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Abstract 

Mathematical modelling and machine learning algorithms have been successfully applied to 

the healthcare domain and epidemiological chronic disease including diabetes mellitus, which 

is classified as an epidemic due to its high rates of prevalence around the world. Machine 

learning and statistical techniques are useful for the processes of description, prediction, and 

evaluation of various diseases, including diabetes. These techniques can be efficient tool in 

modelling diabetes and the most related risk factors. Although, Machine learning methods 

have been utilised in different aspects of diabetes research, but most of them were based on 

diagnosing or detecting the disease, and little research attention has explored the adoption of 

machine learning methods to study the trends in the prevalence of diabetes and forecast its 

future in specific populations. Thus, this thesis attempts to apply various machine learning and 

combination methods for studying diabetes and make future predictions. 

This thesis has investigated the application of machine learning and statistical techniques for 

developing prediction models for diabetes and the relevant risk factors (smoking, obesity, and 

physical inactivity) in the Kingdom of Saudi Arabia that can be used to support health policy 

planning and diabetes controlling. Regression, classification, and time series modelling 

approaches were used for diabetes modelling. Several models were developed namely, 

Multiple Linear Regression, Adaptive Neuro-Fuzzy Interference System ANFIS, Artificial 

Neural Network ANN, Support Vector Regression, Bayesian Linear Regression, Support 

Vector Machine, K-Nearest Neighbour KNN, Linear Discriminant, Neural Network Pattern 

Recognition, and Neural Network Time Series NARX-NN models. These models integrate 

historical data on diabetes, smoking, obesity, and inactivity prevalence to achieve its aim for 

examining the trends in prevalence of diabetes mellitus in the Kingdom of Saudi Arabia, to 

predict the future level of the disease. A combination of regression models is performed to 

improve the prediction accuracy using combination methods (Average, Weighted Average, 

Majority Voting, Weighted Majority, Minimum, and Maximum, and a new combination method 

consensus model).  

Several statistical evaluation metrics were applied to evaluate the performance of regression 

and time series models: mean squared error, root mean squared error, mean absolute 

percentage error, and the coefficient of determination R-squared. Classification models’ 

accuracy performance was evaluated. Results from the regression and combined models 

were validated by comparison with some observed data from existing studies by the World 

Health Organization, International Diabetes Federation, and Family Health Survey from the 

Saudi General Authority for Statistics, revealing that improved accuracy was achieved with 

ANFIS model and the combined weighted average model in comparison to previous studies.  
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The experimental results demonstrate the effectiveness of regression and combined models 

compared to classification and time series models. The ANFIS and WAVR models were found 

to be suitable for diabetes prediction due to their flexibility and high accuracy.  
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Chapter 1  

Introduction 

1.1. Background 

Diabetes mellitus (DM) was first recognised as a disease about 3000 years ago, when ancient 

Egyptians and Indians mentioned some of its clinical features. “Diabetes” is a Greek word 

which means “siphon”, denoting excessive urination, and “mellitus”, referring to “honey-sweet” 

(denoting the sweet taste of urine from diabetic people). The first confirmation of excess sugar 

in urine and blood was reported in Britain in 1776 [1]. Over the years the clinical understanding 

of the aetiology of DM has increased, and it is currently defined as “a group of metabolic 

diseases characterised by hyperglycaemia resulting from defects in insulin secretion, insulin 

action or both”. DM-related disturbances in carbohydrate, fat, and protein metabolism are 

linked to chronic hyperglycaemia, and can result in long-term damage, dysfunction, and failure 

of various organs, especially the heart, eyes, kidneys, blood vessels, and nerves [2].  

There are three types of DM classified according to aetiology and clinical picture: type 1 

diabetes (T1DM), type 2 diabetes (T2DM), and gestational diabetes. T1DM is usually a result 

of absolute insulin deficiency, due to the destruction of β cells in the pancreas, mostly due to 

a cellular-mediated autoimmune process. T2DM is caused by insulin resistance and relative 

insulin deficiency. Gestational diabetes is recognised or first starts during pregnancy, which is 

characterised by glucose intolerance of varying degrees of severity. There are other specific 

rare types of diabetes which can be caused by drugs, surgery, malnutrition, infections, specific 

genetic syndromes, and other illnesses [3]. 

T2DM is the most common variant, accounting for 90% of diabetic diagnoses. People with 

T2DM are usually diagnosed after the age of 40, but younger adults or even children can be 

affected by this type. The symptoms of this type may not appear on the affected person for 

many years, and many patients are incidentally diagnosed due to seeking treatment for related 

or other complications. Unlike T1DM, patients with T2DM are not dependent on insulin 

therapy, but they may need insulin to control their hyperglycaemia if this is not reached with 

diet alone, or with oral hypoglycaemic agents [4]. 

T2DM is multifactorial, and its aetiology is complex. Different risk factors affect the incidence 

of the disease, but they are not all causative factors per se. These associated risk factors 

might be genetic, demographic (such as age), or factors related to the behaviour of the person, 

such as diet, smoking, obesity, and physical inactivity. Behavioural risk factors can be 

amended or changed, thus they are often called “modifiable” risk factors [5]. 
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T2DM is considered as one of the most widespread non-communicable diseases (NCDs) 

worldwide, with continually increasing prevalence. According to the International Diabetes 

Federation (IDF), there were more than 460 million people with diabetes in 2019, and it is 

expected that this figure will increase to 578 million in 2030, and 700 million in 2045. In the 

Kingdom of Saudi Arabia (KSA), the case of our study, there are currently an estimated 4 

million diabetic patients according to the IDF [6]. 

There are different severe complications linked to diabetes disease, which in turn lead to 

negative effects on health and productivity. The increased risk of developing cardiovascular 

disease is 2 to 4 times greater in people with diabetes, especially heart disease and stroke. 

Moreover, T2DM is commonly associated with progression to end stage renal disease, 

requiring either dialysis or kidney transplantation to avoid mortality. The risk of lower limb 

amputation is also up to 25 times greater in people with T2DM than among non-diabetics. In 

addition, people with T2DM can develop blindness because of retinal damage [7]. In 2019 it 

was estimated that around 4.2 million deaths occurred in adults aged 20–79 years caused by 

diabetes and its complications, costing at least USD 760 billion in healthcare expenditures. 

The latter is projected to reach USD 825 billion by 2030, and USD 845 billion by 2045, 

representing relative increases of 8.6% and 11.2% on the current level, respectively.  

In the last few decades, a variety of studies have sought to predict the incidence of diabetes 

and its global prevalence, using diverse data and methods of analysis [8][9][10]. Future 

estimates of the burden of diabetes are very important for health policy planning and 

identifying the necessary costs of controlling diabetes [11][12]. Recently, machine learning 

algorithms have been widely used in public health for predicting or diagnosing epidemiological 

chronic diseases, such as DM. There are many published diabetes modelling studies using 

different machine learning techniques, including Support Vector Machine (SVM), Artificial 

Neural Network (ANN), K-Nearest Neighbour (KNN), and Decision trees (DT) 

[13][14][15][16][17][18][19]. Most of these models have been related to diagnosing and 

detecting diabetes at early stage or modelling the disease progression and complications, but 

little has been done to adopt any of the machine learning methods in attempt to study the 

trends in the prevalence of diabetes and forecast its future burden using risk factors in specific 

populations such as in KSA, thus the current research seeks to address this research gap. 

1.2. Motivations 

Among all countries around the world, low- and middle-income countries are facing the highest 

burden of diabetes disease due to various reasons, including urbanisation and the 

improvement in socioeconomic aspects in these countries, which in turn lead to different 
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lifestyles for their populations, such as the consumption of Western dietary pattern and the 

sedentary lifestyle, as well as increasing life expectancy [20]. The Eastern Mediterranean 

Region (EMR) has been classified by the World Health Organization (WHO) as a growing hot 

spot for T2DM, as the estimations and predictions of its burden go beyond those of other 

regions around the world. Within the EMR, the Middle East and North Africa (MENA) has been 

ranked by the IDF as having the highest age-adjusted diabetes prevalence (12.2%) in 2019, 

and an increase by 38.8% by 2030. In fact, there is growing alarm about this health problem 

and the impacts it poses for these countries and their health care systems, as they lack 

readiness for the widespread implications of treating increasing numbers of diabetic patients 

with associated complications. More awareness of the current high burden caused by diabetes 

and its complications among those making and planning health decisions in these countries, 

particularly at the policy level (which tends to be concentrated in governmental institutions 

rather than at the health system level), in order to plan for inevitably increased demands in the 

coming decades [6]. 

KSA is among the richest and largest EMR countries. National social and economic conditions 

have consistently improved over recent decades, based on the national economy’s status as 

a major oil exporter. However, the Kingdom also has some of the highest levels of diabetes; 

according to the IDF, the country had the highest estimated number of children and 

adolescents with T1DM in 2019, and it has some of the highest prevalence of known risk 

factors, such as obesity. Although more efforts have been taken by the Ministry of Health in 

Saudi (MOH) regarding the prevention procedures of diabetes, it seems that these procedures 

need more improvements and more stringent execution. The absence and shortage of national 

health surveillance systems for monitoring risk factors and morbidity in KSA, which leads to 

difficulty in understanding past levels of diabetes and prediction of its future burden, which in 

turn makes this task seriously urgent.  

Some published studies have reported useful estimations and predictions of diabetes 

prevalence rate in KSA [21][22][23]. However, the estimations and predictions of these studies 

were based only on the changes on the demographic factors (aging and urbanisation) and did 

not involve some key risk factors that linked to the disease, such as obesity. Thus, the actual 

trends and future predictions of diabetes prevalence in KSA were most possibly underrated 

by these studies. Furthermore, one international study provided estimations of diabetes 

prevalence in the country using body mass index (BMI) data, but its estimations for the year 

2008 make it outdated, and it lacked future predictions [24]. 
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Therefore, this thesis uses mathematical modelling by machine learning methods to make 

indications about the past trends and future predictions in diabetes prevalence and the related 

risk factors in KSA.  

1.3. Aim and Objectives 

This thesis aims to examine the application of machine learning and statistical methods for 

developing prediction models for DM and the relevant risk factors (smoking, obesity, and 

physical inactivity) in the KSA that can be used to support health policy planning and diabetes 

controlling. 

To achieve this aim, the objectives of this thesis are to: 

1. Identify the available local data which are required for training and testing of the models 

to be developed. The required data include prevalence of diabetes, smoking, obesity, 

and inactivity, also the demographics data (age and gender) in KSA. 

2. Develop different machine learning models and statistical techniques (Adaptive Neuro-

fuzzy Inference System, ANN, Support vector regression, Multiple linear regression, 

and Bayesian linear regression) for diabetes prediction. 

3. Improve the performance of the individual regression models by using six traditional 

ensemble methods (average, weighted average, majority voting, weighted majority, 

minimum, and maximum) and introduce a new combination method (consensus 

model). In addition, to present the best combination method, the prediction of the 

combined model is validated by comparing with observed results from other existing 

studies.  

4. Develop different classification models SVM, KNN, Linear Discriminant, and Neural 

Pattern Recognition for diabetes prevalence classification. 

5. Develop three nonlinear autoregressive models for each independent variable 

(smoking, obesity, and inactivity) using neural network time series to be utilised to 

predict the prevalence rate of diabetes using (one-step ahead prediction). 

6. Evaluate the performance of all individual regression models, the combined models, 

and the time series model by using some statistical metrics such as mean square error 

(MSE), root mean square error (RMSE), mean absolute percentage error (MAPE) and 

R-squared, this is to help select a suitable predictive model. Additionally, the accuracy 

performance of the classification models was evaluated. 
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1.4. Contributions to Knowledge 

This thesis contributes mathematical modelling using machine learning techniques for 

studying and predicting trends in the prevalence of diabetes. The novelty here is exploring 

various approaches of modelling and thus developing different algorithms and combination 

methods that provides the most accurate predictions, as well as the particular application of 

these technological solutions to the case of diabetes in KSA.  

The key contribution of this research is the use of statistical and machine learning techniques 

in studying the trends in the prevalence of diabetes and its related risk factors. This thesis also 

proposes different combination methods to enhance the accuracy of the predictive model. In 

addition, a new combination method based on consensus theory is introduced. To further 

validate the outcomes of the predictive model, the observed results are compared with some 

existing studies. Moreover, this study illustrates the relationships between diabetes 

prevalence rate and the prevalence of the three behavioural risk factors. Consequently, the 

novel findings of this research are contextualised relative to existing literature. 

Albeit machine learning methods have been utilised in other aspects of diabetes research, 

most of them were based on diagnosing or detecting the disease, and little research attention 

has explored the adoption of machine learning methods to study the trends in the prevalence 

of diabetes and forecast its future in specific populations. Thus, this thesis attempts to apply 

various machine learning and combination methods for studying diabetes and make future 

predictions.  

Findings obtained from this thesis will contribute to diabetes control programmes in KSA. This 

is by providing indications to health policy makers and providers about the behavioural factors 

in diabetes, to help reduce the risk of diabetes complications and increase individuals’ healthy 

life expectancy. 

1.5. Research Methodology 

This research adopts modelling strategies using machine learning techniques to study 

diabetes prevalence rate along with the related behavioural risk factors in KSA. It utilises three 

different approaches of modelling: regression, classification, and time series modelling. The 

proposed models integrate historical data on diabetes, smoking, obesity, and inactivity 

prevalence to achieve its aim for examining the trends in prevalence of DM in KSA, and to 

make predictions and estimations for the expected future level of the disease. These datasets 

were collected from the published national surveys in KSA. Data for the prevalence of 

diabetes, smoking, obesity, and inactivity were obtained from Saudi Health Interview Survey, 

which is provided by the Saudi Ministry of Health, along with other published national surveys. 
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The pre-processing methods were applied on the datasets namely data imputation and data 

categorization for classification modelling.  

Following the pre-processing, the completed datasets of smoking, obesity, and inactivity only 

was divided into two parts: training data (from 1999-2013), and testing data (from 2014-2025), 

which were used for building and evaluating the models, respectively. Only the training dataset 

of diabetes (morbidity) data was required for building the purposed models. Next, several 

statistical evaluation metrices were applied to evaluate the performance of regression and 

time series models: MSE, RMSE, MAPE, and the coefficient of determination R-squared. The 

performance of the classification models was evaluated based on the accuracy of models. 

Lastly, the obtained results from the regression models and from the combined model were 

validated by comparing to some observed data from other existing studies by the WHO, IDF, 

and Family Health Survey from the Saudi General Authority for Statistics. Improved accuracy 

was achieved with ANFIS model and WAVR in comparison to these studies. 

1.6. Thesis Outline 

The thesis comprises eight chapters, the remainder of which are structured as follows: 

Chapter 2 provides a general background on diabetes, its complications, and related risk 

factors. Furthermore, the mathematical models and machine learning techniques used for 

diabetes studies are comprehensively reviewed.  

Chapter 3 presents the theoretical background of modelling along with the methodological 

framework of the development process of the experimental design of diabetes modelling and 

presents and discusses related issues. 

Chapter 4 applies and develops the individual regression models used in this thesis (Multiple 

Linear Regression, Bayesian Linear Regression, Support Vector Regression, Artificial Neural 

Networks, and Adaptive Neuro -Fuzzy Inference Model). Their results are discussed, analysed 

and then their performance is evaluated by different statistical metrics. 

Chapter 5 introduces six traditional ensemble methods (average, weighted average, majority 

voting, weighted majority, minimum, and maximum) and a new combination method 

(consensus model) for the use to combine the predictions for each individual regression model 

used in Chapter 4. The experimental results obtained from each combination method are then 

discussed and analysed, and the results of the best combined model are compared with the 

results of the individual regression models and with some observed results from other existing 

studies.  
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Chapter 6 presents the developments in classification modelling performance, including linear 

discriminant, support vector machines, K-nearest neighbours, and neural net pattern 

recognition, to investigate their ability to classify diabetes prevalence rates and the predicted 

trends of the disease according to the associated risk factors (smoking, obesity, and inactivity). 

The obtained results from each classification method are discussed and analysed, and their 

accuracy performance is evaluated. 

Chapter 7 explores the implementation of time series modelling approach by developing three 

nonlinear autoregressive models for each independent variable (smoking, obesity, and 

inactivity) using neural network time series. Then providing a comparison between the time 

series model and ANN regression model used in Chapter 4. 

Chapter 8 is the final chapter which provides a summary of the thesis, highlighting its main 

conclusions, and suggesting future research directions arising from the findings of this thesis. 
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Chapter 2  

Literature Review of Mathematical and Machine Learning Models in 

Diabetes 

2.1. Introduction  

Mathematical and machine learning modelling has been successfully applied to the healthcare 

domain and epidemiological chronic diseases, including DM, which is classified as an 

epidemic due to its high rates of prevalence around the world. Mathematical modelling has 

become a useful method in the processes of description, prediction, and evaluation of various 

diseases, including diabetes. This chapter gives an overview of diabetes in terms of the world 

prevalence rates, associated risk factors, main types, and the complications related to the 

disease. It then reviews literature on the mathematical and machine learning models that 

contribute to the study of diabetes for clinical and economic purposes in most important 

aspects, including the dynamics of glucose and insulin, the progression of diabetes and its 

complications, the costs of diabetes-associated healthcare, and the cost-effectiveness of 

interventions for treating or preventing diabetes. 

2.2. Epidemiological Background of Diabetes and Worldwide 

Prevalence  

2.2.1. Overview 

Over recent centuries there has been a significant change in mortality rates worldwide, with 

dramatically decreasing mortality and extended life expectancy due to developments in health 

interventions that address the most common communicable diseases such as cholera, 

typhoid, smallpox, and others. Although some developing countries still face these diseases, 

lifestyle-related chronic diseases have become the most dangerous threats to health 

nowadays, including cancer, cardiovascular disease, diabetes, and heart disease [25]. This 

shift in the pattern of diseases and their causes is called epidemiological transition, which was 

originally formulated by Omran in 1971 [26]. Rapidly and continuously changing lifestyles and 

urbanisation contributed to this transition, which led to an increase in the risk factors of non-

communicable diseases. Consequently, the economic burden of these diseases is increasing 

around the world, particularly in developing countries [27]. Diabetes is a clear example of the 

phenomenon of epidemiological transition [28]. 

Diabetes is the main health problem addressed by this research. DM is a significant disorder 

of the metabolism which leads to chronic hyperglycaemia, and causes abnormalities in the 
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metabolism of carbohydrates, fats and proteins as a result of a deficient production of insulin, 

or a resistance to the insulin produced, or both [29].Patients with T1DM need insulin injections 

to survive, while T2DM, which represents most cases, is a defect in the secretion and function 

of insulin, meaning some diabetics of this type need insulin but most do not (with appropriate 

diet and physical activity), as they continue to produce insulin [4][30]. 

Diabetes is a serious health problem that is growing significantly around the world because of 

increasing population density, urbanisation, an aging population, and a high prevalence of 

obesity and lack of exercise [22]. In the last few decades, a variety of studies predicted the 

incidence of diabetes and its global prevalence using diverse data and methods of analysis. 

Future estimates of the burden of diabetes are very important for health policy planning, 

identifying the necessary costs of controlling diabetes [8]. King et al. [21] estimated diabetes 

prevalence in a 1998 study by the number of diabetics aged 20 years and over for every 

country in the world in three time points: 1995, 2000, and 2025. Other variables were 

calculated such as gender proportion, urban-rural proportion and age groups of the population 

who suffer diabetes. The study took data from the WHO’s global database, collected from 75 

societies representing 32 countries. A set of five-year age-and sex-specific estimations of the 

prevalence of diabetes was selected from rural and urban parts of various countries. Estimates 

were made according to two criteria: the sample of population had to be valid and unbiased, 

and diabetes had to be diagnosed using the recommended WHO diagnostics methods. In 

order to estimate the number of diabetes cases in every country in the world, data gathered 

from the WHO was linked to demographic estimates and projections released by the United 

Nations.  

In some countries no estimates were available, so prevalence estimates from other countries 

with similar demographic and socioeconomic features were used. The study assumed that, 

besides ethnicity, other factors contribute to diabetes trends, such as population size, sex, age 

structure, and urbanisation level. All data sources were analysed using logistic regression 

modelling. The global prevalence of diabetes in 1995 was estimated to be 4.0%, predicted to 

increase to 5.4% by the year 2025. This was higher in developed than developing countries. 

The number of adults with diabetes in the world was predicted to rise from 135 million in 1995 

to 300 million in 2025. The number of diabetic adults was projected to rise from 135 million in 

1995 to 300 million in 2025. The age group 45-64 years had the majority of diabetic people in 

developing countries, while most people with diabetes were over 65 in developed countries. 

Following King et al.’s study of 1998, Wild et al. [22] developed an updated report in 2004, 

adding new data and various techniques to estimate age-specific diabetes prevalence. This 

study estimated the prevalence of diabetes, and the number of diabetics in all age groups, for 
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the years 2000 and 2030. For this study, diabetes prevalence data according to age and sex 

were collected from a restricted range of countries and extrapolated to all 191 states 

represented by the WHO. For people aged 20 and over the data were obtained using 

population-based studies, using WHO criteria for diagnosing diabetes. The prevalence of 

T1DM in people aged under 20 in specific countries was predicted from the reported data 

using the same methods used by the IDF, while T2DM people in the same age group were 

excluded from the estimate, because there were no data available. A set of criteria for age- 

and sex-specific estimates of the prevalence of diabetes was extrapolated for other countries, 

including similarities in ethnicity, socioeconomic factors, and geographical proximity.  

In order to generate smoothed, age-specific estimates, DISMOD II software was used, which 

is a mathematical model for analysing estimations of disease with regard to occurrences, 

prevalence, and mortality rates. The age- and sex-specific prevalence from the study, 

remission rates (assumed to be zero), and relative risk estimations of mortality of people with 

diabetes were used as inputs into the model. Estimates of the prevalence, occurrence, and 

mortality, consistent with each other, were provided as outputs of the model. These estimates 

were applied to United Nations population estimates for individual countries for 2000 and 

2030. As in previous studies, urban and rural areas of developed countries were assumed to 

have similar trends of diabetes prevalence, however urbanisation is known to increase risk 

factors associated with diabetes in developing countries, such as changes in dietary habits, 

obesity, lack of physical activity, and stress, these factors account for the differing diabetes 

trend among urban and rural populations. It was estimated that the global prevalence of 

diabetes for all age-groups was 2.8% in 2000, projected to rise to 4.4% in 2030; a total of 171 

million diabetic people in 2000 was predicted to increase to 366 million by 2030.  

A 2010 study by Shaw et al. [23] aimed to predict the number of diabetes cases globally for 

2010 and 2030. Studies were collected from the 91 countries in which they were published 

between January 1989 and March 2009. A total of 133 studies that used a population-based 

method to evaluate the prevalence of diabetes, applying the diagnostic measures of the WHO 

or the American Diabetes Association (ADA) were selected. Age- and sex-specific diabetes 

prevalence in people aged 20-79 was calculated using logistic regression modelling. These 

calculations were applied to the estimates of the national populations to estimate the number 

of diabetic people for all 216 countries for 2010 and 2030. It was estimated that the global 

prevalence of diabetes within the 20-79 age group was 285 million adults in 2010, projected 

to rise to 439 million by 2030.  

A further study that addresses the global prevalence of diabetes is the 2014 study of 

Guariguata et al. [8] using age-specific studies of the prevalence of diabetes and applying the 
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Analytic Hierarchy method to choose studies systematically, making estimates for 219 

countries and territories. Of the 744 sources of data available, 174 were selected to represent 

130 states. For the remaining countries where no data existed, the estimates were based on 

countries with similar characteristics of ethnicity and socioeconomic life. In order to generate 

smoothed, age-specific prevalence estimates for people aged 20-79, logistic regression 

modelling was used, and the estimates were applied to the population of every country for 

2013 and 2035. The number of people with diabetes in 2013 was estimated to be 382 million, 

predicted to increase to 592 million by 2035.  

The 2016 Global Report on Diabetes gives WHO’s most recent available figures and 

expectations [10]. This study aimed to estimate global trends in diabetes and the number of 

diabetic adults. The likelihood of reaching the worldwide diabetes objective was also 

estimated. The study evaluated the trends in diabetes prevalence over the period 1980 to 

2014 for adults aged 18 and over, in 200 countries and territories, divided into 21 areas 

according to geography and level of income. The data sources used in this study were national 

statistics that relied on population studies, and which included a test for one or more diabetes 

biological variables (FPG, 2hOGTT, or HbA1c (the study used any one of the following criteria 

to define diabetes: fasting plasma glucose (FPG) of 7.0 mmoI/L or more, diabetes diagnosis 

history, or the use of oral hypoglycaemic medications or insulin). After the data were analysed, 

the prevalence of diabetes from sources which used other measures to define diabetes were 

modified to correspond to the existing definition, then those data were modelled statistically to 

get estimations of diabetes trends for every country and year. The results show that the 

prevalence of diabetes doubled globally from 4.7% to 8.5% within the period 1980 to 2014, 

which means the number of diabetic people was estimated to increase from 108 million in 

1980 to 422 million in 2014. 

Following the WHO study, an official and trusted study by the IDF Diabetes Atlas 2017 (a 

global reference report) reported global diabetes estimates [31]. This report took diabetes data 

from seven areas, including 131 countries, to evaluate the prevalence of diabetes around the 

world. These data were collected from multiple sources, including health surveys, formal 

reports from health ministries, and unofficial communications. A total of 221 data sources were 

chosen. For countries where no sources were available, data were obtained from other 

countries with common ethnic and demographic features. This study considered various age 

groups, including children and adolescents aged 0-19 years, people aged 20-79, and a more 

expansive adult age group (18-99). A linear regression model was used to estimate diabetes 

prevalence by age and gender. Changes in sex, age, and variances in urban and rural areas 

were used to provide estimates and projections for every country. According to this study, 

based on data available in 2017, there will an estimated 425 million people with diabetes by 
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2045. Table 2.1 presents a summary of diabetes prevalence around the world according to 

the last published statistics by IDF in 2019.  

IDF regions Number of diabetics by years Percentage of 

increase 2019 2030 2045 

North America 

& Caribbean 

48 million 56 million 63 million 33% 

South & Central 

America 

32 million 40 million 49 million 55% 

Africa 19 million 29 million 47 million 143% 

Europe 59 million 66 million 68 million 15% 

South-East Asia 88 million 115 million 153 million 74% 

Middle East & 

North Africa 

55 million 76 million 108 million 96% 

Western Pacific 163 million 197 million 212 million 31% 

World 463 million 578 million  700 million 51% 

Table 2.1: Prevalence of diabetes around the world for 2019,2030, and 2045. Source: IDF Atlas 9th Edition   

2.2.2. Type 1 and Type 2 Diabetes  

There are three types of DM classified according to aetiology and clinical picture: type 1 

diabetes (T1DM), type 2 diabetes (T2DM), and gestational diabetes. There are other specific 

rare types of diabetes which can be caused by drugs, surgery, malnutrition, infections, specific 

genetic syndromes, and other illnesses. In this section only the two main types of diabetes will 

be described. Figure 2.1 shows diabetes mellitus types.  

 

 

 

 

 

 

 

Figure 2.1: Diabetes Mellitus Types  
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T1DM is described as insulin deficiency as a result of an auto-immune disorder leading to the 

destruction of β-cells in the pancreas which is responsible for producing insulin. Genetic 

predisposition in some people, plus the impact of environmental factors which are not yet 

accurately defined, can lead to the development of T1DM. The destruction of β-cells may take 

place for months or years before it is sufficiently advanced for the disease to be diagnosed 

[32]. The speed of β-cells damage differs, but it is faster in young patients, such as children 

and adolescents, and slower in older individuals. This type of diabetes makes up about 5-10% 

of cases [33]. T1DM can be simply diagnosed in young people based on an increase of 

glucose levels, while it is more difficult to diagnose in older people. Patients with this type of 

diabetes require insulin treatment throughout their lives to survive [34]. 

T2DM can be classified as a result of resistance to insulin in most cases. The process of 

developing T2DM is more gradual than T1DM, starting at the stage of pre-diabetes, in which 

individuals may have either impaired glucose tolerance (IGT) or impaired fasting glucose 

(IFG), or both. The progression of this type of diabetes usually takes several years to be 

diagnosed, or before a person notices the first complications of the disease. People with this 

type of diabetes do produce enough insulin; the problem is that the normal level of insulin 

cannot be recognised by their body cells, because of insulin resistance. The genetic pre-

disposition of individuals and the impact of lifestyle factors contribute to increased risk of 

developing T2DM, which is more common with increasing age. T2DM can be treated by 

changes in lifestyle, including adopting a healthy diet (particularly fewer refined sugars) and 

increasing physical activity, which improves insulin sensitivity, or pancreatic activity can be 

facilitated using medication. Compared to T1DM, patients with T2DM are not completely 

dependent on insulin treatment, but insulin may be required to manage glycaemia, either 

regularly or during exacerbated conditions (i.e., blood sugar peaks) [35].  

2.2.3. Diabetes-Related Complications  

People with T1DM or T2DM are susceptible to several complications that affect their health 

and quality of life. These complications can be long-term or short-term, according to the 

situation. Health problems associated with diabetes may lead to hospital care, permanent 

disability or even death. The most serious acute or short-term complications are 

hypoglycaemia, hyperglycaemic hyperosmolar state (HHS), and diabetic ketoacidosis (DKA). 

Long-term or chronic complications, which can take years to occur, include retinopathy (an 

eye disease), nephropathy (kidney disease), neuropathy (peripheral nerve disease), 

cardiovascular disease (heart disease), and stroke [36]. 

Acute metabolic changes result in short-term complications, primarily brought on by 

inappropriate insulin treatment, excessive food, delayed or forgotten meals, intensive 
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(unaccustomed) physical exercise, or other causes. People with T1DM are the most affected 

by DKA and hypoglycaemia, whereas HHS without ketoacidosis more often accompanies 

T2DM [37].  

Hypoglycaemia is clinically described as blood glucose lower than 70mg/dl.[38] If insulin is 

taken excessively by a patient, without identifying the required dosage, it can lead to 

hypoglycaemia. Patients may become susceptible to hypoglycaemia by changing their dietary 

habits, eating times, or the content or amount of food [39]. To diagnose hypoglycaemia, a 

patient needs to satisfy Whipple’s criteria: the main signs and symptoms associated with 

hypoglycaemia must exist, accompanied by a lower level of blood glucose, and the symptoms 

disappear after glucose management [40]. Hypoglycaemia can be identified by symptoms 

such as sweating, heart palpitations, tingling, discomfort, and extreme hunger. Common 

symptoms of hypoglycaemia include trouble focusing, tiredness, problems talking, feeling 

unbalanced, and extreme irritation. Preventing and dealing with hypoglycaemia can be a 

difficult task, requiring the restoration of a normal level of glucose in the blood. The condition 

hypoglycaemia can come on very quickly, most commonly in a mild form which is often treated 

immediately by raising the blood glucose level to about 55-70mg/dl. This can be achieved by 

having glucose drugs or sugary drinks. However, omitting or delaying treatment may lead to 

severe hypoglycaemia which can result in coma and neural defects, particularly at night, when 

hypoglycaemia can be very dangerous. Over 50% of severe hypoglycaemia cases occur 

during the night. Thus, measuring glucose regularly, educating patients and insulin therapy 

help to reduce the risk of hypoglycaemia [37]. 

DKA is a serious problem commonly associated with T1DM. The clinical definition of DKA is 

an absolute deficiency of insulin with hyperglycaemia, acidosis and hyperketonaemia [41]. A 

lower level of efficient insulin along with increasing levels of counter-regulatory hormones, 

which includes glucagon, cortisol, growth hormone, and catecholamines, results in DKA. The 

causes of DKA contribute to metabolic changes in proteins, fats and carbohydrates. DKA leads 

to symptoms such as extreme thirst, polyuria, losing weight, weakness, sleepiness, and coma 

in the later stages. Prevention of DKA play an important role in managing diabetes treatments 

properly. Which means that diabetic patients are required to control their blood glucose 

effectively, taking the correct dosage of insulin. They have to be aware of the potentially lethal 

complications [36][37]. 

Hyperglycaemic hyperosmolar state (HHS) is the new term for the condition previously known 

as hyperglycaemic hyperosmolar non-ketotic coma. The new term much better represents the 

clinical aspects of the condition, since most people affected with HHS are not in a coma, and 

have ketones that can be detected [42]. HHS is an intensive increase in blood glucose levels 
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(>600mg/dl), along with higher serum osmolality (>320 mosm/kg), without major ketosis or 

acidosis. Ketones, in small quantities, might be found in blood and urine [40]. HHS is less 

common than diabetic ketoacidosis DKA, but it does represent 10-20% of mortalities, which is 

dramatically higher than the mortality rate of DKA, which only accounts for 1%. 

