties of the fluid at the cell boundaries are re-
presented by the symbol “*” in Fig. 3. The area of cell, volume of cell,
temperature and pressure at each node are given by:

= = =

= =+ ++ +

A V i n

h T

; ; 1, 2, 3

;
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n i
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h h

i
T T

2 2
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(5)

The mass balance for each cell and side of the heat exchanger is
given by:

= =

= + =

V m m
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dm
dt i

d
dt i i

dm
dt i h p

dh
dt p h

dp
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The energy balance is given by:

= +

= + +

m h m h Q

V m h h m h h Q p

( )

( ) ( )

dU
dt i i i i i

i i
dh
dt i i i i i i i i

dV
dt

1 1

1 1 1

i

i i
(7)

The linear momentum balance is typically assumed to be static, and
if the contribution of friction, buoyancy forces and fluid acceleration
are considered, the balance becomes:

= + +
p
z

dp
dz

dp
dz

dp
dz

wf wf

f

wf

b

wf

acc (8)

Fig. 2. Moving boundary approach layout for the evaporator, Peralez et al.
[31].
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2.1.3. Comparison of moving boundary and finite volume method
For a dynamic simulation of the ORC system, Wei et al. [21] com-

pared the moving boundary and discretization technique approach.
Their results suggested that both approaches can predict the dynamic
performance of the ORC system fairly well, with less than 4% relative
difference compared with the experimental results. The simulation does
not show the numerical chattering or oscillations in the results. As for
the FV model, the level of discretization plays a critical role in the ac-
curacy, computational effort and numerical inconsistencies.

As a general rule of thumb, a minimum number of 20 nodes is re-
commended to avoid numerical inconsistency in the simulation results
[76]. The level of discretization might affect the working fluid phase
boundary from one cell to the next, which would generate a numerical
mass flow rate due to the discontinuity characterizing the density in the
regions around the saturation lines [77]. Desideri et al. [76] developed

a dynamic model of an ORC system based on FV models for the eva-
porator and condenser, and compared the accuracy of the expander
power output for different levels of discretization and corresponding
computational effort; see Fig. 4.

Applying a high level of discretization results in a better accuracy,
but at the expense of a higher computation effort. For a number of CVs
below 20, a non-physical oscillation between time t = 300 s and
t = 310 s characterizes the expander output power simulation results.
This phenomenon is explained by the displacement of the working fluid
phase boundary from one cell to the next. This generates a numerical
mass flow rate due to the discontinuity characterizing the density in the
regions around the saturation lines. Increasing the number of CVs al-
lows one to reduce the magnitude of this phenomenon. For a level of
discretization above 20 CVs, negligible differences in the simulation
results are registered, while the computational time of the models

Fig. 3. Finite volume modeling approach of the heat exchanger, adapted from Xu et al. [75].

Fig. 4. (a) Expander output power as predicted by the finite volume model for different discretization levels. (b) Computational time for the different discretization
levels, Desideri et al. [76].
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increases significantly, as shown in Fig. 4b. This analysis allows one to
identify a level of discretization of 20 CVs as a good compromise be-
tween accuracy and simulation speed for this specific simulation.

Although the heat transfer and pressure drop correlations provide
accurate assessments of the heat transfer and pressure drop, it is gen-
erally difficult to use these correlations for dynamic simulations as they
may slow down the calculation process, and potentially cause numer-
ical instabilities and simulation failure. Quoilin et al. [78] proposed a
fast, robust approach to model heat transfer. At nominal conditions, the
heat transfer coefficient is determined and termed as the nominal heat
transfer coefficient. For situations other than nominal conditions, the
heat transfer coefficient is computed as follows:

= m
mn

n

m

(9)

and n are the heat transfer coefficient at the given state and the
nominal heat transfer coefficient, m mand n are the mass flow rate of
working fluid at the given state and the nominal mass flow rate, andmis
a constant that depends on the heat transfer correlation.

The heat transfer coefficient can also be calculated using Eq. (10)
[78]. The transitions between the different heat transfer coefficients
(liquid, two phase, and vapour) may cause inconsistency and simula-
tion failure. The non-zero quality, x,width based transition by inter-
polating between the heat transfer coefficients can resolve this issue. In
the interpolation function, the heat coefficients are represented in the
form of vapor quality, x . The vapor quality is defined by an enthalpy

ratio as presented in Eq. (10). This results in a smooth function as the
vapor quality and its first derivative are continuous. This continuity
avoids negative effects in the solution process.

=

<

+ <

<
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=
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+
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tp liq
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l
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Desideri et al. [79] compared the FV and MB models based on ex-
perimental data. The heat transfer coefficients were calculated using
Eq. (2), a heat transfer correlation, and a constant value of the heat
transfer coefficient, respectively. The FV model predicts the experi-
mental data more accurately than the MB, but with larger computa-
tional effort, as shown in Fig. 5.

The transient of the pressure dynamic is very fast. This leads to stiff
models, which necessitate small time steps that can increase dramati-
cally the simulation time. Therefore, in most of the studies in the area of
dynamic modeling of heat exchangers of ORC systems, the pressure
drop is generally neglected or lumped into a single parameter. Wei et al.
[21] assumed a linear pressure drop across the entire evaporator during
dynamic modeling of the ORC system, while Xu et al. [75] included a
pressure drop for each working fluid phase independently by assigning

Fig. 5. Results of the heat transfer coefficient analysis on the finite volume and moving boundary models, Desideri et al. [79].
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each phase its own linear pressure drop along the spatial length in the
dynamic modeling of an ORC system.

The heat exchanger dynamic modeling is typically limited to one-
dimensional modeling approaches, since two and three-dimensional
spatial models bring a level of computational and analytical complexity
that is unsuitable for the purposes of multi-component dynamic mod-
eling and control.

The moving boundary modeling approach is much faster (by ap-
proximately three times) than the finite volume approach. However,
the moving boundary approach has a lower accuracy than the finite
volume approach when compared with experimental data. In addition,
the moving boundary approach is more difficult to implement due to
the complexity of variable control volume lengths, the need to in-
corporate the mean void fraction and the difficulty to extend the model
to various heat exchanger types and geometries. The finite volume
approach is simple, easy to derive, and easy to implement with various
heat exchanger types and geometries due to the ease in reconfiguration
of the model.

Furthermore, the finite volume method can provide additional va-
lues of the heat exchanger parameters, while the moving boundary
method only provides values for the outlet of the component and
lumped values. For example, the finite volume approach can provide
the tube wall temperature at uniform length intervals along the length
of the tube, while the moving boundary model only provides the
lumped value for each working fluid phase.

Refer to Table 2 for the list of modelling methods applied to ORC
systems.

2.1.4. Two-volume method
For phase-change heat exchangers, where evaporation or con-

densation occurs in the shell side of the heat exchanger, it might be
advantageous to model the shell side considering only two volumes,
liquid and vapor, which are not in thermal equilibrium, as shown in
Fig. 6. The interface between the two volumes defines the level of liquid
in the shell. This model is suitable for kettle reboilers, which are used to
vaporize the working fluid in large-scale ORC units [69], or shell-and-
tube condensers with hot-well, where the liquid is collected at the
bottom of the shell [80]. Depending on the evaporation and con-
densation rate in each of the volumes, mass is exchanged between the
two volumes. The heat source or cold sink flow in the tube bundle,
which can instead be discretized using a finite volume approach. The
mass, energy and linear momentum balance of the liquid (‘l’) and vapor
volumes (‘v’) are:

= + = +

= + = +

= +

= +

V m m m

V m m m

dm
dt l

dV
dt l

d
dt cond evap in

dm
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d
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dp
dt h p

dh
dt

d
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l l
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Eq. (12) defines the mass exchanged between the two volumes, i.e.,

the evaporation and condensation ratesmevap andmcond. They depend on
the two coefficients Cevap and Ccond, which can be tuned from experi-
mental data, and on the vapor quality of the volumes xl and xv with
respect to the references xl ref, and xv ref, , which are ideally 0 and 1, re-
spectively. pdrop in, and pdrop out, refer to the working fluid pressure
drops at the inlet and outlet ports, where as gll l is the geodetic pressure
for the liquid volume.

2.1.5. Numerical issues and mitigation strategies
The dynamic modeling is subject to different numerical issues,

leading to potentially slow simulation or to simulation failures that can
make the model unusable for some externally imposed operating con-
ditions.

In the moving boundary method, the simulation issues generally
arise when the iteration process leads the solver to evaluate a physically
impossible solution (typically the temperature profile of hot and cold
streams crossing along the length of the heat exchanger). This can be
due to the heat exchanger model itself, or to the external models im-
posing impossible operating conditions on the heat exchanger.

Discontinuities in the model variables result in the phenomenon of
chattering, a well-known issue in finite-volume, two-phase flow models.
The chattering can lead the computed variables of the model to exceed
their acceptable boundaries and cause failure of the simulation.

Failure in the dynamic simulations may occur during the in-
itialization phase or during the simulation phase of heat exchangers
involving a discretized modeling approach. If start and initial values are
not assigned properly, the solver may set these variables to default
values, leading to non-convergence of the heat exchanger model [78].
However, also with adequate start and initial values, the non-linear
system might fail to converge during initialization. Li et al. [81] pro-
posed a simple approach to improve the convergence of non-linear
systems. During initialization, the heat transfer coefficients and pres-
sure drops are assumed constant, and after a few seconds (once the
system is stabilized), the pressure drop and heat transfer equations are
activated one by one. Another key element in non-convergence of the
simulation may be the result of zero mass flow rate in components,
leading to a stiff system of equations, which may require a very small
time step and consequently, the computation time may drastically in-
crease. In order to work around the problem, a very small mass flow
rate (non-zero) may be imposed, ensuring that the system of equations
converges without affecting the results.

In order to avoid freezing of the simulations at the initiation of the
disturbance, the disturbances should not be defined as a step change,
but rather as smooth transitions, avoiding infinite derivatives in the
components of the system.

Due to discontinuities in the model variables, chattering may occur
and result either in simulation failure, extremely slow simulation or
most often high-frequency oscillations. During the phase transition
(liquid to two-phase) in two-phase heat exchanger models, a dis-
continuity in the first derivative of the density may lead to such issues.

Region 1 «Pool boiling»

Region 2 «Vapor»

mout

mevap

min

mcond

Vl

Vv

Qwall,vapor

Qwall,liquid

Qliquid,vapor

Qext,vapor

Qext,liquid

.

.

.

.

..

.

.