Hyperglycaemic hyperosmolar state is distinguished by insulin deficiency and is different from 

DKA only in the intensity of metabolic acidosis, dehydration, and ketosis. Even though HHS 

appears more frequently in elderly people who suffer from T2DM, records show that young 

patients and people with T1DM can also be affected [41]. HHS can be avoided through 

suitable diabetes education, sufficient treatment, and recurrent personal observation of blood 

glucose levels. 

Some factors may accelerate the incidence of HHS, such as dryness and medication (e.g., 

thiazides, sympathomimetic agents, and corticosteroids). It is recommended that these 

medications are used more carefully especially by weak patients, such as older people. 

Staying in hospital is a requirement for patients with HHS, which may be extended according 

to their situation. However, if their condition is not complex, it can be treated by similar methods 

as DKA [40]. 

Chronic or long-term complications are not actually associated with metabolic changes of 

diabetes per se, or are less directly linked to these changes [43]. Most of the effects of chronic 

diabetes are caused by the progression of cells, and the most serious of these problems are 

microvascular disease (retinopathy, neuropathy and nephropathy) and macrovascular disease 

(atherosclerosis). Microvascular problems are associated with the length and intensity of 

hyperglycaemia in T1DM and T2DM [44]. The risk of developing microvascular disease is 

highest in patients with poor diabetes management, and lowest in those with better control.29 

While microvascular disease affecting the eyes, kidneys, and nervous system may develop in 

patients with T1DM or T2DM, the risk of developing macrovascular disease such as 

cardiovascular disease is higher in people with T2DM [45]. 

Microvascular disease related to diabetes affecting the retinas, kidneys, glomerulus, and 

peripheral nerves can be described by common pathophysiological characteristics. Evidence 

provided by medical tests and animal experiments shows that severe hyperglycaemia is the 

essential cause of every form of microvascular disease. The duration of hyperglycaemia, along 

with its degree of strength, are highly related with the severity of and likelihood of developing 

microvascular complications in diabetic people [46]. 

Diabetic neuropathy can be characterised as the appearance of symptoms of peripheral neural 

disorder, whether patients have indicators of the disorder or not, after excluding any other 

reasons. Like other microvascular problems, the risk of diabetic neuropathy is related to the 
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extent and degree of hyperglycaemia. Most treatment methods for diabetic neuropathic 

problems deal with the symptoms. Amendments or changes to risk factors such as glycaemia, 

hyperlipidaemia, high blood pressure, smoking, and weight problems are significant protective 

dimensions against diabetic neuropathy. 

Diabetic retinopathy is one of the ocular problems that might affect individuals with diabetes 

and is a major contributor to serious sight disabilities in adults. Research shows that diabetic 

retinopathy is linked to the duration of diabetes. It appears that 60% of individuals who have 

had diabetes for more than 15 years are affected by retinopathy, and it may affect 90% of 

those who have had diabetes for 25 years. A visual disease may be accompanied by several 

chronic diseases such as cardiovascular disease, renal failure or high blood pressure, which 

can result in serious morbidity and mortality. Chronic hyperglycaemia can cause 

microvascular problems in the eyes, specifically in the retina, causing damage to the small 

blood vessels, leading to diabetic retinopathy and consequent loss of sight. Microvascular 

changes result in weak capillary walls and cause aneurysms, that may rupture, leading to 

blood loss. Procedures to manage diabetic retinopathy involve glycaemic regulation with blood 

pressure administration to minimise the risk of disease progression. Laser photocoagulation 

is a significant treatment method, particularly for maculopathy and proliferative retinopathy 

[47]. 

Worldwide, diabetes is a major contributing factor to final-stage kidney problems. The 

interaction between metabolic and hemodynamic components leads to diabetic nephropathy, 

that stimulates the shared pathways, resulting in kidney failure. The renin-angiotensin system 

(RAS) significantly contributes to the pathophysiology of nephropathy. The first sign of 

nephropathy is microalbuminuria, that develops into albuminuria followed by kidney failure. 

The main risk factors involved in the recurrence, intensity and development of diabetic 

nephropathy include hyperglycaemia, high blood pressure, a long period of diabetes, 

excessive protein, smoking and age at which the disease started. The pathological transitions 

that occur in the kidneys of sufferers from diabetic nephropathy involve a rise in the thickness 

of the glomerular basement membrane, producing microaneurysm, and mesangial nodule 

production. Some mechanisms that lead to diabetic retinopathy contribute to the pathogenesis 

of diabetic nephropathy. The treatment of diabetic nephropathy begins with accurate 

glycaemic management. Angiotensin transforming enzyme inhibitors (ACEIs) help reduce the 

risk of progressive nephropathy and cardiovascular incidents in diabetics. Also, ACEIs and 

angiotensin receptor blockers (ARBs), along with their attributes, might have preventive 

impacts on the kidneys. 
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Macrovascular problems result from deteriorated protein in arterial walls, leading to thickening 

of these walls. This affects the major blood vessels in the circulatory system and increases 

the chances of stroke (cerebrovascular disease), cardiovascular disease, and peripheral 

vascular disease. Because of these complications, diabetic patients may be susceptible to 

gangrene, ulceration and extremity amputation. Macrovascular disease is the main reason for 

death among diabetic individuals. Blood pressure and fat management can be useful to 

glycaemic control and avoiding death due to macrovascular problems, but following a 

multifactorial treatment technique strongly minimises the three risk factors, and is considered 

essential to most effective procedures for proper protection from cardiovascular problems 

[44][48]. 

Long-term complications can be prevented through additional approaches besides glycaemic 

management, such as health education strategies that greatly enhance the consequences for 

diabetics. Patients with diabetes are advised to have frequent eye tests (annually), to facilitate 

early detection of retinopathy or other eye diseases (in addition to being good 

ophthalmological practice, particularly for older people). Foot infections can be minimised 

through educating patients about foot care and smoking cessation. Medical care and surgical 

treatment could decrease morbidity. Diabetics are at greater risk of high blood pressure and 

hypercholesterolemia. Awareness of proper protection and care procedures regarding the risk 

factors may minimise the prevalence of cardiovascular problems. People with diabetic 

nephropathy can reduce kidney dysfunction by extreme management of hypertension and 

microalbuminuria [49]. 

2.2.4. Risk Factors of Diabetes  

Despite the complicated pathogenesis associated with diabetes, a range of factors that 

maximise the risk of developing the disease are specified. The risk factors for T1DM are family 

history, ethnic background (with a greater risk for whites than any other ethnic group), and 

childhood viral infections [50]. It appears that T1DM requires many years to develop. The 

chances of the child of a father with T1DM having the disease is 1 in 17, while the risk of a 

child born to a mother under the age of 25 years with T1DM is 1 in 25. In the case where the 

mother gave birth after age 25, the risk reduces to 1 in 100. If the mother had diabetes earlier 

than age 11, the child’s risk is doubled. For parents who both have T1DM, the child’s risk 

ranges from 1 in 10 to 1 in 4 [51]. 

There are several risk factors for T2DM, some of which are changeable, while others are not. 

Risk factors for T2DM that are non-changeable include age, ethnic background, genetic 

predisposition, history with gestational diabetes, and reduced bodyweight at birth. When 

T2DM is diagnosed in a father or mother before the age of 50, the potential risk of the child 
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becoming diabetic is 1 in 7. If the diagnosis of either of the parents happens after age 50, the 

risk becomes 1 in 13. In cases where both parents suffer from T2DM, the average child’s risk 

is around 1 in 2 [51]. The occurrence and prevalence of diabetes increases as people get 

older. The Centre for Disease Control and Prevention announced that during 2005, diabetes 

prevalence in individuals over 20 in the US reached 20.6 million (9.6%), and diabetes was 

most prevalent in the group aged over 60, accounting for 10.3 million (20.9%). Diabetes in 

African-Americans tends to be higher than among Whites. Estimates of Native Americans 

diagnosed with diabetes range from 5% to 50%, in various tribes with various populations.  

A slight difference can be found in diabetes prevalence by sex. Genetic predisposition plays 

a significant part, however non-genetic factors, particularly lifestyle factors, including eating 

habits and physical exercise, seem to be the leading cause. Modifiable risk factors related to 

lifestyle include increased body weight, lack of exercise, deficient healthy food, high blood 

pressure, drinking alcohol, and smoking. Obesity is the main risk factor contributing to the 

development of diabetes; the proportion fat distributed in the body, particularly a raised rate of 

fat at the waist or hips, particularly increases the risk of diabetes. A variety of studies report 

that lower levels of physical exercise increase the risk of diabetes. The latest report of 10 

potential cohort studies examining medium intensity physical exercise and diabetes suggests 

that individuals who maintain medium intensity exercise have a 30% reduced chance of 

diabetes compared to others who are less active. Some elements of food such as fats and 

refined carbohydrates, along with total calories, have been associated with diabetes. It has 

been demonstrated that smoking is an independent factor increasing the risk of diabetes. 

Psychosocial factors such as excessive stress, depression, lack of social support and weak 

mental health are also connected with a higher risk of developing diabetes [50]. 

2.3. Mathematical Modelling for Diabetes  

2.3.1. Models for Glucose-insulin Dynamics 

Mathematical modelling of physiological operations is an essential technique for 

understanding these operations and improving technology to deal with them. This is 

specifically applied in the area of diabetes study and glycaemic management. A wide variety 

of mathematical models presented in the literature focus on the dynamics of glucose and 

insulin. Models range from simple linear models relating only to glucose and insulin to 

complicated nonlinear models that relate to chemical changes in the pancreas regarding beta 

cells. Although the simple linear models provide analytical assessment using essential 

management algorithms, they do not study the dynamic actions of the actual process. The 

variety of medical therapy choices for diabetes are increasing beyond the standard traditional 

solution of insulin therapy. To deal with the varied outcomes of these therapies, mathematical 



19 

models are required to contain the dynamics that are directly influenced by the therapies. A 

variety of existing models, along with their significant attributes, are reviewed in this section.  

One of the leaders in this area was Bolie, who in 1961, used mathematical models to explain 

the connection between insulin and glucose usage. Because of the restricted possibility at that 

time for simulating complicated models, it was naturally rather simple, consisting of two 

compartments, one for glucose and the other for insulin. A set of two ordinary differential 

equations were included that constituted a second order system. The simulation using this 

model was done by an analogue computer. In fact, the linearity of the model was a major 

disadvantage, as the level of both glucose and insulin may be negative, which, from a physical 

viewpoint, is not possible. Improving this model, Bolie added an important element: the system 

of glucose and insulin is significantly dampened, and for that reason comes quickly back to a 

constant state [52]. The system of the two ordinary differential equations (Bolie model) can be 

given as: 

 

𝑑𝑔

𝑑𝑡
= −𝛼. 𝑔 − 𝛽. 𝑖 + 𝐺𝑃                   (2.1) 

 
𝑑𝑖

𝑑𝑡
= −𝑘. 𝑖 − 𝑘𝑠𝑒𝑐 . 𝑔 + 𝐼(𝑡)               (2.2) 

where g and i are the blood glucose and insulin concentrations, respectively, and 𝛼, 𝛽, k, and 

𝑘𝑠𝑒𝑐  are the first order rate constants. 𝐺𝑃  and 𝐼(𝑡)  are the rate of endogenous glucose 

production and the rate at which exogenous insulin enters the general circulation, respectively.               

In 1964, the model was improved by Ackerman et al., who proposed a model of linear 

differential equations of the metabolic processes for glucose in the oral glucose tolerance test 

(OGTT) [53]. Modelling of the dynamics of glucose and insulin started with the minimal model 

presented by Bergman et al. in the early 1980s [54][55]. This was designed to quantify the 

responsiveness of the pancreas and the sensitivity of insulin in the intravenous glucose-

tolerance test (IVGTT) in non-diabetic people [56].  

The model had the simplest explanation of the most basic physiological factors. It was the 

earliest mathematical modelling using computers to evaluate insulin sensitivity. This model 

contains variables and three differential equations that explain the plasma quantity of glucose 

and insulin and the concentration of insulin in a remote compartment, which accounts for the 

dynamics of subcutaneous insulin infusion or the mechanics of gut glucose intake from 

carbohydrate food. Despite the particular use of the Bergman minimal model for analysing 

data during the intravenous glucose-tolerance test (IVGTT) in non-diabetic people, its natural 

simplicity triggered a great number of scientists to implement and enhance the model in 
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subsequent diabetes modelling studies. As of 2002, over 500 studies based on the minimal 

model had been published [57]. Additional information and facts related to this model and 

associated models are available in the literature [58]. 

A number of researchers mentioned that despite its value in physiological studies, the minimal 

model’s minimal range of constants entails some problems. Firstly, the model comprises a 

couple of sections, the first using two equations, and the second adding a third. In the second 

section, the concentration of plasma glucose is considered a recognised strengthening 

function. This means that to fit the parameters of the model it must make two actions, applying 

the captured insulin concentration as an input to obtain the variables in the two first equations, 

then using the captured glucose as an input to derive the variables in the third equation. 

Secondly, some of the mathematical outcomes generated by the model are obviously not 

logical. Thirdly, the artificial non-visible factor is inserted to account for the delay in the motion 

of insulin [59]. 

Another exhaustive model regarding the regulation of blood glucose which examines the 

mechanism of glucagon alongside insulin, and their relation, was presented by Cobelli et al. 

involving three subsystems [60]: 

1. The glucose subsystem explained by just one compartment model of division and 

metabolic process involving net hepatic glucose equilibrium, such as the variance 

between producing and absorbing liver glucose, kidney secretion of glucose, insulin-

dependent glucose usage through muscles, and insulin-independent glucose usage 

through the neurological system.  

2. The insulin subsystem characterised by a five-compartment model involving insulin 

storage in the pancreas, plasma insulin, liver and portal plasma insulin, and insulin in 

the interstitial substance.  

3. The glucagon subsystem characterised by just one compartment model, involving 

plasma glucagon and glucagon in the interstitial substance.  

The authors admitted the obstacles to verifying this complicated model against trial data, but 

they indicated that several parts of their particular model depend on outcomes from both whole 

body and personal organ studies [60]. A variety of simulations of their model in various cases 

illustrated sensible outcomes for every case. The main shortcoming of the model was that it 

is complicated in comparison to other options. In fact, due to its complexity, the model has not 

been as broadly quoted as the Bergman minimal model. Using five compartments for 

distributing insulin is exclusive to this model among all the models studied, and this attribute 

was never transferred to subsequent models by Claudio Cobelli. A recently available example 

of this is a model in which a range of independent sub-models are grouped together [61]. One 
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of these sub-models represents the glucose absorption and absorption operations in the 

gastrointestinal system. The model resulted from an extensive test, including more than 200 

healthy people and 14 with T2DM, taking a meal with three types of traceable glucose. The 

purpose of developing the model is to work as a simulator tool to evaluate cure programmes 

for diabetes patients. For this reason, a MATLAB version of the model, referred to as the 

glucose insulin model (GIM) [62], has been developed for use by analysts. 

A further physiological model introduced by Sorensen in 1985 [63] is considered to be an 

extremely comprehensive whole-body glucose metabolism model applying a great number of 

synchronised differential equations, based on earlier research by Guyton et al. Mass balances 

of glucose within a range of compartments (brain, lungs, heart, liver, gut, kidney, and 

periphery) are involved in this model. In each compartment sources and sinks of glucose mass 

are included. Considering the glucose balance of the liver as an example, the equation shows 

the complexity associated with the total model and the interaction between the several body 

parts. Glucose and insulin balance equations for the heart and lungs, brain, liver, gut, kidney 

and periphery are modelled, along with a mass balance for plasma glucagon. There are 16 

differential equations in total. This is an illustration of a bottom-up modelling method, which 

considers all physiological actions that contribute, small or large. This is the opposite of the 

minimal methods which seek the key contributing factors to get agreement with the 

consequences by model fitting, taking into account individual variation. The bottom-up method 

is likely to be even less ideal for coping with patient variation. Disadvantages of this model are 

its complexity, the difficulty of evaluating patient-specific variables [64] and the lack of 

dynamics of subcutaneous insulin absorption. Such a model was produced to explain the 

interactions of glucose and insulin in non-diabetic subjects, therefore it is not able to predict a 

realistic hyperglycaemic manifestation of T1DM [65]. 

A model introduced by Hovorka et al. in 2002 provides an effective compromise in between 

simplicity and precision. It is a nonlinear model describing the dynamics of glucose and insulin 

using a range of differential equations [66][67]. The inputs of this model include the level of 

subcutaneously infused insulin and the quantity and time of a meal. The outputs are a 

temporary description of plasma glucose and concentrations of insulin. The model consists of 

three subsystems which represents subcutaneous and plasma insulin, insulin motion, and 

plasma glucose. There are two compartments in the glucose subsystem: a compartment for 

plasma and a compartment that is non-accessible. There are also two compartments 

representing the subcutaneous insulin absorption. The action of the insulin subsystem takes 

into consideration the physiological impacts of insulin on transporting glucose, its elimination, 

and its endogenous creation. These insulin procedures express themselves at a constant rate 

dependent on time, related to every process of metabolism. The constants of the model are 
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quantities that are hard or impossible to determine, even though the parameters of the model 

were previously determinable because of their physiological importance. The nonlinearity in 

the model does not come from just the insulin motion, but also from the impacts of 

physiological saturation. For example, the excretion of renal glucose is zero, which is less than 

a particular threshold (160mg/dl); insulin-independent peripheral glucose absorption is 

constant, higher and relative to glucose concentration, less than a further threshold (80mg/dL). 

The model includes glucose gut uptake dynamics. Hovorka et al. later modified their model, 

rechecking the uptake kinetics related to the transport of subcutaneous insulin.[68] 

As an extension of Bergman and Cobelli’s models, Dalla Man et al. [61] proposed a model 

relating to the whole-body dynamics of insulin and glucose, aiming to record several 

physiological actions after a meal. The principal cause of the Dalla Man model being 

established was the accessibility of abnormally instructive details regarding the concentrations 

of insulin and glucose in plasma. It is composed of a network of glucose and insulin 

compartments that relate to the management of glucose in insulin excretion, the action of 

insulin on glucose usage, and endogenous production. The system of the model can be given 

as:  

�̇�𝑃(𝑡) = 𝐸𝐺𝑃(𝑡) + 𝑅𝑎(𝑡) − 𝑈𝑖𝑖(𝑡) − 𝐸(𝑡) − 𝐾1. 𝐺𝑃(𝑡) + 𝐾2. 𝐺𝑡(𝑡)         𝐺𝑃(0) = 𝐺𝑃𝑏     (2.3) 

�̇�𝑡(𝑡) = 𝑈𝑖𝑑(𝑡) + 𝐾1 . 𝐺𝑃(𝑡) − 𝐾2. 𝐺𝑡(𝑡)                                                            𝐺𝑡(0) = 𝐺𝑡𝑏       (2.4) 

𝐺(𝑡) =
  𝐺𝑃

𝑉𝐺
                                                                                          𝐺(0) = 𝐺𝑏         (2.5) 

where 𝐺𝑃  and  𝐺𝑡 (mg/kg) are glucose masses in plasma and rapidly equilibrating tissues, and 

in slowly equilibrating tissues, respectively, 𝐺 (mg/dl) plasma glucose concentration; suffix b 

indicates basal state; 𝐸𝐺𝑃 is the endogenous glucose production (mg/kg/min); 𝑅𝑎  is the 

glucose rate of appearance in plasma (mg/kg/min); 𝐸 is renal excretion (mg/kg/min); 𝑈𝑖𝑖and 

𝑈𝑖𝑑  are the insulin-independent and -dependent glucose uses respectively (mg/kg/min); 𝑉𝐺is 

the distribution volume of glucose (dl/kg); 𝐾1and𝐾2 are the rate factors.  

 In the study, 204 individuals were included, and measurements were performed for 420 

minutes during and after a meal. Similar measurements were conducted on 14 individuals with 

T2DM. The normal data made up one parameter set and the data from diabetic patients made 

up the other parameter set. To measure the glucose circulation through the gastrointestinal 

tract, the meal was tagged using radioactivity. In order to evaluate extra moves in the body, 

two further tagged tracers were infused intravenously, and estimates were created using the 

complicated tracer-to-trace rate clamp method mentioned by Basu et al. [69]. Several later 

improvements were made to the Dalla Man model [70] allowing it to simulate metabolic 
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situations of T1DM. The β-cells subsystem that is not active is substituted in the primary model 

with the subcutaneous insulin subsystem to model the dynamics of exterior insulin infusion in 

people with T1DM [62]. 

2.3.2. Models for Diabetes Progression  

The majority of models described assume a steady status of the disease, which is not realistic 

for severe chronic progressive diseases such as diabetes [71]. Furthermore, improved, newer 

antidiabetic factors are concentrated in medication which can modify the progress of diabetes. 

For this reason, the progression of the disease must be included in the model, with the purpose 

of understanding and studying the long-term impact of antidiabetic agents at various levels of 

progression. Models of disease progression, particularly for diabetes, which combine long-

term population studies with antidiabetic agents have been introduced and evaluated [72]. 

Some efforts have been made to mathematically model the progress of T2DM. It is critical to 

present a realistic expression of the long-term physiological adaptation to enhancing insulin 

resistance for efficient clinical studies and assessing diabetes protection and treatments. It is 

difficult to produce a reliable model of diabetes progression, because the long-time duration 

of the disease makes trial validation of modelling the hypotheses difficult. With this 

perspective, it is significant that the basic suppositions of model equations accurately 

represent proven physiology, while mathematical formulae of models provide only physically 

possible solutions. 

Damage to ß-cell mass happens in both types of diabetes. Chronic hyperglycaemia can result 

in an increase of ß-cell mass, while excessive hyperglycaemia can cause a decrease in ß-cell 

mass. To assess ß-cell response and the operations working to decrease in ß-cell mass, Topp 

et al. [73] introduced a model focusing on ß-cell mass as a dynamic factor along with insulin 

and glucose concentration. The ß-cell mass model is among only a few attempts to model the 

glucose-insulin system over the long term. It was developed to assist in the prediction of 

diabetes aetiology over weeks and months as opposed to hours, and to describe self-

regulation of the glucose-insulin system using β-cell mass. However, it is not verified for 

realistic data. The variables of the model were obtained from physiological data and the 

literature about previous models. This is a three-compartment mathematical model of the 

glucose-insulin system, including β-cell mass, insulin, and glucose. The analytical aspect 

focuses on long-term factors instead of the short-term system, which means the changes 

happen over days instead of minutes or hours. Thus, the concentrations of glucose and insulin 

in this model can be regarded as essentially levels of glucose and insulin. Three differential 

equations represent glucose, insulin and β-cell mass. The change rate of glucose in the model 

is described by a differential equation containing terms that represent the occurrence rate of 

glucose, minus the effectiveness of glucose and the sensitivity of insulin.  
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The change rate of insulin is described by a differential equation containing terms that 

represent insulin secretion, which depends on glucose and β-cell mass, in a Hill function, and 

a clearance function. The change rate of β-cell mass is described by a differential equation 

which contains terms that represents the natural rate of death of ß-cells, the growth rate of ß-

cells, which depends on the level of glucose, and a reduction in ß-cells which also depends 

on glucose. In the last equation the combination of variables produces a system that conforms 

to changing concentrations of glucose. As an example, when the glucose level is less than 

100mg/dl, there is a decline in ß-cell mass that consequently reduces insulin then returns 

glucose into an acceptable level of 100mg/dl. When the glucose level is between 100 and 

250mg/dl, the ß-cell mass rises, meaning insulin maximises and glucose levels decline close 

to 100mg/dl. When the level of glucose is less than 250mg/dl, the system adapts to the glucose 

level. When the level of glucose is more than 250mg/dl, glucose poisoning can decrease ß-

cell mass, which reduces levels of insulin and causes ever-rising levels of glucose in a 

runaway fashion. An extension of this model by Ribbing et al. is a semi mechanistic 

pharmacokinetic-pharmacodynamic model, demonstrating the dynamics of fasting plasma 

glucose, insulin and ß-cell mass, and the impact of antidiabetic therapies in a heterogeneous 

population.  

A model of diabetes progression over the long-term developed by De Gaetano et al. [74] 

summarises the pathophysiological operation of T2DM. This model explains the simultaneous 

development of ß-cell mass, pancreatic ß-cell duplication reserve, dominant glycaemia and 

dominant insulinemia, based on variables which represent glucose absorption in tissue 

dependent on insulin, hepatic net glucose outcomes, ß-cell insulin excretion capability, and 

insulin removal by plasma. In recent times, the effectiveness of this model was assessed by 

Hardy et al. [75] who applied the outcomes of the diabetes prevention program study. A 

mechanistic model based on population was produced by Nie et al.[76] designed for muscle 

pyruvate dehydrogenase kinase-4 mRNA changing over time, quantifying disease progression 

and the impact of diet and plasma variables on pyruvate dehydrogenase kinase-4 mRNA. 

While the implementation of epidemiological models of non-communicable diseases is rather 

uncommon, a few age-designed models and population-based models have previously been 

presented.[71]. 

2.3.3. Models for Complications 

People with T1DM and T2DM have a greater risk of developing microvascular and 

macrovascular complications, the main causes of nephropathy and retinopathy, that result in 

the aetiology for neuropathy and the resection of ulcerated limbs. They may also cause 

coronary heart disease and stroke. Mathematical models to understand and predict the 

various problems and complications associated with diabetes have been developed. The 
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complications include nephropathy, retinopathy, foot ulcers and cardiovascular disease. 

However, because of the opacity and complexity of the complications of diabetes, 

mathematical models in this particular area are uncommon. 

Among the mathematical models available is the Cardiff Diabetes Model, which is a discrete 

event model operating stochastic simulations designed in Visual Basic script, part of Microsoft 

Excel. Its structure is dependent on the Eastman model of T2DM, first introduced in 1997. It 

is designed to assess the effect of common recent treatments in about 10,000 people recently 

diagnosed with T2DM. In this model non-diabetic and T2DM people are included. It applies 

the UK Prospective Diabetes Study (UKPDS) risk engine method along with the Framingham 

risk equation. Typical outcomes from the simulation are the occurrence of microvascular 

(retinopathy, neuropathy, nephropathy) and macrovascular complications (congestive 

coronary disease, unexpected death, and cerebrovascular disease), described as deficit 

neural with signs and symptoms lasting longer than one month. The UKPDS outcomes model 

was designed by the University of Oxford based on survival equations predicted by applying 

data from the UKPDS on 3,642 patients. A detailed description of the model was presented in 

an article published in Diabetologia [77].  

Briefly, the UKPDS outcomes model is a probabilistic discrete-time model which uses an 

integrated set of parametric relative risk models to calculate the total risk for earliest incidence 

of 7 main complications related to diabetes, heart failure, ischemic coronary disease, stroke, 

kidney failure, blindness, amputation and myocardial infarction (fatal and not fatal). The 

estimations of this model are dependent on properties of the patient such as age and gender, 

as well as risk factors which differ over time including level of A1C and systolic blood pressure. 

The simulated patients begin with a pre-specified health position and may suffer one or other 

chronic complications or even die in any of the yearly periods as the simulation continues [77]. 

Another model that considers the complications of diabetes is the EAGLE model, which 

applies Monte Carlo simulation and risk equations. The latest version of this model includes 

the impact of several variables [78]. The fundamental composition of this model is a Markov 

process, with annual time periods and first and second order estimations. Probabilities of 

transition are based on the situation of the simulated patient, along with relevant computations 

which are internally defined. Several input variables are involved including demographics 

(such as age, gender and duration of diabetes), physiological features (such as A1C and 

systolic blood pressure), pre-existing complications, and lifestyle factors (such as smoking). 

However, the primary determining factor in the progression of diabetes and the development 

of its related complications is A1C, which is simulated over time with respect to predetermined 

targeted A1C.  
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Up to 20 effects, including hypoglycaemia, macular edema, retinopathy, neuropathy, end 

stage renal disease, stroke, and diabetic foot syndrome, are predicted in accordance with data 

provided by clinical and epidemiological studies including the UKPDS, the Wiscons 

Epidemiological Study of Diabetic Retinopathy (WESDR) and the Diabetes Control and 

Complications Trial (DCCT). In this model, a cohort of up to 50,000 virtual patients is used for 

every simulation, using distribution suppositions to identify the properties of patients. 

Occurrences are designated to patients individually over time. Outcomes are the mean rates 

of every cohort simulation and the mean rates of several versions of similar simulations, as 

demanded [78]. 

The Archimedes model is a mathematical illustration of the pathophysiology, physiology, 

symptoms, indications, attitudes, tests, therapies, strategies, sources, and consequences of 

T1DM and T2DM, along with other diseases such as hypertension, congestive heart failure 

and stroke [79]. It applies an object-oriented simulation method with differential equations to 

reconstruct standard details equivalent to an in-patient chart, clinical textbooks, medical 

training regulations, and clinical studies. A range of disease-related subjects are covered by 

this model, which takes into consideration biological features, care operations, patient and 

healthcare professional behaviours, strategies, costs, and resources. The Archimedes model 

provides biological parameters over time, which means that any incident can happen at any 

time and, in contrast to the Markov model, it does not have any specific cases. This model 

has an effective role in modelling diseases and complications together, allowing it to cope with 

pathology, symptoms, a variety of therapies, and treatments with several impacts [80].  

The Archimedes model includes over 100 biological parameters, signs, tests, therapies and 

consequences of the complications associated with diabetes, as well as their administration. 

As an example, coronary artery disease is modelled by two main attributes known as slow 

occlusion and fast occlusion, compatible with the development of atherosclerotic plaque in 

heart blood vessels, the acute closure of a coronary artery as a result of plaque, and the 

progression of an occlusive thrombus. Any of these types of closure may occur at any time in 

any of the four coronary arterial blood vessels, with the effect that a quantity of the distal 

myocardium is impacted, myocardial contractility, cardiovascular outcome, and so on. The 

equations which identify the duration of these attributes are obtained from datasets of 

population-based studies, for example the Framingham study, including several parameters 

such as age, gender, high-density lipoprotein, smoking, cholesterol level, overall cholesterol, 

diastolic blood pressure, hypertrophy associated with the heart and FPG [79]. 

The Archimedes model deals with these parameters differently from other similar regression 

models. The most significant aspect is that the equations in Archimedes do not compute the 
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potential risk of a result, for instance a myocardial infarction, but model the occlusion of 

specific coronary arteries. An additional significant distinction is that they involve FPG as an 

ongoing factor and combine the level of FPG and the period over which the FPG has been 

increased. Additional parameters required for these types of equations are computed in other 

areas of the model. The model involves equations for the string of biological incidents which 

happen along with an infarction, such as myocardial problems, decline in myocardial 

contractility, and decline in cardiac outcome, along with the therapy for those incidents. 

Strokes are managed in the same way [79].  

The key attribute regarding nephropathy is the gradual decrease of glomerular performance. 

The quantity and sort of protein released in the urine and the subsequent symptoms of diabetic 

nephropathy are functions of the value of this attribute, which is, in turn, an event for the 

individual’s FPG, blood pressure level, and a factor called glycaemic load which provides not 

just the level of FPG but also the period of time for which the FPG continues to be increased 

to various levels. Retinopathy identifies the path of this complication. Medical symptoms such 

as retinal haemorrhages, difficult and soft exudates and micro aneurysms are features of the 

retinopathy attribute. Thus, these symptoms determine the stages employed in evaluating the 

progression of retinopathy. Consequently, retinopathy develops constantly with the stages 

physicians identify based on the symptoms of the disease, and the stage the patient is in can 

be tracked by the model at any time. Just like nephropathy, the progress of the retinopathy 

attribute is caused by a person’s FPG, glycaemic load, and blood pressure [79]. 

In the present version of the model, the primary medical symptom of diabetic neuropathy is a 

lack of sensation. The incidence and progress of this complication are modelled by 

determining the principal attribute, known as neuropathy, caused by a person’s FPG, blood 

pressure and glycaemic load. In the model, complications including foot ulcers and diabetic 

foot are effects of the neuropathy attribute. A publication has been introduced which aims to 

validate the Archimedes model as regards diabetes and its complications, with clinical studies 

giving information about 74 validation exercises, including 18 trials and studies [81]. 

2.3.4. Economic Models in Diabetes 

The health economics aspects of diabetes are among the most important topics addressed by 

the diabetes models available, which use data and provide outcomes (e.g., the costs of 

diabetes healthcare, the cost-effectiveness of medical treatments, medication and medical or 

other interventions). Modelling studies of diabetes have presented several types of valuable 

information for policy makers and healthcare providers. Several models have been designed 

to predict the burden of diabetes in the future and the influence of interventions, such as the 

amendment of risk factors, therapies and other things, on future disease trends [82][83]. Some 
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models estimate the likely incidence of serious complications associated with diabetes, such 

as myocardial infarction, ischaemic heart disease, blindness, stroke, renal failure etc. over a 

lifetime. They assess the results in terms of health economics, including quality adjusted life 

expectancy; one example is the UKPDS [77]. Other sorts of models have been created to 

evaluate the economic influence of diabetes in terms of direct medical care costs related to 

major diabetic complications [84]. 