. *

*

Fig. 6. Two-volume model of the kettle reboiler, adopted from Pili et al. [69].
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The simulation may fail or result in a stiff system if the cell-generated
(and purely numerical) flow rate due to this discontinuity causes a flow
reversal in one of the nodes as well as oscillations in pressure. Quoilin
et al. [77] carried out a comprehensive analysis of the issues linked to
simulation failures during integration in finite-volume flow models and
provided several methods to tackle chattering and flow reversal pro-
blems. A filtering method, truncation method, smoothing of the density
function and density derivative, a mean densities method, an enthalpy
limiter method, and a smooth reversal enthalpy method were suggested
to tackle such simulation failures and resolve these issues [77].

2.2. Expander

For the dynamic modeling of ORC systems, the time constants
characterizing the expansion and compression processes are small
compared to those of the heat exchangers. Thus, the models for the
expansion machine can be based on empirical or semi-empirical alge-
braic correlations where dynamics are neglected, i.e., a lumped model
based on performance curves or the semi-empirical model developed by
Lemort et al. [82].

There are two types of expansion machines for ORC systems, the
volumetric expander and the turbo-expander. The choice of the type of
expander is dependent on the system design, size, and application.
Since the residence time of the working fluid in the expander is rela-
tively small in comparison to those of the evaporator and condenser,
the use of a static model is preferred for the modeling of the expansion
machine. The model of the expander should include both the first and
second thermodynamic laws. The first law includes the dependencies
among pressure, flow rate, and rotational speed, while the second law
relates the isentropic efficiency with the flow rate and pressure as well
as the rotational speed [83].

2.2.1. Volumetric expander
The dynamics of the expander and the pump are very fast compared

to those of the evaporator and condenser and are modeled at steady-
state. Neglecting the heat loss, a volumetric expander can be modeled
by its isentropic efficiency and filling factor, given by:

=
W

m h h( )exp is
exp

wf exp in exp out
,

, , (15)

=
m

V N
wf

exp in sw exp, (16)

The outlet enthalpy is given by:

=h h h h( )exp out exp in exp is exp in exp out is, , , , , , (17)

In the case that experimental data are available, a performance map
of a volumetric expander can be obtained, predicting the isentropic
efficiency as a function of the expander inlet pressure, expander rota-
tional speed, and expander pressure ratio (see e.g. Ref. [47]). The mass
flow rate through an expander is given by:

=m V Nwf exp in sw exp, (18)

The losses of volumetric expanders include leakage losses, under-
and over-expansion losses, friction losses, and heat losses. In order to
obtain an accurate result, the work done by a volumetric expander
should be calculated considering both the under-expansion and over-
expansion losses [22,57]. Quoilin et al. [84] presented a detailed semi-
empirical model of a scroll expander, accounting for heat losses,
working fluid leakage loss, and under-expansion and over-expansion
losses. The model is based on the physics of the expansion process
across the machine, where a few unknown parameters are tuned by
fitting with experimental data.

2.2.2. Turbo-expander
The dynamic of the turbine is very fast compared to that of the heat

exchangers, and thus the turbine model is at steady-state. A perfor-
mance map of the turbine can be used to calculate the mass flow rate
through the turbine as a function of the rotational speed and pressure
ratio:

=m performance map N p( , )wf exp in exp, (19)

Xu et al. [75] used the turbine inlet temperature and Wei et al. [21]
used the pressure ratio from the turbine performance map to calculate
the mass flow rate through the turbine. The semi-empirical formulation
of the Stodola equation [85] can be used to calculate the mass flow rate
of the working fluid through the turbine:

=

=

m K p PR

PR

(1 ( ) )wf exp eq in exp in exp
p
p

, , ,
2

in exp

out exp

,

, (20)

The Keq integrates the equivalent inlet nozzle cross-section and the
discharge coefficient and is calculated from the turbine performance at
the nominal condition:

=K
m

p PR
( )

( ) ( ) [1 ( ) ]
eq

wf exp n

in exp n in exp n n

,

, ,
2

(21)

The enthalpy at the outlet of the turbine is given by:

=h h h h( )out exp in exp exp is in exp out is exp, , , , , , (22)

In most of the previous studies, the isentropic efficiency of the
turbine was assumed constant. However, since the ORC system mostly
operates far from design point in transient conditions, assuming a
constant isentropic efficiency may lead to significant errors in the dy-
namic response of the ORC system [83]. Also the part-load performance
in steady-state conditions will be inaccurately predicted by assuming a
constant isentropic efficiency of the expander. An alternative to as-
suming a constant is to obtain the turbine isentropic efficiency from a
turbine performance map, as in e.g. Xu et al. [75]:

= performance map N PR T( , , )exp is exp exp in exp, , (23)

The power output of the expander is given by:

=W m h h( )exp wf in exp out exp, , (24)

2.3. Pump

The dynamic response of the working fluid pump is very fast com-
pared to that of the heat exchangers; hence, the pump is typically
modeled using a steady-state lumped parameter model [60]. Such
model can be based on performance maps provided by the pump
manufacturer. The performance chart includes head versus volume flow
curves at different rotational speeds. If the map is provided with one
rotational speed only, curves at other speeds can be approximated by
means of a kinematic similarity principle. Another type of performance
chart includes efficiency curves on the head-flow plane or in terms of
power consumption curves as a function of flow and speed [83]. Heat
losses to the environment are usually neglected.

For centrifugal pumps, the volume flow rate is a function of both the
head and the rotational speed. The crossing point between the char-
acteristic curve of the system and the performance curve of the pump
defines the operating point, as shown in Fig. 7.

For a positive-displacement pump, the mass flow rate through the
working fluid pump is obtained from the performance curve (pump
speed vs mass flow rate). If the dependency on the pressure ratio is
neglected:
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=
= +

m performance map N
m C C f

( )wf pu pu

wf pu pu

,

, 1 (25)

where Npu is the pump speed, C and C1 are empirical constants, and fpu
is the frequency of the pump motor. In case the performance maps are
not available, the mass flow rate can be obtained from the volumetric
efficiency of the pump:

=m mwf wf ideal vol pu, , (26)

The volumetric efficiency, ,vol pu, is a function of the pump speed
pump (revolutions per second) and the pressure ratio across the pump

[56]. The ideal mass flow rate of the pump is given by:

=m V Nwf ideal pd pu, (27)

Vpd is the pump displacement volume, and is the working fluid
density. The pump power consumption and the outlet temperature are
given by:

=W
m p p( )

pu
wf out pu in pu

is pu

, ,

, (28)

= +T T
m C

W
(1 )

out pu in pu
is pu

wf pu p pu
pu, ,

,

, , (29)

The isentropic efficiency can also be expressed as a function of
known parameters (polynomial fit) from the performance map of the
pump provided by the manufacturer. These parameters may include the
pump capacity fraction, Xpu cf, , defined by a reference [86].

=X
v m

Vpu cf
in pu wf pu

in pu max
,

, ,

, , (30)

Depending on the size of the pump, the pump capacity factor is
limited by the boundary condition, V X 1su pu min pu cf, , , . The known
parameters in the polynomial fit can be represented by the mass flow
rate fraction, Xpu mf, , given by [75]:

=X
m

mpu mf
wf pu

wf pu max
,

,

, , (31)

mwf pu, is mass flow rate at any given condition while mwf pu max, , is
maximum mass flow rate that pump can deliver. Desideri et al. [79]
used a second-order polynomial, as a function of the non-dimensional
pressure ratio and non-dimensional pump frequency, to estimate the
isentropic efficiency of the pump:

= + + + + +C C f C f C r C r C f r( ) ( )pu is pu pu pu pu pu pu, 1 1
2

3 4
2

5 (32)

In most of the simulation studies, the isentropic efficiency of the
pump is assumed to be between 60% and 85%. However, a review of

the experimental data obtained for ORC systems indicates that the
isentropic efficiency of the pump can be as low as 40% [16]. As with the
expander, assuming a constant isentropic efficiency may lead to in-
accurate dynamic response or part-load predictions; however, in this
regard the influence of the pump is less than that of the expander. This
is because the pump power is usually lower than 10% of the mechanical
power at the turbine shaft.

Refer to Table 2 for the list of studies presenting performance esti-
mation for pump and expander models.

2.4. Storage tank/liquid receiver

During the transient operation of the ORC system, the reservoir/
storage tank acts as a buffer for the working fluid. The amount of
working fluid charge and leakage can significantly alter the ORC system
dynamics. A system with over filled working fluid will lead to condi-
tions, where the working fluid start accumulating in the condenser as
liquid. This will result in a larger degree of sub-cooling and a higher
condenser pressure resulting in reduced power output and decreased
efficiency.

The storage tank avoids the accumulation of working fluid in the
condenser. On the other hand, if the working fluid amount is too small
or working fluid has leaked out of the system, the system start-up will
become almost impossible because during the start-up phase the pump
will run out of working fluid and a cyclic flow may not be established.
For the modelling of the storage tank (liquid receiver), it is usually
assumed that the liquid and vapor phases are in thermodynamic equi-
librium at all times, i.e., the vapor and liquid are assumed saturated at
the given pressure. The pressure drop is typically neglected. The mass
balance is given by:

= = +
dm

dt
m m

dm
dt

V
h

dh
dt p

dp
dt

; . · ·wf
in wf out wf

wf

p h
, ,

(33)

V is the volume of the liquid receiver tank in m3. The density of the
liquid can be represented in terms of a liquid level fraction L (0 when
the tank has only vapor, 1 when the tank is full of liquid), given by:

= +Y Y(1 )l v (34)

The term, Y , is the level of saturated liquid in the receiver tank of
the ORC system. Inserting the equation for the density, Eq. (34), into
the mass balance equation, Eq. (33), gives the following equation:

+ + =V dY
dt

d
dt

Y
d
dt

Y m m( )· · ·(1 )l v
l v

in wf out wf, ,
(35)

The generalized relation for the energy balance for the receiver tank
[79] is given by:

= +h Y h Y h(1 )l l v v (36)

Substituting Eq. (36) into Eq. (7), the mass balance in receiver tank
can be represented as [79]:

+ + +
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h h dp
dt

Y h
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l
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(37)

Another aspect of ORC system design is to avoid that the change in
the level/height of the receiver tank, at any time during operation,
leads to a reduction of the net positive suction head available, becoming
lower than net positive suction head required by the pump. Based on
the level of working fluid in the receiver tank, the loss/leakage of
working fluid charge quantity can be identified and working fluid
quantity can be replenished.