A wide range of randomised managed trials relating to diabetes clinical results and the effect 

of interventions have been used as a major source of data for physicians and decision makers 

engaged in diabetes care. However, even though these trails remain an important source of 

data, frequently they do not present results for the long-term such as >5-10 years. The 

outcomes obtained from clinical trials apply only to the population recruited and the protocol 

employed [80][85]. As an alternative, physicians and policy makers are forced to depend on 

their own autonomous decisions, and there are vast discrepancies in the behaviours of 

physicians in practice. It is very difficult for the human mind to cope with complexity, variation 

and uncertainties regarding health and diseases [85]. There is a significant increase in the 

worldwide incidence rates of diabetes and its risk factors, which means that countries need to 

be aware of the future trends in levels of the disease and the resulting economic burden.  

Accordingly, the framework of the decision analytical modelling, as a useful tool to offer details 

of economic evaluation, is widely supported by popular diabetes organisations including the 

ADA [85]. Decision analytical modelling considers the predicted costs and outcomes of 

decisions using data from a variety of sources and mathematical methods, normally using 

computer software. This type of modelling aims to present effective evidence for decision 

makers to help them make the best decision (e.g., would it be beneficial for an alternative 

medication to be adopted?) [86]. Recently, there has been increasing use of computer 

simulation modelling technology to examine diabetes, including the clinical, epidemiological, 

and economic aspects of the disease [80]. 

A great number of studies have been published in the literature which describe various 

diabetes models and their relevant outcomes [77][83][84][87][88]. In these models, diverse 

methods are applied, various data sources are involved, and several result measures are 

recorded. Regarding economic evaluation in healthcare and planning of services, 

mathematical models can represent patients’ experiences as individuals or cohorts, assessed 

in accordance with incidents or discrete increases of time [89]. Practically, the most popular 

mathematical models which represent decision-analytic modelling are decision-trees and state 

transition models (including the Markov model and first-order Monte Carlo microsimulation). 

There are other modelling methods such as agent-based models, discrete event simulations 
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and dynamic models [89][90]. These models are briefly outlined below, along with their 

structures, advantages, and limitations.  

2.3.4.1. Decision Tree Models  

These are a simple type of decision analytical modelling for economic evaluation [86][89]. 

Optional alternatives are demonstrated using a sequence of paths that represent decisions 

and potential events over time [86][91]. Every optional event has branches which represent 

the potential situation and its regarded chances. These chances might rely not only on various 

procedures but additionally on properties of the patient, such as sub-groups with various risk 

factor backgrounds. At the end of the tree every pathway has a result, for instance signs or 

symptoms, medical status, costs, survival, quality adjusted life years (QALYs), or death 

[86][91]. For every option the expected value of the medical result can be computed as a 

measured average of all potential results, using the pathway chances as weights. Decision 

trees work effectively for evaluating events which have specific recurrences and a specific 

steady time [91]. The benefit of decision trees is that they are easy to formulate and realise 

[89].  

Decision trees are preferred because of their simplicity and transparency, and they could be 

an effective method of making alternatives clear [86]. Nevertheless, a shortcoming of decision-

tree models is that the chance of every potential event remains steady, meaning it does not 

easily cope with the time dependent elements of the economic evaluation of diseases. In fact, 

with chronic diseases, the chances of potential events change along with age, health condition 

and time. Thus, decision trees are usually not suitable in cases where an issue is complicated, 

for example when there is a risk of events continuing or when the number of events is 

significantly increased and then the branches might become uncontrollable. Therefore, 

decision-tree models are usually not used to model chronic diseases such as diabetes 

[89][92]. 

2.3.4.2. State-transition Models  

These are based on events of interest distributed into health states outlined in accordance 

with population properties including age, disease level and treatment. Clinical background, 

age, and treatment are contained in the model by being integrated within the description of 

the health states or within the determination of the transition possibility. Transitions develop 

from one health state to another at specified periods, normally one year, depending on the 

transition possibilities [92]. The main supposition is that all people must exist in one of a 

specific range of states during a single period. State transition models are commonly 

represented as cohort models, even though they follow individual subjects [89]. State-

transition modelling is a manageable, easy-to-use, transparent technique for decision analytic 
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modelling which includes both Markov model cohort simulation and individual-based first-order 

Monte Carlo microsimulation [93]. With the Markov model, the ratio of patients in each health 

state each year is specific, and the transition possibilities are based on the present state. By 

simulation, the number of patients in the population moving to each state at each interval of 

time can be calculated [92].  

In contrast to decision trees, which present a series of events as a large number of possible 

paths, Markov models give more direct and flexible results, including continuing results over 

time. Patients stay in one of the specific ranges of health states at any point in time and 

develop transitions among these health states over discrete periods or cycles. The chance of 

remaining in a state or transferring to another in each cycle is identified by a collection of 

determined transition possibilities [86]. For chronic diseases such as coronary heart disease 

or diabetes, the model variables such as rate of progression, quality-of-life measures or costs 

can change over time, so the time of an event or the rate of progression plays a significant 

role. Events might also reoccur. According to the conditions, Markov models are commonly 

recommended to assess interventions and compare them for estimates of life expectancy, 

QALYs, and predicted costs.[91] 

With Monte Carlo models, every potential event is simulated for every individual in the cohort 

and the final statistics are calculated by gathering the events within the simulated time period 

for the modelled population. As an illustration, to simulate a 5% probability of having diabetes 

in a specified year, the computer produces a random number between 1 and 100, and if that 

number is 5 or lower, the computer system adds the simulated individual as having diabetes 

in that year. This provides one potential experimental observation, but the simulation recurs 

several times, and as the number of operations gets bigger, the average values approximate 

the values that might be calculated by using a Markov model. For diabetes, both Markov and 

Monte Carlo models have been used to describe the progress of the disease and assess the 

cost-effectiveness of treatment options [92]. 

The main advantage of cohort state transition (Markov) models is that they are easy to 

practically formulate, handle, connect and evaluate with user-friendly computer software as 

long as the range of states is not too big [93]. State transition models are helpful when the risk 

of an event continues over time, if the timing of events is essential, or if events can happen 

several times [89]. A major restriction of Markov models is that the transition possibilities rely 

only on the present health state, independent of any historical background. This assumption 

(the Markovian assumption) can be very restricting in clinical situations when existing features 

become powerful determinants of what occurs in the following. This restriction can be handled 

by presenting impermanent states, which subjects enter for just one period, or a range of 
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impermanent states which must be entered within a fixed cycle. A Markov model can deal with 

memory by developing states which have history, however this significantly expands the 

number of states, leading to massive models which are hard to handle [86][93]. 

With individual level state transition models there is no restriction of the Markovian 

assumption, since they simulate only one individual over time. Such microsimulations are 

assessed using first-order Monte Carlo simulation, where an individual experiencing a specific 

transition relies on a random number [93]. While cohort models are assessed as individual 

cohorts developing within the states together, not differentiating one person from another, 

excluding state descriptions, individual-level state transition models maintain tracking of every 

individual’s historical background. This significantly reduces the number of states. However, 

major disadvantages are that they require intensive calculation, usually demanding the 

simulation of millions of individuals to achieve steady values of the results, making them even 

more difficult to handle [93]. 

Markov models, alone or in conjunction with decision trees, are often the most popular models 

applied to economic evaluation in healthcare and diseases, although several other methods 

exist [86]. 

2.3.4.3. Discrete Event Simulations (DES)  

These model the development of patients within healthcare operations or programmes, 

measuring their attributes and the consequences over unlimited periods. Discrete event 

simulations can be described as individual-level models in which events rely on prior incidents 

experienced by patients through the model as well as their attributes. In these simulations 

there is no restriction on using the same periods or the Markovian assumption [86]. With DES, 

the time is modelled by computing if the following event arises after the incidence of every 

event. Staff members or hospital services such as beds or other resources, can be clearly 

modelled by applying shift patterns [89]. DES is a manageable modelling framework which 

simulates the changes in a system over time using a series of discrete individual events [94]. 

The possibilities of specific events happening vary over time and are influenced by 

connections among individuals, populations, and the situation after every event. A collection 

of system principles and probabilities control the behaviour of the population or individuals in 

the model, and these might be modified depending on the intervention modelled.  

As every event arises, the costs and resources depending on the event, the outcome, and the 

duration of the event are calculated. The method of DES is widely implemented for assessing 

screening applications in public health economic modelling of non-communicable diseases. 

Along with other model frameworks which simulate connections among the population which 

are modelled with the environment, DES is well prepared for dealing with connections in 
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complicated systems [89][94]. Nevertheless, because of the huge quantity of potential 

parameters in DES and the requirement to simulate lots of individuals, models might be slow 

and time consuming in performing the calculations specially when evaluating uncertainty. 

Large amounts of data are needed for every disease consequence, and DES often demands 

experience and time to develop [89]. 

2.3.4.4. Agent-based Modelling (ABS) 

This is an individual-level method, that simulates agents, for instance patients, through 

potentially adaptable behaviour based on their environment [89]. Similar to DES, ABS enables 

the possibility of events happening through the system which are being modelled to alter as a 

result of interactions between individuals (agents), and between agents and the environment, 

over time. Thus, ABS is able to cope with interventions which have several components and 

interactions in complicated systems, not health related. Agents in the model can modify their 

behaviour in accordance with interactions with each other and the environment [94]. ABS is 

commonly used to model infectious diseases. 

However, ABS is complicated in comparison to DES, and significantly more data is needed in 

order to present a heterogeneous population. For every event and state of the disease, costs 

and morbidity are calculated to obtain estimates of the cost effectiveness of interventions 

which affect the behaviour of agents (some other social costs and consequences can also be 

calculated in the same way). By the combination of all agent-level outcomes, the population-

level outcomes can be obtained. The Archimedes model is an illustration of ABS applied to 

public health for economic modelling of non-communicable diseases such as diabetes 

[95][96]. This valuable model has been developed to simulate a variety of interventions, 

modelling a wide collection of clinical results with modified physiological risk factors. Hence, it 

is an excellent illustration of simulating interventions that include several components. It 

enables interactions between parameters among individuals, as well as with the system in 

general [59]. 

2.3.4.5. Dynamic Models  

These rely on differential equations and are often employed for modelling transmission 

impacts of infectious diseases and estimating costs using sets of mathematical equations 

usually applied in cost simulations. As decision models seek to inform decisions, they must 

evaluate and examine various optional methods. Thus, decision models are normally suitable 

for complete economic evaluations, described as comparison analysis of different 

programmes of action where both costs and outcomes are assessed [91]. The interaction 

between populations and their environments is permitted in system dynamics models. While 

the model operates, the possibilities of events occurring in the model (the system) alter with 
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feedback [94]. Because a rising number of variables being included affects the system 

(demanding an increased quantity of data), this model can be created to be significantly 

complicated.  

As a result, system dynamics models are becoming better suited to simulating interactions in 

complex non-health sector systems and calculating the impacts of interventions that include 

several components, better than other model frameworks. In these models, costs can be 

attached to the stage of disease or any other variable in the model, and a comparison of costs 

and health results with and without the intervention can be made. System dynamics models 

can normally be manifested graphically, which helps stakeholders communicate with the 

model. This form of model is effectively implemented for infectious diseases where the 

complex features of an infectious disease need to be identified [89][86]. It is also used for the 

risk factors of non-infectious diseases [94]. A disadvantage of the system dynamics models is 

that the dynamic variables involved in the model; in other words, the level of change of 

variables over time is deterministic, even though they can model parametric uncertainty [94]. 

2.4. Regression and Classification Machine Learning Models  

Machine learning algorithms have been widely used in public health for predicting or 

diagnosing epidemiological chronic diseases, such as DM. There are many published 

diabetes modelling studies which applying different machine learning techniques including 

SVM, ANN, KNN, and DT models or hybrid techniques. These models have been used for 

different purposes such as diagnosing or detecting diabetes at early stage, and for modelling 

the disease progression and complications. A summary of all studies discussed in this section 

are provided in Table 2.2. A comparative study conducted by Faruque et al. [97] using different 

machine learning models, including LSVM, decision tree classification, Naïve Bayes, and KNN 

used the evaluation metrics of accuracy, recall, and precision to compare the performance of 

the classification models on predicting diabetes. The results obtained from this study indicated 

that the best performance was achieved by LSVM model, when applied on the dataset 

collected from Bangladesh Medical Centre for Diabetes Classification.  

Another study by Ratna Patil et al. [98] aimed to evaluate the performance of classification 

algorithms on the prediction of diabetes. In this study, the PIMA Indian data repository were 

used, which included a total of 768 samples. This data was divided into training and testing 

sets with 70% for training (n = 583 samples), and 30% for testing (n = 230 samples). This 

study examined the implementation of eight machine learning models namely: Logistic 

Regression, KNN, SVM, Gradient Boost, Decision tree, MLP, Random Forest, and Gaussian 

Naïve Bayes. The results showed that the highest accuracy was achieved by the Logistic 
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Regression model, with 79.54% and RMSE of 0.4652; the lowest accuracy was given by the 

Multilayer Perception (MLP), with 64.07% and RMSE of 0.5994. The authors suggested 

improving the obtained results by using outlier detection before classification. Additionally, 

Bukhari et al. [99] constructed an ANN model using different numbers of neurons, from 5 to 

50, in hidden network layers. This study aimed to predict female diabetes utilising the PIMA 

Indians diabetes dataset. Eight features were considered to train the ANN model, and the 

results showed accuracy of 93% when using the validation set.  

A further study performed by Hasan et al. [100] for diabetes diagnosis and prediction by using 

six machine learning models: AdaBoost, k-NN, Decision trees, XG Boost, Naïve Bayes, and 

random forest. The PIMA Indian Diabetes dataset was used to train the models, containing a 

total number of 768 female patients, with 268 diabetic patients (positive) and 500 non-diabetic 

patients (negative). In this study eight different attributes were involved: glucose, insulin, 

pregnant, pressure, triceps, BMI, pedigree, pressure, and age. The authors mentioned that 

the pre-processing steps of the data is contributed to achieve a good result, the procedures 

involved in preparing the data are feature selection, data standardization, outlier rejection, 

substitution with the mean for missing values, and k-fold cross-validation (fivefold in this 

study). An ensemble method has been also implemented which used to enhance the 

performance using multiple classifiers. In ensemble approaches, the combination of the 

outcomes obtained by different models can enhance the accuracy of the prediction. AdaBoost 

and XGBoost were the best models used together. For evaluating the performance, area 

under the curve (AUC) was chosen as an evaluation metric. This study was capable to achieve 

an AUC score of 0.95 which considered the best compared to other studies.  

An additional study by Abdulhadi et al. [101] developed a variety of machine learning models 

for the purpose of predicting the presence of diabetes in females using the PIDD dataset. They 

addressed the problem of missing values using the mean substitution technique, and all 

attributes were rescaled using a standardization method. The constructed models are linear 

discriminant analysis (LDA), LR, SVM (linear and polynomial), and RF. Based on the results 

of this study, the highest accuracy score was achieved by the RF model, with 82%. 

In another research, Oleiwi et al. [102] proposed a classification model aimed to an early 

detection of diabetes using machine learning algorithms. This study has been designed to use 

significant features and deliver results which are close to the clinical outcomes. Three 

classification models have been trained, namely a Multi-layer Perceptron (MLP), a Radial 

Basis Function Network (RBF), and a Random Forest (RF), mainly to obtain the best classifier 

model for predicting diabetes. Their findings showed that the RBF model outperformed other 

models, with accuracy of 98.80%. 
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Further to the studies that predict or diagnosed diabetes, some existing studies have 

addressed the use of machine learning techniques to construct predictive models for diabetes 

complications. An example is the model developed by Kantawong et al. [103] to predict some 

complications related to diabetes, particularly hyperlipidaemia, coronary heart disease, kidney 

disease, and eye disease. A dataset of 455 records was used in this study. Selection and 

cleaning process were carried out on the dataset which reducing the number of records used 

to build the model. The number of features and the final number of records which used to train 

the model were not mentioned by the authors. An iterative decision tree (ID3) algorithm was 

chosen to construct the model. For evaluating the performance of the proposed model, 10-

fold cross validation method was used, giving an accuracy of 92.35%. It should be noted that 

the high score of accuracy obtained by this study is not sufficient to evaluate the performance 

of the model, specifically when training unbalanced data. The main reason for this is that when 

the model trains the data a minority class can be ignored, and all the predictions classified as 

the majority class and the good accuracy scores still achieved. 

Dagliati et al. [104] developed different classification models including LR, NB, SVMs, and 

random forest to predict the onset of retinopathy, neuropathy, and nephropathy in T2DM 

patients. The authors used different time scenarios for making the predictions: 3, 5, and 7 

years from the first visit to the Hospital for diabetes treatment. The dataset used to train the 

proposed models was collected by Istituto Clinico Scientifico Maugeri (ICSM), Hospital of 

Pavia, Italy, for longer than 10 years. These data involve a total number of 943 records 

including the features of gender, age, BMI, time from diagnosis, hypertension, glycated 

haemoglobin (HbA1c), and smoking habit. The problem of unbalance and missing data was 

managed by applying missForest approach, while the problem of unbalanced class was 

overcome by oversampling the minority class. The obtained results of this study show that the 

highest accuracy score was achieved by LR with 77.7%. 

A further study performed by Islam et al. [105] developed HbA1c regression models to predict 

the average amount of glucose accumulated in the blood over the last 2–3 months. Predicting 

the levels of HbA1c in advance helps determine direct relationships with diabetes and avoid 

the future risk of complications. In this study the dataset was collected from the Diabetes 

Research in Children Network (DirecNet) trials on a total of 170 patients having T1DM. 

Furthermore, various methods for feature extraction and selection were used to prepare the 

dataset. The findings obtained by this study show that the best performance was achieved by 

the constructed model which involved two ensemble methods RF and extreme gradient 

boosting (XGB) with low mean absolute error (MAE) of 3.39 mmol/mol and a high score of 

coefficients of determination (R-squared) of 0.81. 
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Sr. No. Researcher Name and year Methods/Techniques Results and 
Findings 

1 Faruque et al., 2019 [97] SVM, C4.5 Decision 
Tree, Naïve Bayes 
(NB), and KNN 

Researchers found 
that the C4.5 
decision tree model 
outperformed the 
other classifiers with 
an accuracy of 73% 

2 Ratna Patil et al., 2018  [98] Logistic Regression 
(LR), KNN, SVM, 
Gradient Boost, 
Decision tree, MLP, 
Random Forest, and 
Gaussian Naïve 
Bayes 

The highest 
accuracy was 
achieved by the 
Logistic Regression 
model, with 79.54% 
and RMSE of 0.4652 

3 Bukhari et al., 2021 [99] Artificial Neural 
Network (ANN) 

The ANN model 
showed an accuracy 
of 93% 

4 Hasan et al., 2020 [100] AdaBoost, k-NN, 
Decision trees, XG 
Boost, Naïve Bayes, 
and random forest 

An ensemble 
method has been 
implemented 
indicating that 
AdaBoost and XG 
Boost were the best 
models used 
together. 
This study achieved 
a score of area under 
the curve (AUC) of 
0.95 which 
considered the best 
compared to other 
studies 

5 Abdulhadi et al., 2021 [101] Linear discriminant 
analysis (LDA), LR, 
SVM (linear and 
polynomial), and 
Random Forest (RF) 

The highest 
accuracy score was 
achieved by the RF 
model, with 82% 

6 Oleiwi et al., 2020 [102] Multi-layer 
Perceptron (MLP), a 
Radial Basis 
Function Network 
(RBF), and a 
Random Forest (RF) 

Their findings 
showed that the RBF 
model outperformed 
other models, with 
accuracy of 98.80% 

7 Kantawong et al., 2020 [103] An iterative decision 
tree (ID3) algorithm 

10-fold cross 
validation method 
was used, giving an 
accuracy of 92.35% 

8 
 
 
 
 
 

Dagliati et al., 2018 [104] 
 
 
 
 
 

LR, NB, SVM and RF 
 
 
 
 
 

The obtained results 
show that the highest 
accuracy score was 
achieved by LR with 
77.7% 
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9                  

 
Islam et al. 2020 [105] 

 
HbA1c regression 
models, involving 
two ensemble 
methods RF and 
extreme gradient 
boosting (XGB) 

 
Best performance 
was achieved by the 
constructed model 
with low mean 
absolute error (MAE) 
of 3.39 mmol/mol 
and a high score of 
coefficients of 
determination (R-
squared) of 0.81. 

Table 2.2: Summary of machine learning techniques in diabetes research 

 

2.5. Time Series Forecasting Models  

During the past few decades, a great deal of attention has been devoted to time series analysis 

which have become a popular research topic in different fields such as finance, energy, 

electricity, and medicine etc. Time series forecasting is an important task in time series 

analysis, and it considered as a powerful tool for describing a complex system using observed 

data. Autoregressive integrated moving average (ARIMA) models have been the most popular 

and widely used in the time series forecasting domain. These models gained their popularity 

due to its statistical characteristics as well as the well-known Box–Jenkins approach in the 

model development procedures. 

In recent years, there are several studies which applying time series to analyse and model 

clinical datasets. In the following some of the time series applications for forecasting the 

number of patients in different diseases will be presented. However, there are a limited number 

of studies that using time series method for diabetes incidence research. A summary of all 

studies discussed in this section are provided in Table 2.3. 

A study by Earnest et al. [106] used autoregressive integrated moving average (ARIMA) 

models to estimate the number of beds occupied during a severe acute respiratory syndrome 

(SARS) outbreak in Tan Tock Seng Hospital Singapore. Their results showed that the ARIMA 

(1, 0, 3) model was efficiently able to predict and describe the number of beds occupied 

throughout the SARS outbreak. For evaluating the performance of their model, they measured 

the MAPE for the training and validation set which were 5.7% and 8.6% respectively, where 

they conclude that it was reasonable for use in the hospital setting. In addition, three-day 

forecasts of the number of the required beds were also provided by the model. They also 

found that the total number of admissions and probable cases admitted on the previous day 

were independent predictive factors of bed occupancy. 
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Another study by Liu, et al. [107] on the prediction of haemorrhagic fever with renal syndrome 

(HFRS) in China applied ARIMA for the period of 1978 to 2008. The best model was chosen 

according to the minimum value of Akaike Information criterion (AIC) and by using Ljung-Box 

test. To evaluate the validity of their proposed model, they used the MAPE evaluation metric 

between the observed and fitted HFRS incidence. Lastly, the fitted ARIMA model was used to 

predict the incidence of the years from 2009 to 2011. 

An additional study by Dan et al. [108] forecast the mortality rate of malaria by applying 

SARIMA model, using a total of 216 data points for predicting malaria mortality rate for the 

period of 1996 to 2013, using Box–Jenkins methodology to build their ARIMA model. One-

year ahead forecast was used. They selected the best model in accordance with the minimum 

values of AIC and Schwarz Bayesian Information Criterion (SBC). They concluded that ARIMA 

(1,1,1) × (0,0,1)12 model was the best model for forecasting the malaria mortality rate for the 

upcoming period of January 2014 to December 2014. 

Villani et al. [109] where used the time series modelling to forecast the prehospital EMS 

demand for emergencies, and found that 41454 prehospital diabetic emergencies were 

attended within the period from January 2009 until December 2015. They recommended that 

the SARIMA (0, 1, 0) × (0, 1, 0)12 model was the best fit with a MAPE of 4.2%. 

Singye and Unhapipat [110] used a time series to model and predict diabetes patient dataset 

obtained from Jigme Dorji Wangchuk National Referral Hospital (JDWNRH) of Bhutan by 

applying Box–Jenkins approach. The collected dataset was for the period from January 2006 

to December 2016, and it was divided into two sub-datasets: the training dataset (January 

2006 – December 2015) and validation dataset (January 2016 – December 2016). ARIMA 

was used to model diabetes patients’ datasets. They evaluated different models of ARIMA 

using the Bayesian Information Criterion (BIC) and Ljung-Box Q statistics. They found that 

ARIMA (0, 1, 1) is the best model to describe and predict the future trends of diabetes 

incidence rate, which in turn help to properly plan and allocate resources for emergencies. 

Sr. No. Researcher Name and year Methods/Techniques Study purpose 

1 Earnest et al. [106] Autoregressive 
integrated moving 
average (ARIMA) 
models 

Estimate the number 
of beds occupied 
during a severe 
acute respiratory 
syndrome (SARS) 
outbreak in Tan Tock 
Seng Hospital 
Singapore. 

2 Liu, et al. [107] ARIMA models For prediction of 
haemorrhagic fever 
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with renal syndrome 
(HFRS) in China 
 

    
3 Dan et al. [108] Applying SARIMA 

model using Box–
Jenkins 
methodology to build 
their ARIMA model. 

Forecast the 
mortality rate of 
malaria 

 
4 

 
Villani et al. [109] 

 
Using SARIMA time 
series modelling 

 
Forecast the 
prehospital EMS 
demand for 
emergencies 

    
    
5 Singye and Unhapipat [110] Using ARIMA time 

series modelling 
Model and predict 
diabetes patient 
dataset obtained 
from Jigme Dorji 
Wangchuk National 
Referral Hospital 

Table 2.3: Summary of time series forecasting models  

 

2.6. Summary 

This chapter provides a general background of diabetes, its main types, complications, and 

the related risk factors. The epidemiology of diabetes and its global prevalence were 

highlighted with a review of different studies that predict the incidence of diabetes and its 

global prevalence. In addition, this chapter presents the existing mathematical models 

involved in diabetes studies in terms of several aspects, including dynamics of glucose and 

insulin, the progression of diabetes and its complications, the cost of healthcare and the cost-

effectiveness of interventions for treating or preventing diabetes. 

The latter part of the chapter reviewed literature on adopted machine learning techniques in 

diabetes research. Different modelling approaches were presented such as regression, 

classification, and time series along with performance evaluation of the models using different 

statistical measures. Critical issues related to datasets, pre-processing strategies, and data 

imputation were explained by these studies.  

Most of these studies were based on diagnosing and detecting diabetes at early stage or 

modelling the disease progression and complications; however, not much has been done in 

adopting any of the machine learning methods for studying the trends in the prevalence of 

diabetes and forecast its future burden using risk factors in specific populations. 
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In the next chapter, the theoretical background of modelling along with the methodological 

framework of the development process of the experimental design of diabetes modelling and 

the related issues are presented and discussed. 



41 

Chapter 3  

Theoretical and Experimental Modelling of Diabetes 

3.1. Introduction  

As indicated in Chapter 1, this research was implemented using modelling strategies to study 

diabetes prevalence rate in KSA. Three different approaches of modelling were used: 

regression, classification, and time series modelling. This chapter presents a theoretical 

background of modelling and describes the methodologies involved in this study. In addition, 

this chapter briefly provided a description of the experimental datasets used in this thesis. The 

performance evaluation methods for comparing between models are also discussed. 

A general definition of the word “model” has been given as “a simplified representation of a 

real-world situation used to help answer a specific question” [111]. A mathematical model 

according to Bender [112] is “…an abstract, simplified, mathematical construct related to a 

part of reality and created for a particular purpose”. Another definition of the mathematical 

model has been given by the International Society for Pharmacoeconomics and Outcomes 

Research (ISPOR) Task Force on Good Research Practices - Modelling Studies, which 

defined it as “a logical mathematical framework that permits the integration of facts and values 

and that links these data to outcomes that are of interest to health-care decision makers” [12]. 

Briefly, the operational definition of a mathematical model for this study is: a model whose 

parts are represented by mathematical terminologies, for instance equations, variables, 

functions, constants, etc. [113]. 

3.2. Mathematical Modelling in Healthcare  

Modelling can be used as a useful tool to support and manage several aspects in healthcare 

domain when appropriately applied, taking its limitations into consideration. Modelling in 

healthcare can be seen as a way of combining mathematical techniques and computational 

skills with expert knowledge (particularly of healthcare professionals) to come up with a 

convenient strategy for healthcare problems. Therefore, it could be said that the main aim of 

a model is to guide decision-makers in different areas involved in health and human life 

[11][111]. For example, models can help in predicting trends of disease prevalence and 

mortality rates, and assess the impact of alternative health policy scenarios, or be used to 

conduct a comparison of the effectiveness and cost-effectiveness of various treatments 

[114][115]. Moreover, models can provide an appropriate evaluation of the future burden of 

the diseases with regard to the history of the disease incidence and progression and modern 

developments of treatment [116]. Using models allows the combination of different data from 
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several local sources, utilising effectiveness data from trials, thus providing a helpful tool for 

making decisions. Also, policy makers can use models in the processes of assessing and 

comparing different alternatives of future policies and intervention strategies, which in turn 

contributes to resource allocation and appropriate planning [12][115]. 

One of the main useful aspects of modelling is the ability to deal with various types of inputs 

from several sources, and to detect logical relations between these inputs and desired outputs. 

Models allow the combination and integration of different types of data from a variety of 

sources such as prospective studies, expert opinions, assumptions, and trials. However, the 

diversity of data sources is linked to data of varying quality, which can lead to the uncertainty 

of parameters used in a model [12][117]. Therefore, models and their results should not be 

represented as statements of scientific fact, but as tools to aid decision making. Also, the 

results of the model should never be introduced as unconditional claims of effectiveness or 

estimates, instead, these outputs should be conditioned by input data and assumptions 

[12][115]. Moreover, modellers and decision-makers when examining the models’ results must 

be more aware about the different biases that impacting individual opinions and trials. Models 

should be applied after they are mathematically validated and judged by experts. If the model 

is opposed to the real position (as perceived by experts), then it should be doubted, and its 

outcomes should be reviewed carefully. Despite these limitations, the role of modelling 

techniques is considerable in the field of modern healthcare [11][111]. 

3.3. Steps of Modelling Process 

Although it is not possible to define a step-by-step modelling process to obtain a suitable 

model for solving a particular problem, it is possible to follow some general basic steps that 

can guide and help the process of modelling [111]. Importantly, the modelling process should 

not be a linear process; rather it is cyclical, with potentially overlapping steps of modelling. For 

example, at any step we might return to an earlier stage to revise and do some modifications, 

and then continue the process from that point [89][118]. Some guiding steps that one should 

expect during the modelling process are as follows. 

A preliminary step in developing a model is understanding and identifying the research 

questions and objectives carefully [118][119]. In addition, data under study, intervention 

comparators, outcomes, and model perspectives should be defined [120]. Data under study 

involves all statistics and information about the target population, those who will influenced by 

the interventions [121]. Interventions depend on model objectives, which may pertain to any 

use of resources that are supposed to effect upon relevant outcomes for the population 

represented within the model. In healthcare, this might entail screening programmes, medical 
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techniques, and public awareness campaigns, etc. The outcomes of the model can be specific 

to a disease such as the incremental cost per QALY gained, or specific to the system being 

modelled, such as test failures, waiting times, or general costs and cost effectiveness [89]. 

Once the research problem has been defined, the determination of the model structure is the 

next important step in modelling process. This step is basically based on different factors, 

which includes the sort of question posed, the nature of the health event to be modelled, and 

the type and amount of data available to inform the model parameters [111][120]. It is worth 

mentioning that the level of complexity of a chronic disease model depends on the amount of 

data available; if the required data are limited, some assumptions might be necessary with 

regard to the technique of modelling a chronic diseases and natural history [114][122]. 

Generally, there are two main components in disease modelling, especially chronic diseases, 

which are: natural history of the disease, and various interventions that can be combined to 

answer policy questions [114][123]. It can be very complex to consider the natural history of 

the chronic diseases, whereas the model design should be as simple as possible [111].  

Thus, it is recommended to simplify some of the factors, and to ignore others that do not seem 

as important if the decision can be made by a more comprehensive reasonable structure 

[12][118]. When developing a new model, it is good to have the skill of balancing between 

simplicity and complexity [124]. In addition, it is advisable to consider both the coherent theory 

of the modelled disease and the available evidence regarding causal linkages between 

variables when choosing the structure of a model as they should be consistent with this 

structure. However, this does not mean to prove that all causal linkages, as an example, 

showing that the effect size is statistically significant (p<0.05). Alternatively, this means that 

there is no conflict between the assumed linkages and the available evidence and they are 

consistent with most acceptable theories [12]. 

Data collection is the next stage after selecting the appropriate modelling structure. The 

flexibility of models allows to deal with different types of data. Moreover, data can give a 

description and information about the system’s behaviour, and suggestions about the 

important variables that should be considered within the model [111][118]. The required data 

for modelling process can be gained from various sources which differ in their quality and 

amount [12][117]. These sources may include databases, health records, clinical trials, 

observational studies, etc. expert opinions and assumptions can be also used if there is no 

reliable data on some variables [12][120]. Describing all data sources with their strengths and 

limitations is an essential task, and also any assumptions must be clearly addressed, as 

modelling outcomes are conditional by such data inputs and assumptions [12]. Data collection 

can be a limiting factor in model development and analysis for most problems in healthcare. 
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Even though this has been changed due to the development and implementation of 

computerized patient tracking, data confidentiality issues still cause data collection challenges, 

but patient data is much more stringently protected than other forms of consumer information 

(due to ethical obligation among healthcare professionals and systems) [111][125]. Even 

putting aside, the issue of patient data confidentiality, data collection in healthcare remains a 

resource-intensive task, which often requires preliminary surveys and population studies. 

These surveys can be quite expensive and time-consuming, and even on completion the data 

may be corrupted by survey bias [126][111]. 

After collecting the relevant modelling data, we need to move to the data processing (cleaning) 

step, where the modelling data can be prepared. It is often stated that the data cleaning and 

pre-processing takes more than half of the total project time of any inclusive data analytics 

study [127]. In fact, the information about model variables is often obtained from data collected 

for other objectives, and can result in data bias, inaccuracies, or errors. One more possible 

problem related to healthcare modelling is that the question or the case to be modelled might 

be too complicated to determine at first. In this condition, the modelling process can be started 

as a process of exploration, with a conceptual model of the problem as its outcome. It might 

be unclear at the beginning what data is suitable to describe the system. In these conditions 

and to improve model’s quality, inclusive cleaning of the data is often required. Data cleaning 

can include data entry, checking data to avoid errors, determining bias within data, removing 

outliers, and removing duplicated data [111][119]. 

After the data processing step, we must identify variables and units. In this stage variables 

need to be distinguished and determined, in terms of whether they are dependent or 

independent, and random or deterministic [118][121]. For example, an independent variable 

is the variable on which others depend, and which is not affected by them. In many modelling 

applications, time is an independent variable. To simplify the model, some variables might be 

neglected, treated as constants, or be aggregated into one. While setting up the variables, we 

must also decide their units, such as days as a unit of time. Moreover, the relationships 

between variables should be established by drawing a diagram of the model if possible. Also, 

to make the model simple, we might suppose that some of the relationships are simpler than 

they really are.  

For instance, we may make assumption that the relation between two variables is linear 

instead of a more complicated relation [118]. Another important aspect is determining the 

types of outcome parameters. This highly based on the nature of the modelled health event. 

For example, in some predicting models of diabetes, the main modelling outcome would be 

the forecasted prevalence of diabetes and the number of diabetics. Comparing to models of 
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other chronic diseases such as ischaemic heart disease, they might use different outcome 

parameters which consider quality of life or length of survival of patients, for example, life years 

gained (LYG), QALYs, and deaths prevented or postponed (DPPs) [128][115]. Once the 

relationships between variables have been established, then equations and functions for these 

variables can be determined. The usage of proportion and ratio, and rate of change, is 

essential in building up relations between variables to shape equations [121]. For instance, it 

may decide that two variables are relative to each other or finding that a known scientific 

equation or formula fits to the model. Several computational science models consist of 

differential equations, or equations involving a derivative [118]. 

When appropriate data becomes available, statistical analysis can be applied to study the 

system. This analysis can be applied by using some forms of statistical analysis that may 

include regression analysis, descriptive statistics, risk analysis, or a combination of these 

[111]. There are many other types of statistical analysis that can also be utilised, such as 

probability distributions, statistical inference, and hypothesis testing, etc  [129]. The obtained 

results of the data analysis are used to define the most important variables for the problem, to 

examine a model’s validity, and to set an accurate predictive model [130]. This analysis is a 

necessary task for dealing with uncertainty problems of some model variables, which resulted 

by for example, subjective estimates, assumptions, and uncertain values [11]. Statistical 

analysis is often helping a modeller check their basic assumptions concerning the system, so 

if they were incorrect this will force the modeller to take a step backwards and reshape another 

conceptual model for the problem. This might happen when a modeller decided that a variable 

assumed to be insignificant becomes significant or vice versa [111]. The process of the 

analysis work must represents an important part for all modelling studies [12].  

After thoroughly understanding the problem and designing the model, the next stage is the 

model implementation, whereby the model outcomes will be calculated, and the predictions 

about the system under study will be produced. The implementation of the model may involve 

a computer (computer programs and packages), or might be performed using some analytical 

methods (algebra, calculus, and graphs) [111][118]. Computer simulation is a common way of 

using computer programs for modelling implementation [131]. When simulating a system, it is 

easy to address the behaviour of the model with no need to understand all the analytical details 

of the system. Therefore, simulation is often described as a black box; where input and output 

are apparent, but the way the output is produced may not be completely understood [132]. 

Computer simulation is one of the main forms of systems analysis that produces data under 

the instructions given by a model [133]. Simulation methods have their advantages and 

disadvantages. One of their most important features is that even highly complicated problems 

can be captured in a simulated model, with no need for detailed knowledge of the mechanics 
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of the system and without requiring mathematical expertise from the side of the modeller 

[111][134]. However, this shortage of transparency can lead to hiding logical errors in the 

model, often making incorrect outcomes [111][135]. 

A second way can be used for model implementation is mathematical analysis tools. When 

the modeller can use equations to describe the system, then numerical or analytical solutions 

can be adequate for solving the model with no need for simulation [111][118]. This presents 

several solid advantages compared to simulation. For instance, analytical methods provide 

accurate reproducible solutions without the demand of (often expensive) software. Moreover, 

by using the analytical methods it is often gain a deeper knowledge about the workings of a 

system. However, the obtained analytical outcomes of complex models are often hard or even 

not possible to achieve [111][136]. 

A third way that aggregates simulation and analysis is numerical analysis. In this approach, 

the modeller develops equations using mathematical techniques to perform the model, and 

then makes these equations as simple as possible [111][137]. The modeller can then use 

computers to calculate approximate solutions for these equations. This process keeps some 

of the power of mathematical analysis, and is particularly helpful when analytical method 

cannot be defined for solving particular problem [111][121]. Solutions obtained from models 

can gave an exact outcome or can gave a simulation of the event [118]. 

After a model is implemented, it needs to be tested for validation. This is an important step for 

a model to be accepted by decision makers and healthcare providers [138]. Valid outcome 

predictions of new patients should be provided by the prediction model. Basically, the dataset 

to develop a model is mainly concerned to learn for the future. Thus, validation is an essential 

part of the process of predictive modelling [119]. According to the ISPOR Task Force, model 

validation approaches can be classified into three main categories [12]. First, internal 

validation via internal testing and “debugging”. this type of validation can be carried out using 

null or extreme input values to examine if they produce the expected output values [114][119]. 

Between-model validation is the second type of validation, where the model is validated 

against other models dealing with the same problem (convergent validity). The third type is 

external validation, where the model outputs are compared with observed data [12][114]. 

However, models are based on the available evidence at the time they are developed. 

Therefore, as mentioned earlier, models should never be considered as perfect, 

unchangeable or statements of scientific facts [12]. 

A final step to consider is applying the prediction model. Once the final model is tested, tuned, 

and implemented, it can be applied to examine attributes of the system as illustrated by the 

model [111]. It is worth to mention that no matter how well a model is tested, tuned, and 
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implemented, it can only examine the aspects of the system it is prepared to study. When 

applying the model, we need to be careful that it is applied only in the appropriate ranges for 

the independent data. For example, the accuracy of the model may be limited for time periods 

of a few days and when applied to time periods of several years, the accuracy of the model 

will not be as it is [118]. There are many ways can be used for exploring the attributes of the 

system. For example, models usually have varying levels of sensitivity for input parameters; 

consequently, it is very useful to define which parameters have the most significant impacts 

on the system, which helps define where interventions could be made, and where further data 

collection efforts could be focused [111].  

There is no need to accurately quantify parameters that exert negligible impacts on the system 

to the extent necessary for parameters that have great impacts on the system. Analysis that 

concentrates on determining which parameters have the major impact on the system is 

generally called sensitivity analysis. The process of the analysis work is an iterative, and the 

main modelling variables should be tested utilising different values or ranges 

[118][114][128][139]. This analysis is a necessary task for dealing with uncertainty problems 

of some model variables, related to subjective estimates, assumptions, and uncertain values 

[11]. This process is an important part of all modelling studies [12]. Two main types of 

sensitivity analysis can be utilised: one-way or univariate and multi-way or multivariate.  

In the first main type of sensitivity analysis, one variable only can be tested at a time. After 

estimating the base-case scenario, the outcome variable is re-estimated holding all 

parameters constant aside from the one parameter chosen. The application of this method 

can be repeated as many variables in a model as required [140]. A common applied subtype 

of univariate sensitivity analysis is the “threshold analysis”. In this kind of analysis, there will 

be a changed in the size of one input parameter over a range, which will be followed by 

determination of the level above or below in which the conclusions change, that is the 

‘threshold’ point where none of the alternatives is better than others. The usage of threshold 

analysis is more common in models with cost effectiveness analyses [140].  

In the second main type of sensitivity analysis, multiple variables can be tested 

simultaneously. This type of sensitivity analysis can be two-way, three-way, or n-way analysis. 

For instance, varying values of a range for two parameters can be examined at the same time 

by two-way analysis. The assessed interventions for both parameters should be in common, 

lastly, assessed the impact of alteration on the outcomes of two mutually exclusive 

interventions [140]. One more common use of models is defining some type of optimal 

behaviour. For example, if a health ministry has a budget for a limited number of physicians, 

they might be interested to know where to deploy those physicians to obtain optimal patient 
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care. Generally, this type of question can be applied as a model using optimization method. 

This question can be usually written as “which selection of parameters minimizes the cost 

such that the desired result occurs?” Solving these types of questions has become a field in 

itself, and can be carried out by a number of different means [111][121]. 

3.4. Data Collection 

As previously discussed, data collection is a fundamental step in the process of building 

models. This research requires the use of historical data on diabetes, smoking, obesity, and 

inactivity prevalence data for the starting year of modelling (1999), and for as many time points 

as possible thereafter, to achieve the research aim and develop the models. As previously 

mentioned, concerning data collection, modelling data can be obtained from various sources 

which differ in their quality and amount. The main sources of data were the published national 

surveys in KSA. Data for the prevalence of diabetes, smoking, obesity, and inactivity in KSA 

were obtained from Saudi Health Interview Survey [141], which is provided by the Saudi 

Ministry of Health, along with other published national surveys [142][143][144][145].  

All these population-based studies were implemented at the national level, included all regions 

in KSA, with good sampling sizes and high rates of responses. Thus, they were more likely 

represent the population of KSA. These population-based national studies include adults aged 

15 years and over. In addition, the diagnostic criteria used as a diabetes detection method 

was either WHO or ADA criteria. In this research, obesity as a risk factor was defined 

according to the definition of body mass index (BMI ≥ 30 kg/m2); for smoking, only data for 

current smokers was taken; and for inactivity, inactive people were classified as those who did 

not meet the criteria for the “active” category (30 minutes or more of at least moderate to 

intensity activity for three or more times per week). The data is arranged according to age and 

gender (demographic factors). Data were divided into six ten-year age bands (25-34, 35-44, 

… 75+ years old) for men and women. The data for men and women are hereinafter referred 

to as the “men data” and “women data” respectively. 

3.4.1. Data Pre-Processing and Missing Data Imputation 

As previously discussed, enhancing the quality of the models depends mainly on the quality 

of the data used for modelling, which refers to how suitable the data is to be used in relation 

to the number of samples, the importance of the features used in the analysis, and the 

existence of outliers in the dataset. Accordingly, data pre-processing is considered as a critical 

step in modelling processes [127][119]. As mentioned earlier, the main data inputs for 

modelling diabetes were the morbidity data (diabetes prevalence), and the prevalence of the 

three risk factors (smoking, obesity and inactivity). Data collection was undertaken using 
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published national surveys, which use credible, standardised, and validated measuring tools. 

However, the results of these studies were presented in different ways. For example, the age 

variable of the participants under study varied with respect to the whole age range and with 

respect to the age-group bands. Because of the deficiency and differences in data from KSA, 

it was necessary to make some sensible assumptions, and to perform a method to impute the 

missing data in order for the data to be prepared for the modelling processes.  

As indicated earlier, it is normal for the most of models to employ variety of data inputs 

including assumptions from different sources [12]. In order to treat the overlap between the 

developed model’s age groups with those used by studies, it was necessary to make some 

assumptions. For example, in some studies,[142] it was assumed that the prevalence rate for 

the age group 25-34 years is the average of the prevalence rates for the study age groups of 

14-29 and 30-44 years, and so on; similar assumptions have been applied to data extracted 

in other studies, needed [144][145].  

Another essential step is to solve the issues regarding to missing values, which is considered 

as an important part in mathematical modelling of data [146]. As there is no fixed standard 

method to deal with missing values,[147] some researchers tend to disregard these missing 

values, eliminate all attributes with missing values, or remove any record with missing values 

[148][149][150]. However, if the percentage of missing data is high, a recovering approach 

should be employed carefully [147]. Data imputation is the way where to deal with incomplete 

values problem. This way can be defined as the procedures to calculate an estimated values 

to replace the missing ones in the database, then generating a complete dataset [151]. Many 

approaches have been applied to treat this issue whether statistical or machine learning-based 

methods. An example of statistical technique is Bayesian inference or likelihood-based 

approach [152]. Another statistical way to solve this issue which have a large background is 

the use of mean/mode methods or those based on regression. However, these methods may 

lead to a bias in the estimated data [153]. Machine learning algorithms have been widely used 

to treat this issue and generate a smoother dataset. The performance of these algorithms 

varies depending on the system, datasets, and the pattern of missing values. One of the most 

useful aspect of using a machine learning model is the flexibility and higher order interaction 

among the missing values in the attribute [154]. 

Some of the most frequently used machine learning techniques deploy ANN, due to its ability 

to handle a large number of problems. Many researchers have used ANN to implement the 

imputation process [155][156][157].  

Aydilek et al. [158] applied a hybrid method using support vector regression and genetic 

algorithm with fuzzy c-means clustering to calculate missing values. In their study they 
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implemented a comparison between the results of the proposed method with other different 

techniques. They concluded that better imputation accuracy is achieved by the hybrid 

approach. Another study by Kuppusamy et al. [154] developed a hybrid prediction model to 

impute the missing data in two mixed medical databases. In their study the constraint-based 

hybrid prediction model was designed using WLI fuzzy clustering and the grey fuzzy neural 

network. They combined the Grey Wolf Optimizer with the ANFIS network model, named the 

Grey Fuzzy Neural Network. The main aim of the proposed model was to define the optimal 

parameters for designing the membership function. They evaluated their experimental results 

using MSE and RMSE metrics. They reported that the performance of the proposed model 

was better than that of traditional methods, which they attributed to the hybrid behaviour of the 

clustering and neural network. 

In this research, ANFIS method implemented in MATLAB software was used to impute all the 

missing data between the years from 1999 to 2025 for diabetes, smoking, obesity, and 

inactivity, and then to generate a smooth, completed dataset. The key advantages of ANFIS 

in comparison with other training algorithms is that the smoothness property and the more 

achieved learning capability [154]. ANFIS is a data-driven modelling approach for defining the 

behaviour of a complicated dynamical system [159]. The systematic aim of an ANFIS model 

is to generate unknown fuzzy rules from a specific input/output dataset [160]. 

In this research, to estimate the missing data, an ANFIS structure with two inputs and one 

output was constructed. For instance, the collected data of diabetes or smoking with their 

available year were taken as inputs, while the missing data by years that need to be predicted 

were taken as outputs. In order to train the ANFIS model, two Gaussian membership functions 

were used for the input variable, and for the output variable the type of membership function 

was linear. In addition, a hybrid method was applied, whereby the error tolerance was set as 

0, and the number of epochs was set as 100. After imputing the missing values in the training 

set, the full dataset train again by running the same imputation method to predict the missing 

values in the testing set. This step was applied only for smoking, obesity, and inactivity data, 

while the expected percentage of diabetes was considered as a target variable when applying 

the purposed models. Finally, the complete dataset of smoking, obesity, and inactivity was 

divided into two parts: training data (from 1999-2013) and testing data (from 2014-2025), 

which are used for building and evaluating the model, respectively. Only the training dataset 

of diabetes (morbidity) data was required for building the purposed models, thus after imputing 

the missing data, a full dataset of the prevalence rate of diabetes from 1999 to 2013 was 

obtained, as shown in Table 3.1. Prevalence rates of smoking, obesity, and inactivity after 

generating all the missing data from 1999 to 2025 (training and testing data) are shown in 

Tables 3.2, 3.3, and 3.4.  
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Men morbidity data (training set) Women morbidity data (training set) 

Years 25-34 35-44 45-54 55-64 65-74 75+ Total 25-34 35-44 45-54 55-64 65-74 75+ Total 

1999 3.69 7.01 21.06 24.91 28.75 28.75 9.7 3 5.03 22.1 23.2 24.4 24.4 7 

2000 4.10 7.15 21.76 26.89 30.38 30.38 9.8 3.21 5.42 22.26 24.50 26.08 26.08 7.1 

2001 4.51 7.35 22.45 28.89 32.01 32.01 10.0 3.41 5.80 22.48 25.81 27.77 27.77 7.3 

2002 4.93 7.62 23.15 30.88 33.65 33.65 10.2 3.62 6.19 22.77 27.12 29.47 29.47 7.5 

2003 5.34 8.04 23.86 32.88 35.30 35.30 10.5 3.82 6.58 23.14 28.43 31.16 31.16 7.8 

2004 5.75 8.68 24.56 34.88 36.94 36.94 10.9 4.03 6.97 23.59 29.74 32.86 32.86 8.1 

2005 6.17 9.60 25.26 36.89 38.59 38.59 11.3 4.24 7.36 24.12 31.06 34.56 34.56 8.5 

2006 6.58 10.74 25.96 38.89 40.23 40.23 11.8 4.45 7.75 24.69 32.37 36.26 36.26 9.0 

2007 7.00 11.89 26.67 40.90 41.88 41.88 12.3 4.65 8.14 25.25 33.69 37.96 37.96 9.4 

2008 7.41 12.82 27.37 42.91 43.53 43.53 12.7 4.86 8.54 25.78 35.00 39.67 39.67 9.8 

2009 7.83 13.46 28.08 44.92 45.19 45.19 13.1 5.07 8.93 26.24 36.32 41.37 41.37 10.2 

2010 8.25 13.88 28.78 46.93 46.84 46.84 13.4 5.28 9.32 26.61 37.64 43.08 43.08 10.5 

2011 8.66 14.16 29.49 48.94 48.50 48.50 13.6 5.48 9.71 26.91 38.97 44.79 44.79 10.7 

2012 9.08 14.36 30.20 50.96 50.16 50.16 13.8 5.69 10.11 27.13 40.29 46.50 46.50 10.9 

2013 9.5 14.5 30.9 53 51.8 51.8 13.9 5.9 10.5 27.3 41.6 48.2 48.2 11.00 

Table 3.1: Prevalence rate of diabetes (training data) for men and women 
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Men smoking data (training set) Women smoking data (training set) 

Years 25-
34 

35-
44 

45-
54 

55-
64 

65-
74 

75+ Total 25-34 35-44 45-54 55-64 65-74 75+ Total 

1999 14.2 13.3 9.2 7.5 7.1 7.3 21.1 0.6 0.7 1.1 0.7 0.7 0.5 0.9 

2000 16.5 14.5 10.5 7.79 7.18 7.37 21.4 0.7 0.8 1.26 0.7 0.73 0.53 0.98 

2001 18.8 16.9 11.8 8.3 7.29 7.47 21.71 0.8 0.9 1.39 0.71 0.77 0.58 1.05 

2002 21.1 20.3 13.2 9.06 7.43 7.61 22.08 0.9 1.03 1.55 0.74 0.82 0.65 1.13 

2003 23.5 23.8 14.8 10.1 7.62 7.78 22.53 1.03 1.13 1.73 0.79 0.89 0.73 1.23 

2004 25.8 26.1 16.7 11.5 7.84 7.99 23.04 1.13 1.23 1.93 0.9 0.98 0.84 1.35 

2005 28.1 27.4 19.2 13.1 8.11 8.23 23.7 1.3 1.4 2.2 1.1 1.09 0.96 1.5 

2006 28.1 27.6 20.6 15.1 8.39 8.5 24.16 1.3 1.4 2.34 1.42 1.2 1.1 1.6 

2007 28.2 27.9 22.4 17.1 8.68 8.76 24.7 1.35 1.45 2.52 1.88 1.31 1.23 1.71 

2008 28.6 28.4 23.9 19 8.94 9 25.17 1.37 1.47 2.68 2.43 1.41 1.35 1.81 

2009 29.8 29 25.1 20.7 9.17 9.22 25.56 1.37 1.47 2.79 2.98 1.5 1.46 1.89 

2010 30.9 29.7 25.9 22.1 9.36 9.39 25.84 1.35 1.45 2.87 3.45 1.57 1.55 1.94 

2011 31.3 30.2 26.4 23.2 9.51 9.52 26.04 1.32 1.42 2.91 3.8 1.63 1.61 1.98 

2012 31.4 30.5 26.7 24 9.62 9.63 26.17 1.28 1.38 2.93 4.04 1.67 1.66 2 

2013 31.4 30.7 26.5 24.7 9.7 9.7 26.2 1.1 1.3 3 4.2 1.7 1.7 2.1 

Men smoking data (testing set) Women smoking data (testing set) 

Years 25-
34 

35-
44 

45-
54 

55-
64 

65-74 75+ Total 25-34 35-44 45-54 55-64 65-74 75+ Total 

2014 32.3 31.2 27.3 25.1 10.2 10.1 26.44 1.5 1.5 3.4 4.5 1.8 1.7 2.40 

2015 32.8 31.6 27.7 25.4 10.4 10.3 26.62 1.5 1.5 3.5 4.7 1.9 1.8 2.50 

2016 33.4 32.1 28.2 25.7 10.6 10.5 26.80 1.6 1.6 3.7 5.1 2 1.9 2.70 

2017 33.9 32.6 28.6 25.9 10.8 10.7 26.97 1.6 1.6 3.8 5.4 2.1 2 2.80 

2018 34.4 33.0 29.0 26.0 11.04 10.9 27.15 1.7 1.7 3.9 5.7 2.2 2.1 2.90 

2019 35.0 33.5 29.5 26.2 11.3 11.1 27.33 1.7 1.7 4.1 6.02 2.2 2.2 3.00 

2020 35.5 34.0 29.9 26.3 11.5 11.3 27.50 1.8 1.8 4.3 6.3 2.3 2.3 3.10 

2021 36.0 34.4 30.4 26.3 11.7 11.5 27.68 1.8 1.8 4.4 6.6 2.4 2.4 3.20 

2022 36.6 34.9 30.8 26.4 11.9 11.7 27.86 1.8 1.8 4.5 6.9 2.5 2.5 3.30 

2023 37.1 35.4 31.2 26.5 12.1 11.9 28.03 1.9 1.9 4.7 7.3 2.6 2.6 3.50 

2024 37.7 35.8 31.7 26.6 12.3 12.1 28.21 1.9 1.9 4.8 7.6 2.7 2.7 3.60 

2025 38.2 36.3 32.1 26.6 12.6 12.3 28.39 1.9 1.9 4.9 7.9 2.7 2.7 3.70 

Table 3.2: Prevalence rate of smoking (training and testing) data for men and women 
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Men obesity data (training set) Women obesity data (training set) 

Years 25-
34 

35-
44 

45-
54 

55-
64 

65-
74 

75+ Total 25-34 35-44 45-54 55-64 65-74 75+ Total 

1999 12.5 17.6 17.8 16.4 16.4 16.4 13.1 20.05 31.5 32.4 28.7 28.7 28.7 20.3 

2000 12.9 19.5 20.6 18.3 16.7 16.7 15.4 20.4 31.6 33.8 29.9 29.2 29.2 21.6 

2001 13.4 21.0 22.8 20.0 17.2 17.2 17.4 21.0 32.2 36.3 32.1 29.8 29.8 24.0 

2002 14.1 22.8 24.8 21.6 17.8 17.8 19.3 21.7 35.4 40.0 35.3 30.6 30.6 27.6 

2003 15.0 24.8 26.7 23.2 18.6 18.6 21.1 22.7 42.0 44.3 39.1 31.7 31.7 31.8 

2004 16.1 27.8 29.1 25.0 19.7 19.7 23.2 23.8 45.2 48.1 42.5 33.0 33.0 35.4 

2005 17.3 29.2 29.9 26.2 20.8 20.8 24.5 25.2 45.9 50.7 44.9 34.5 34.5 37.9 

2006 18.7 31.4 31.3 27.6 22.1 22.1 26.0 26.6 45.9 52.2 46.7 36.1 36.1 39.5 

2007 20.1 33.4 32.5 29.0 23.3 23.3 27.5 28.1 46.0 53.2 48.4 37.8 37.8 40.6 

2008 21.4 35.0 33.5 30.3 24.5 24.5 28.9 29.5 46.2 54.1 50.6 39.3 39.3 41.8 

2009 22.5 36.2 34.4 31.6 25.5 25.5 30.2 30.6 46.9 55.0 53.7 40.6 40.6 43.1 

2010 23.4 37.0 35.1 32.7 26.3 26.3 31.5 31.6 48.5 55.9 57.1 41.7 41.7 44.6 

2011 24.1 37.2 35.6 33.9 27.0 27.0 32.6 32.3 49.3 56.8 60.1 42.5 42.5 45.9 

2012 24.6 37.3 35.9 35.0 27.4 27.4 33.7 32.9 49.5 57.3 62.0 43.1 43.1 46.7 

2013 25 37.4 35.9 35.9 27.8 27.8 34.5 33.3 49.5 57.6 63.1 43.6 43.6 47.2 

Men obesity data (testing set) Women obesity data (testing set) 

Years 25-
34 

35-
44 

45-
54 

55-
64 

65-
74 

75+ Total 25-34 35-44 45-54 55-64 65-74 75+ Total 

2014 25.4 37.8 38.1 36.6 28.3 28.3 35.1 33.7 50.2 58.2 63.6 44.2 44.2 48.1 

2015 25.8 38.1 38.5 37.5 28.8 28.8 36.0 34.2 50.8 58.8 64.7 44.9 44.9 49.0 

2016 26.3 38.4 39.0 38.5 29.3 29.3 36.9 34.7 51.3 59.4 65.7 45.6 45.6 50.0 

2017 26.8 38.6 39.4 39.4 29.9 29.9 37.8 35.2 51.9 60.0 66.6 46.3 46.3 50.9 

2018 27.3 38.9 39.8 40.4 30.4 30.4 38.7 35.7 52.5 60.7 67.5 47.0 47.0 51.9 

2019 27.8 39.2 40.2 41.4 30.9 30.9 39.6 36.2 53.1 61.3 68.4 47.7 47.7 52.8 

2020 28.2 39.5 40.7 42.3 31.4 31.4 40.5 36.7 53.6 61.9 69.2 48.4 48.4 53.7 

2021 28.7 39.8 41.1 43.3 32.0 32.0 41.4 37.2 54.2 62.5 70.0 49.1 49.1 54.7 

2022 29.2 40.1 41.5 44.2 32.5 32.5 42.3 37.7 54.8 63.1 70.9 49.8 49.8 55.6 

2023 29.7 40.3 42.0 45.2 33.0 33.0 43.2 38.2 55.4 63.7 71.7 50.5 50.5 56.6 

2024 30.2 40.6 42.4 46.2 33.6 33.6 44.1 38.7 55.9 64.4 72.5 51.2 51.2 57.5 

2025 30.6 40.9 42.8 47.1 34.1 34.1 45.0 39.3 56.5 65.0 73.3 51.9 51.9 58.4 

Table 3.3: Prevalence rate of obesity (training and testing) data for men and women 
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Men inactivity data (training set) Women inactivity data (training set) 

Years 25-
34 

35-44 45-54 55-
64 

65-
74 

75+ Total 25-34 35-44 45-54 55-64 65-74 75+ Total 

1999 89.51 91.31 94.61 96.71 97.61 97.61 93.9 97.91 97.91 98.01 98.61 99.58 99.58 98.1 

2000 89.02 89.94 93.42 95.38 96.69 96.69 93.21 94.68 93.12 94.57 96.12 99.62 99.62 96.36 

2001 87.76 88.24 91.76 93.69 95.38 95.38 91.89 92.63 89.59 92.01 94.61 99.64 99.64 94.83 

2002 85.88 86.04 89.51 91.44 93.59 93.59 89.99 90.34 86.42 89.25 92.94 99.58 99.58 93.04 

2003 83.26 83.27 86.57 88.57 91.26 91.26 87.41 87.55 83.62 86.34 90.97 99.35 99.35 90.98 

2004 79.85 79.95 82.93 85.07 88.38 88.38 84.13 83.97 81.17 83.41 88.52 98.75 98.75 88.68 

2005 76.2 75.9 78.7 80.9 85.02 85.02 80.5 77.4 77.6 78.7 84.03 97.46 97.46 85.5 

2006 71.17 72.18 74.09 76.75 81.39 81.39 75.92 77.16 77.37 78.22 82.08 95.45 95.45 83.87 

2007 66.45 68.27 69.49 72.49 77.76 77.76 71.53 76.69 76.01 76.37 79.79 93.43 93.43 81.70 

2008 61.95 64.72 65.21 68.59 74.39 74.39 67.38 75.98 75.02 75.19 79.02 92.13 92.13 79.90 

2009 57.95 61.73 61.51 65.26 71.49 71.49 63.74 75.07 74.38 74.69 79.23 91.52 91.52 78.55 

2010 54.59 59.38 58.50 62.60 69.14 69.14 60.71 74.17 74.11 74.77 79.83 91.28 91.28 78.00 

2011 51.89 57.63 56.17 60.59 67.33 67.33 58.32 73.45 74.20 75.31 80.58 91.22 91.22 77.50 

2012 49.79 56.41 54.45 59.14 66.00 66.00 56.48 72.99 74.65 76.17 81.35 91.24 91.24 77.20 

2013 48 55.7 53.2 58.2 65 65 55 72.7 76.1 78 82.5 91.3 91.3 77.3 

Men inactivity data (testing set) Women inactivity data (testing set) 

Years 25-34 35-44 45-
54 

55-64 65-74 75+ Total 25-
34 

35-44 45-54 55-64 65-74 75+ Total 

2014 46.94 54.73 52.08 57.15 64.14 64.14 54.1 72.87 72.75 75.03 80.13 89.98 89.98 76.6 

2015 45.98 53.56 50.50 55.80 62.91 62.91 53.3 72.57 70.97 73.39 78.82 89.29 89.29 76.1 

2016 45.23 52.40 48.93 54.45 61.68 61.68 52.7 72.26 69.19 71.75 77.5 88.61 88.61 75.7 

2017 44.62 51.24 47.36 53.10 60.46 60.46 52.3 71.96 67.42 70.12 76.18 87.92 87.92 75.3 

2018 44.11 50.08 45.79 51.75 59.23 59.23 51.9 71.66 65.64 68.48 74.86 87.24 87.24 74.8 

2019 43.67 48.92 44.22 50.41 58.00 58.00 51.6 71.36 63.85 66.85 73.55 86.55 86.55 74.4 

2020 43.28 47.75 42.65 49.06 56.78 56.78 51.4 71.06 62.08 65.21 72.23 85.87 85.87 73.9 

2021 42.92 46.59 41.08 47.71 55.55 55.55 51.2 70.76 60.3 63.57 70.91 85.19 85.19 73.5 

2022 42.59 45.43 39.50 46.36 54.32 54.32 50.9 70.45 58.52 61.94 69.6 84.5 84.5 73 

2023 42.27 44.27 37.93 45.01 53.10 53.10 50.8 70.15 56.74 60.3 68.28 83.82 83.82 72.6 

2024 41.97 43.10 36.36 43.66 51.87 51.87 50.6 69.85 54.96 58.66 66.96 83.13 83.13 72 

2025 41.67 41.94 34.79 42.31 50.64 50.64 50.5 69.55 53.19 57.03 65.65 82.45 82.45 71.7 

Table 3.4: Prevalence rate of inactivity (training and testing) data for men and women 

3.4.2. Data Categorisation  

In classification modelling it was required to discretise the continuous variable (output values) 

into multiple categories. These categories were chosen and assigned numerical classes: low 

(1), medium low (2), medium (3), high (4), and extremely high (5). MATLAB software was used 

to implement this transformation of continuous data, and the discretise function was applied 
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to group the morbidity data (training data from 1999 to 2013, along with the predicted morbidity 

data from 2014 to 2025). 