Growing rotational 
speedHead

Volume flow rate

1

2
Operating points

Pump 
characteristics

Pumping system 
characteristics

Fig. 7. Flow-head characteristics of a centrifugal pump.
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2.5. Control valves

The dynamic characteristics of the control valve can be modeled
with relevant equations that correlate the valve opening, boundary
conditions and the flow through the component. The control valve
model for WHR-based ORC systems is based on either the in-
compressible flow for liquid flow or the compressible flow for vapor
and two-phase flow [56]. If the system dynamics are fast, the valve
positioning servo-system plays an important role in determining the
closed-loop dynamic behavior of the system and should be included in
the model [83]. However, it is difficult to gain access to information
about the servo-positioner dynamics; hence, first-order or second-order
linear systems can be used to consider these dynamics.

In case experimental data are available for the ORC system, an
empirical correlation can be developed to calculate the mass flow rate
for incompressible flow based on the relative valve openings. Xu et al.
[75] used an empirical approach to estimate the incompressible flow
rate through the control valve for a parallel evaporator ORC system. In
the parallel evaporator configuration, the waste heat from an internal
combustion engine is recovered using two evaporators in a parallel
arrangement, one recovers heat from the exhaust gas recirculation flow
and the other from the exhaust gas tail pipe [75]. The mass flow rate for
such configuration is given by:

= +m m mwf wf ev wf ev, 1 , 2 (38)
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, 2 (39)
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m m
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1
1wf ev wf

m
, 2

(42)

The parameters µvl,1 and µvl,2 are the opening of valves 1 and 2,
respectively, before each evaporator. The discharge coefficient, Cd, and
the constant c1 can be found by model identification [87]. The term, rm,
is the mass flow rate ratio of the working fluid between the two eva-
porators. For cases where experimental data are not available, the mass
flow rate through the valve for incompressible flow can be determined
as follows [56]:

=m µ C A p p2 ( )cv cv d O in out (43)

The thermodynamic state of the working fluid at the outlet is cal-
culated assuming an isenthalpic process through the valve. The mass
flow rate through the valve for compressible flow is given by [75]:
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is the heat capacity ratio. Assuming an isentropic process across
the valve, the outlet temperature can be estimated by the enthalpy and
pressure at the outlet of the valve. There is only one previous study [46]

that considered the internal structure of the servo valves to estimate the
valve opening.

2.6. Sensors

The measuring instruments might have a significant delayed re-
sponse, especially the temperature sensors [83]. If the time scale of the
measuring instrument is not negligible compared to the closed loop
response time, it should be included in the model. First or second-order,
low-pass linear systems can be used for this purpose. Lemort et al.
[53,88] modeled the delayed response of the pump actuator, tem-
perature and pressure sensors by a first-order model with the help of the
manufacturer data.

The dynamic modeling approach of the components of the ORC
system are similar to conventional power plants such as combined cycle
power plant [89–92], coal fired power plant [93–95], nuclear power
plant [96–99], and concentrated solar power [100–102]. The dynamic
modeling of these systems was carried in Dymola and Simulink. A
comprehensive review of dynamic simulation, its development and
application to various thermal power plants is presented in Ref. [70].
The underlying flow models and their fundamental assumptions and
component level modeling of conventional thermal power plants are
discussed in detailed.

3. Controller design

The choice of working fluid, thermodynamic design, and mechan-
ical design of the ORC components are prerequisite for the controller
development and are used as input data for the controller design.
Initially, the specific and concrete goals of the control system should be
defined in terms of control variables and suitable set points. The main
tasks of the control system are to keep the system safe and stable, to
minimize the impact of disturbances and to optimize the ORC opera-
tion. In order to avoid singularities in the trajectories of the system, the
number of manipulated variables should be equal or higher than the
number of control variables. In the most common case, they are chosen
in equal number. In the next phase, the dynamic interactions among the
manipulated variables and control variables are investigated by ana-
lyzing the dynamic response of the control variables to step changes or
more generally rapid changes of the manipulated variables. The step
responses and transfer functions can provide an insight to identifying
the dominant time constants of the system, the fastest system variables,
and the slowest system variables. The transfer functions can be devel-
oped from experimental data or simulations of a physics-based model.
Transfer functions are algebraic equations based on an input–output
relationship, whereas the physics-based models are ordinary differ-
ential equations described by means of inputs, outputs and states.

The basic control strategy of the ORC system can be divided into
two basic approaches: following the connected load (FCL) and fol-
lowing the thermal energy input (FTE) [103]. The number of actuators
which can be manipulated in the system, as well as the variables that
need to be controlled and kept close to the set points, define the basic
control strategy. For instance, the rotational speed of the expander can
be kept constant or it can be varied according to the operating point for
optimal part-load performance.

In the FCL mode, the expander and the generator are linked with the
same shaft. A gearbox could be included to keep the same speed ratio
between the expander and the generator, in the case they do not rotate
at the same speed. In most cases, systems in FCL mode have the gen-
erator connected to the power grid without a power converter interface.
The grid frequency and the number of poles of the stator winding of the
generator determine the rotational speed of the generator (and the
expander). The produced electric power from the generator needs to
follow the variations of the electric demand, while the ORC process
variables must be kept within safe operating limits. For this purpose,
the heat source is controlled and adapted to the grid load. The FCL
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mode without a frequency converter is depicted in Fig. 8.
If a frequency converter is included, the rotational speed of the

expander can be used to control the upstream pressure of the expander,
thus providing an additional degree of freedom. However, the operating
conditions of the ORC system may change substantially due to changes
in the load requirements or expander speed.

In the FTE mode, the goal of the system is to maximize the elec-
tricity production based on the heat available. The electric power from
the generator follows the variations of heat source conditions. In an
ideal case, all the heat available is fed to the ORC and converted into
electricity. Some control elements on the heat source stream might still
be required for extreme conditions to avoid overloading and/or thermal
degradation of the working fluid. The FTE mode is shown in Fig. 9.
Here, a frequency converter is included, but if not present, the rota-
tional speed of the expander is kept constant.

In terms of a control strategy, the ORC system can be operated in the
sliding pressure mode or the fixed pressure/variable mass flow mode, or
a combination of both. However, these operational modes do not take
into account the dynamic response of the ORC system. Nonetheless,
they are useful for the part-load modeling of the ORC system and for
defining the controller set points.

The sliding pressure control involves changes in the evaporator
pressure resulting from the pump, evaporator and expander char-
acteristics. The fixed pressured/variable mass flow rate scheme can be
implemented by the addition of a pressure control valve (throttling
valve) at the expander inlet to maintain pressure at a constant level in
the evaporator, while the pump controls the mass flow rate through the
cycle. This technique is easy to implement and might maintain a high-
cycle efficiency (arguably theoretically) by keeping a high pressure at
part-load; however, the throttling of the valve results in exergy losses,
and the evaporation process is not optimized for the different heat
source conditions (mismatches of the heat source and working fluid
temperature lines in the T-Q diagram), resulting in pinch-point limita-
tions and sub-optimal operation. The fixed pressure operation might be
chosen at low load to ensure practical operation of the system, avoiding
exceeding the minimal load of the components. For these reasons, at
medium/nominal load range the sliding pressure mode is typically
preferred. The operational strategy, which will then be important for
the controller set points, can be optimized offline without accounting
for the dynamics. If the dynamics is included, the controller requires an
internal optimization function (or a supervisory block) that defines its

actions by solving an online optimization problem.
As for the control of ORC systems, previous works were often car-

ried out by validating a dynamic model against an open-loop response
caused by a step disturbance or a set point change. The validated
models are then simulated/tested with a control algorithm im-
plemented in a closed loop. However, in practice the ORC system
control schemes are highly dependent on the application, type of
equipment and cycle configuration. The control scheme of a grid-con-
nected unit is significantly different from that of a system in off-grid
mode, because it can be assumed that larger plants in the grid will
mainly be responsible for the stability of the grid in the first case,
whereas in an off-grid system, the ORC unit has to ensure proper con-
tribution to the frequency and voltage stability of the decentralized
network. Renewable-based off-grid ORC systems have been proposed
mainly for remote areas [104].

Various works utilizing validated dynamic models and discussing
control schemes have been reported in the literature. Given the large
amount of control ideas that have been proposed, a brief overview of
the main classes of controllers is provided here. The main techniques
are summarized in Fig. 10.

State-of-the-art ORC systems make use of proportional-integral-de-
rivative (PID) controllers. These systems rely on the idea of directly
acting on the error between the set point and the control variable
(output feedback control) [105]. They have the advantage of being
simple and easily available as electronic modules. The tuning of the
controller parameters can be carried out empirically, directly on the
plant without the need of a model. Some simple guidelines for con-
troller tuning have been developed, such as the Ziegler-Nichols rules
[106].

Another approach makes use of an input–output description of a
linear or linearized dynamic model of the unit, and then applies tech-
niques developed from the analysis of the linear dynamic system. For
multi-variable systems, where more than a single pair input/output is
considered, multiple PIDs that work independently of one another are
typically installed. Given the interdependency of the system variables,
for instance, between the evaporator pressure and the degree of su-
perheating at the evaporator outlet, a conflict between the two con-
trollers or performance degradation can occur. Some methods exist to
decouple the controller action and avoid the interdependency among
the variables, but the stringent mathematical conditions on the system
properties that must be maintained limit the applicability of these

Fig. 8. A schematic of the ORC system operating with the FCL mode, Zhang et al. [57].
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methods. More measurements (not necessarily control variables) can be
fed to the same controller, to increase the amount of information that it
receives and improve its performance. This is the principle of cascaded
control. Additionally, since linear systems do not account for internal
time delays in the system, lead/lag compensators can be implemented
to compensate for these phenomena. To conclude, another important
improvement to classical PID controllers consists of including a feed-
forward part acting on the manipulated variables. The feed-forward
detects the disturbance or set point change and sets the manipulated
variables to compensate directly for their impact before there is any
noticeable change in the system output, which is different from what
occurs in the case of classical PID controllers based on output feedback
control.

In addition to the classical control techniques based on PID con-
trollers, the improvements made in computational science have en-
hanced the development of advanced control methods, where the
controller makes use of the computational power of modern processors
to design the controllers. Advanced controllers include optimal con-
trollers (OC), adaptive controllers (AC) and model predictive con-
trollers (MPC). Optimal controllers are designed to minimize a cost
function (optimization target). Optimal control methods include dy-
namic programming (DP) and linear quadratic controllers (LQ). Both
methods are based on a state-space model of the system, which gives
information on the dynamics and time development of the system.

Dynamic programming is a technique that defines future decisions
based on the previous ones, operating in a recursive manner. The
technique can be applied to both linear and non-linear systems, but in
discrete form. DP has the advantage of allowing for real-time optimi-
zation of the controller set points. The main drawback is the compu-
tational effort required to solve the optimal problem, especially if the
system has more than one state or control input [107].

LQ controllers are based on a state-space linear or linearized dy-
namic model of the system. They are a state-feedback technique and
therefore require the knowledge of the system state. If not all the states
are measurable, a state estimator (observer) has to be included to
provide information on the system states. The design of LQ controllers
is based on a trade-off between the performance of the controller to
reach the desired state and the energy required to control the actuators.
In fact, it can be worth accepting a penalty on controller performance, if
this results in a reduction of its energy consumption or in an increased
lifetime of the actuators. To reach this goal, a quadratic cost function is
minimized to design the controller feedback matrix. LQ controllers can
handle multi-variable systems with no particular increase in com-
plexity. The drawback when applied to non-linear systems is that the
technique was developed for linear systems and cannot account for the
nonlinear couplings between the systems variables. LQ controllers
cannot be used if the system states cannot be measured or estimated.

Such state estimators (observers) have been developed both for

Fig. 9. A schematic of the ORC system operating with the FTE mode, Zhang et al. [57].
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linear and non-linear systems, and they can be deterministic or sto-
chastic. State estimators make use of the manipulated variables and
measurable system outputs to estimate the system state. The separation
principle allows for the design of the controller and the state estimator
to be carried out separately. For linear systems, the Luenberger ob-
server is used to minimize the error between the system state and the
estimation. If stochastic noise is present in the system measurements
and inputs, the linear Kalman filter should be preferred because it
minimizes the sum of the estimation error variances. Non-linear state
estimators have also been developed, but the computational effort in-
creases significantly. The Extended Kalman Filter (EKF) and Unscented
Kalman Filter (UKF) have proven to have good estimation capabilities.
Both filters have similar computational effort, but the UKF has shown to
have higher speed of convergence and to be more robust against un-
certainties. Other state estimators exist, such as the particle filter and
moving horizon estimators, but they require considerable computa-
tional effort.

If changes in the system occur over time or uncertainties are initially
unknown, it would be ideal to use online adjustable controllers, which
can react and adjust their parameters according to an estimation for the
changes or uncertainties. These controllers are also known as adaptive
controllers. There are many different adaptive control techniques,
varying from gain-scheduling, extremum-seeking and generalized pre-
dictive control. While having the advantage of being able to deal online
with changes and uncertainties in the system, it might be difficult to
obtain robust, high-performance controllers that work in the entire
continuous range of the estimated parameters.

A further development in the 1980s regarded the introduction of
Generalized Predictive Controllers (GPC). These controllers, which can
also be considered as a subgroup of the family of the adaptive con-
trollers, minimize a cost function where the controller bases the choice
of the future inputs on the prediction of the system evolution in future
time steps. To reach this goal, an identification model of the system is
used, which relates inputs, outputs and disturbances. If the time horizon
for the optimization is infinite, the GPC becomes equivalent to the LQ
control.

Similar to the GPC, several other techniques have been developed
which predict the response of the system to decide how to set future
manipulated variables. These include Model Algorithmic Control
(MAC), Dynamic Matrix Control (DMC), Extended Prediction Self
Adaptive Control (EPSAC) and Predictive Function Control (PFC). All
these algorithms are part of the family of Model Predictive Controllers
(MPC). The advantage of MPCs is that they account for constraints on
both the control and manipulated variables. The algorithms differ in the
adopted process model (impulse response, step response, transfer
functions, state-space, neural networks), in the objective function, and
in the determination of the control law. Particular attention has been
paid to MPC methods because of their main advantages [108]:

– They can be used in a large variety of systems, even more complex
ones;

– Multiple variables can be considered with no particular increase in

effort;
– They can handle constraints in the optimization of the control law.

If the target function includes minimization of costs or maximiza-
tion of profits as well as the net power output, the term economic MPC
is often used. Economic MPC can define controller optimal set points
without previous offline optimization. As drawbacks for the entire MPC
class, the derivation of the control law is more complex than for simple
PID controllers, the control performance is largely affected by the
quality of the model, and the computational power might be an issue,
since an online optimization needs to be carried out each time step. The
advantages and disadvantages of each control approach are presented
in Table 3.

The ORC cycle layout and component selection also have an influ-
ence on the controllability of an ORC system [83]. For instance, an ORC
system with controllable speed volumetric expander will have an ad-
ditional parameter to control the evaporator pressure and thus allowing
a tighter control, even with classical controllers [22]. ORC units with an
intermediate heat transfer loops are easier to control due to the thermal
inertia of the intermediate heat transfer loop and can therefore operate
with classical controllers. The dynamics of recuperated ORC units is
more damped compared to non-recuperated systems owing to the ad-
ditional thermal inertia of the recuperator.

High temperature ORC units with compact heat exchangers are
more susceptible to thermal shocks that may cause heat exchanger
damage during an emergency shutdown. Overall, each system has a
different dynamic behavior and might need different control strategies,
governed by the process dynamics and the application requirements.

3.1. Proportional–integral–derivative control

The simplest control to guarantee stability of an ORC unit, is to have
a PI controller that manipulates the speed of the pump to keep the li-
quid level in the receiver tank constant. In this way, the ORC is passive,
in the sense that no optimal thermodynamic parameter is actively set,
but the pump working in safe operation is ensured [108]. Quoilin et al.
[22] presented three different control strategies based on a PI controller
for an ORC system with a scroll expander used for waste heat recovery
from an ICE. In all three approaches, the pump speed and expander
speed (scroll expander) were used as control variables. The first ap-
proach set constant evaporation temperature and degree of super-
heating; the second approach used an optimized evaporation tem-
perature from an offline steady-state optimization, which was a
function of the condensation temperature, heat source temperature and
mass flow rate of the working fluid; the third approach set the pump
speed according to the offline optimization as a function of the con-
densation temperature, heat source temperature and expander speed.
The controller parameters were tuned manually. The second control
strategy provides an overall better thermal performance of the ORC
system than those of the first and third control approaches.

Ni et al. [33] investigated the dynamic performance of a solar ORC
system with a scroll expander under cloudy conditions and proposed

Table 3
Summary of control techniques for ORC systems.

Control technique Model-based Linear/Nonlinear State estimator Single/Multi-variable Development effort CPU effort Performance

PID (empirical) No NA No Mostly single + +++ –
PID with linear system analysis Yes Linear No Mostly single ++ +++ –
Cascaded control Yes Linear/Nonlinear No Both + ++ +
Feed-forward Yes Linear/Nonlinear No Both + + +
Lead/lag compensation Yes Nonlinear No Mostly single + +++ +
Dynamic Programming Yes Linear/Nonlinear Yes/No Mostly single – – +++
Linear Quadratic Yes Linear Yes Multi-variable – + ++
Adaptive Yes Linear/Nonlinear Yes/No Multi-variable – — +++
MPC Yes Linear/Nonlinear Yes/No Multi-variable – — ++++
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two conventional proportional–integral–derivative (PID) controllers for
two control variables. The evaporation pressure and degree of super-
heating were controlled by manipulating the pump and expander
speeds. The set points for both the evaporation pressure and the degree
of superheating were kept constant. The results suggest that the cloud
blockage of the sun for short periods (five minutes) does not affect the
performance of the ORC system. For the specified simulation time
(5000–30,000 s), the system without the controller generated 84.95
kWh, while its counterpart with the PID control strategy generated
105.54 kWh, achieving an improvement of 24%.

Luong et al. [109] developed the load-following control strategy for
an ORC system that recovers the waste heat of a heavy-duty diesel
powertrain. Three independent PI controllers controlled the evapora-
tion pressure, condensing pressure, and the load demand. The mass
flow rate of the sink fluid and two throttle valves were selected as
manipulated variables. Li et al. [34] developed a dynamic model of a
small-scale solar ORC system with a turbine including a thermal storage
system. It was observed that for a specific solar period, there is a spe-
cific range of thermal storage system capacity that causes instability. It
was concluded that the capacity of the thermal storage system should
be carefully designed based on the local solar irradiation and dynamic
response of the thermal storage system. A PI controller was used to
ensure the stable operation of the system by maintaining a constant
degree of superheating by manipulating the pump speed. Lin et al. [95]
compared an ORC and an oil storage/ORC system recovering waste heat
from an automotive internal-combustion engine. PID controllers were
used for the ORC unit, which acted on the speed of the pump and the
expander to control the evaporator pressure and degree of super-
heating. The integration of an intermediate oil storage could dampen
the dynamic oscillations, but the costs per unit kW were higher than for
a simple ORC unit.

Jolevski et al. [44] developed a control structure of an ORC system
based on the non-square relative gain array and dynamic non-square
relative gain array methods. A state-space model of the ORC unit was
developed using a moving boundary approach for the heat exchangers
and considering a turbine with a control valve as the expander. The
state-space model has been linearized, so that the coupling between the
control variables (the turbine inlet pressure and temperature as well as
the condensation pressure) and the manipulated variables (the mass
flow rate of the coolant, the rotational speed of the pump and the
opening of the turbine throttle valve) were analyzed. Approximated
transfer functions, obtained from a Bode diagram (graph of the

frequency response of a system), were used to get the optimal para-
meters of the control structure. The independent PI controllers were
tuned to satisfy the robustness, phase margin of 45°, and high band-
width. The proposed structure achieved satisfactory control perfor-
mance for constant set points. Marchionni et al. [96] developed a dy-
namic model of a 40-kW ORC system with radial turbine and plate heat
exchangers and compared four different control strategies. For all cases,
the control variable is the turbine inlet temperature, which is kept at
the nominal value, to achieve maximum power output, to avoid thermal
degradation of the working fluid and to keep sufficient superheating at
the turbine inlet. The control strategies differed in the choice of the
manipulated variables: (i) speed of the pump only; (ii) speed of the
turbine only; (iii) speed of both the pump and the turbine; and (iv)
speed of the pump and recirculation from the pump to the condenser. PI
controllers with anti-windup were chosen and calibrated based on the
step response of the system. The turbine-based regulation strategies
achieved better control performance, whereas the pump-based control
strategies could keep the net power output closer to the design point for
increase and decrease ramps of the heat source mass flow rate.