3.4.3. Data Analysis  

Building a good predictive model requires a good choice of input variables. The choice of these 

inputs should be such that the functions of the model perform accurately between the inputs 

and outputs. The predictor variables comprised age, gender, smoking, obesity, and inactivity. 

The predictor behavioural variables smoking, obesity, and inactivity were collected according 

to age and gender (demographic variables). These data were divided into six ten-year age 

bands (25-34, 35-44, … 75+ years old) for men and women. The morbidity data of diabetes 

was considered as the response variable. All these data were prepared for the models as 

shown in Tables 3.1, 3.2, 3.3, and 3.4. Moreover, correlation analysis was carried out to 

determine the correlation between the variables in the data in terms of statistical significance, 

Table 3.5 shows that demographic as well as behavioural risk factors significantly contributed 

to the increased level of diabetes, with a significance level of 0.05; however, smoking, obesity, 

and physical inactivity were the most significant factors.  

Variables P-value 

Gender 0.02 

Age 0.01 

Smoking 0.000 

Obesity 0.001 

Inactivity 0.001 

Table 3.5: Relationship between diabetes prevalence and the related risk factors with P-value 

3.5. Modelling Approaches 

This section discusses the developed machine learning modelling approach used in this 

thesis. Three types of modelling were applied: regression, classification, and time series. 

Different machine learning models for regression and classification were developed. This 

section starts with an overview of the concept of machine learning and the main types of 

learning, with a concentration on the supervised learning, which is the umbrella category of all 

modelling approaches considered in this research. 

3.5.1. Machine Learning 

Machine learning (ML) is one of the most important and powerful sub-branches of artificial 

intelligence (AI), and it is closely related to statistics, thus statisticians and mathematicians 

commonly call it “statistical learning”. It is concerned with the development of algorithms and 
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techniques that allow machines to learn and gain intelligence based on the past experience 

[161][162]. The power and effectiveness of these techniques derived from the ability to identify 

and understand the input data by extracting patterns and creating models, then making 

decisions and predictions based on it [163]. Basically, ML algorithms rely on trial and error, 

which is quite different from the traditional algorithms directed by programming, based for 

example on if-else decision statements [17]. The training set is the name given to the dataset 

that is subjected to the learning process. Different types of learning can be applied, depending 

on the range of the study and the nature of the data in the training set [164]. There are four 

main categories of ML tasks, namely supervised, unsupervised, active, and reinforcement 

learning [17]. When the dataset includes one or more target variables (outputs) where the 

analyst aims to describe their current behaviour and assess future behaviour employing other 

variables (inputs) from the dataset, this is supervised learning.  

The target variable can be called a label, dependent variable, or response variable. If there 

are no target variables in the dataset, this will be an unsupervised learning type. Contrastingly, 

when the target variable is partly available (i.e., both labelled and unlabelled data are utilised 

in the training process), this is known as semi-supervised learning [164]. There is also a third 

type of learning known as active learning, in which the most informative sample can be chosen 

as a label to train the model. Reinforcement learning is the fourth type, where the system 

interacts directly with a dynamic environment. It is fundamentally used in independent 

systems, because of its independence relation to its environment [163]. However, the most 

common applied type in real-world applications, especially in disease prediction and 

diagnosis, is the class of supervised ML. In this study, the development of multiple supervised 

ML models was proposed deploying different algorithms for the prediction of DM. In the next 

sections, the supervised learning approaches applied in subsequent chapters of this thesis 

are briefly discussed.  

3.5.2. Supervised Learning Methods 

As previously mentioned in the above section, when the target variable(s) are included in the 

dataset, the type of learning will be a supervised learning. The family of supervised learners 

have various methods which vary from each other in different perspectives. There are two 

kinds of learning tasks in supervised learning: regression and classification. The type of 

prediction will be regression if the target variable takes continuous values, and it will be 

classification if it takes discrete values [163][165]. The following sections give a general 

overview of the concept of regression and classification and associated techniques applied in 

later chapters.  



57 

3.5.2.1. Regression Modelling 

Regression techniques are the most common methods of supervised machine learning. These 

methods aim to predict or describe a specific numerical value depend on a set of past data 

[166]. Montgomery et al. defined regression analysis as a statistical process that attempts to 

describe and model the relationship between a dependent variable and one or more 

corresponding value(s) of other variables [167]. These processes of establishing a statistical 

model demonstrate the mathematical explanation of a variable based on other variables. Thus, 

the main objective of regression analysis is to find a function to estimate the change of the 

response variable according to the change in one or more predictors. This regression function 

is defined by a finite number of unknown parameters, so the regression analysis mainly aimed 

to estimate these parameters, this will be based on the observed pairs of X and Y, to shape 

the regression equation that measures the covariate impacts on the data. This procedure is 

also known as fitting the model to the data. Linear regression is the simplest method, where 

the mathematical equation of the line is used to model a dataset, this model has a single 

regressor 𝑋 which has a straight-line relationship with a response 𝑌: 

 𝑌 =  𝛽0 + 𝛽1𝑋 + 𝜀 (3.1) 

where the intercept 𝛽0 and the slope 𝛽1 are unknown parameters; and 𝜀 is the random error 

element. These parameters are generally known as regression coefficients. There is a simple 

and often helpful interpretation of these coefficients. 

The slope 𝛽1 is defined as the process when the mean of the distribution of 𝑌 is changed 

according to a unit change in 𝑋. If 𝑋 = 0 is included in the range of data on 𝑋, then 𝛽0 (the 

intercept) is calculated as the mean of the distribution of the response 𝑌 when 𝑋 = 0. If the 

𝑋 = 0 is not included in the range of 𝑋 , then there is no practical interpretation of 𝛽0 [167].  

Regression techniques range between simple, such as linear regression; to complex, such as 

polynomial regression, decision trees, neural nets, random forest regressions and support 

vector regression [168]. In this research five methods of regression modelling were applied: 

multiple linear regression model, Bayesian linear regression model, support vector regression, 

ANFIS model for regression and ANN regression model. A full description of these models 

with its implementation and its results is provided in Chapter 4. 

3.5.2.2. Classification Modelling 

Classification methods are another popular class of supervised machine learning which 

predict or determine a class value. As mentioned earlier, if the outcomes take discrete values, 

known as categories, then the process of classification follows [165]. According to Aggarwal, 
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the classification problem can be expressed as: “Given a set of training data points along with 

associated training labels, determine the class label for an unlabelled test instance” [169]. 

Both structured and unstructured datasets can be used for implementing classification models. 

Dataset samples are classified in accordance with specific label or category and for unseen 

inputs, the label or category that will be determined to it is predicted by the same technique. 

A classifier algorithm is “an algorithm that learns from the training set and then assigns new 

data point to a particular class” [170]. A classification predictive model determines some 

proper mapping function from training dataset and estimate the class label by the aid of the 

mapping function for the new inputs data.  

The classification task can be in different forms. When the classification problem has two 

possible outcomes then this will be a binary classification, such as disease diagnosis 

(“infected” or “not infected”). Multi-label classification is another type of classification task 

where there are more than two possible outcomes. For example, obesity classification 

according to BMI (body mass index) into classes such as low-risk, moderate-risk, and high-

risk [170]. Some of the most common applied methods in classification problems are SVM 

methods, probabilistic, rule-based, instance-based, neural networks, and decision tree 

methods [169]. In this research some classification models were applied using classification 

learner in MATLAB. An overview of these classifiers with their implementation and results is 

given in Chapter 6. 

3.5.2.3. Time Series Modelling  

A time series can be defined as a sequence 𝑆 of past measured data 𝑌𝑡  of a variable 𝑌 

observed over equal periods of time 𝑡. The first observation available on 𝑌 is 𝑡 = 1, and 𝑇 =

𝑡 will be the last. The observation period is denoted by the completed set of times 𝑡 =

1,2, … … , 𝑇 [171]. The measurement of the observations is usually taken at equally spaced 

intervals, such as every minute, hour, or day, etc., thus the order of observation arrival is 

substantial [172]. A definition of time series analysis is “the endeavour of extracting meaningful 

summary and statistical information from points arranged in chronological order to diagnose 

past behaviour as well as to predict future behaviour” [173].  

There are various objectives of using time series such as to forecast the future based on the 

past knowledge, to understand any phenomenon behind the measures, or clearly describe the 

prominent characteristics of the series. Predicting the future using observed time series is 

increasingly important in the most vital fields of science and engineering, such as medicine, 

economics, business, finance, and telecommunication. The horizon size is a significant aspect 

of the forecasting process. If it is challenge to forecast one-step of a time series, it would be 

more difficult to perform a multi-step forecasting, this due to further obstacles, such as errors 
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accumulated, increased uncertainty, and reduced accuracy [171]. Time series analysis has 

the ability to deal with statistical methods in order to analysis and model an order sequence of 

observations.  

This modelling process leads to stochastic process model for the system that produced the 

data. In traditional statistical analysis, it is often neglecting the correlation of data in time. For 

example, in regression analysis the hypothesis that has been made for serial uncorrelated 

residuals is often disregard in practical applications. However, appropriate techniques and 

models for time series analysis may often be considered as an easy extended way of linear 

regression analysis where past observations of the target variable are involved as a 

descriptive variable in a simple type of linear regression model [174]. Some of the most 

common classical statistical models for time series include Autoregressive (AR), moving 

average (MA), ARIMA , and vector autoregression (VAR) models [173][172].  

These traditional models have been widely applied for time series forecasting, and they are 

still used in many tasks, from academic studies to industrial modelling. In the last two decades, 

machine learning methods have been greatly involved to address these predictive tasks. 

These methods, also known as data-driven based models or black-box models. In these 

models only historical data were used to examine the pattern of stochastic dependency 

between the past and the future [171]. Examples of these models are nearest neighbour 

regression, support vector machines, and decision trees. Moreover, ANNs have been 

successfully developed for modelling and forecasting nonlinear time series and it was 

performing better than the classical statistical methods [175][176]. In this thesis, Neural 

Networks has been also applied for time series modelling. A description of this strategy, its 

implementation, and its results is presented in Chapter 7. 

3.6. Model Evaluation 

This section describes the different performance metrics that were used to evaluate the 

performance of the proposed models which applied in the later chapters. Evaluating the 

performance of the model is the last and important step in modelling development [177]. 

During this step, the developed model is examined through the collected datasets and the 

performance evaluation metrics will define if the model is optimized and how reliable and 

robust the outcomes are, then it can be applied to predict new real data [178]. One of the most 

important tasks in evaluating a model is defining the objectives of the developed model in 

which its performance will be assessed. Furthermore, it is essential to use more than one 

performance evaluation measure, this is because that the model that needs to be evaluated 

may have more than one objective, or it might be evaluated by different performance 
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measures used by the end user. In addition, using multiple evaluation methods will help to 

take advantages of all the important features of the model and minimise its limitations [179].  

A variety of different metrics have been applied in the literature to evaluate the outcomes of 

prediction models and rank them appropriately [17][14][146][154]. These metrics have their 

own advantages and disadvantages in explaining the outcomes of the compared models. In 

this study, the metrics were chosen in accordance with relevance, explain ability, and 

popularity in both statistics and machine learning. Consequently, in order to validate the 

proposed models and reach reliable and accurate outcomes, different measures have been 

used according to the type of models. For regression models, the prediction accuracy is 

evaluated based on MSE, RMSE, MAPE, and the coefficient of determination 𝑅2. While for 

classification models there are several methods for evaluating the model’s performance, this 

study compared classifier performance in terms of accuracy, which is generally the most 

important consideration in the healthcare field. 

3.6.1. Mean Square Error 

MSE is the most popular and simple interpreted metric for many types of regression models 

[151]. It measures how close a regression line is to a set of data points. This can be calculated 

by taking the distances (errors) from the points to the regression line and then calculate their 

square values [180]. It is substantial to square them to eliminate any negative indications and 

it is also helping to allow more weight for considerable differences. It is known as the mean 

squared error where this stands for its way of calculating the average of a set of errors. The 

lower the value of the MSE, the closer the fit of the regression line to the data, resulting in 

better forecasting. The MSE is expressed by the following equation:  

 𝑀𝑆𝐸 =  
∑ (𝑌𝑖 − �̂�𝑖)𝑛

𝑖=1

𝑛

2

 (3.2) 

where n the number of data points; 𝑌𝑖 is the actual values; and �̂�𝑖 is the predicted values. 
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3.6.2. Root Mean Square Error 

RMSE is another popular and excellent error metric for numerical predictions. It measures the 

accuracy of models by taking the square root of MSE between the actual and predicted output 

[181]. It is sensitive to the outliers as it is scale-dependent, and it is also affected by the larger 

errors. Lower RMSE values indicate better model performance [151]. RMSE is presented in 

the following equation:  

 𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖 − �̂�𝑖)𝑛
𝑖=1

𝑛

2

  (3.3) 

where n is the number of data points, 𝑌𝑖 is the actual values, and �̂�𝑖 is the predicted values. 

3.6.3. Mean Absolute Percent Error 

MAPE is another common evaluation metric, because it is simple to calculate and easy to 

understand. It can be defined as the mean or average of the absolute percentage errors of 

predictions [182]. It can be calculated by taking the summed average of the absolute 

percentage errors (the actual values minus the predicted values divided by the actual) and 

then divided by the number of samples. This measure can be a very good indication of the 

quality of the evaluation method, and it is easy to understand for a wide range of users. 

because it calculates the error in terms of percentages [183]. In addition, because using the 

absolute value, any problem with positive and negative errors will be prevented. The MAPE 

calculation is given by the following equation: 

 
𝑀𝐴𝑃𝐸 =  

∑
|𝑌𝑖 − �̂�𝑖| 

𝑌𝑖
∗ 100𝑛

𝑖=1

𝑛
 

(3.4) 

where n the number of data points; 𝑌𝑖 is the actual values; and �̂�𝑖 is the predicted values. 

3.6.4. Coefficient of Determination 

The coefficient of determination ( R2) is a statistical metric that measure how well the data fits 

the regression model by indicating the deviation of the predicted values from the regression 

line. The R2 value is normally between 0 and 1. A value close to 1 indicates that the model is 

perfectly fits the data, while a low value or close to 0 implies a poor fit of the model. It is scale-

independent, and it is sensitive towards the variance in observations [184]. The coefficient of 

determination ( R2) is provided by the following equation: 
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 𝑅2 = 1 −  
∑ (𝑦𝑖 − �̂� )2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (3.5) 

where n is the number of data points; 𝑦𝑖 is the actual values; 𝑦 ̂is the predicted values; and 

𝑦 ̅is the mean (average) of the actual values. 

3.6.5. Accuracy Rate 

There are several methods to evaluate the performance of machine learning classification 

models. Accuracy rate is one of the most important metrics in performance evaluation of 

classification models. It is very common measure for evaluating the success of a classifier and 

is used in many different studies. The accuracy rate of a model can be defined as the 

proportion of correctly classified predicted cases to the total number of predicted cases. The 

accuracy rate is defined according to the following equation [17]: 

 Accuracy =
Number of correct predictions 

Total number of predictions
 (3.6) 

3.7. Simulation Software 

All the analyses and computations in this thesis were carried out using MATLAB software. 

This software was chosen because it is a proprietary high level programming language and is 

considered as one of the most popular programs for scientific, numerical computing. The name 

MATLAB is a portmanteau of “Matrix” and “Laboratory”. As illustrated by the name, it relies on 

interactive systems of matrixes. The implementation of all models in MATLAB (version 2018a) 

will be explained in the following chapters. 

3.8. Summary  

This chapter overviewed the theoretical background of modelling in terms of definitions, uses 

in healthcare, and developmental steps. A description of the experimental datasets used in 

this thesis, with the processes of preparing the data and dealing with missing values, was also 

presented. The statistical and machine learning methods and procedures adopted while 

carrying out the research were described. Lastly, various methods of model performance 

evaluation that are used for comparison were discussed. An explanation of the developed 

models with their implementation and results is provided in the following chapters. 
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Figure 3.1: Proposed workflow for the research. 
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Chapter 4  

Regression Modelling 

4.1. Introduction 

As mentioned in Chapter 3, three types of modelling approaches were applied while carrying 

out this research: regression, classification, and time series. This chapter specifically describe 

the first type, regression modelling. It briefly describes the five machine learning models 

developed for regression, including Multiple Linear Regression, Bayesian Linear Regression, 

Support Vector Regression, Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference 

Model (Section 4.2), to highlight their operational properties. The implementation of these 

individual models is illustrated in Section 4.3. Section 4.4 analyses and discusses the results 

of these models and compares their performance in terms of various evaluation performance 

metrics. A summary of the chapter is given in Section 4.5. 

4.2. Machine Learning Regression Methods 

This section gives a brief description of the five machine learning models used for regression 

modelling of diabetes disease forecasting: Multiple Linear Regression, Bayesian Linear 

Regression, Support Vector Regression, Artificial Neural Networks and Adaptive Neuro -

Fuzzy Inference Model. This is mainly to present the mathematical background of these 

models and to highlight their individual operational qualities. 

4.2.1. Multiple Linear Regression 

Multiple linear regression is one of the most common types of linear regression analysis. It is 

an extended form of simple linear regression, with a relationship between more than two 

variables [185]. In predictive analysis, this technique describes the relationship between one 

dependent (response) variable and two or more independent (predictor) variables. The 

general model of multiple linear regression is: 

 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 (4.1) 

where 𝑌 is the dependent variable; 𝛽0, 𝛽1, 𝛽2, … … , 𝛽𝑛 are the coefficients; and 𝑋1 + 𝑋2 + ⋯ +

𝑋𝑛 are the independent variables. 

4.2.2. Adaptive Neuro-Fuzzy Inference System 

The ANFIS model is a combined model of fuzzy systems and ANN [186]. The main parts of 

the FIS are fundamental rules, which contain the choices of fuzzy logic rules “If-Then”, a set 
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of membership functions, and the fuzzy logic inference procedures from the fundamental rules 

to obtain the output. In order to map the inputs with the outputs, two common fuzzy inference 

systems (FIS) can be employed in different applications: Mamdani and Sugeno inference 

systems.  

The fuzzy rules in the two inference models give different results, therefore their actions of 

defuzzification and combination are also different. However, the Sugeno system is believed to 

be computationally more efficient than the Mamdani; in the former, the resultant parameter is 

a linear equation or constant coefficient. Supposing that we have a system including two 

inputs, x and y, and the output is f, and the based rule has two fuzzy if-then rules, then the 

description of rules for the linear equation Sugeno FIS can be presented as the rule 1 (R1) 

and rule 2 (R2): 

 R1: if 𝑥 𝑖𝑠 𝐴1 and 𝑦 𝑖𝑠 𝐵1 then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 (4.2) 

 R2: if 𝑥 𝑖𝑠 𝐴2 and 𝑦 𝑖𝑠 𝐵2 then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 (4.3) 

where 𝐴𝑖and 𝐵𝑖 are the membership functions of each input 𝑥 and 𝑦; and 𝑝𝑖 , 𝑞𝑖 and 𝑟𝑖are the 

linear parameters in the resulting part of the Sugeno fuzzy inference system. 

ANFIS model can be considered successful due to the strength of its results. Moreover, as 

with other machine learning techniques and as a neural network, ANFIS has a high ability to 

generalise. On the other hand, there are some limitations of ANFIS model regarding the type, 

number, and position of membership functions [187]. 

4.2.3. Artificial Neural Networks 

Neural Network and ANN are mathematical models based on the concept of Artificial 

Intelligence, which simulates the biological neuronal activity of the human brain. This 

modelling approach is a valuable tool that simulates the functionality of the human brain when 

dealing with complex relations between the inputs and outputs in any systems [188]. There 

are many types of ANN architectures, the most common of which is Multi-Layer Perceptron 

(MLP), which is commonly used for prediction. It comprises three tiers: an input layer, hidden 

layers, and an output layer. Supposing that the input vector is �⃗� and the weight vector is �⃗⃗⃗�, 

and the activation function is a sigmoid function (which is the most commonly used function 

type), the output is given by: 
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 𝑌 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(�⃗⃗⃗�𝑇 . �⃗�) (4.4) 

where the sigmoid(x) is 
 

 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (4.5) 

One of the characteristic advantages of Neural Network technique is its ability to deal with 

noisy, incomplete, or missing data, requiring no previous assumptions. In addition, it has 

capabilities to deal with complex relations between input and output variables, and 

consequently to predict the output of new data input. However, overfitting and overtraining are 

considered as limitations of Neural Networks. Also, regarding the selection of parameters, in 

Neural Network there is no formal way to select the suitable parameters for the model, which 

may influence the accuracy of its prediction. 

4.2.4. Support Vector Regression 

Support Vector Machine (SVM) is a popular method developed by Vapnik [189]. The 

generalized concepts of SVM have been applied to regression problems such as modelling 

and prediction, and accordingly called Support Vector Regression (SVR). SVR has been 

effectively utilized to deal with forecasting issues in many areas as diverse as pharmacology, 

economics, and power systems analysis. SVR is less popular than SVM, but it has been 

verified that it is a valuable technique in estimating the real value of a function [190]. One of 

the most useful features of SVM is that the complexity of its computation does not rely on the 

dimensional parameters of the input space. Moreover, SVR shows better generalization 

ability, with high performance and accurate prediction. Fundamentally, SVR is a linear 

approach with one output, dealing with a space of high dimensional feature established by 

nonlinear mapping of the N-dimensional input vector into a K- dimensional feature space (K > 

N) utilising the function ϕ(x). The learning process is moved to the minimization of the error 

function, which is defined by the so called ε-insensitive loss function 𝐿𝜀(𝑑, 𝑦(𝑥)): 

 𝐿𝜀(𝑑, 𝑦(𝑥)) = {
|𝑑 − 𝑦(𝑥)| − 𝜀, 𝑓𝑜𝑟 |𝑑 − 𝑦(𝑥)| ≥ 𝜀

0 , 𝑓𝑜𝑟 |𝑑 − 𝑦(𝑥)| < 𝜀
 (4.6) 

where ε is the assumed accuracy; d is the destination; x is the input vector; and y(x) is the 

actual output under the effect of x.  

The actual output of the SVR is defined by: 
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 𝑦(𝑥) = ∑ 𝜔𝑗

𝐾

𝑗=1

𝜑𝑗(𝑥) + 𝑏 = 𝑤𝑇𝜑(𝑥) + 𝑏 (4.7) 

where 𝑤 = [𝜔0, 𝜔1, … , 𝜔𝐾]𝑇 is the weight vector; and 𝜑(𝑥) = [𝜑0(𝑥), 𝜑1(𝑥), … , 𝜑𝐾(𝑥)]𝑇 is the 

basis function vector. 

4.2.5. Bayesian Linear Regression 

Bayesian linear regression is based on a generative method which is different from a 

discriminant one, which depends on Bayesian inference to build linear regression models 

[189]. Once the model is specified, the posterior distribution of parameters and forecasts of 

the model are computed by the method. This statistical analysis enables the method to define 

the complexity of the model through training, which produces a model with few possibilities to 

overfit. In contrast to simple linear regression model, the responses in Bayesian Linear 

Regression are assumed as samples from the probability distribution, for example the normal 

(Gaussian) distribution, which is: 

 𝑌~𝑁(𝛽𝑇𝑋, 𝜎2) (4.8) 

The product of the parameters β and the inputs X is the mean of the Gaussian, where the 

normal deviation is σ. As well as the responses, in Bayesian Models, the parameters are also 

supposed to be sampled from a distribution. The aim is to define the posterior probability 

distribution for the parameters of the model with given X inputs and Y outputs, as in Eq. (4.9): 

 𝑃(𝛽\𝑌, 𝑋) =
𝑃(𝑌\𝛽, 𝑋) ∗ 𝑃(𝛽\𝑋)

𝑃(𝑌\𝑋)
 (4.9) 

The final result obtained from modelling by Bayesian Linear regression is not a single estimate, 

but rather a distribution range which can be used to produce inferences regarding new 

observations. This distribution enables determination of uncertainty in the model, which is 

considered one of the advantages of Bayesian Modelling methods. When the volume of data 

increases, the uncertainty of the result declines, presenting a better level of certainty in the 

approximation [191]. 
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4.3. Implementation 

To construct a forecast model of diabetes using regression modelling approach, five different 

regression machine learning models (described in the previous section) were developed and 

employed as base learners in this chapter. These models describe the development of 

diabetes disease in a given population in this case, the Saudi population, and they were 

structured to represent and utilise the available epidemiological data. The forecast model of 

diabetes was parameterised using nationally representative epidemiological and demographic 

data. This model integrates data on the population (adults age > 25) and for both genders 

(men and women), along with the behavioural (modifiable) risk factors (smoking, obesity, and 

inactivity) dataset, and it was programmed and implemented in MATLAB version R2018a.  

This section describes the processes followed in the implementation of the five regression 

machine learning models involved in this chapter. Each model is trained to forecast the 

prevalence of diabetes using the training dataset which represents 56% of the data and 

validated using the testing dataset which represents 44% of the data (the required modelling 

datasets are described in Chapter 3). As mentioned in Chapter 3 the training data consists of 

predictor variables (age, gender, smoking, obesity, and inactivity) and the response variable 

(diabetes morbidity data). The implementation for each model is described below. 

4.3.1. Multiple Linear Regression Model (MLR) 

To establish this model in MATLAB, a constrained linear least-squares solver “lsqlin” with 

bounds or linear constraints was used to determine the regression positive coefficients for the 

MLR model using the training dataset. The optimization toolbox lsqlin function was used as 

the following: coefficients = lsqlin(X,Y,[ ],[ ],[ ],[ ], lb, ub), where X is the independent (predictor) 

variables (gender, smoking, obesity, inactivity); Y is the dependent (response) variable (the 

prevalence of diabetes morbidity); and lb and ub are the constraints (equal to zeros and ones, 

respectively). After calculating the model coefficients, the multiple linear regression model is 

represented by the following equation: 

 𝑌 = 1 + 2.7 × 10−10𝑋1 + 0.2215𝑋2 + 0.1738𝑋3 + 0.0148𝑋4 (4.10) 

where Y is the dependent variable (diabetes prevalence); 𝑋1, 𝑋2, 𝑋3, 𝑋4 are the independent 

variables gender (men=1, women=0), smoking, obesity, and inactivity, respectively.  

Figures 4.1 and 4.2 show 3D surfaces for the dependent variable and the independent 

variables for men and women training data respectively. 
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Figure 4.1: 3D surface of the three risk factors and morbidity of diabetes (men training data) 

 

Figure 4.2: 3D surface of the three risk factors and morbidity of diabetes (women training 

data)  

4.3.2. Adaptive Neuro-Fuzzy Inference System Model (ANFIS) 

ANFIS was modelled using the MATLAB Neuro-Fuzzy Designer app, determining the number 

and type of membership functions, and the optimization method. To predict the prevalence of 

diabetes, the same training dataset that used in the previous model were used to create an 

ANFIS structure with three inputs (smoking, obesity, and inactivity) and one output (diabetes 

prevalence) for both men and women. In order to train the ANFIS model, the number of 

membership functions was selected as 2 for each input; Gaussian membership function was 

chosen for the type of function; and for the output variable, the type of membership function 

was linear. In addition, a hybrid method is implemented as optimization algorithm of the 

training, the error tolerance is set to 0, and the maximum number of epochs considered for 



70 

training is set as 300. Figure 4.3 represents a typical ANFIS structure with three inputs, one 

output, and eight rules. 

 

Figure 4.3: ANFIS model architecture with three inputs, one output, and eight rules 

4.3.3. Artificial Neural Network (ANN) 

To apply this model a neural fitting tool (nftool) is used from the neural network toolbox in 

MATLAB, which is a two-layer feed-forward network with sigmoid hidden neurons and linear 

output neurons (fitnet). In this model, inputs are defined as X and targets as Y, with samples 

set in rows. The training dataset has been used to create an ANN structure with 3 inputs 

(smoking, obesity, and inactivity) and one output (diabetes prevalence) for both men and 

women, and the number of neurons in the fitting network’s hidden layer was set to be 10. The 

training functions are varied and can be selected according to the type and size of a problem. 

To train the ANN model, Levenberg–Marquardt algorithm was chosen, which is suitable for 

training small- and medium-sized networks, and it is considered to be an effective and fast 

training function [192]. The structure of the ANN model has three input variables, with 10 

neurons for the hidden layer, and one output variable, as seen in Figure 4.4. The training 

process of the neural network is allowed to be started by itself sufficiently until it is 

automatically stopped after six epochs, when it achieves the best validation performance. The 

training performance graphs of the constructed neural networks are shown in Figure 4.5 and 

Figure 4.6 for the men and women training datasets, respectively. 



71 

 

Figure 4.4: ANN architecture 

 

Figure 4.5: ANN training performance (men data) 
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Figure 4.6: ANN training performance (women training data) 

4.3.4. Support Vector Regression (SVR) 

The SVR regression model was applied using the fitrsvm tool in the Statistics and Machine 

Learning Toolbox [MATLAB, R2018a] (https://mathworks.com/help/stats/fitrsvm.html). As with 

the above trained models, SVR model was trained using the training data, with the input values 

(independent variables) in the matrix and the target values (dependent variable) in the vector. 

SVR aims to find an optimal hyperplane by transforming the original feature space to a high-

dimensional one utilising kernel functions. Some of the most popular kernel functions include 

linear kernel, polynomial function, Gaussian radial basis function (RBF), and hyperbolic 

tangent [189]. In this research, SVR model was trained with a default linear kernel, automatic 

hyperparameter tuning, and Sequential Minimal Optimization. The default settings contain the 

Kernel Scale auto unit, which assigns a proper scale factor using a heuristic procedure based 

on subsampling with “Standardize” unit, which standardises each variable using mean and 

standard deviations, then the obtained SVR model can be used to predict diabetes prevalence 

using the test dataset. 

4.3.5. Bayesian Linear Regression Model 

To create Bayesian linear regression model, the function (bayeslm) was used from the 

Econometrics Toolbox/ Bayesian Linear Regression Models in MATLAB2018. 

(https://uk.mathworks.com/help/econ/bayeslm.html). Firstly, bayeslm is used to create a prior 

model object appropriate for predictor selection: p = 3; PriorMdl = bayeslm (NumPredictors p)  

This creates a diffuse prior model for the linear regression parameters, which is the default 

model type and identify the number of predictors p. 

https://mathworks.com/help/stats/fitrsvm.html
https://uk.mathworks.com/help/econ/bayeslm.html
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Then, the estimate function is applied to the prior model object, the predictors X, and the 

response Y (the training data) as follows: posteriorMdl = estimate (priorMdl ,X,Y); 

By default, estimate returns a model object that represents the posterior distribution. 

Finally, to predict responses of Bayesian linear regression model, forecast function is applied 

to the model object representing the posterior distribution as follows: forecast (posteriorMdl,x); 

where x representing the testing dataset. 

4.4. Results and Discussion  

This section presents the results obtained from each individual regression model described in 

section 4.3. Analysis of these results are carried out to compare the prediction power of the 

five models by evaluating their performance accordance with four important statistical 

evaluation measures, these measures are MSE, RMSE, MAPE, and the coefficient of 

determination R2, respectively, given in equations (3.2, 3.3, 3.4, 3.5) (as presented in Chapter 

3).  

Table 4.1 shows the regression modelling results of the total prevalence of diabetes among 

men and women respectively, population ≥ 25 years of age, from 1999 to 2013 (training data). 

The results showed that diabetes prevalence is still increasing over this period for both men 

and women, however the prevalence rate was higher among men than women. In men, the 

total population prevalence of diabetes increased from 9.7% in 1999 to 13.9% in 2013, an 

absolute increase of 4.2 percentage points (pp) which represents an annual increase of 0.3 

pp. The prevalence of diabetes among the total women population increased also by 0.3 pp 

each year from 7% in 1999 to 11% in 2013. Table 4.9 shows the projected estimates by 

regression modelling techniques for the total prevalence of diabetes in men and women Saudi 

population aged ≥ 25 years using (test data) during the period from 2014 to 2025 assuming 

the observed trends from 1999 to 2013 continue. Among men, the total predicted diabetes 

prevalence rate is estimated to rise during the same period from about 14.2% in 2014 to 

around 17.6% in 2025. In women, the estimated diabetes prevalence is predicted to increase 

from around 12.4 % in 2014 to about 17.3% in 2025. Figure 4.7 illustrates the total estimations 

of the prevalence of diabetes for men and women from 1999 to 2025. 