Imran et al. [97] developed a PID control strategy for waste heat
recovery from long-haul trucks. The controllers were tested on a 45-
minute run of a 450 hp 13 l long-haul truck engine. The control variable
for every case was the degree of superheating at the turbine inlet,
whose set point was set to 20 K. The controllers were tuned using the
PID tuner application from MATLAB [110]. Two control strategies were
investigated with the manipulated variables: (i) the speed of the pump
and a bypass valve for the exhaust gas flow entering the ORC eva-
porator; and (ii) the speed of the pump and a throttling valve at the
turbine inlet. The second control strategy could increase the net power
output and outperform the first one.

Yang et al. [98] focused on a manager/controller structure of an
ORC recovering waste heat from a vehicle, where the manager has an
internal optimizer that defines the operational mode and optimizes the
evaporating and condensing pressures, whereas the controller utilizes
PIDs. The performance was simulated on the Highway Fuel Economy
Test cycle. The degree of superheating could be kept within 5–15 K. In
contrast to testing the controller in a simulation environment, Usman
et al. [111] presented the implementation of a PI controller in an ORC
unit with a scroll expander. The controller was compared with a PI with
feed-forward and lead-lag compensator on an actual experimental rig.

A FCL strategy was followed, and the speed of the expander was the
control variable. The speed of the pump was chosen as the manipulated

Fig. 11. Tracking of the expander set point speed by different control approaches, Usman et al. [111].
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variable. The PI controller was tuned following the Ziegler-Nichols
rules. The solution with PI, feed-forward and lead-lag compensator
could keep the expander speed within a relatively narrow range close to
the set point, and the system recovered faster when a step load was
imposed on the system; see Fig. 11.

Pili et al. [112] investigated the dynamic performance of an ORC
unit recovering waste heat from a reheat billet furnace. The unit was
controlled by three independent PI-controllers: the evaporator outlet
temperature and pressure and the condensing pressure were controlled
by, respectively, a bypass valve in the heat source line, the speed of the
pump, and the speed of the cooling fans at the condenser. The set points
were set by an offline steady-state, part-load optimization.

The system was subjected to a negative and a positive ramp in the
waste heat mass flow rate and temperature. The deviations from the set
points increased as the ramp rates became larger. The effect of the
environmental conditions on the controller parameters for the same
application was analyzed in [113]. The control studies involving PID-
based controllers for ORC systems are listed in Table 4.

3.2. Optimal control

The optimal controller is based on a model of the ORC plant (dif-
ferential equations) used to describe the path of the control variables
that minimize the cost function or performance indexes. The common
objective functions for the optimal control of ORC systems are thermal
efficiency, net power output, control effort, closed-loop tracking error
or a quadratic function as for the LQ control.

Peralez et al. [118] designed a controller maximizing the recovered
energy of an ORC system that recovers waste heat on board a diesel-
electric train:

=J W t W t W t dt[ ( ) ( ) ( )]
t

exp pu Aux
0

f

(48)

The control law maximized the net power output acting on the mass
flow rate of the engine exhaust gas via a bypass valve and on the mass
flow rate of the condensing air, while keeping the wall temperature and
pressure inside the evaporator within allowable limits. The optimal
control problem was based on a simplified model of the system solved
using dynamic programming and further improved by adaptive grids
for discretization. The ORC evaporator and condenser were modeled as
single-state systems.

The results suggest that a reasonable accuracy of the controller can
be achieved with lower computational effort compared to the optimal
control algorithm without adaptive grid. The trajectories of the optimal
control provide detailed insight into the dynamic behavior of the
system. In an extended version of the work [119], the authors address
the issue of real-time operation and reformulate the problem so that
dynamic programming is used as a supervisory control on the system,
avoiding observability issues.

Zhang et al. [55] proposed a multi-objective estimation of the dis-
tribution algorithm to control the working fluid temperature at the
evaporator outlet by manipulating the pump speed. The variation of the
temperature difference between the set point temperature and the
working fluid temperature at the evaporator outlet was minimized by
tuning the controller to minimize simultaneously the squared mean
value of the tracking error and the entropy of the superheated vapor
temperature. The results indicate that the proposed approach can sta-
bilize the superheated vapor temperature around the target value with
small oscillations. The authors [120] approached the control problem of
keeping the degree of superheating at the turbine inlet of an ORC
system close to the set point and rejecting the disturbances in mass flow
rate and temperature of the heat source, by using a single objective
optimization. The optimal controller was obtained by minimizing an
improved entropy criterion that combines the entropy of the tracking
error, the mean value of the squared tracking error and the control

effort. In addition, constraints on the rotational speed of the pump were
considered. The proposed control algorithm obtained smaller overshoot
and shorter settling time compared with a PID controller tuned in
MATLAB. The comparison is shown in Fig. 12.

The approach was then further extended in [121] using a quantized
information potential to characterize the quadratic entropy of the en-
tropy error and a particle swarm optimization to achieve the optimal
control law. The simulation confirmed the effectiveness of the method.

Zhang et al. [122] investigated the optimization of the set points of
a controller of an ORC system to improve the energy conversion effi-
ciency under varying operating conditions. The preliminary optimal set
points of the ORC system were obtained by performing a performance
analysis and optimization of the ORC system. Finally, the optimum
evaporation pressure and working fluid temperature at the evaporator
outlet were determined by combining the genetic algorithm with the
least squares support vector machine (a machine learning and su-
pervised learning model with associated learning algorithms that ana-
lyze data used for classification and regression analysis) [123]. Fol-
lowing the variation of the heat source, the optimal controller produces
a signal to operate the expander at the optimum speed for maximum
energy conversion efficiency.

Wu et al. [124] presented an offline optimal control design ap-
proach based on a mechanistic non-linear model of the ORC system.
The objective of the optimum controller is to maximize the nominal net
power output and to ensure safe operation of the ORC system during the
presence of disturbances. The evaporation pressure, condensation
pressure and degree of superheating were controlled by manipulating
the pump speed, expander speed, and mass flow rate of the cooling air.

Ren et al. [125] proposed a single-neuron-based controller to con-
trol the evaporator outlet temperature of an ORC system. The survival
information potential criterion was used to optimize the controller
parameters, minimizing the randomness and magnitude of the closed-
loop tracking error. The proposed neuro-controlled (NC) algorithm does
not depend on the model of the controlled ORC process. In essence, this
control algorithm is a data-driven control algorithm that can be im-
plemented easily and can reject stochastic disturbances.

An important class of optimal controllers include the linear quad-
ratic controllers. Luong et al. [126] employed two-input, two-output
and three-input, two-output multi-variable quadratic integral con-
trollers for an ORC system. The evaporation pressure and condensation
pressure were used as control variables, while the flow rate of the
condensing fluid and the position of the throttle valves placed before
the evaporator and expander were used as manipulated variables.

The controller was designed through linearization in MATLAB.

Table 4
PID-based control studies for organic Rankine cycle technology.

Ref. Control approach Manipulated
Variables

Control
variables

Disturbance
variables

System Controller

[22] FTE PI Nexp, Npu SH , Tev mhs
[33] FTE PID Nexp, Npu SH , pev DNI
[109] FCL PI µ µ m, ,tv tv air,1 ,2 pev, pcon,

Wnet

mhs , Ths , Tss

[34] FTE PI Npu Nexp DNI
[114] FTE PID Nexp, Npu SH , pev mhs , Ths
[44] FTE PI Nexp, Npu, mair pexp, pcon ,

Texp

mhs

[115] FTE PI Nexp, Npu, µtv TIT mhs
[116] FTE PID Npu, µtv,1 SH mhs , Ths

[117] FTE PID Npu, µtv,1 SH , pev mhs , Ths

[112] FTE PI µ N,tv pu,1 , Nfans T p,exp exp,

pcon

mhs , Ths

[111] FCL PI + FF + LLC Npu Wnet Wnet
[88] FTE PI + FF mwf TSH mhs , Ths , hwf
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Larger weights on the quadratic cost function were chosen for the
pressures and very low weights for the control inputs, related to their
range of variability. The results suggest that the linear quadratic con-
troller with three-input, two-output optimally determines the in-
put–output relationship for pressure regulation; see Fig. 13. The pro-
blem of state estimation was not addressed.

Zhang et al. [64] presented a multi-variable control scheme of an
ORC system used for waste heat recovery by incorporating a linear
quadratic regulator with a PI controller in a simulation environment.
The solution is equivalent to a linear quadratic integral controller with
feed-forward, which was developed through linearization around the
nominal point.

The problem of state estimation was not addressed. The manipu-
lated variables were the opening of the throttling valve at the turbine
inlet, the speed of the pump, and the velocity of the heat source and
cold sink media, which with a multi-variable approach controlled the
power output, the throttle pressure, and the outlet temperature of the
working fluid leaving the evaporator and the condenser. The simulation
provided good response against load tracking and disturbance rejection.
The studies in the area of optimum control of the ORC systems are listed
in Table 5. A comparison of the main advantages and disadvantages of
each optimal control solution is illustrated in Table 6.

3.3. Model predictive control

Model predictive control (MPC) is an efficient control approach for
control of multi-variable systems while satisfying a set of constraints. In
MPC, the difference between the predicted output and the desired re-
ference is minimized online over a future horizon, subjected to

constraints on the manipulated inputs, the system outputs and the
states. A block diagram of a MPC controller is shown in Fig. 14.

Liu et al. [39] implemented a model predictive controller on a
small-scale ORC system, recovering the waste heat from a heavy-duty
diesel engine exhaust tailpipe and exhaust gas recirculation (EGR)
system. Two variants of a MPC (linear and non-linear) were im-
plemented on a real-time embedded platform, and the performance of
the controllers was compared with that of a traditional PID controller.
The state estimation was carried out using a MB model of the eva-
porator. The pump speed was controlled to keep the expander inlet
temperature at the set point. The results suggest that the MPC outper-
forms the PID controller and is able to keep the control variable
within± 10 °C under highly transient heat source conditions. Fur-
thermore, the results indicate that the linear model predictive con-
troller (LMPC) has better control stability for the control variable and
outperforms the PID controller in terms of response time, overshoot,
oscillations, and settling time; see Fig. 15. Hernandez et al. [127] re-
ported that a non-linear model predictive controller (NMPC) strategy
leads to a smoother, safer and more efficient operation, resulting in a
similar or better tracking performance at a lower control effort.

Hernandez et al. [128] presented an MPC strategy to increase the
efficiency of an ORC system. The degree of superheating and eva-
poration temperature of the working fluid were controlled by manip-
ulating the rotational speed of the working fluid pump and the single-
screw expander. The results indicate that the Extended Prediction Self-
Adaptive MPC algorithm provides higher efficiency of the ORC system
than a decentralized PI controller. However, the variations of the heat
source temperature and mass flow rate were less than± 10%.

Subsequently, the authors extended the MPC strategy by optimizing
the evaporation temperature under the constraints of the pump rota-
tional speed and degree of superheating [129]. By taking a switching PI
as reference (100%) of the net electrical energy produced, it was

Fig. 12. Response of superheated vapor temperature for the proposed con-
troller and PID controller, Zhang et al. [120].

Fig. 13. Controller regulation error of a non-linear controller based on 2- and 3-actuator configurations for an ORC system, Luong et al. [126].

Table 5
Studies regarding optimum control strategies for organic Rankine cycle tech-
nology.

Ref. Control approach Manipulated
Variables

Control
variables

Disturbance
variables

System Controller

[118] FTE DP Npu, µhs,1 pev, SH mhs , Ths

[119] FTE DP Npu, mss pi exp, , SH mhs , Vhs

[120] FTE NGS Npu TSH mhs , Ths
[55] FTE NGS Npu To ev, mhs , Vhs
[122] FTE OC Npu, Nexp pev, SH mhs , Ths
[124] FTE OC Npu, Nexp, mss SH , pev, pcon mhs , Ths
[121] FTE NGS pu SH mhs , Ths
[125] FTE NGS Npu To ev, mhs , Ths
[126] FCL LQI µtv, mair pev, pcon mhs , Ths, Npu
[64] FCL LQI Vhs , Vss, Npu, µtv ptv, SH,

Wnet , To co,

µ V,tv hs
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concluded that the basic MPC produces 15% more energy, as it requires
less control effort while keeping the unit in safe operation. The higher
net power output is obtained by accurately optimizing the evaporation
temperature, while keeping the degree of superheating within safe
limits. However, the controller was evaluated for only± 10% variation
of the heat source temperature and the mass flow rate.

Zhang et al. [130] presented a multiple MPC approach to deal with
the non-linearity and varying operating conditions of ORC systems
utilizing a transient heat source. The rotational speed of the pump and
the shaft torque of the expander were manipulated simultaneously to
provide the optimal evaporating pressure and superheating tempera-
ture. The operating range of the ORC system was divided into sub-op-
erating regions, and the system response was represented by a CARIMA
model. The predicted outputs of all sub-models and their corresponding
weights were used to obtain the control signal. The simulation results
suggest that the multiple MPC approach can effectively deal with non-
linearity, constraints on the control variables, manipulated variables
and varying operating points.

Pierobon et al. [131] implemented a linear MPC for offshore power
stations with waste heat recovery using an ORC system. The MPC was
coupled with a steady-state performance optimizer developed in SIM-
ULINK/MATLAB [110]. The pump speed was varied to control the
degree of superheating at turbine inlet. Transfer functions were

Table 6
Advantages and disadvantages of optimal control strategies for organic Rankine cycle technology.

Controller Advantages Disadvantages

Dynamic Programming • Applicable to both linear and non-linear systems

• Real-time optimization of plant trajectory
• High computational effort

• Multi-variable approach, highly computationally
expensive

Non-Gaussian stochastic control (minimum entropy
criterion)

• Minimizes uncertainties in tracking error

• Real-time optimization of control inputs

• Multi-variable control possible

• Real-time multi-objective optimization required

Data-driven set point optimization • Allows for real-time optimization of plant trajectory

• Adaptive algorithm can account for system aging and
small variations

• Training of estimating function, computationally
expensive

• Large data-set required for good accuracy

• System modifications require new training

Linear quadratic control • Simple, fast and robust algorithm

• Can handle high order systems and multi-variable
control

• Requires system linearization

• Weight matrices need to be chosen properly

Fig. 14. Basic structure of the model predictive controller, Liu et al. [39].

Fig. 15. Temperature responses of LMPC and PID controllers for a step change
in set point temperature and engine operating conditions, adapted from Liu
et al. [39].
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achieved to reproduce the system dynamics. The system was able to
cope with large disturbances effectively. Moreover, fuel savings and
spared CO2 emissions in the range of 2–3 % were obtained by in-
troducing the steady-state performance optimizer.

Rahmani et al. [132] presented a constrained MPC strategy for an
off-grid 4 kWe solar ORC system. The identification framework was
used to identify non-linear maps for each variable of interest from the
experimental real-time data. The net power output, degree of super-
heating, temperature of the working fluid at the inlet of the turbine and
the pressure at the outlet of the turbine were used as control variables.
The corresponding manipulated variables were the rotational frequency
of the motor pump, the volume flow rate of the heat source, and the
rotational speeds of the fan and the circulation pump. The ORC was
able to provide the required electrical power under variations of hot
source and cold sink inlet temperature with low settling time and good
disturbance rejection.

Grelet et al. [133] employed an explicit multi-model MPC to control
the degree of superheating at the inlet of the expander in an ORC-based
waste heat recovery system mounted on a heavy-duty truck engine. The
working fluid mass flow rate was chosen as the manipulated variable.
The relationship between the manipulated variable and control variable
defined in the non-linear single-input, single-output model was identi-
fied by a series of first-order plus time-delay models. The multi-model
MPC controller based on the first-order plus time-delay model provides
fast control, and it does not require online optimization and dynamic
model resolution.

Feru et al. [56] presented a switching linear MPC strategy to reject
disturbances caused by the diesel engine waste heat of the Euro-VI
heavy-duty truck in real on-road driving conditions. The ORC system
was based on a parallel evaporator configuration and two recirculation
valves at the pump outlet that control the vapor quality at the outlet of
each evaporator. The dynamic model resolution was improved by
combining the finite difference modeling approach with a moving
boundary model. The operating range of the ORC system was divided in
three regions, and an MPC controller was assigned for each region. It
was concluded that the switching linear MPC could achieve better
control performance than PI controllers, and provided the vapor quality
at the outlet of each evaporator within reasonable accuracy. A limita-
tion of the proposed MPC strategy is the need of vapor fraction mea-
surement equipment or an estimator for this quantity.

Petr et al. [134] optimized the net power output using a non-linear
model predictive control approach of an ORC system which recovers
waste heat from an internal-combustion engine of a vehicle. The target
function for the MPC optimization problem was the ORC net power
output. The manipulated variables were the speed of the pump and of
the volumetric expander. The dynamic model was developed in the
object-oriented programming language Modelica [135] using their

model libraries TIL and TILMedia. The model was exported to MoBA
Lab (simulation tool developed by TLK thermo) using a Functional
Mockup Interface. The results indicate that the non-linear model pre-
dictive controller can improve the fuel economy by 8.1% for a virtual
drive test between Hanover and Munich in Germany. The MPC con-
troller provides 7% higher average net power output in part-load op-
eration of the ICE than the conventional PI controller; see Fig. 16.

Hernandez et al. [136] developed and experimentally validated an
adaptive MPC control law to maximize the power generation of a small-
scale, ORC-based waste heat recovery system. The system dynamics
were investigated by manipulating the variable pump speed to control
the degree of superheating, and the corresponding changes in eva-
poration temperature and electrical power were analyzed at a specific
value of the disturbances (mass flow rate and inlet temperature of the
heat source). The dynamic response of the system indicates that the
evaporation temperature has a linear response, while the degree of
superheating has a non-linear response with respect to changes in pump
speed. Empirical correlations were developed based on a performance
map of the system. Using an optimizer the optimal evaporation tem-
perature was identified, while the degree of superheating was con-
trolled by manipulating the pump rotational speed. Moreover, the MPC
controller was successfully implemented on a lab-scale prototype. The
experimental results indicate that the adaptive MPC produces about
17% more electrical power compared to a gain-scheduled switching
PID-based controller during 1800s of operation of the engine.

Luong et al. [58] developed a multi-variable MPC to estimate the
states of the evaporator and condenser of an ORC system. The perfor-
mance of the MPC was compared to proportional integral and linear
quadratic integral (LQI) controllers. The system states (evaporator and
condenser) were estimated by using extended Kalman filters. The re-
sults suggest that the MPC outperforms the PI and the LQI in terms of
pressure regulation errors, since it can incorporate constraints on the
control law.

Wu et al. [137] proposed an economic MPC scheme, where the
controller set point is determined by the maximization of the net power
output of the ORC unit. A MB model of the evaporator is reduced to a
fourth-order model to reduce the computational effort. Both the ex-
pander and the pump speed are varied to reach the objective goal. Both
the FTE and FCL modes are tested. The controller could optimize the
power output with good performance.

Koppauer et al. [138] focused on an MPC strategy using a prediction
model based on a gain-scheduling of a local, partially linearized system
model. The state estimation is carried out with an EKF, where also the
heat flow rates on the working fluid and heat source side were esti-
mated to account for plant mismatches. The reference was provided by
offline, steady-state optimization. The goal was to track the optimal
trajectory. The controller showed sufficient tracking performance.

Fig. 16. Pump work (left) and expander power output (right) of the ORC for both PI-control and non-linear model predictive controller, Petr et al. [134].
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Rathod et al. [139] developed a non-linear MPC for an ORC re-
covering waste heat from a 13 l Diesel engine. The MPC was provided
with an EKF for state estimation. The adaptability of the control
strategy was proven by testing the controller under aging of the eva-
porator. The performance of the MPC was tested experimentally during
a transient driving cycle, with the mean tracking error at 2.9 °C.

The previous studies utilizing the model predictive controller for the
ORC system and the advantage and disadvantages of the main options
are listed in Tables 7 and 8, respectively.

3.4. Compound control approach

In the area of ORC control, it is common to use a compound control
approach, consisting of two or more control techniques. Shi et al. [46]
developed a compound control strategy, combining cascade control
with two active disturbance rejection controllers, for an ORC-based
engine waste heat recovery system. The exhaust gas flowing out of the
evaporator was partially mixed and recirculated with the engine ex-
haust gas. The only control variable was the pressure of the evaporator,
which was controlled by manipulating the mass flow rate of the engine
exhaust gas using the exhaust gas recirculation (EGR) valve. The con-
troller involved an extended observer based on a reformulation of a MB
evaporator model. The results indicate that the control error of the
evaporating pressure is lower than 0.1%, and the fluctuation of the
degree of superheating is less than 1 K; see Fig. 17.