Table 4.2 represents the results of the total prevalence of diabetes using regression modelling 

techniques for both men and women by including the gender variable (1 for men and 0 for 

women) in the training data. The projected estimates of the total prevalence of diabetes for 

men and women at the same time using (the test data) is shown in Table 4.10. The models 

demonstrate similar results to the modelling results of men and women taken separately.  
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Tables 4.3 to 4.8 show the results of the prevalence of diabetes according to age groups for 

men and women. Overall, it can be seen that there was a steady increase in diabetes 

prevalence among men and women in all age groups, but the prevalence was lower in younger 

age groups, and it increased with age. The highest prevalence of diabetes from all the age 

groups was found in the population aged 55-74 years. The highest growth in diabetes 

prevalence was in men aged 55-64 years old, which increased in prevalence from 24.91% in 

1999 to 53% in 2013, an absolute increase of 28.1 pp in 14 years. The highest prevalence of 

diabetes for women was in the age group 65-74 years’ old, which indicated an increase from 

24.4% in 1999 to 48.2% in 2013, with an absolute increase of 23.8 pp in 14 years. 

The results of the predicted prevalence of diabetes according to age groups for men and 

women for the period from 2014 to 2025 using the test data is demonstrated by Tables 4.11 

to 4.16. In men, those aged 55 to 75+ years old showed the highest projected diabetes 

prevalence reaching over 60% by the year 2025. The lowest prevalence rates would belong 

to the youngest age group (25-34), predicted to be around 12.3% by 2025. Estimated diabetes 

prevalence ≥35% by 2025 was observed only in men 45 to 54 years old. Figure 4.8 

demonstrates the estimations of the prevalence of diabetes for men by each age group from 

1999 to 2025.The results for the projected diabetes prevalence in women population showed 

that by 2025, diabetes prevalence would reach 50% and higher for women aged between 55 

and 75+ years old. The highest prevalence rate of diabetes in women by 2025 would be found 

in the group aged 65-74, which is predicted to be around 70%. Figure 4.9 shows the 

estimations of the prevalence of diabetes for women by each age group from 1999 to 2025. 

The results in Figure 4.10 show that the prevalence of the behavioural risk factors of smoking 

and obesity also increased during the period from 1999 to 2025: smoking increased from 11% 

to 16.05%, while obesity sharply increased from 16.7% to 51.7%. The prevalence rate of 

inactivity is expected to have dropped significantly to 61.1% by 2025, compared to 96% in 

1999, however this percentage remains dangerously high. According to [193], “Saudis are not 

active enough to meet the recommended guidelines for moderate to vigorous PA”, which has 

been attributed to the rapid increase of urbanization, the nature of weather, and cultural 

characteristics. In addition, the prevalence of risk factors such as obesity, smoking, and 

physical inactivity varied according to gender. The prevalence of smoking was higher among 

men than women: 21.1% against 0.9% in 1999, and 28.4% against 3.7% by 2025. Women 

had a higher prevalence rate of obesity than men: 20.3% against 13.1% in 1999, and 58.4% 

against 45% by 2025 (Figure 4.10). Moreover, the prevalence rate of physical inactivity was 

higher among women than men: 98.1% against 93.9% in 1999, and 71.7% against 50.5% by 

2025.  
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After discussing the obtained results of diabetes prevalence prediction by each regression 

model, their performances were evaluated based on the measures of MSE, RMSE, MAPE, 

and R-squared between the observed and predicted prevalence of diabetes for men and 

women, as presented in Table 4.17. Based on the results, it can be observed that the overall 

performance of all regression models was reasonably good. The values of R2 were range 

between 0.92 to 0.99 and the evaluation corresponding results in terms of MSE and RMSE 

were range between 0 and 0.4 and with MAPE ranged between 0 and 0.03 for all models. 

However, the best results were provided by ANFIS model with RMSE = 0.04 and R2 = 0.99 for 

men training data, and RMSE = 0.02 and R2 = 0.99 for women training data. Among other 

models, BLM and MLR were giving a good accuracy in terms of RMSE and R2 for men and 

women training datasets respectively.  

The comparison graphs for actual vs predicted values for the total diabetes prevalence for 

men and women by all models are given in Figures 4.11 and 4.12, respectively. These graphs 

show different performance of the models but, they both show close proximity of ANFIS model 

predictions with the experimental data signifying the validity and accuracy of this model 

compared to other models. In addition, figures 4.13 to 4.18 demonstrate comparison graphs 

for actual vs predicted values for diabetes prevalence for men and women of each age group 

by all models. These plots also indicated a good performance of ANFIS model on the 

experimental data of each age group. A poor performance has been given by MLR model 

across all the experimental data of each age group for both men and women, while an 

acceptable performance of this model has been showed for the age group of (55-64) for both 

genders. SVR and BLM models performing weakly on the data of the first three age groups 

aged from 25 to 54 for both men and women, whereas they present a reasonable performance 

for the rest of age groups. Not bad performance has been presented by ANN model in the 

experimental data of each age group with exception of 35-44 age group where some curvature 

can be seen on the presented chart figure 4.14.  

Furthermore, Figures 4.19 and 4.20 show the overall comparison of all regression models on 

performance metrics, which clearly indicated a reduced error by ANFIS model for both men 

and women datasets. 
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 Men Women 

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

1999 9.3 9.70 9.70 9.88 9.70 6.8 7.00 7.00 6.70 6.92 

2000 9.6 9.80 9.70 10.03 9.81 7.0 7.12 7.26 7.08 7.23 

2001 10.0 10.00 9.70 10.20 9.98 7.3 7.28 7.40 7.32 7.08 

2002 10.4 10.20 9.70 10.43 10.21 7.5 7.50 7.50 7.55 7.49 

2003 10.8 10.50 9.71 10.70 10.51 7.9 7.79 7.70 7.81 7.90 

2004 11.2 10.90 9.80 11.04 10.88 8.3 8.14 8.14 8.18 8.23 

2005 11.6 11.30 10.65 11.37 11.33 8.7 8.55 8.78 8.86 8.90 

2006 12.0 11.80 11.90 11.78 11.81 9.1 8.99 8.99 9.20 9.25 

2007 12.3 12.30 12.36 12.18 12.27 9.4 9.43 9.25 9.71 9.47 

2008 12.7 12.70 12.69 12.56 12.71 9.8 9.84 9.69 10.13 9.77 

2009 13.0 13.10 13.09 12.89 13.10 10.1 10.19 10.19 10.40 10.14 

2010 13.2 13.40 13.35 13.17 13.38 10.3 10.48 10.53 10.45 10.13 

2011 13.5 13.60 13.70 13.40 13.61 10.5 10.71 10.78 10.50 10.64 

2012 13.7 13.80 14.09 13.58 13.80 10.6 10.88 10.88 10.52 10.63 

2013 13.8 13.90 14.01 13.73 13.91 11.2 11.00 11.85 10.50 11.21 

Table 4.1: Total diabetes prevalence results for men and women using regression models (training 

data), 1999-2013 

 MLR ANFIS ANN SVR BLM 

Year Men Women Men Women Men Women Men Women Men Women 

1999 9.34 6.18 9.70 7.00 9.65 7.08 9.30 6.66 9.66 6.59 

2000 9.80 6.40 9.80 7.10 9.80 7.15 9.62 6.89 9.81 6.86 

2001 10.19 6.81 10.00 7.30 9.99 7.28 9.93 7.23 10.01 7.18 

2002 10.58 7.42 10.20 7.50 10.22 7.52 10.28 7.69 10.24 7.61 

2003 10.94 8.14 10.50 7.79 10.49 7.81 10.65 8.24 10.55 8.11 

2004 11.37 8.76 10.90 8.10 10.91 8.11 11.10 8.74 10.92 8.59 

2005 11.70 9.19 11.30 8.50 11.34 8.61 11.51 9.18 11.22 9.09 

2006 12.00 9.46 11.80 9.00 11.84 8.90 11.95 9.43 11.71 9.35 

2007 12.31 9.65 12.30 9.40 12.30 9.40 12.39 9.67 12.18 9.65 

2008 12.60 9.84 12.70 9.80 12.70 9.85 12.80 9.89 12.60 9.91 

2009 12.86 10.08 13.10 10.20 13.09 10.24 13.17 10.10 13.00 10.14 

2010 13.09 10.34 13.40 10.48 13.42 10.47 13.47 10.29 13.38 10.29 

2011 13.29 10.56 13.60 10.73 13.63 10.72 13.73 10.45 13.68 10.42 

2012 13.50 10.71 13.80 10.89 13.75 10.91 13.96 10.56 13.90 10.51 

2013 13.61 10.81 13.90 11.00 13.82 10.94 14.11 10.62 14.13 10.50 

Table 4.2: Total diabetes prevalence results for both men and women using regression models 

(training data), 1999-2013 
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 Men Women 

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

1999 4.4 3.69 3.79 3.92 3.90 3.4 3.10 3.10 3.22 3.04 

2000 4.5 3.06 4.10 4.10 4.07 3.5 3.21 3.21 3.29 3.21 

2001 4.7 2.82 4.51 4.37 4.40 3.6 3.41 3.28 3.40 3.36 

2002 5.0 2.69 5.04 4.70 4.77 3.7 3.62 3.54 3.52 3.53 

2003 5.3 2.71 5.34 5.11 5.21 3.9 3.82 3.82 3.70 3.76 

2004 5.7 2.91 5.75 5.59 5.73 4.0 4.03 4.03 3.92 4.02 

2005 6.1 2.80 6.17 6.10 6.24 4.3 4.24 4.24 4.21 4.44 

2006 6.6 3.92 6.50 6.62 6.68 4.5 4.45 4.45 4.46 4.62 

2007 7.1 4.68 7.01 7.10 7.03 4.8 4.65 4.65 4.72 4.81 

2008 7.5 5.52 7.42 7.58 7.44 5.0 4.86 4.88 4.98 5.01 

2009 7.9 6.39 7.84 8.07 7.97 5.2 5.07 5.07 5.19 5.17 

2010 8.2 7.23 8.26 8.48 8.46 5.4 5.28 5.28 5.38 5.33 

2011 8.5 8.00 8.67 8.78 8.79 5.5 5.48 5.48 5.53 5.44 

2012 8.6 8.69 9.08 9.01 9.06 5.6 5.69 5.69 5.65 5.52 

2013 8.8 9.50 9.50 9.16 9.06 5.7 5.90 5.90 5.78 5.58 

Table 4.3: Diabetes prevalence results for men and women aged 25-34 using regression models 

(training data), 1999-2013 
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 Men Women 

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

1999 7.0 7.01 7.01 6.56 6.83 6.6 5.03 4.89 4.81 4.20 

2000 7.8 7.20 7.20 6.92 7.27 6.6 5.42 5.01 5.22 5.37 

2001 8.4 7.30 7.30 7.30 7.46 6.8 5.80 6.20 5.58 5.99 

2002 9.1 7.60 7.60 7.78 7.63 7.5 6.19 6.34 6.28 6.42 

2003 9.9 8.00 8.01 8.36 7.92 8.9 6.58 6.75 7.44 7.47 

2004 11.1 8.70 8.08 9.15 8.77 9.5 6.97 6.98 8.08 7.90 

2005 11.7 9.60 9.94 9.97 9.59 9.7 7.36 7.55 8.44 7.71 

2006 12.6 10.70 10.74 10.80 10.71 9.7 7.75 7.67 8.46 7.83 

2007 13.4 11.90 11.87 11.65 11.81 9.8 8.14 8.19 8.57 7.91 

2008 14.0 12.80 12.78 12.42 12.74 9.8 8.54 8.67 8.68 8.18 

2009 14.5 13.50 13.38 13.05 13.45 10.0 8.93 8.99 8.84 8.59 

2010 14.8 13.90 13.89 13.52 13.93 10.3 9.32 9.42 9.10 9.17 

2011 14.9 14.20 14.21 13.86 14.23 10.4 9.71 9.84 9.22 9.59 

2012 14.9 14.40 14.39 14.08 14.43 10.5 10.11 10.14 9.22 9.88 

2013 15.0 14.50 14.52 14.22 14.54 10.4 10.50 10.39 9.12 10.12 

Table 4.4: Diabetes prevalence results for men and women aged 35-44 using regression models 

(training data), 1999-2013 
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 Men Women 

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

1999 21.8 21.06 21.20 21.45 21.05 21.8 22.10 22.10 21.83 21.96 

2000 22.7 21.80 22.00 21.98 21.86 21.9 22.30 22.30 21.92 22.33 

2001 23.5 22.50 22.64 22.46 22.50 22.2 22.50 22.57 22.25 22.45 

2002 24.4 23.20 23.27 23.04 23.19 23.0 22.80 22.99 22.97 22.98 

2003 25.3 23.90 23.90 23.69 23.89 23.7 23.10 23.10 23.68 23.11 

2004 26.3 24.60 24.44 24.57 24.87 24.5 23.60 23.60 24.41 23.62 

2005 27.8 25.30 25.76 24.91 24.80 24.8 24.10 24.10 24.72 24.25 

2006 28.3 26.00 26.01 26.00 25.95 25.2 24.70 24.70 25.13 24.62 

2007 29.1 26.70 26.70 26.86 26.72 25.4 25.30 25.30 25.36 25.20 

2008 29.7 27.41 27.39 27.71 27.51 25.6 25.80 25.80 25.66 25.86 

2009 30.2 28.07 28.08 28.49 28.27 25.9 26.20 26.20 25.93 26.21 

2010 30.4 28.82 28.76 29.19 29.00 26.2 26.60 26.58 26.29 26.65 

2011 30.5 29.54 29.46 29.76 29.63 26.5 26.90 26.92 26.58 26.74 

2012 30.5 30.17 30.15 30.23 30.14 26.7 27.10 27.10 26.83 26.88 

2013 30.2 31.10 30.39 30.71 30.78 27.1 27.30 27.25 27.31 27.53 

Table 4.5: Diabetes prevalence results for men and women aged 45-54 using regression models 

(training data), 1999-2013 

 Men Women 

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

1999 24.9 24.90 24.90 24.58 24.68 23.7 23.20 23.20 23.27 23.77 

2000 26.8 26.93 26.88 26.26 26.99 24.2 24.50 24.50 23.98 24.37 

2001 28.7 28.88 28.89 27.94 29.05 25.3 25.80 25.80 25.11 25.34 

2002 30.6 30.91 30.98 29.79 30.99 26.9 27.10 27.12 26.73 26.74 

2003 32.6 32.90 32.90 31.80 32.89 28.8 28.40 28.38 28.66 28.45 

2004 35.0 34.90 34.90 34.23 35.21 30.4 29.70 28.76 30.43 30.02 

2005 36.9 36.90 36.99 36.44 36.46 31.4 31.10 30.99 31.83 31.33 

2006 39.1 38.90 38.89 38.95 38.72 32.3 32.40 32.39 32.81 32.34 

2007 41.4 40.90 40.89 41.48 40.84 33.0 33.70 33.68 33.79 33.46 

2008 43.5 42.90 42.86 43.84 42.94 34.2 35.00 35.00 34.92 34.72 

2009 45.6 44.93 44.89 46.01 45.16 35.9 36.30 36.31 36.45 36.37 

2010 47.3 46.80 46.90 47.82 47.05 37.9 37.60 37.42 38.08 38.07 

2011 49.0 49.00 49.00 49.46 49.11 39.6 39.00 39.00 39.51 39.47 

2012 50.5 51.01 51.00 50.81 50.92 40.7 40.30 40.30 40.39 40.35 

2013 51.7 52.96 53.00 51.89 52.71 41.3 41.60 41.59 40.88 40.89 

Table 4.6: Diabetes prevalence results for men and women aged55-64 using regression models 

(training data), 1999-2013 
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 Men Women 

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

1999 29.4 28.75 28.76 30.45 30.16 28.8 24.40 24.65 25.35 24.96 

2000 29.7 30.38 29.94 30.99 30.46 29.3 26.10 25.95 26.19 26.17 

2001 30.3 32.01 31.77 31.79 31.81 30.0 27.80 27.99 27.21 27.20 

2002 30.9 33.65 33.65 32.86 32.73 30.8 29.50 29.64 28.55 29.13 

2003 31.8 35.30 35.31 34.25 34.06 32.0 31.20 31.29 30.34 31.15 

2004 32.9 36.94 37.00 36.02 36.98 33.3 32.90 33.17 32.30 33.21 

2005 34.2 38.59 38.44 38.05 37.96 34.9 34.60 34.63 34.32 35.00 

2006 35.6 40.23 40.21 40.24 40.64 36.6 36.30 36.36 36.20 36.15 

2007 36.9 41.88 41.95 42.39 42.16 38.3 38.00 39.55 38.28 37.66 

2008 38.1 43.53 43.57 44.45 44.65 39.9 39.70 39.82 40.30 39.44 

2009 39.3 45.19 45.03 46.20 46.06 41.3 41.40 41.16 42.26 41.51 

2010 40.2 46.84 46.90 47.63 47.07 42.5 43.10 43.25 44.05 43.53 

2011 40.9 48.50 48.69 48.74 49.16 43.3 44.80 44.73 45.35 45.34 

2012 41.3 50.16 50.33 49.51 49.35 43.9 46.50 46.69 46.37 46.38 

2013 41.8 51.80 51.56 50.13 50.49 44.4 48.20 48.36 47.25 47.69 

Table 4.7: Diabetes prevalence results for men and women aged 65-74 using regression models 

(training data), 1999-2013 

 Men Women 

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

1999 30.3 28.75 29.86 30.41 29.99 29.2 24.42 24.41 25.35 25.01 

2000 30.9 30.40 30.40 30.95 30.60 29.7 26.09 25.71 26.19 26.07 

2001 31.7 32.00 31.71 31.75 31.99 30.4 27.78 27.27 27.20 27.33 

2002 32.8 33.70 33.70 32.82 32.57 31.3 29.50 29.50 28.55 29.02 

2003 34.2 35.30 35.02 34.21 34.17 32.4 31.21 31.20 30.32 31.13 

2004 36.1 36.90 36.90 35.99 36.95 33.8 32.90 32.82 32.28 33.24 

2005 38.0 38.60 38.60 38.01 37.71 35.5 34.60 34.59 34.32 35.02 

2006 40.3 40.20 40.20 40.20 40.71 37.2 36.30 36.30 36.20 36.17 

2007 42.4 41.90 41.95 42.36 42.50 39.0 38.00 38.00 38.29 37.63 

2008 44.5 43.50 43.56 44.41 44.46 40.7 39.71 39.71 40.32 39.41 

2009 46.2 45.20 45.22 46.16 46.04 42.1 41.36 41.42 42.28 41.52 

2010 47.6 46.80 46.83 47.60 47.24 43.3 43.09 42.93 44.06 43.63 

2011 48.9 48.50 48.57 48.70 49.01 44.1 44.87 44.84 45.36 45.21 

2012 49.6 50.20 50.22 49.47 49.21 44.8 46.57 46.54 46.38 46.48 

2013 50.3 51.80 51.85 50.09 50.62 45.3 48.10 48.23 47.25 47.64 

Table 4.8: Diabetes prevalence results for men and women aged +74 using regression models 

(training data), 1999-2013 
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 Men Women 

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

2014 14.1 14.2 14.5 13.8 14.4 12.9 12.2 11.5 11 12.6 

2015 14.2 14.4 15.1 13.9 14.7 13.4 12.8 11.7 11 13.1 

2016 14.4 14.8 15.8 14.0 15.1 14.6 13.1 12.3 11 14.2 

2017 14.6 15.2 16.6 14.1 15.5 15.1 13.8 13.1 11 14.6 

2018 14.7 15.5 17.0 14.1 15.9 15.7 14.4 14.1 11 15.1 

2019 14.9 16.0 17.7 14.2 16.3 16.8 14.8 15.5 11 16.1 

2020 15.1 16.6 18.2 14.2 16.7 16.8 15.7 15.9 11 16.0 

2021 15.2 17.1 18.6 14.3 17.1 17.3 16.4 16.4 11 16.5 

2022 15.4 17.7 18.8 14.3 17.5 17.9 17.0 16.8 12 16.9 

2023 15.5 18.3 18.9 14.4 17.9 19.0 17.4 17.0 12 18.0 

2024 15.7 19.0 19.1 14.4 18.3 19.5 18.1 17.1 12 18.4 

2025 15.9 19.6 19.2 14.5 18.8 20.1 18.7 17.2 12 18.9 

Table 4.9: Total diabetes prevalence results for men and women using regression models (test data), 

2014-2025 

 MLR ANFIS ANN SVR BLM 

Year Men Women Men Women Men Women Men Women Men Women 

2014 13.75 11.02 13.88 12.65 14.12 11.30 14.24 10.79 14.22 10.55 

2015 13.94 11.20 14.07 13.75 14.35 11.56 14.40 10.92 14.31 10.63 

2016 14.13 11.41 14.41 14.92 14.61 11.84 14.56 11.08 14.38 10.69 

2017 14.32 11.58 14.90 15.86 14.87 12.15 14.70 11.21 14.43 10.78 

2018 14.50 11.77 15.53 16.85 15.15 12.51 14.83 11.35 14.51 10.87 

2019 14.69 11.96 16.24 17.67 15.45 12.86 14.97 11.49 14.55 10.92 

2020 14.89 12.11 17.07 18.40 15.72 13.28 15.10 11.61 14.57 11.03 

2021 15.09 12.30 18.00 19.18 15.95 13.74 15.23 11.75 14.60 11.12 

2022 15.29 12.48 19.01 19.79 16.14 14.19 15.37 11.88 14.62 11.21 

2023 15.46 12.69 20.22 20.41 16.27 14.68 15.49 12.03 14.68 11.27 

2024 15.66 12.86 21.42 20.88 16.37 15.12 15.62 12.16 14.70 11.35 

2025 15.86 13.03 22.76 21.29 16.42 15.52 15.75 12.29 14.71 11.43 

Table 4.10: Total diabetes prevalence results for both Men and Women using regression models (test 

data), 2014-2025 
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Figure 4.7: Diabetes prevalence estimations for Saudis aged 25-75+, 1999-2025 

 Men Women  

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

2014 10.22 10.01 9.82 9.35 9.30 5.25 7.81 7.55 7.64 7.99 

2015 10.39 10.44 10.10 9.48 9.45 5.32 8.52 8.35 8.09 7.85 

2016 10.59 10.91 10.36 9.58 9.59 5.49 9.17 9.97 8.55 9.12 

2017 10.79 11.37 10.61 9.66 9.72 5.57 9.75 10.79 9.00 8.98 

2018 10.99 11.83 10.88 9.73 9.85 5.74 10.23 11.84 9.45 10.24 

2019 11.19 12.32 11.18 9.80 9.98 5.81 10.63 12.15 9.89 10.15 

2020 11.35 12.74 11.47 9.86 10.08 5.98 11.05 12.49 10.34 11.41 

2021 11.55 13.20 11.84 9.91 10.20 6.05 11.48 12.59 10.80 11.27 

2022 11.75 13.69 12.27 9.97 10.32 6.13 11.91 12.66 11.24 11.13 

2023 11.95 14.16 12.71 10.02 10.43 6.3 12.34 12.72 11.70 12.40 

2024 12.16 14.65 13.16 10.07 10.55 6.37 12.77 12.75 12.15 12.26 

2025 12.32 15.06 13.51 10.12 10.66 6.45 13.20 12.78 12.60 12.12 

Table 4.11: Diabetes prevalence results for men and women aged 25-34 using regression models 

(test data), 2014-2025 
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 Men Women  

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

2014 16.84 15.34 16.85 15.23 15.38 10.64 9.65 9.71 9.45 9.47 

2015 17.24 15.71 17.05 15.39 15.49 10.75 9.90 9.80 9.69 10.42 

2016 17.64 15.94 17.22 15.48 15.53 10.91 9.96 9.87 9.89 10.17 

2017 18.08 16.23 17.36 15.53 15.54 11.02 10.18 10.14 10.13 11.12 

2018 18.48 16.31 17.47 15.49 15.44 11.18 10.39 10.44 10.34 10.87 

2019 18.88 17.29 17.64 15.90 15.82 11.29 10.60 10.84 10.58 11.83 

2020 19.28 18.38 17.83 16.40 16.29 11.45 10.85 11.50 10.79 11.58 

2021 19.72 19.56 17.99 16.91 16.79 11.56 11.06 11.97 11.03 12.53 

2022 20.12 20.54 18.15 17.42 17.27 11.68 11.27 12.42 11.27 13.48 

2023 20.52 21.49 18.30 17.92 17.74 11.83 11.52 13.16 11.47 13.23 

2024 20.96 22.58 18.40 18.43 18.24 11.95 11.73 13.54 11.72 14.18 

2025 21.36 23.38 18.52 18.94 18.69 12.06 11.94 13.84 11.96 15.13 

Table 4.12: Diabetes prevalence results for men and women aged 35-44 using regression models 

(test data), 2014-2025 

 Men Women  

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

2014 30.66 31.81 31.35 30.37 31.55 27.30 27.88 27.40 27.53 28.73 

2015 30.80 32.24 31.93 31.21 31.95 27.33 28.06 27.57 27.57 28.92 

2016 30.94 32.67 32.50 32.05 32.35 27.46 28.36 27.88 27.73 29.51 

2017 31.08 33.09 33.05 32.86 32.75 27.50 28.55 28.21 27.77 29.70 

2018 31.22 33.51 33.54 33.60 33.14 27.53 28.73 28.62 27.80 29.89 

2019 31.36 33.93 33.96 34.26 33.54 27.66 29.03 29.24 27.97 30.48 

2020 31.51 34.35 34.30 34.84 33.94 27.80 29.33 29.78 28.13 31.07 

2021 31.65 34.77 34.57 35.32 34.33 27.83 29.51 30.07 28.16 31.26 

2022 31.79 35.20 34.78 35.72 34.73 27.87 29.70 30.27 28.20 31.45 

2023 31.93 35.62 34.93 36.05 35.13 28.00 30.00 30.42 28.36 32.04 

2024 32.07 36.04 35.04 36.31 35.52 28.03 30.18 30.50 28.40 32.23 

2025 32.21 36.46 35.11 36.51 35.92 28.07 30.36 30.55 28.43 32.43 

Table 4.13: Diabetes prevalence results for men and women aged 45-54 using regression models 

(test data), 2014-2025 
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 Men Women  

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

2014 52.52 53.93 54.23 52.69 53.53 41.46 42.21 42.51 41.26 41.39 

2015 53.59 55.18 55.66 53.73 54.50 41.96 42.78 42.87 41.86 42.01 

2016 54.61 56.32 56.86 54.74 55.31 42.44 44.04 43.82 42.44 42.74 

2017 55.60 57.39 57.85 55.72 56.03 42.86 44.84 44.54 42.98 43.37 

2018 56.57 58.40 58.69 56.68 56.69 43.28 45.58 45.40 43.51 43.98 

2019 57.53 59.39 59.43 57.63 57.31 43.67 46.30 46.33 44.01 44.60 

2020 58.47 60.34 60.07 58.58 57.89 44.05 46.86 46.97 44.51 45.18 

2021 59.40 61.27 60.67 59.52 58.45 44.43 47.43 47.42 45.00 45.77 

2022 60.33 62.19 61.22 60.45 58.99 44.79 47.99 47.68 45.49 46.35 

2023 61.25 63.10 61.73 61.38 59.51 45.17 48.70 47.85 45.98 47.00 

2024 62.18 64.01 62.22 62.31 60.04 45.54 49.23 47.90 46.46 47.58 

2025 63.09 64.90 62.68 63.24 60.54 45.90 49.76 47.92 46.94 48.16 

Table 4.14: Diabetes prevalence results for men and women aged55-64 using regression models 

(test data), 2014-2025 

 Men Women  

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

2014 52.31 54.60 52.25 50.71 51.65 47.7 52.01 51.58 50.62 51.37 

2015 52.79 56.10 53.77 51.48 53.23 49.1 55.15 54.13 52.54 53.34 

2016 53.28 57.60 55.32 52.26 54.81 50.5 58.42 56.74 54.47 55.32 

2017 53.76 58.97 56.84 53.03 56.43 51.8 61.34 58.77 56.23 57.05 

2018 54.28 60.52 58.34 53.80 57.76 53.1 64.04 60.54 57.99 58.79 

2019 54.82 61.88 59.75 54.58 59.14 54.4 67.38 63.19 59.91 61.16 

2020 55.31 63.36 61.10 55.35 60.75 55.7 69.59 64.72 61.67 62.90 

2021 55.79 64.71 62.37 56.12 62.33 57.1 71.60 66.14 63.60 64.88 

2022 56.27 66.19 63.52 56.89 63.92 58.4 73.18 66.98 65.36 66.61 

2023 56.75 67.54 64.56 57.66 65.41 59.8 74.60 67.76 67.29 68.59 

2024 57.23 69.03 65.49 58.44 67.00 61.1 75.72 68.16 69.05 70.31 

2025 57.82 70.61 66.27 59.21 68.24 62.3 77.65 69.82 70.80 72.46 

Table 4.15: Diabetes prevalence results for men and women aged 65-74 using regression models 

(test data), 2014-2025 
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 Men Women  

Year MLR ANFIS ANN SVR BLM MLR ANFIS ANN SVR BLM 

2014 51.19 53.60 53.61 50.70 55.50 45.95 48.99 50.57 47.83 47.61 

2015 52.15 55.90 56.06 51.49 58.19 46.75 50.52 52.97 48.75 48.35 

2016 53.10 58.18 58.40 52.27 60.88 47.54 52.03 55.07 49.66 49.08 

2017 54.05 60.36 60.41 53.05 63.61 48.34 53.57 56.84 50.57 49.83 

2018 54.99 62.38 62.01 53.83 66.18 49.14 55.13 58.28 51.49 50.58 

2019 55.94 64.29 63.25 54.62 68.87 49.93 56.66 59.39 52.39 51.30 

2020 56.90 66.06 64.15 55.40 71.60 50.73 58.22 60.31 53.31 52.06 

2021 57.85 67.72 64.81 56.18 74.29 51.53 59.79 61.07 54.24 52.81 

2022 58.80 69.28 65.28 56.96 76.98 52.32 61.32 61.66 55.14 53.53 

2023 59.74 70.70 65.61 57.74 79.59 53.12 62.88 62.20 56.06 54.29 

2024 60.69 72.10 65.85 58.52 82.28 53.92 64.44 62.66 56.97 55.03 

2025 61.65 73.44 66.01 59.31 84.97 54.62 66.06 62.55 57.89 55.79 

Table 4.16: Diabetes prevalence results for men and women aged +74 using regression models (test 

data), 2014-2025 

 

Figure 4.8: Diabetes prevalence estimations for men according to age groups 
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Figure 4.9: Diabetes prevalence estimations for women according to age groups 

 

Figure 4.10: Prevalence rates of smoking, obesity, and inactivity for Saudis aged 25-75+, 1999-2025 

Models Men Women 

MSE RMSE MAPE R2 MSE RMSE MAPE R2 

MLR 0.0420 0.2049 0.0150 0.9814 0.0247 0.1571 0.0139 0.9878 

ANFIS 0.0013 0.0365 0 0.9994 0.0005 0.0239 0.0021 0.9997 

ANN 0.0081 0.0899 0.0252 0.9964 0.0594 0.2437 0.0137 0.9705 

SVR 0.0328 0.1810 0.0147 0.9855 0.0636 0.2522 0.0214 0.9684 

BLM 0.0032 0.0564 0.0011 0.9986 0.0392 0.1980 0.0177 0.9806 

Table 4.17: Statistical evaluation metrics results for all regression models for both men and women 
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Figure 4.11: Actual data against predicted for the total diabetes prevalence by all regression models 

(men training data) 

 

Figure 4.12: Actual data against predicted for the total diabetes prevalence by all regression models 

(men training data) 



88 

 

Figure 4.13: Actual data against predicted for all regression models (men & women aged 25-34) 

 

Figure 4.14: Actual data against predicted for all regression models (men & women aged 35-44) 
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Figure 4.15: Actual data against predicted for all regression models (men & women aged 45-54) 

 

Figure 4.16: Actual data against predicted for all regression models (men & women aged 55-64) 

 

Figure 4.17: Actual data against predicted for all regression models (men & women aged 65-74) 
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Figure 4.18: Actual data against predicted for all regression models (men & women aged 75+) 

 

Figure 4.19: Performance metrics of regression models men data 

 

Figure 4.20: Performance metrics of regression models women data 
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4.5. Summary  

This chapter investigated the trends of diabetes prevalence in Saudi adult population using 

historical diabetes prevalence data along with smoking, obesity, and inactivity data as 

predictor variables using five regression modelling techniques. It also explored the use of 

statistical performance measures to evaluate the performance of each model. The results 

obtained show that there was no huge difference in the performance of the models when using 

the datasets of men and women; however, ANFIS model was performing well for predicting 

the total prevalence of diabetes for men and women and for each age group. In order to 

overcome the disadvantage of each model, a combination technique is a good way to obtained 

more accurate and reliable model. In the next chapter, different combination approaches are 

used for the purpose to enhance the performance of the model, then the predictions of the 

combined model are validated by comparison with the observed results from existing studies.  
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Chapter 5  

Ensemble Methods 

5.1. Introduction 

Ensemble methods are statistical and computational machine learning techniques that aim to 

obtain more reliable and accurate predictions in supervised and unsupervised learning 

problems by combining multiple learning models, instead of choosing the best-performing 

model [194][195]. In the literature, ensemble methods known by different terms other than 

“ensemble”, such as “committee”, “combination”, “fusion”, and others, which have been used 

to represent sets of learning machines that work together to solve a machine learning problem 

[194][196]. The history dates of integrating multiple models to develop a predictive model 

(ensemble methods) back to as early as 1977, and the concept was significantly improved 

during the 1990s [197]. Ensemble methods have been successfully applied in several fields, 

including medicine, bioinformatics, cheminformatics, image retrieval, and finance. It has been 

indicated by some empirical studies that combining the outcomes for both regression and 

classification problems leads to much more accurate results compared to the individual 

learners [198][199][200][201].  