Zhang et al. [141] proposed a combined control strategy for an ORC
system, incorporating a linear active disturbance rejection (ADR) with a
static decoupling compensator (DC). The disturbances were estimated
through an extended linear state observer and then compensated by a
linear feedback control strategy. The proposed control strategy does not
require an accurate mathematical model of the system, therefore
making it an appealing method for real applications. It requires instead
extensive system identification to apply static decoupling. Simulation
results indicate that the proposed control algorithm can provide good
tracking performance and handle well disturbances for the waste heat
recovery system, see Fig. 18.

Yebi et al. [142] proposed a two-level controller structure for WHR
with an ORC from a 13 l engine of a heavy-duty vehicle. A PID acted on
the evaporator pressure reference controlling the bypass valve of the
exhaust gas, whereas an MPC ensured optimal tracking of the mixed
temperature at the outlet of two parallel evaporators. An UKF was used
for state estimation. The innovative control structure could outperform
a multiple-loop PID leading to 9% more recovered thermal energy.

Hernandez et al. [143] proposed a two-level, real-time optimization
of a stationary sub-critical 11 kW ORC system by extremum-seeking
control. Based on the results of the validated dynamic model, an em-
pirical correlation for evaporating temperature was developed which
maximizes the power generation for a range of operating conditions.
The approach was extended to a perturbation-based extremum seeking
algorithm to identify online the optimal evaporating temperature. The
advantage of this algorithm is that it does not need a plant model. The
low-level controller was then an EPSAC-MPC acting on the speed of the
pump to track the optimal evaporating temperature (this one requires a
model, developed here through parametric identification). A lower
bound on the degree of superheating was also set as a constraint. The
results indicate that the single PI controller acting on the degree of
superheating rather than on the evaporating temperature can guarantee
safe operation of the ORC system. In addition, it was concluded that the
ESPAC-MPC strategy outperforms a PI-based controller in terms of en-
ergy generation. The previous studies using a compound control
strategy are listed in Table 9, showing the manipulated variable and
control variables. The advantages and disadvantages of the main con-
cepts are illustrated in Table 10.

3.5. Additional advanced controllers

In order to tackle stochastic disturbances from the heat source and
measurement noises, different types of controllers have been im-
plemented for ORC systems, namely, minimum variance controllers,
robust controllers, and neural controllers.

Hou et al. [59] employed an online, self-tuning, generalized
minimum variance (GMV) controller for a 100 kW ORC-based waste
heat recovery system. Online model identification was performed from
the system input and output data. A controlled, autoregressive moving
average model was used. The parameters were obtained using a re-
cursive least squares (RLS) algorithm with a forgetting factor. The net
power output, throttle pressure, degree of superheating, and the
working fluid temperature at the condenser outlet were controlled by
manipulating the throttle valve position (placed before the expander),
pump rotational speed, mass flow rate of the exhaust gas, and velocity
of the sink source (air). The result suggest that the GMV controller can
effectively handle disturbances and ensure safe operation. Zhang et al.
[144] developed a multi-variable robust controller for an ORC system.
The evaporation pressure and degree of superheating were controlled
by manipulating the pump and expander rotational speeds. The simu-
lation results indicate that the proposed control strategy can obtain

Table 7
Previous studies using the model predictive controller for organic Rankine cycle technology.

Ref. Control Approach Process variables Control variables Disturbance variables

System Controller

[140] FCL GPC µ v v N, , ,tv hs ss pu,1 W T p T, , ,net SH tv co, Wnet , Vhs

[39] FTE MPC µ ,tv pu,1 , µtv,2, mss pev, TSH , T, Tco mhs , Ths

[128] FTE MPC N N,pu exp T SH,SH mhs , Ths
[129] FTE MPC Npu TSH mhs , Ths
[130] FTE MPC Npu, exp pev, TSH exp, Npu
[57] FTE GPC Npu, Nexp, mss pev, SH, Tco mhs , Ths
[131] FTE MPC µ N,tv exp NTf , SH Wnet
[132] FCL MPC Npu, Vhs, Npu ss, p W,ev net , TSH Ths, Tamb
[133] FTE MPC mwf T mhs , Ths
[56] FTE MPC µtv,1, µtv,2 Xhs1, Xhs2 Neng , Qhs1, Qhs2
[134] FTE MPC Npu, Nexp Wnet mhs , Ths
[136] FTE MPC Npu p h,ev SH mhs , Ths
[137] FCL EMPC m N,wf exp pev, SH, Ti exp, mhs , Ths
[58] FTE MPC + EKF µ µ m, ,tv tv air,1 ,2 pev, pcon mhs , Ths

[138] FTE MPC + EKF mwf , µhs,1 Wnet mhs , T T,hs amb

[139] FTE MPC + EKF mwf SH mhs , Ths
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satisfactory performance in set point tracking and disturbance rejection
operation. Such simply structured and easy-to-realized controller does
not require a precise mathematical model to predict the dynamics of the
system.

Wang et al. [145] designed and implemented a neuro-PID controller

to control the outlet temperature of the evaporator in an ORC system
used for waste heat recovery. The control variable was the velocity of
the heat source (exhaust gas). The parameters of the PID controller
were regulated using a back propagation neural network. However, the
controller was developed only for the evaporator, and the rest of the
components of the ORC system were not considered. Compared with a
traditional PID control strategy, the proposed method could achieve
better prediction for dynamic response and has strong robustness
against parameter variations and external disturbances.

Torregrosa et al. [146] presented a compound control approach
based on a PID controller with adaptive gains for an ORC-based engine
waste heat recovery system. The temperature at the evaporator outlet
and pressure were controlled by manipulating the rotational speeds of
the pump and expander. The gains were adapted after experimental
tests, based on offline maps as a function of the thermal power from the
heat source and the error from the evaporator outlet temperature.

Padula et al. [147] developed a PI-based adaptive control system to
control a geothermal ORC power plant. The purpose of the control

Table 8
Advantages and disadvantages of model predictive controllers for organic Rankine cycle technology.

Controller Model Advantages Disadvantages

Linear model predictive
controller with

Identification method • Easy method

• Does not necessarily require system model

• Real-time optimization, has relatively low
computational effort

• Based on linear approximation

• Might not be effective over a broad operational
range

• System modifications require new identification
Model-based with
linearization

• Can be easily developed for multi-models by
linearizing on different operating point

• Real-time optimization, has relatively low
computational effort

• Requires a system model

• Based on linear approximation

Nonlinear model predictive
controller

Identification method • Identification is relatively simple

• Does not necessarily require system model
• System modifications require new
identification

• Nonlinear optimization problem increases
computational burden

Model-based • Potentially, it can achieve the best control
performance

• Nonlinear optimization problem increases
computational burden

Fig. 17. Degree of superheating and evaporation temperature control of an
ORC system using a compound control strategy, Shi et al. [46].

Fig. 18. Response of controlled & manipulated variables of the combined control strategy, Zhang et al. [141].

Table 9
List of studies based on compound control strategies for organic Rankine cycle
technology.

Ref. Control approach Process
variables

Control
variables

Disturbance
variables

System Controller

[46] FTE ADRC + ESO mhs pev mhs ,Ths
[141] FCL ADRC + ESO µtv,1, Npu,

Vhs

To ev, ,ptv,Wnet Wnet

[142] FTE MPC + UKF + PID mwf , µhs,1 To ev, ,pev mhs ,Ths

[143] FTE ES + MPC Npu To ev, Ths
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system was to minimize the deviations from the design conditions when
the plant is disconnected from the grid and put into island-mode op-
eration. In this specific case, the dynamics and control mainly relate to
the turbine and turbine bypass valves. When the ORC power plant is
switched from the normal operation mode (grid-connected) to the is-
land operation (standalone), an electric brake regulated by a non-linear
feed-forward controller dissipates the excess of power produced in
order to avoid excessive turbine speed overshoot.

Peralez et al. [60] presented a strategy to control the degree of
superheating at the turbine inlet of an ORC system by combining a PID
feedback controller with an implicit dynamic feed-forward controller.
The PID controller was tuned based on an extensive system identifica-
tion campaign. The dynamic feed-forward term was computed from a
non-linear reduced model of the high-pressure part of the ORC system.
Although the performance of the control of the degree of superheating
is improved using the compound strategy, an extensive investigation of
system identification is necessary in order to obtain a reliable, concise
and efficient (short computational time) model.

In a recent study by the same authors [31] a controller combining
gain-scheduling PID, feed-forward and implicit Extended Kalman Filters
(EKF) approaches were experimentally evaluated. The system effec-
tively controls the degree of superheating and the pressure at the tur-
bine inlet, acting on the speed of the pump and bypass valve of the heat
source. However, it needs to be pointed out that the magnitudes of the
disturbances considered in the work are relatively small in comparison
to, for example, the variations in heat source conditions that an ORC
unit utilizing the exhaust gas of a truck engine would experience [148].

A similar approach was used by Grelet et al. [88] to control the
outlet temperature of an ORC recovering waste heat from a long-haul
truck by manipulating the speed of the pump. The PID controllers were
tested on a multi-model FOPTD identification of the ORC unit. The
dynamic feed-forward could significantly improve the tracking perfor-
mance of the controller. The most commonly used advanced control
approaches for ORC systems are listed in Table 11, and their advantages
and disadvantages are compiled in Table 12.

4. Tools for dynamic modeling and controller design

Several commercial and open-source numerical tools are available
for steady-state and dynamic process simulation of thermal power
plants including the ORC process. MATLAB/SIMULINK and MODELICA
are the most commonly used for dynamic modeling and control of ORC
systems. The former allows both for graphical and text-based pro-
gramming, and has a large of number of toolboxes developed for con-
troller design, system identification and optimization. The MODELICA
language is used by DYMOLA, JModelica.org and SimulationX, and it
has been specifically developed for the solution of differential algebraic
systems, which are common in the fields of thermal, chemical, electrical
and mechanical engineering. Different free and commercial libraries in
MODELICA language are available, with already built-in models. In

contrast to Simulink, modeling in MODELICA is acausal; the equations
are rearranged by the software according to the solution algorithm
without the need of a priori in/out sequential form, which represents a
big advantage for the modeling of nonlinear thermo-fluid systems as
ORC systems. APROS, ASPEN Plus Dynamics, PPSD and TRNSYS are
proprietary commercial software with built-in dynamical models of the
main plant components. The user has however limited freedom in the
extension of the available models. For example, the software might
prevent the possibility to test or integrate unconventional heat ex-
changer geometries or turbomachinery, as well as novel heat transfer
and pressure drop correlations. Other software are available, but hardly
used in the field of organic Rankine cycle power systems. Commercial
numerical tools for the dynamic process simulation of thermal power
plants are listed in Table 13.

5. Concluding remarks

The dynamic response of the organic Rankine cycle system depends
on the heat source, system size, operating conditions, type of equipment
and working fluid to some extent. There are large variations in these
parameters among organic Rankine cycle systems. It can be concluded
that each organic Rankine cycle system will have unique dynamic re-
sponse characteristics and control strategy, and hence, there are no
established standard design rules or clear best practices in this field.
Based on the review of the previous works concerning dynamic mod-
eling of organic Rankine cycle systems, the following conclusions are
drawn:

• The dynamics of the organic Rankine cycle system is mainly gov-
erned by the heat exchangers. The heat exchangers account for the
majority of performance lag due to dynamic changes in operating
conditions. There are three approaches for dynamic modeling of the

Table 10
Advantages and disadvantages of compound control strategies for organic Rankine cycle technology.

Controller Advantages Disadvantages

Active disturbance rejection control with extended
state observer

• Simple model development

• Model uncertainties are compensated in real-time
• Observer has to be fast compared to process
dynamics

• Observer tuning can be limited by sample time and
noise on measurement

Nonlinear model predictive controller and PID • Allows for multivariable control, especially for different
time-scale controlled variables

• Accounts for constraints through NMPC

• Reduces computational burden for NMPC

• Real-time constrained multi-objective optimization
required

Extremum-seeking algorithm and model
predictive control

• Real-time set point optimization

• ES does not need a system model

• Accounts for constraints through MPC

• Multi-variable set point optimization becomes
complex

• Stability can be difficult to ensure

Table 11
List of the most commonly used advanced control strategies for organic Rankine
cycle technology.

Ref. Control approach Manipulated
variables

Control
variables

Disturbance
variables

System Controller

[59] FCL MVC Vhs , Vss, Npu,
µtv

ptv, SH,
Wnet , To co,

Wnet

[144] FTE RC Npu, Nexp Tev , SH Vhs , Ths
[145] FTE BPNN + PID Vhs To ev, mwf , Vhs,

hi ev,
[146] FTE GS-PID Npu, Nexp T , SHo ev, mhs , Ths
[147] FCL GS-PI + FF µbpv Nexp Wnet

[60] FTE GS-PI + FF Npu SH mhs , Ths
[31] FTE GS-PID + FF + EKF Npu, µhs,1 pev, SH mhs , Ths

[88] FTE PID + FF mwf TSH mhs , Ths , hwf
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evaporator and condenser of the organic Rankine cycle system,
namely, moving boundary, finite volume and two-volume models.
The moving boundary approach has lower computational time, but
higher prediction error compared to those of the finite volume ap-
proach. However, the computational time of the finite volume
method can be reduced by selecting an optimum level of dis-
cretization. The two-volume approach is applicable only for phase
change in a shell. The addition of the heat transfer and pressure drop
correlations results in a larger computational effort and higher ac-
curacy. The time constants characterizing the expansion and com-
pression processes are small compared to those of the evaporator
and condenser. Thus, the expander and pump models are typically
based on steady-state, lumped parameter models. If performance
maps of these components are available, non-dimensional para-
meters can be used to predict their performances. The dynamic
characteristics of control valves are typically modeled with relevant
equations that correlate the valve opening, boundary conditions and
the flow through the component. If the system dynamics are fast, the
valve positioning servo-system plays an important role to determine
the closed-loop dynamic behavior of the system and should there-
fore be included in the model. However, it is difficult to gain access
to the information about the servo-positioner dynamics; hence, first-
order or second-order linear systems can be used to consider these
dynamics. If experimental data are available, an empirical correla-
tion can be developed to calculate the mass flow rate for in-
compressible flow (or the equivalent) based on the relative valve
opening.
• Measuring instruments may have a significant delayed response,
especially temperature sensors. If the time-scale of a given mea-
suring instrument is not negligible compared to the closed-loop

response time, the response time of the measuring instrument
should be included in the dynamic model.
• Dynamic models have been matched to experimental data with
reasonable accuracy. In most of the cases, the relative deviation is
different among the observed parameters. For instance, the turbine
inlet temperature may have a different relative deviation than the
condenser pressure of the same system in dynamic operation.
Previous work indicate that if the models are calibrated properly,
dynamic models can predict the process variables within a 3% re-
lative deviation from the experimental results.

The control of the organic Rankine cycle systems plays an important
role in terms of the system performance and safe operation. In this
paper, different control techniques and findings of previous research
work in the area of control systems of organic Rankine cycle systems
were reviewed and discussed. The prospects and constraints of the
different control techniques and their limitations were analyzed and
discussed. Some important points concerning the development of con-
trollers for organic Rankine cycle systems can be summarized as fol-
lows:

• The complexity of the control system and corresponding control
strategy depends on the operation (grid-connected or off-grid) of the
organic Rankine cycle system.
• The model predictive controller, especially improved model pre-
dictive control (multiple model predictive control, switching model
predictive control, non-linear model predictive control), provides
excellent control performance as it can deal with non-linearity,
process constraints, and a wide range of system disturbances effi-
ciently.

Table 12
Advantages and disadvantages of the most commonly used advanced control strategies for organic Rankine cycle technology.

Controller Advantages Disadvantages

Generalized minimum variance • Simple control law

• Can reject stochastic disturbances
• Response might be aggressive

• Does not consider input effort in control law

Robust control • Simple control law

• Robust against uncertainties
• Based on system linear approximation

• Strict mathematical conditions have to apply

Neuro-PID • Does not require system model

• Can provide online tuning of PID
• Quality of training set affects controller performance

• System modifications require new training

Gain-scheduled PI or PID • Good handling of nonlinearities of the system • Scheduling variable has to be chosen carefully to guarantee stability and good
performance

Feedforward • Good disturbance rejection

• Good set point tracking
• Requires system to be non-minimum phase or approximation necessary

• Feedback might be required to account for uncertainties

Table 13
List of commercial software for dynamic modeling and control of thermal power plants, from Alobaid et al. [70].

No. Program Developer Website

1 APROS Technical Research Center of Finland http://www.apros.fi/en
2 ASPEN Plus Dynamics Aspen Technology, Inc. https://www.aspentech.com
3 DYMOLA Dassault Systèmes http://www.3ds.com
4 gPROMS Platform Process Systems Enterprise Limited http://www.psenterprise.com
5 JModelica.org Modelon AB http://www.jmodelica.org/
6 MATHEMATICA Wolfram Research https://www.wolfram.com/mathematica
7 SIMULINK The MathWorks, Inc. https://www.mathworks.com
8 PPSD KED GmbH http://www.ked.de/index.html?&L=1
9 ProTRAX Software TRAX Energy Solutions https://energy.traxintl.com
10 EASY5, etc. MSC Software http://www.mscsoftware.com
11 EcosimPro, PROOSIS. Empresarios Agrupados A.I.E http://www.ecosimpro.com
12 SimSci, DYNSIM Schneider Electric Software http://software.schneider-electric.com
13 SimulationX ITI GmbH https://www.simulationx.com
14 RELAP Idaho National Laboratory http://energy.gov
15 TRNSYS University of Wisconsin http://sel.me.wisc.edu/trnsys
16 UniSim Design Honeywell https://www.honeywellprocess.com
17 3-Key Master Western Services Corporation https://www.ws-corp.com
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• Although the control strategies proposed for organic Rankine cycle
systems depend on the dynamic model of the system, a few authors
presented control-oriented models, such as two-state models [119],
simplified physical models [22,149], first-order plus dead-time
model [150], and the transfer functions-based model [128].
• There exists an optimal rotational speed for an expander that cor-
responds to its maximum isentropic efficiency for specific operating
conditions. It is necessary to investigate both the machine-side and
grid-side controller for organic Rankine cycle power generation
systems. For optimal operation of organic Rankine cycle systems,
the use of a supervisory control strategy could be helpful to produce
optimal set points for the control system.
• Since the dynamic response of the organic Rankine cycle system is
complex in terms of non-linearity, coupling and time variation dis-
turbances, the use of advanced control algorithms is helpful.
• Organic Rankine cycle systems are extremely diversified in terms of
applications, operating conditions, size, and type of equipment;
therefore, the optimal control strategy may be different for each
system. In order to identify the optimal control strategy for a given
system, a comparative analysis of the performance of different
control strategies based on system performance, tracking error,
overshoot, rise time, settling time, peak time, robustness to dis-
turbances, handling constraints, computational effort, and practical
implementation needs to be conducted.
• Almost all of the previous studies analyzed the performance of the
controller under a range of variation of the input disturbances ty-
pically smaller than those occurring during operation of organic
Rankine cycle systems utilizing highly transient heat sources in
practice. In order to adapt to fluctuations in the heat sources or
connected load, the performance of the controller needs to be
evaluated over a wide (or entire) operating range of the system,
ensuring safe and optimal operation of the organic Rankine cycle
system.

As far as recommendations for future research are concerned, first it
needs to be stressed that in almost all of the previous works, the design
and component sizing of the organic Rankine cycle system were based
on the heat sink and heat source conditions without taking into account
the dynamic response and control of the system. Such design and op-
timization approach may lead to an organic Rankine cycle system that
is sensitive to highly transient heat sources and difficult to operate in a
safe and efficient manner. Therefore, for future research and design
practice of organic Rankine cycle systems utilizing highly fluctuating
heat sources, we recommend to include the dynamic response and
control aspects into the preliminary design of the system in an iterative
manner. Such approach will discard the designs that feature un-
acceptable dynamic performance in an early phase of the design process
and will support the selection of the best possible combination of on-
design, off-design, and dynamic performances, while fulfilling at the
same time all the constraints in terms of the operational parameters of
the system.

Most of the experimental work discussed the experimental valida-
tion of dynamic models which involved matching of response time and
steady-state error for a measured/known disturbance. There are limited
works which compared the efficacy of different types of controllers.
There is an urgent need to implement the proposed controller on a real
ORC system and assess the performance of the controller under chan-
ging heat source or sink conditions. Besides, it is essential to test the
different control strategies on the same test rig under the same dis-
turbance for a fair comparison of the different control schemes.

The start-up and shut-down control methods had not been reported
in open literature yet, except few patents. The start-up and shut-down
control methods for transient heat source are critical and require ad-
ditional safety measures. There is a need for implementation to in-
vestigate control narratives, which discuss start-up and shut down to
ensure safe operation and avoid thermal shocks.
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