Some empirical studies carried out by machine learning community highlighted the 

effectiveness of combining the outcomes of multiple models in reducing generalisation, 

variance, and bias error, mainly because various types of models have different “inductive 

biases” [197][202]. These errors reduction contributes to improve the predictive performance 

(e.g., obtaining a lower error in regression or a high classification accuracy) [203]. Ensemble 

approach is particularly useful in dealing with some situations, such as a limited number of 

training data, unusually high dimensional patterns, or a large amount of noise [204]. Two 

different types of models can be used to build an ensemble: homogeneous or heterogeneous 

models. Homogeneous models are obtained by different implementation of the same learning 

algorithm. In homogeneous models, one learning algorithm is used in different 

implementations, such as using different training datasets; in heterogeneous models, multiple 

learning algorithms are applied on the same dataset, so there are different opinions about the 

data [205].  

In the previous chapter, the principles of regression modelling and the proposed regression 

models were reviewed, and the evaluation of the performance of each individual model was 

demonstrated. The next step in their analysis is to examine how they work together, using 

ensemble techniques to combine the results obtained by each single regression model. In 

fact, the ensemble is just a machine learning model, whose arguments are the results of all 
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single models. There are several available ensemble methods for combining multiple models, 

the most simple and popular of which are majority voting, averaging, weighted averaging, 

median , product etc [202][204][206]. In this thesis the following ensemble methods have been 

applied: simple average, weighted average, majority voting, weighted voting, minimum, 

maximum and consensus combiner. 

5.2. Combination Methods  

This section briefly describes the main combination methods used in this chapter. This is 

mainly to highlight their theoretical background by presenting and analysing their 

mathematical models and demonstrating their strengths and weaknesses.  

5.2.1. Min and Max Rules 

Minimum and maximum rules are some of the simplest algebraic combiners, whereby 

functions simply take the minimum or maximum of the single learners’ outputs [207]. If we 

have a set of B single learners {ℎ1, ℎ2, … … . ℎ𝐵} and the output of ℎ𝑖 for instance 𝑥 is ℎ𝑖(𝑥) ∈

𝑅, these learners can be combined as: 

 𝐻(𝑥) = 𝐹{ℎ1(𝑥), ℎ2(𝑥), … … … . . , ℎ𝑖(𝑥)} (5.1) 

where F is the simple minimum or maximum function, which can be given as:  

 𝐻(𝑥) = 𝑚𝑖𝑛𝑖=1,…𝐵{ℎ𝑖(𝑥)} (5.2) 

 𝐻(𝑥) = 𝑚𝑎𝑥𝑖=1,…𝐵{ℎ𝑖(𝑥)} (5.3) 

In the literature, a theoretical framework of these rules and other rules such as sum, product, 

and median, was presented by Kittler et al. [208]. All these rules can be applied to combine 

models on measurement level; they are very simple, and do not require any further training. 

There is an obvious disadvantage of min and max combiners which might result in significant 

reduction in their accuracy. After training the models, if one of them got poor performance, 

these two combiners may select the minimal or maximal value of the outcome, which would 

be erroneous. Therefore, for both combiners min and max it is required that all single models 

are highly accurate in order for them to show good accuracy.  
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5.2.2. Simple Average 

Simple averaging (AVR) rule is among the most basic and popular combination methods for 

numerical values. This approach is simple to apply as there is no need for previous training 

[209][210]. This rule combines the outputs of multiple models by taking the average (mean) 

directly. If we have a set of B single learners {ℎ1, ℎ2, … … . ℎ𝐵} and the output of ℎ𝑖 for instance 

𝑥 is ℎ𝑖(𝑥) ∈ 𝑅, the combined outputs can be defined as: 
 

 𝐻(𝑥) =
1

𝐵
∑ ℎ𝑖(𝑥)

𝐵

𝑖=1

 (5.4) 

The average combiner is the preferred choice in many real applications, because of its 

efficiency and simplicity. It is also more trusted than min and max rules when compared with 

them, its outcomes are equally dependent on the outcomes of all models. However, reducing 

the error is generally hard to obtained since the errors in the ensemble learning are highly 

correlated as we train the individual learners on the same problem. Another disadvantage is 

the big variation of the performance between single models, so the AVR performance will 

probably not be higher than the best single model. 
 

5.2.3. Weighted Average 

Weighted averaging (WAVR) is an extension of the simple averaging rule. In this method, the 

outputs of all models are combined by taking the average with different weights indicating 

different levels of importance [202]. In general, the combined output can be defined as:  

 𝐻(𝑥) = ∑ 𝑤𝑖

𝐵

𝑖=1

ℎ𝑖(𝑥) (5.5) 

where 𝑤𝑖 is the weight for ℎ𝑖, and the weights 𝑤𝑖 are normally supposed to be constrained by 

𝑤𝑖 ≥ 0 and: 

 ∑ 𝑤𝑖

𝐵

𝑖=1

= 1 (5.6) 

The possibility of making more accurate model decisions in turn may positively affect 

ensemble results, whereas less accurate models contribute less to the final results. However, 

weighted average has a disadvantage relating to over training; some single models have 



95 

features allowing models to be over-trained, giving much better results through the training 

data than through the test data. SVM and Neural Network are examples of these models. This 

gives a justification of why some good models may get low weights, which will negatively 

affecting the results of the weighted average combined model. A way to overcome this 

limitation is by increasing the training set, in order to get training set accuracy equally 

proportioned to the test set accuracy for all models. 

5.2.4. Majority Vote 

Majority voting (MAJ) is considered one of the most common ways of voting in statistical 

analysis. In this method, the predictions of multiple models are combined. The predictions of 

every single model is represented as a single vote, and the final output is the one that obtains 

the majority votes of the models [202]. If there are three different models for a specific 

classification or regression problem [211]: ℎ1(𝑥), ℎ2(𝑥), ℎ3(𝑥) these models can be combined 

as:  

 𝐻(𝑥) = 𝑚𝑜𝑑𝑒{ℎ1(𝑥), ℎ2(𝑥), ℎ3(𝑥)} (5.7) 

Generally, a majority vote combiner involving votes from multiple learners (models) 

ℎ1, ℎ2, … … . ℎ𝐵, can be defined as:  

 𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑖

∑(ℎ𝑗(𝑥) = 𝑖)

𝐵

𝑗=1

 (5.8) 

The majority vote is one of the simple and popular elementary combiners which does not 

require any further training, and it differs from min, max, and average as it works in the abstract 

level. However, a limitation of this method is that all models are treated equally without taking 

into consideration the different features of each model. 

5.2.5. Weighted Majority Vote 

The weighted majority vote (WMAJ) is one of the most common and widely used combiners, 

and it is considered as a trainable version of the majority vote [212][213]. If we believe that 

some of the learners (models) are stronger than others, it is reasonable to weighting the 

decisions of these models by weighted voting. In this combination method, the votes are 

multiplied by a weight which can be determined according to the performance of each 

individual model. Then, by assigning a weight 𝑤𝑖  to a learner ℎ𝑖  , we can get the output 

combined model of the ensemble as:  
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 𝐻(𝑥) = 𝑎𝑟𝑔 max
𝑗

∑ 𝑤𝑖ℎ𝑖
𝑗(𝑥)

𝐵

𝑖=1

 (5.9) 

where 𝑤𝑖 is the weight for ℎ𝑖; and the weights 𝑤𝑖 are normally supposed to be constrained by 

𝑤𝑖 ≥ 0 and: 

 ∑ 𝑤𝑖

𝐵

𝑖=1

= 1 (5.10) 

Weighted majority vote can give better outcomes than both the majority voting and the best 

single model, and the main task is how to obtain the weights. Selecting the weights when the 

outputs are independent leads to minimum error for the weighted majority vote. If we got 

agreement weighted majority of the votes, then the final decision would be quite trustworthy. 

5.2.6. Consensus Approach 

Consensus method is another combination method where the outputs of different models in 

the ensemble interact in a cooperative way to reach an agreement on the final decision. By 

combining decisions made by different predictive models or classifiers, more efficient decision-

making can be reached. The idea of the consensus method has been explored by different 

studies in several fields, such as statistics, web information retrieval, multi-agent systems, and 

geography [214][215][216][217][218]. The consensus method is different from the other fusion 

techniques, as it utilises relationships between individual models, and formulates a process 

similar to the process of decision making into the group of real experts, so that each individual 

expert can amend its own opinion according to the opinions of other experts in the group. This 

process is carried out with number of iterations until reaching a stage where no more changes 

are in the opinions. Based on the good features of this method, it has been chosen to be 

applied in order to build a good combiner model with the best possible decisions. According 

to DeGroot, for a group of predictive models or agents K, the consensus might be reached for 

the K individual models, and it can be mathematically presented as the following [219]:  

For 𝑖=1, ......, K, let 𝐴𝑖  indicate to the prediction which individual 𝑖 assigns to the input sample 

Q. The predictions, 𝐴𝑖, … … , 𝐴𝑘 ,will be influenced by the different levels of expertise of the 

members of the group. It is supposed that, when the individual model knows the decisions 

made by each member of the group, it might wish to adjust its decision according to the other 

decisions. Furthermore, it is supposed that when individual i makes this adjustment, this 

adjusted decision is a linear combination of the predictions 𝐴𝑖, … … , 𝐴𝑘. Let 𝐵𝑖𝑗  indicate the 
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weight that individual i assigns to 𝐴𝑗 while making the decision adjustment. It is supposed that 

all the 𝐵𝑖𝑗 ’s are non-negative and:  

 ∑ 𝐵𝑖𝑗

𝑘

𝑗=1

= 1 (5.11) 

Thus, when individual i is informed of the decisions made by the other members of the group, 

then his own decision can be adjusted from 𝐴𝑖 to: 

 𝐴𝑖1 =  ∑ 𝐵𝑖𝑗

𝑘

𝑗=1

 𝐴𝑗 (5.12) 

Let 𝐵 indicate the 𝐾 × 𝐾 matrix where its (i ,j)th element is 𝐵𝑖𝑗(i=1,……,K; j=1,…….,K). Since 

the elements are all nonnegative and the sum of the rows is one, 𝐵 is a stochastic matrix. Let 

𝐴 and 𝐴(1) be the vectors whose transposes are �́� = (𝐴1, … … , 𝐴𝑘) and 𝐴(1)́
 = (𝐴11, … … , 𝐴𝑘1). 

Then we could write the vector of adjusted decisions as:  

 𝐴(1) = 𝐵 𝐴 (5.13) 

The critical step in this process is that the above adjustment is iterated. After being informed 

of the decisions made by the other members of the group, 𝐴11, … … , 𝐴𝑘1, it is supposed that 

individual i now adjust its own decision from 𝐴𝑖1 to: 

 𝐴𝑖2 = ∑ 𝐵𝑖𝑗
𝑘
𝑗=1  𝐴𝑗1 (5.14) 

This process will continue in the same way. Let 𝐴𝑖𝑛 indicate the decision of individual i after n 

adjustments, and 𝐴(𝑛)  indicate the vector whose transpose is 𝐴(𝑛)́
 = (𝐴1𝑛, … … , 𝐴𝑘𝑛) . 

Consequently: 

 𝐴(𝑛) = 𝐵 𝐴(𝑛−1) = 𝐵(𝑛)𝐴 , (n =2, 3, …….) (5.15) 

These adjustments or changes are supposed to be done indefinitely or until 𝐴(𝑛+1) = 𝐴(𝑛) for 

some n. A definition has been given by DeGroot states that “a consensus is reached if and 

only if all k elements of 𝐴(𝑛) converge to the same limit as 𝑛 → ∞” [219]. This means that a 
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consensus is reached if and only if there exists a prediction 𝐴∗such that lim
𝑛→∞

𝐴𝑖𝑛 = 𝐴∗ , i= 

1,…..,k. DeGroot emphasizes in his definition that a consensus is reached if and only if each 

row of the matrix 𝐵𝑛converges to the same vector, let we say 𝜔 = ( 𝜔1, … , 𝜔𝑘). It could be said 

that this is obviously a sufficient condition for reaching a consensus. However, this condition 

is not necessary as can be shown by this simple example. Assume that 𝐴1 = 𝐴2 = ⋯ = 𝐴𝑘 , 

so whatever 𝐵 is it will not make any difference since 𝐴(𝑛)= 𝐵𝑛𝐴 = 𝐴 , n= 2, 3,… . So, no matter 

what weights 𝐵𝑖𝑗 are used the consensus 𝐴1can be reached. Reaching a consensus or not, in 

these two cases it depends not only on 𝐵 (as stated by DeGroot’s [219] condition) but also on 

𝐴. 

5.3. Combination Methods Implementation  

After reviewing the proposed combination methods with their mathematical models and their 

advantages and disadvantages, this section describes their implementation. Four applied 

methods of combining models do not require any previous training: minimum and maximum 

rules, average, and majority voting. For these methods simple functions (rules) have been 

used to aggregate the predictions of all individual regression models (the training data and 

test data) for both men and women which have been implemented in Chapter 4. The 

procedure for the ensemble process is shown in Figure 5.1. 

The simple functions are min, max, mean, and mode. Min and max take the minimum and 

maximum predictions among the models, mean takes the average between the models’ 

predictions, and mode finds the majority votes of values predicted by majority of the models. 

For the other combination methods (weighted average, weighted majority vote, and 

consensus) a training process is required to calculate the weights and then use them to find 

the final predictions, as explained by equations (5.5) and (5.9). All the calculations of the 

combining models have been executed in MATLAB R2018a. Tables 5.1 and 5.2 show the 

calculated weights for weighted average and weighted majority vote respectively.  
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Figure 5.1: Ensemble process of combining multiple individual models 

Models The corresponding weights 

Men data Women data 

MLR 0.01 0.16 

ANFIS 0.19 0.50 

ANN 0.11 0.21 

SVR 0.22 0.13 

BLM 0.47 0.0004 

Table 5.1: The corresponding weights of the individual models using WAVR 

Models The corresponding weights 

Men data Women data 

MLR 1.76 1.86 

ANFIS 1.00 0.99 

ANN 1.54 1.65 

SVR 1.38 1.66 

BLM 1.72 1.48 

Table 5.2: The corresponding weights of the individual models using weighted majority vote method 
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5.4. Results and Discussion  

This section represents the obtained results from each combination method described in 

section 5.2. Analysis of these results is undertaken to see how the performance of the 

ensemble system improves through combination methods, by evaluating their performance 

according to four important statistical evaluation measures: MSE, RMSE, MAPE, and the 

coefficient of determination R2, respectively given in equations (3.2, 3.3, 3.4, 3.5), which were 

presented in Chapter 3. Seven different combination methods were applied to combine the 

predictions of the individual regression models proposed in the previous chapter. Four 

methods were directly used by applying simple rules (minimum, maximum, average, majority 

vote), and for the remaining three methods (weighted average, weighted majority vote, and 

consensus method) a training process was required. Tables 5.3 and 5.4 show the results of 

all combination methods for men training and test datasets respectively.  

The results of the combination methods for the women training and test datasets are given in 

Tables 5.5 and 5.6. These tables present the combination outcomes by each combiner, 

whereby some of these combiners give good results like those obtained by the best individual 

model (ANFIS). While it is noted that the worst results are achieved when using the majority 

vote rule, which are similar to the performance of the minimum rule for both men and women 

datasets, the results obtained by these two rules are worse than any of the individual models 

as well, which is attributable to their treatment of all models equally, without considering weak 

models. Another interesting outcome of the ensemble modelling is that the WAVR has the 

best combination results, which is akin to the best results achieved by the ANFIS model. Also, 

the average rule as well as the consensus method were both having good results. The 

weighted majority vote rule is very close in performance to the average and consensus rules. 

The maximum rule is sensitive; it performed poorly for the women data, and was only good for 

the men data, where it is performed slightly better than a weaker individual model. Figures 5.2 

and 5.3 show a graph of actual versus predicted values by all the combination methods.  

These graphs show the bad performance of the minimum and majority vote combiners and 

the reasonably good performance of the other combination methods. However, the WAVR 

outperforms all the combination methods, as it is had a good fit between actual and predicted 

values. Table 5.7 shows the overall performance of all combination methods, evaluated by the 

statistical evaluation metrics MSE, RMSE, MAPE, and R2. Based on the results, it can be 

observed that the best performance was given by the WAVR, with RMSE = 0.04 and R2 = 0.99 

for men data; and RMSE = 0.07 and R2 = 0.99 for women data. Among other combination 

methods, average rule and consensus method both gave the same good accuracy in terms of 

RMSE and R2 for both the men and women datasets. Figures 5.4 and 5.5 provide a 
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comparison of the performance of the combination methods by the evaluation metrics. It is 

clearly showed that the WAVR had the least error among all the other methods for both men 

and women datasets. 

Table 5.8. presents a comparison of ANFIS regression model and WAVR against other studies 

of diabetes prevalence in KSA for years from 2015 to 2019. This table clearly provides a further 

validation of our individual model as well as the combined model, and both achieved good 

accuracy. Figure 5.6 shows a comparison between ANFIS model and WAVR against observed 

data from different studies of the total diabetes prevalence for both men and women in KSA 

for the period 2015-2019. This graph clearly shows that the results obtained by ANFIS model 

and WAVR are similar to those observed by different studies of diabetes, indicating the good 

accuracy and validation of the proposed model. 

Combination methods 

AVR WAVR MAJ WMAJ MIN MAX CONSENSUS 

9.66 9.75 9.70 9.76 9.30 9.88 9.65 

9.79 9.87 9.60 9.92 9.60 10.03 9.80 

9.98 10.04 10.00 10.12 9.70 10.20 9.98 

10.19 10.25 9.70 10.38 9.70 10.43 10.19 

10.44 10.50 9.71 10.67 9.71 10.80 10.43 

10.76 10.82 9.80 11.07 9.80 11.20 10.76 

11.25 11.29 10.65 11.45 10.65 11.60 11.25 

11.86 11.87 11.78 11.92 11.78 12.00 11.85 

12.28 12.30 12.30 12.32 12.18 12.36 12.29 

12.67 12.69 12.70 12.71 12.56 12.71 12.67 

13.04 13.05 13.10 13.07 12.89 13.10 13.04 

13.30 13.32 13.17 13.35 13.17 13.40 13.31 

13.56 13.58 13.40 13.57 13.40 13.70 13.55 

13.79 13.80 13.80 13.78 13.58 14.09 13.79 

13.87 13.89 13.73 13.89 13.73 14.01 13.86 

Table 5.3: Combiners results (Men training data) 



102 

Combination methods 

AVR WAVR MAJ WMAJ MIN MAX CONSENSUS 

14.18 14.10 14 14.21 13.8 14.5 14.2 

14.48 14.32 14 14.48 13.9 15.1 14.46 

14.82 14.56 14 14.83 14 15.8 14.82 

15.18 14.81 14 15.21 14.1 16.6 15.2 

15.45 14.99 14 15.46 14.1 17 15.44 

15.81 15.22 15 15.83 14.2 17.7 15.82 

16.15 15.44 15 16.15 14.2 18.2 16.16 

16.47 15.63 15 16.44 14.3 18.6 16.46 

16.77 15.81 15 16.70 14.3 18.8 16.74 

17.02 15.94 14 16.94 14.4 18.9 17 

17.31 16.10 19 17.22 14.4 19.1 17.3 

17.59 16.25 14 17.50 14.5 19.6 17.6 

Table 5.4: Combiners results (Men test data) 

Combination methods 

AVR WAVR MAJ WMAJ MIN MAX CONSENSUS 

6.90 6.95 6.58 6.89 6.58 7 6.90 

7.12 7.12 6.89 7.12 6.89 7.26 7.12 

7.23 7.29 7 7.23 7.08 7.4 7.23 

7.52 7.52 7.49 7.52 7.49 7.6 7.52 

7.82 7.80 7.85 7.83 7.7 7.9 7.82 

8.22 8.19 8 8.22 8.14 8.31 8.22 

8.78 8.68 8.58 8.80 8.55 8.9 8.78 

9.10 9.04 8.82 9.11 8.99 9.25 9.10 

9.44 9.42 9 9.44 9.25 9.55 9.44 

9.79 9.81 9.77 9.79 9.69 9.88 9.79 

10.15 10.17 10.06 10.14 10.06 10.19 10.15 

10.33 10.43 10.13 10.33 10.13 10.53 10.33 

10.59 10.65 10.35 10.58 10.35 10.78 10.59 

10.67 10.77 10.4 10.65 10.4 10.88 10.67 

11.13 11.13 10.42 11.14 10.42 11.85 11.13 

Table 5.5: Combiners results (women training data) 



103 

Combination methods 

AVR WAVR MAJ WMAJ MIN MAX CONSENSUS 

12.26 12.30 12 12.26 10.70 12.9 12.26 

12.68 12.78 13 12.67 10.80 13.4 12.68 

13.48 13.65 14 13.44 10.90 14.6 13.48 

13.89 14.12 15 13.83 11.00 15.1 13.88 

14.30 14.60 15 14.23 11.10 15.7 14.3 

14.81 15.03 16 14.69 11.20 16.8 14.78 

15.07 15.48 16 14.96 11.40 16.8 15.06 

15.46 15.98 17 15.36 11.50 17.3 15.48 

15.81 16.39 17 15.68 11.60 17.9 15.82 

16.51 17.10 18 16.33 11.70 19 16.5 

16.85 17.50 19 16.63 11.80 19.5 16.82 

17.20 17.97 20 17.00 12.00 20.1 17.22 

Table 5.6: Combiners results (women training data) 

Combination 
methods 

Men Women 

MSE RMSE MAPE R2 MSE RMSE MAPE R2 

AVR 0.0033 0.0572 0.0039 0.9986 0.0156 0.1249 0.0107 0.9923 

WAVR 0.0022 0.0469 0.0032 0.9990 0.0059 0.0766 0.0061 0.9971 

MAJ 0.1779 0.4218 0.0233 0.9213 0.0925 0.3042 0.0271 0.9541 

WMAJ 0.0110 0.1048 0.0077 0.9951 0.0177 0.1331 0.0114 0.9912 

MIN 0.2030 0.4506 0.0315 0.9102 0.0789 0.2809 0.0236 0.9609 

MAX 0.0399 0.1997 0.0151 0.9824 0.0721 0.2685 0.0185 0.9642 

CONSENSUS 0.0033 0.0574 0.0039 0.9985 0.0156 0.1249 0.0107 0.9923 

Table 5.7: Statistical evaluation metrics results for all combination methods for both men and women 
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Figure 5.2: Actual data against predicted for all combination methods (men morbidity data 1999-2013) 

 

Figure 5.3: Actual data against predicted for all combination methods (women morbidity data 1999-

2013) 
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Figure 5.4: Performance metrics of combination methods for men data 

 

Figure 5.5: Performance metrics of combination methods for women data 
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Years  Diabetes prevalence estimates by different 
studies  

ANFIS model WAVR model 

2015 KSA Health Profile, WHO (2015) 

Men: 14.8 

Women: 11.7 

Total: 13.3 

Men: 14.4 

Women: 12.8 

Total:13.6 

Men: 14.32 

Women: 12.78 

Total: 13.55 

2016 Diabetes Country Profile: KSA, WHO 
(2016) 

Men: 14.7 

Women: 13.8 

Total: 14.3 

 

Men: 14.8 

Women: 13.1 

Total:13.95 

Men: 14.56 

Women: 13.65 

Total: 14.11 

2017 Family Health Survey, Saudi General 
Authority for Statistics (2017) 

Men: (10.4) *,  

Men: (14.9) ** 

Women:(9.8) *, Women:(14.5) ** 

Total: (10.1) *, Total:(14.7)** 

Men: 15.2 

Women: 13.8 

Total:14.5 

Men: 14.81 

Women: 14.12 

Total: 14.46 

2018 Household Health Survey, Saudi General 
Authority for Statistics (2018) 

Men: (10.3) *, Men: (16.8) ** 

Women:(9.9) *, Women:(14.2) ** 

Total: (10.1) *, Total:(15.5) ** 

Men: 15.5 

Women: 14.4 

Total:14.95 

Men: 14.99 

Women: 14.60 

Total: 14.79 

2019 Diabetes Atlas (9th edition), IDF (2019) 

Total: 15.8 (10.3-17.7) 

(95% confidence interval) 

Men: 16 

Women: 14.8 

Total:15.4 

Men: 15.22 

Women: 15.03 

Total: 15.13 

* Prevalence rate for Saudi population (15 years and over)  

** Prevalence rate for Saudi population (age-adjusted 25 years and over)  

Table 5.8: A comparison of ANFIS model and WAVR against other studies of diabetes prevalence in 

KSA, 2015-2019. 

 

Figure 5.6: Total diabetes prevalence by ANFIS model and WAVR against observed data of diabetes 

prevalence in KSA, 2015-2019 
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5.5. Summary 

This chapter explored one of the most popular topics of research in the field of machine 

learning, ensemble and combination methods. Average, weighted average, majority vote, 

weighted majority vote, minimum, maximum, and consensus approach are the selected 

methods presented. A brief description of these methods was provided, including their 

mathematical models, and their advantages and limitations. The results obtained by these 

combination methods clearly show that the best combiners provide similar results to those 

obtained by the best individual regression model (ANFIS model). As shown in the above 

results evaluating the performance of the proposed combination methods, WAVR outperforms 

all combination methods, with a lower error rate. Furthermore, the performance of the average 

and consensus combiners was as good as the WAVR in terms of minimal errors. On the other 

hand, the other combination methods, including minimum majority vote, and maximum, had 

bad performance for the women dataset, worse than the weakest performance of individual 

models. In addition, to further validate the best individual model and the best combined model, 

a comparison between them against observed data from different studies was undertaken, 

which indicated the good accuracy achieved by these models. The next chapter presents 

classification modelling, with further discussion and analysis.  



108 

Chapter 6  

Classification Modelling 

6.1. Introduction 

This chapter presents the classification modelling approach including LD, SVM, KNN, and 

NPR classification techniques, with four SVM kernel functions: Linear, Gaussian, Quadratic, 

and Cubic. Two types of KNN algorithms were employed: Fine KNN and Weighted KNN. 

These methods were applied to investigate model ability to classify diabetes prevalence rates 

and the predicted trends of the disease according to the associated risk factors (smoking, 

obesity, and inactivity). Section 6.2 describes the selected machine learning classification 

methods, while their implementation is illustrated in Section 6.3. Section 6.4 presents the 

analysis and discussion of the results of these methods and the comparisons of their 

performance using accuracy measurement. A summary of the chapter is given in Section 6.5. 

6.2. Machine Learning Classification Methods  

This section describes the selected machine learning classification methods: Linear SVM, 

Gaussian SVM, Quadratic SVM, Cubic SVM, Fine KNN, Weighted KNN, Linear Discriminant 

(LD), and neural net pattern recognition (NPR). This is mainly to present the mathematical 

background of these methods and to highlight their individual operational characteristics. 

6.2.1. Support Vector Machine  

SVM is one of the most common used supervised machine learning algorithms, which can be 

used for both regression analysis and classification tasks; it was applied in the regression 

modelling in Chapter 4. SVMs are considered as new types of pattern classifiers related with 

learning algorithms, which can identify patterns and analyse data. They have been 

successfully applied on various types of applications such as verification and detection, text 

categorisation and detection, recognition information, recognition of handwritten characters, 

speakers, and speech verification [220]. SVM can perform linear classification and predict 

non-linear separable patterns by mapping its inputs into a hyperplane (high-dimensional 

feature spaces). Minimising the upper bound of the generalisation error is the main aim of 

SVM by maximising the transaction between the data and the separating hyper plane. The 

performance of SVMs tends to be accentuated when using new data not included through the 

training process, because of its fundamental classification principle, which produces new 

examples into the related class.  
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In a standard classification case, the components of the dataset include several parameters 

X1, X2,.., X3 and one or multiple variables for classes C1, C2,….., CP. The objective is to develop 

a classifier to appoint the inputs (data points) to their classes (C1, C2,….., CP) by using the N 

data points in the training set. Thus, for every point in the training set {𝑥𝑛}𝑛=1
𝑁  a class 𝑡𝑛 should 

be predicted where 𝑡𝑛 ∈ {−1,1}, 𝑛 = 1, … . , 𝑁. Then the classifier can be defined in the following 

equation: 

 𝑦(𝑥, 𝑤) = ∑ 𝑤𝑖

𝐽

𝑖=1

𝜑𝑖(𝑥) + 𝑏 (6.1) 

where 𝑤 ∈ 𝑅𝐽  is the wight vector; 𝜑(. )  is the transformation function; and b ∈ 𝑅  is the 

constant. If the data space is nonlinearly separable, SVMs use an appropriate mapping ( 𝜑 ) 

of the input data to a high-dimensional space which will be arranged by the kernel function. 

The kernel function, defined as follows:  

 𝐾(𝑥, 𝑥′) = 𝜑(𝑥). 𝜑(𝑥′) (6.2) 

Separating the hyperplane by kernel solution does not require knowledge of φ, but only of K. 

Therefore, any kernel function can be used in a larger dimension space. Different kernel 

functions can be most efficient this depends on the nature of the dataset. The following 

sections describe the used kernel functions. 

6.2.1.1. Linear SVM 

The linear kernel function is one of the simplest types of kernel functions and the basic way to 

use SVM classifier. It is calculated by the inner product of two vectors, 𝑥𝑖 and 𝑥𝑗, plus an 

optional constant, b. Thus, the Kernel algorithms using a linear kernel are often the same as 

their non-kernel equivalents. The linear kernel provides a signed measure of the similarity 

between 𝑥𝑖 and 𝑥𝑗, where the angle between the two points helps determine their similarity, 

and can give negative values of K. The following equation shows the linear kernel function: 

 𝐾⟨𝑥𝑖 ,𝑥𝑗⟩ = 𝑥𝑖
𝑇. 𝑥𝑗 + 𝑏, (6.3) 

where b is a constant. 
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6.2.1.2. Gaussian SVM 

Gaussian SVM kernel function is a type of radial basis function (RBF), which represents the 

most generalised form of kernelization and the most commonly used kernels. It can be 

described as a general-purpose kernel, and it is used when there is no previous information 

regarding the data. Unlike linear kernel, the Gaussian kernel only relies on the Euclidean 

distance between 𝑥𝑖 and 𝑥𝑗, and it also depends on the assumption that similar points in the 

feature space are close to each other [221]. This final assumption is logical in many situations; 

thus, the Gaussian kernel is widely used in practice. The Gaussian kernel can be 

mathematically represented as follows: 

 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

 (6.4) 

where 𝛾 > 0 is a given parameter, which must be accurately tuned as it directly affects kernel 

performance.  

6.2.1.3. Quadratic SVM 

Quadratic kernel is a common form of polynomial kernel, commonly applied in speech 

recognition. The computation of this function is less intensive than the Gaussian kernel 

function and can be alternatively used if using the Gaussian kernel is too expensive. These 

functions do not generalize well because that higher order kernels tend to overfit the training 

data. The quadratic function can be mathematically expressed as follows: 

 𝐾(𝑥𝑖, 𝑥𝑗) = 1- 
‖𝑥𝑖−𝑥𝑗‖

2

‖𝑥𝑖−𝑥𝑗‖
2

+𝑏
 (6.5) 

6.2.1.4. Cubic SVM 

SVM classification method is helpful when facing a problem of low memory space. SVM can 

find a hyperplane in multidimensional space which separate the label classes by the best 

possible way. The cubic SVM classifier is a form where the kernel function of the classifier is 

cubic, and its mathematical expression can be given as the following: 

 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)3 (6.6) 
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6.2.2. K-Nearest Neighbours 

KNN is one of the simplest machine learning methods that can be used for regression as well 

as for classification, but it is commonly used for the classification problems to classify data 

input into pre-defined classes (k). This method dated back to 1968 when first introduced by 

Cover and Hart [222]. The KNN method considered as a nonparametric method, this means 

there is no assumptions will be made on the involved data. Also, this algorithm does not 

immediately learn from the training data but rather it stores the dataset and at the time of 

classification it makes an action on the dataset so, it is called a lazy learner algorithm. In this 

method, the input data includes all the k closest training points in the feature space, where k 

is an integer.  

The data are classified by determining the most common class among the k nearest 

neighbours. These neighbours are members in the dataset in which this method was first 

trained and are identified using the distance from the test sample. This means that during the 

testing, the class which appears most commonly amongst the neighbouring classes of the test 

sample under observation becomes the class to which this individual test sample belongs. In 

other words, after the training phase any new data obtained are classified into a similar 

category to these new data. The accuracy of the KNN classifiers is increased with a 

decreasing number of neighbours. This leads to increasing the complexity of the classifier 

model; however, it does not ensure that the new samples will be classified correctly. There 

are many types of distance function between the samples, the most popular used function is 

the Euclidean distance, which presented in the following equation: 

 𝑑 = √∑ (𝑋𝑖𝑘

𝑛

𝑘=𝑖
− 𝑋𝑗𝑘)2 (6.7) 

where X1 and X2 are input samples; and k is the number of values in each sample. 

There are six types of KNN classifiers available in MATLAB: Fine KNN, Medium KNN, Coarse 

KNN, Cosine KNN, Cubic KNN, and Weighted KNN. Some of these types of KNN algorithms 

make use of Euclidean distance to determine the nearest neighbours (Fine, Medium, and 

Coarse KNN algorithms). The Cosine KNN algorithm employs a Cosine distance metric as 

given in equation (6.8). For Cubic KNN algorithm a cubic distance metric is employed as in 

equation (6.9). For Weighted KNN algorithm, a distance weight is employed, as in equation 

(6.10).  
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𝑑 = (1 −  

𝑥𝑖 𝑥𝑗
′

√(𝑥𝑖 𝑥𝑖
′)( 𝑥𝑗 𝑥𝑗

′)

) 
(6.8) 

 

𝑑 = √∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|
3𝑛

𝑘=𝑖

3

 (6.9) 

 

𝑑 = √∑ 𝑤𝑖(𝑋𝑖𝑘

𝑛

𝑘=𝑖
− 𝑋𝑗𝑘)2 (6.10) 

A brief description of these algorithms as given in MATLAB is provided below:  

• Fine KNN: Creates finely detailed distinctions between classes with the number of 

neighbours set to 1. 

• Medium KNN: Creates less distinctions than a Fine KNN with the number of 

neighbours set to 10. 

• Coarse KNN: Creates coarse distinction between classes, with the number of 

neighbours set to 100. 

• Cosine KNN: Employs the cosine distance metric. 

• Cubic KNN: Employs the cubic distance metric. 

• Weighted KNN: Uses distance weighting.  

Only Fine KNN and Weighted KNN were chosen along with other classifiers to classify our 

data.  

6.2.3. Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA), also known as Fisher’s LDA, is a commonly used 

statistical machine learning method for data classification and dimensionality reduction 

problems [223]. The main aim of LDA is to find the best linear approximations of object feature 

vectors for efficient and sensible use in a variety of classification tasks. The idea behind this 

method is maximising the ratio of between-class variance to the within-class variance in any 

specific dataset, in that way ensuring maximal separability. In other words, utilising a linear 

transformation process for projecting high dimensional feature vectors into a lower 

dimensional to best separates the data groups [224]. The advantage of LDA is its 

implementation simplicity, whereby a linear combination of features is used to distinct classes 

of samples. Furthermore, it is easily managing the case where the within-class frequencies 
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are unequal, and their performances has been assessed on randomly generated test data. On 

the other hand, the simplicity of its execution leads to a drawback, particularly if the class 

differences are low. In this case, LDA assumes the mean as discriminating factor and not the 

variance, which in turn leads to overfit the data. 

Consider a dataset that contains P different class labels and let 𝑋 = {𝑋1, 𝑋2, … . , 𝑋𝑃} denote to 

the set having these P classes. If the dataset is d-dimensional (apart from the class label), the 

class matrix 𝑋𝑙𝑠𝑖 for class 𝑋𝑖 ∈ 𝑋 can be defined as: 

 𝑋𝑙𝑠𝑖 =  [

𝑐11 𝑐12 … … 𝑐1𝑑

𝑐 21……..
𝑐 22……..

… . . 𝑐 2𝑑…….
𝑐𝑛1 𝑐𝑛2 … . . 𝑐𝑛𝑑

] (6.11) 

where each row in the class matrix 𝑋𝑙𝑠𝑖 ∈ class 𝑋𝑖 .  

The mean of the class matrix 𝑋𝑙𝑠𝑖can be defined as an array containing the means of each 

column of the class matrix 𝑋𝑙𝑠𝑖, represented by: 

 𝜇𝑋𝑙𝑠𝑖 = [𝑚𝑐1 𝑚𝑐2 … … . 𝑚𝑐𝑑] (6.12) 

where 𝑚𝑐𝑖  indicates the mean of the 𝑖𝑡ℎ column feature of the class matrix 𝑋𝑙𝑠𝑖 . Then the 

overall mean can be defined as the mean of all the class means, presented by:  

 𝜇 =
1

𝑃
∑ 𝜇𝑋𝑙𝑠𝑖

𝑃

𝑖=1

 (6.13) 

Then, the next calculation for the mean corrected class matrix is defined as the matrix whose 

every column object in each row is subtracted by the corresponding column object of the 

overall mean (µ):  

 𝑋𝑙𝑠𝑖
𝑚𝑐 = 𝑋𝑙𝑠𝑖[𝑐][𝑒] − 𝜇[𝑒] (6.14) 

where 𝑐 = {1,2, … … , 𝑛}  indicates row indices; and 𝑒 = {1,2, … … , 𝑑}  indicates the column 

indices of the class matrix 𝑋𝑙𝑠𝑖. 

Then, the definition of the covariance matrix of the class matrix 𝑋𝑙𝑠𝑖 is given by: 



114 

 𝑋𝑙𝑠𝑖
𝑐𝑜𝑣 =

𝑋𝑙𝑠𝑖
𝑚𝑐𝑇

∗ 𝑋𝑙𝑠𝑖
𝑚𝑐  

𝑛𝑖
 (6.15) 

where 𝑋𝑙𝑠𝑖
𝑚𝑐𝑇

 represents the transpose; and 𝑛𝑖 indicates the number of row entries of the 

mean corrected class matrix 𝑋𝑙𝑠𝑖
𝑚𝑐. If the dataset contains P classes, then the pooled group 

covariance matrix of the dataset can be given as:  

 𝑋 =
1

𝑁
(∑ 𝑛𝑗

𝑃
𝑗=1  𝑋𝑙𝑠𝑗

𝑐𝑜𝑣) (6.16) 

where 𝑁 = ∑ 𝑛𝑗
𝑃
𝑗=1 . 

For classifying a new data point 𝑦 = { 𝑦1, 𝑦2, … … , 𝑦𝑑} into one of the P classes, the LDF for 

every P class can be defined as: 

 𝑓𝑖 = 𝜇𝑋𝑙𝑠𝑖𝑋−1𝑦𝑇 − 0.5𝜇𝑋𝑙𝑠𝑖𝑋−1𝜇𝑇𝑋𝑙𝑠𝑖 + ln(𝑞𝑖) (6.17) 

where 𝑋−1 represents the inverse value of the pooled group covariance matrix 𝑋; 𝑦𝑇 is the 

transpose of input data point vector y; and 𝜇𝑇𝑋𝑙𝑠𝑖 are the transposes of the class mean vector 

𝜇𝑋𝑙𝑠𝑖. The data point y is appointed to the class with the maximum value of the LDF.  

6.2.4. Neural Networks Pattern Recognition  

Pattern recognition is one of the most important aspects of computer science, which can be 

defined as the process of observing a system or event to recognise and distinguish patterns 

by utilising machine learning methods. It could also be defined as a data analysis approach 

for classifying the data based on their background or statistical information derived from 

patterns, and then making reasonable decisions about the categories of the patterns. Its 

advantages include its ease of use and practical possibility of widespread application. Despite 

many years of research, the design of a multi-purpose machine for pattern recognition is still 

a long way off. According to Ross [225], “The more relevant patterns at your disposal, the 

better your decisions will be”. This is promising news for AI supporters, as it is possible to 

teach computers how to recognize patterns. In fact, a variety of successful computer programs 

which have been used in diagnosing diseases, bank credit scoring, and landing airplanes 

which in some way depend on pattern recognition. There are two possible ways can be used 

in recognising patterns include classification and cluster. Classification is a supervised 

learning where a proper class is appointed according to a pattern that is extracted from training 

datasets. Whereas clustering is unsupervised learning, and it is work by dividing the data into 
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groups which in turn help for making decisions. In this chapter artificial neural network method 

have been used for pattern recognition as a classification method.  

ANNs can be defined as statistical models with nonlinear way of modelling the data which 

simulate the way of biological NNs. Statistical pattern-based methods have been the most 

common and applied in different practices. However, ANN models have gained more 

popularity and attractiveness due to offering more efficient and successful ways of dealing 

with pattern recognition problems in many cases. In contrast with conventional pattern 

methods, ANN can easily handle complex or multi complicated tasks. The conventional 

methods which used to deal with pattern recognition problems can be divided into three types: 

statistical, structural, and hybrid methods. However, insufficient results can be obtained by 

both the statistical and structural methods when they are used to solve the complicated pattern 

recognition problems only. For example, when applying the structural method, the 

performance can be poor and unable to handle noise patterns. In the same way, the statistical 

method is incompetent in dealing with information related to patterns tasks. Therefore, the 

combination of the two methods was widely accepted by researchers which in turn leads to 

the hybrid method. However, in present time ANN models can be used instead of the 

conventional hybrid methods, this is because of the good results obtained in pattern 

recognition even in more complicated problems [226]. 

The function of ANN is advantageous compared to other techniques used for pattern 

recognition, as it has more flexibility with noticeable success. These good features due to the 

good performance of the network, which is increased using feedback information achieved 

from the difference between the actual input and the required output. Then, this information 

will be used to set the communications between the neurons at the input layer which in turn 

makes the actual outcome consistence with the required one. In addition, the specified 

algorithms of this method characterised by self- adaptive and self-organizing which add more 

efficiency of the network in pattern recognition. ANN is a trainable method which can be 

applied in both classification and regression tasks (it was used as a regression model 

presented in Chapter 4). An ANN involves interconnected processing units known as neurons, 

which work together to produce outcomes [227]. 

The process of training the ANN is iteratively updated to achieve the required MSE, and 

provide an optimal generalization for test data [225]. One of the most popular neural network 

families used for pattern classification problems is the feed-forward network, which contains 

RBF and MLP (supervised). Also, self-organizing map (SOM) is another common network 

which is mostly applied for feature mapping and data clustering (unsupervised). The ANN 

structure and activation function are described in detail in Chapter 4. 



116 

6.3. Implementation 

In Chapter 4, different regression models were developed to describe the development of 

diabetes disease in the Saudi population, by integrating diabetes data on the population 

(adults aged > 25 years) and for both genders (men and women), along with the dataset of 

the behavioural (modifiable) risk factors (smoking, obesity, and inactivity). In this chapter, 

several classification methods were employed to classify the prevalence rate of diabetes 

disease into five different classes using different classification methods: LD, SVM with linear 

kernel, SVM with Gaussian kernel, SVM with quadratic kernel, SVM with cubic kernel, Fine 

KNN, Weighted KNN, and NPR. All these methods were implemented in MATLAB using 

Classification Learner App, except the neural net pattern recognition method, which was 

implemented using Neural Net Pattern Recognition app [228].  

The latest versions of MATLAB incorporate a statistics and machine learning toolbox, which 

includes a great number of machine learning techniques including the Classification Learner 

app, which provides easy access to several supervised learning methods, which can be used 

for different applications in the real world, such as image and speech recognition, medical 

diagnosis, statistical and predictive analytics. In this research, data were prepared for 

classification by converting the continues values of diabetes dataset into discrete. The 

morbidity data of diabetes (output) were grouped into five classes for both men and women 

using (discretize) function in MATLAB.: 

• Class 1, low (7% to 10.5%). 

• Class 2, medium low (8.55% to 10.9%). 

• Class 3, medium (10.71% to 14.8%). 

• Class 4, high (13.02% to 16.15%). 

• Class 5, extremely high (15.61% to 17.59%). 

All the datasets of the three risk factors (inputs) with the labelled classes of diabetes morbidity 

data (outputs) were fitted into the (classification learner) for the training stage, using the default 

options for each method.  

For SVM classification method, the characteristics of this algorithm regarding the kernel 

function, kernel scale, and other features are given in Table 6.1. In addition, the information of 

KNN classification method, such as the number of neighbours, distance metric, and distance 

weight, are shown in Table 6.2. After that, the pre-trained classifiers were exported to the 

MATLAB workspace, where they were used to make predictions for data chosen randomly 

from our data points using the MATLAB function predictFcn. This testing stage tests the 

accuracy of the classification models.  
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For pattern recognition classification method, the Neural Net pattern recognition app in 

MATLAB was used, which can be used directly from the Apps tab or by typing (nprtool) in the 

command window. In this app, a two-layer feed-forward network with sigmoid hidden layer 

and softmax output neurons were used, and the network was trained with scaled conjugate 

gradient backpropagation. The structure of the network consists of input, hidden, and output 

layers. Each layer has number of neurons or elements; in our experiment, 3 neurons were 

used in the input layer (representing the risk factors), and 5 neurons in the output layer 

(representing the five classes). There is no exact way to define the number of neurons in the 

hidden layer, and it is commonly chosen according to trial-and-error method to get the best 

network performance, which in this experiment was achieved with 10 neuros. The 

performance of all classifiers is evaluated by accuracy. In addition, for the classification 

learner’s methods, further comparisons were conducted between the classifiers according to 

the prediction speed and training time. All the results are presented and discussed in the next 

section.  

Classifier Characteristics Model 1 Model 2 Model 3 Model 4 

Preset Linear SVM Quadratic SVM Cubic SVM Medium Gaussian SVM  

Kernel function Linear Quadratic Cubic Gaussian 

Kernel scale Automatic Automatic Automatic 1.7 

Box constraint level 1 1 1 1 

Multiclass method One-vs-One One-vs-One One-vs-One One-vs-One 

Standardize data true true true true 

Table 6.1: Characteristics of SVM classification models 

Classifier Characteristics Model 1 Model 2 

Preset Fine KNN Weighted KNN 

Number of neighbours 1 10 

Distance metric Euclidean  Euclidean 

Distance weight Equal Squared inverse 

Standardize data true true 

Table 6.2: Characteristics of KNN classification models 

6.4. Results and Discussion 

This section presents and discusses the results obtained from each classification model 

discussed in the previous section. The performance evaluation in terms of accuracy of each 

developed model was determined, and the developed classifiers were compared using the 

Classification Learner App, according to prediction speed and training time. As mentioned in 

the previous section, diabetes data was pre-processed by converting the continuous values 
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into discrete ones, as shown in Table 6.3 for both the men and women datasets. Table 6.4 

and Table 6.6 show the resulting classes by the trained models for both men and women, 

respectively. The pre-trained classifiers tested with samples picked randomly from the training 

datasets in order to check its classification capability; the testing results are given in Table 6.5 

and Table 6.7 for men and women, respectively.  

All classification methods were compared according to their accuracy as shown in Table 6.8 

and Table 6.9 for the men and women datasets, respectively. For the men data, Gaussian 

SVM, Weighted KNN, and Neural net pattern recognition models gave the same accuracy 

(92.6%), which was the highest value achieved among the models. The remaining models 

also performing well, with similar accuracy of 88.9%.  

Table 6.8 also shows the accuracy prediction speed and training time for all models used by 

classification learner app, the maximum training time was taken by Linear SVM with 10.177 

sec, while the Weighted KNN takes the least training time of 1.2459 sec. Thus, the prediction 

speed (observation/second) is maximum for Weighted KNN with 310 obs/sec, and minimum 

for Linear SVM with 77 obs/sec.  

Table 6.9 provides different accuracies given by models when applying to the women data. 

The highest accuracy was given by Gaussian SVM, Fine KNN, and Weighted KNN models of 

96.3%, followed by neural net pattern recognition with an accuracy of 92.6%. Also, there are 

three other models have a good performance with the same accuracy of 85.2%: Linear 

discriminant, Quadratic SVM, Cubic SVM. Lastly, the Linear SVM based model have the 

lowest accuracy of 77.8%. In addition, in terms of prediction speed and training time, as for 

the men data, the maximum training time was taken by Linear SVM with 5.4628 sec, whereas 

the Fine KNN takes the least training time of 1.5032 sec. However, the prediction speed 

(observation/second) was highest for Weighted KNN with 340 obs/sec, and lowest for 

Quadratic SVM with 91 obs/sec.  

Figures 6.1 to 6.7 present the confusion matrixes of the resulting models from the classification 

learners app for both men and women datasets respectively. For each model the diagonal 

green squares represent the correct prediction ratio of the predicted classes over true classes, 

while the red squares give the incorrect class ratio. The results show the level of the decision 

ratio between the true value and the predicted value. Figure 6.1 show the confusion matrix of 

the predicted and true class categories obtained by LD model, for men data there are 3 data 

sample misclassified, 1 data for each of the classes (class 1, class 2, and class 3). For women 

data there are 4 data sample misclassified, 2 data for class 2 and 2 data for class 3. So, the 

overall classification accuracy of LD model is 88.9% and 85.2% for men and women datasets 

respectively. Figure 6.2 show the maximum misclassification among models which obtained 
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by LSVM, a total number of 9 data sample misclassified for both men and women data for the 

classes 1, 2, 4, and 5, which gave an average classification accuracy of 83.4% for men and 

women datasets. Figures 6.3 and 6.4 demonstrate the confusion matrixes of the predicted and 

true class obtained by Quadratic SVM and Cubic SVM for men and women respectively, as 

can be seen 7 data sample misclassified for both models for men and women data for the 

classes 1, 2, 4, and 5, with classification accuracy of 88.9% for both models for men and 

85.2% for both models for women respectively. Figures 6.5, 6.6, and 6.7 present the confusion 

matrixes of the best performing classifiers, Gaussian SVM, Fine KNN, and Weighted KNN, 

the misclassification data samples range between 1 to 3 for all models for men and women, 

with an average classification accuracy of 93.8% for men and women datasets.  

From the obtained results using men datasets, the error rate for diabetes prevalence 

classification was the same for all models (3%) except for Gaussian SVM (2%). For the women 

data, the achieved results show that the same error rate was given by LD, Quadratic SVM, 

and Cubic SVM (4%), while Linear SVM gave the maximum error rate of 6%. Moreover, as 

the best results again were given by Gaussian SVM, Fine KNN, and Weighted KNN models, 

all indicating the same error rate of 1%.  

Figure 6.8 compares the classification results of all models in terms of accuracy for both the 

men and women datasets. It can be seen that the performance of Gaussian SVM, Fine KNN, 

and Weighted KNN models was better for women data than for men data, while the 

performance accuracy of LD, Linear SVM, Quadratic SVM, and Cubic SVM was higher using 

men data than women data. The NPR model had the same performance accuracy for both 

men and women datasets.  
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Years Morbidity data men Morbidity after 
discretizing (men) 

Morbidity data 
women 

Morbidity after 
discretizing (women) 

1999 9.7 1 7 1 

2000 9.8 1 7.12 1 

2001 10.0 1 7.28 1 

2002 10.2 1 7.5 1 

2003 10.5 1 7.79 1 

2004 10.9 2 8.14 1 

2005 11.3 2 8.55 2 

2006 11.8 2 8.99 2 

2007 12.3 2 9.43 2 

2008 12.7 3 9.84 2 

2009 13.1 3 10.19 2 

2010 13.4 3 10.48 2 

2011 13.6 3 10.71 3 

2012 13.8 3 10.88 3 

2013 13.9 3 11 3 

2014 14.18 3 11.97 3 

2015 14.48 4 12.37 3 

2016 14.82 4 13.02 4 

2017 15.18 4 13.53 4 

2018 15.45 4 14.08 4 

2019 15.81 4 14.89 4 

2020 16.15 4 15.15 4 

2021 16.47 5 15.61 5 

2022 16.77 5 16.03 5 

2023 17.02 5 16.62 5 

2024 17.31 5 17 5 

2025 17.59 5 17.36 5 

Table 6.3: Morbidity data with discretized classes for men and women, 1999-2025 
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Classifiers LD LSVM QSVM CSVM Gaussian 
SVM 

Fine 
KNN 

Weighted 
KNN 

NPR 

1999 1 1 1 1 1 1 1 1 

2000 1 1 1 1 1 1 1 1 

2001 1 1 1 1 1 1 1 1 

2002 1 1 1 1 1 1 1 1 

2003 1 2 1 1 1 1 1 1 

2004 1 2 2 2 2 2 2 2 

2005 2 2 2 2 2 2 2 2 

2006 2 2 2 2 2 2 2 2 

2007 2 2 2 2 2 2 2 2 

2008 3 3 3 3 3 3 3 2 

2009 3 3 3 3 3 3 3 3 

2010 3 3 3 3 3 3 3 3 

2011 3 3 3 3 3 3 3 3 

2012 3 3 3 3 3 3 3 3 

2013 3 3 3 3 3 3 3 3 

2014 3 3 3 3 3 3 3 3 

2015 4 4 4 4 4 4 4 4 

2016 4 4 4 4 4 4 4 4 

2017 4 4 4 4 4 4 4 4 

2018 4 4 4 4 4 4 4 4 

2019 4 4 4 4 4 4 4 4 

2020 4 4 4 4 4 4 4 4 

2021 5 4 5 5 5 5 5 5 

2022 5 5 5 5 5 5 5 5 

2023 5 5 5 5 5 5 5 5 

2024 5 5 5 5 5 5 5 5 

2025 5 5 5 5 5 5 5 5 

Table 6.4: Classification models results for men (training data), 1999-2025 
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Random 
points 

Years Classifiers 

LD LSVM QSVM CSVM Gaussian 
SVM 

Fine 
KNN 

Weighted 
KNN 

NPR 

22 2020 4 4 4 4 4 4 4 4 

6 2004 1 2 2 2 2 2 2 2 

3 2001 1 1 1 1 1 1 1 1 

16 2014 3 3 3 3 3 3 3 3 

11 2009 3 3 3 3 3 3 3 3 

7 2005 2 2 2 2 2 2 2 2 

17 2015 4 4 4 4 4 4 4 4 

14 2012 3 3 3 3 3 3 3 3 

8 2006 2 2 2 2 2 2 2 2 

5 2003 1 2 1 1 1 1 1 1 

21 2019 4 4 4 4 4 4 4 4 

25 2023 5 5 5 5 5 5 5 5 

27 2025 5 5 5 5 5 5 5 5 

26 2024 5 5 5 5 5 5 5 5 

19 2017 4 4 4 4 4 4 4 4 

15 2013 3 3 3 3 3 3 3 3 

1 1999 1 1 1 1 1 1 1 1 

23 2021 5 5 5 5 5 5 5 5 

2 2000 1 1 1 1 1 1 1 1 

4 2002 1 1 1 1 1 1 1 1 

18 2016 4 4 4 4 4 4 4 4 

24 2022 5 5 5 5 5 5 5 5 

13 2011 3 3 3 3 3 3 3 3 

9 2007 2 2 2 2 2 2 2 2 

20 2018 4 4 4 4 4 4 4 4 

10 2008 3 3 3 3 3 3 3 3 

12 2010 3 3 3 3 3 3 3 3 

Table 6.5: Classification models results for men (random data) 
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Classifiers LD LSVM QSVM CSVM Gaussian 
SVM 

Fine 
KNN 

Weighted 
KNN 

NPR 

1999 1 1 1 1 1 1 1 1 

2000 1 1 1 1 1 1 1 1 

2001 1 1 1 1 1 1 1 1 

2002 1 1 1 1 1 1 1 1 

2003 1 1 1 1 1 1 1 1 

2004 1 2 2 1 1 1 1 1 

2005 2 2 2 2 2 2 2 2 

2006 2 2 2 2 2 2 2 2 

2007 2 2 2 2 2 2 2 2 

2008 2 2 2 2 2 2 2 2 

2009 2 2 2 2 2 2 2 2 

2010 2 3 3 2 2 2 2 2 

2011 3 3 3 3 3 3 3 3 

2012 3 3 3 3 3 3 3 3 

2013 3 3 3 3 3 3 3 3 

2014 3 3 3 3 3 3 3 3 

2015 3 3 3 3 3 3 3 3 

2016 4 4 4 4 4 4 4 4 

2017 4 4 4 4 4 4 4 4 

2018 4 4 4 4 4 4 4 4 

2019 4 4 4 4 4 4 4 5 

2020 4 4 4 4 4 4 4 5 

2021 5 4 5 5 5 5 5 5 

2022 5 5 5 5 5 5 5 5 

2023 5 5 5 5 5 5 5 5 

2024 5 5 5 5 5 5 5 5 

2025 5 5 5 5 5 5 5 5 

Table 6.6: Classification models results for women (training data) 1999-2025 
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Random 
points 

Years Classifiers 

LD LSVM QSVM CSVM Gaussian 
SVM 

Fine 
KNN 

Weighted 
KNN 

NPR 

22 2020 4 4 4 4 4 4 4 5 

6 2004 1 2 2 1 1 1 1 1 

3 2001 1 1 1 1 1 1 1 1 

16 2014 3 3 3 3 3 3 3 3 

11 2009 2 2 2 2 2 2 2 2 

7 2005 2 2 2 2 2 2 2 2 

17 2015 3 3 3 3 3 3 3 3 

14 2012 3 3 3 3 3 3 3 3 

8 2006 2 2 2 2 2 2 2 2 

5 2003 1 1 1 1 1 1 1 1 

21 2019 4 4 4 4 4 4 4 5 

25 2023 5 5 5 5 5 5 5 5 

27 2025 5 5 5 5 5 5 5 5 

26 2024 5 5 5 5 5 5 5 5 

19 2017 4 4 4 4 4 4 4 4 

15 2013 3 3 3 3 3 3 3 3 

1 1999 1 1 1 1 1 1 1 1 

23 2021 5 4 5 5 5 5 5 5 

2 2000 1 1 1 1 1 1 1 1 

4 2002 1 1 1 1 1 1 1 1 

18 2016 4 4 4 4 4 4 4 4 

24 2022 5 5 5 5 5 5 5 5 

13 2011 3 3 3 3 3 3 3 3 

9 2007 2 2 2 2 2 2 2 2 

20 2018 4 4 4 4 4 4 4 4 

10 2008 2 2 2 2 2 2 2 2 

12 2010 2 3 3 2 2 2 2 2 

Table 6.7: Classification models results for women (random data) 
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Classifiers Accuracy Prediction speed Training time 

LD 88.9% 93 obs/sec 9.9083 sec 

Linear SVM 88.9% 77 obs/sec 10.177 sec 

Quadratic SVM 88.9% 100 obs/sec 4.3084sec 

Cubic SVM 88.9% 120 obs/sec 3.3928 sec 

Gaussian SVM 92.6 % 120 obs/sec 3.7141 sec 

Fine KNN 88.9% 140 obs/sec 3.7141 sec 

Weighted KNN 92.6 % 310 obs/sec 1.2459 sec 

NPR  92.6 % ………. …………. 

Table 6.8: Classification outcome information (men data) 

Classifiers Accuracy Prediction speed Training time 

LD 85.2 % 310 obs/sec 2.2019 sec 

Linear SVM 77.8 % 110 obs/sec 5.4628 sec 

Quadratic SVM 85.2 % 91 obs/sec 4.6329 sec 

Cubic SVM 85.2 % 100 obs/sec 4.2164 sec 

Gaussian SVM 96.3 % 110 obs/sec 3.5432 sec 

Fine KNN 96.3 % 320 obs/sec 1.5032 sec 

Weighted KNN 96.3 % 340 obs/sec 1.6991 sec 

NPR  92.6 % ………. …………. 

Table 6.9: Classification outcome information (women data) 

 

Figure 6.1: Linear discriminant model confusion matrixes for men and women data respectively 
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Figure 6.2: Linear SVM model confusion matrixes for men and women data respectively 

 

Figure 6.3: Quadratic SVM model confusion matrixes for men and women data respectively 

 

Figure 6.4: Cubic SVM model confusion matrixes for men and women data respectively 
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Figure 6.5: Medium Gaussian SVM model confusion matrixes for men and women data respectively 

 

Figure 6.6: Fine KNN model confusion matrixes for men and women data respectively 

 

Figure 6.7: Weighted KNN model confusion matrixes for men and women data respectively 
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Figure 6.8: Classification results (accuracy) for men and women datasets 

6.5. Summary  

This chapter presented classification learning models for classifying diabetes prevalence 

based on Linear discriminant, Linear SVM, Quadratic SVM, Cubic SVM, Gaussian SVM, Fine 

KNN, Weighted KNN, and Neural Net pattern recognition. All these models were briefly 

described, and their mathematical equations were presented. The chapter investigated the 

use of classification methods to group or classify the prevalence level of diabetes disease that 

associated with behavioural risk factors (smoking, obesity, and inactivity). The proposed 

methods were applied on the men and women datasets, and their performance was evaluated 

in terms of accuracy, training time, and prediction speed. The obtained results show that there 

were slightly differences in the performance of models when using the men and women 

datasets. All classification methods used by the classification learner app required less than 

10 seconds to predict the target. In addition, the experimental results on the predictive 

performance analysis of the classification models showed that Weighted KNN performed well 

on the prediction of diabetes prevalence rate, with the highest accuracy and less training time 

than the other classification methods, for both men and women datasets. In the next chapter 

another approach of modelling is presented, time series modelling, using Neural Network Time 

Series app in MATLAB. In this modelling approach three NARX-NN models for each risk factor 

are developed, and then the estimated values are used to construct ANN model by Neural 

Network fitting app, to forecast the prevalence rate of diabetes. Also, the developed NARX-

NN model and the ANN model applied for regression modelling in Chapter 4 are compared. 
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Chapter 7  

Time-Series Modelling 

7.1. Introduction 

This chapter presents the third method of modelling, which is time series modelling approach. 

The aim of this chapter is to examine the flexibility of Neural Network models in time series 

forecasting by comparing two modelling techniques NARX-NN time series and ANN. Three 

time series models of the three independent risk factors (smoking, obesity, and inactivity) were 

developed using NARX model (one-step ahead prediction) to predict the prevalence rate of 

diabetes for men and women datasets. The training dataset is from 1999 to 2013, and the test 

dataset is from 2014 to 2025, for both men and women. The performance of the developed 

models is evaluated using four statistical measures: MSE, RMSE, MAPE, and R-squared.  

A brief background of time series modelling is provided in Section 7.2. Time Series and Neural 

Networks with a description of NARX-NN model are given in Section 7.3. The NARX-NN time 

series is explained in Section 7.4, and its implementation with ANN models is presented in 

Section 7.5. Section 7.6 provides the results and the discussion of the modelling outcomes. 

Lastly, a summary of this chapter is given in Section 7.7.  

7.2. Time Series Modelling  

Statistical analysis and theoretical developments of time series data started a long time ago 

with stochastic processes. The work of Yule and Walker in the 1920s and 1930s was the first 

practical application of autoregressive models to data [229]. In the 1970s, time series models 

were developed by Box and Jenkins, which were introduced in their classic Time Series 

Analysis, describing the required processes of modelling individual series, such as estimation 

and forecasting. Since that time, the classical time series (“Box–Jenkins”) models have gained 

popularity and have been used in many forecasting problems.  

A time series can be defined as a sequence of observations measured at a specific discrete 

or continuous time units. In time series modelling, a model is developed based on the past 

observations of the studied variables to analyse and describe the underlying relationship 

between these variables. The developed model can then be used for the prediction of the 

future [230]. A mathematical representation of a time series prediction problem can be given 

in the following equation as: 
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 �̂�𝑡+𝑖 = 𝑓(𝑦𝑡 , 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑛) (7.1) 

where y is the observed time series with n points; t is the most recent observation; and t- n 

indicates the most distant observation. At 𝑡 + 𝑖, the future value can be predicted by a function 

f, this function known as the model and it is applied to get the predicted value �̂�𝑡+𝑖 [173]. 

During the past few decades, a great deal of attention has been devoted to time series 

analysis, which has become a popular research topic in different fields such as finance, 

energy, electricity, and medicine etc. Time series forecasting is an important task in time series 

analysis, and it considered as a powerful tool for describing a complex system using observed 

data. ARIMA models have been the most popular and widely used in the time series 

forecasting domain. These models gained their popularity due to its statistical characteristics 

as well as the well-known Box–Jenkins approach in the model development procedures. Some 

studies of time series analysis and models were reviewed in Chapter 2.  

Despite the popularity of the traditional ARIMA model, it has a major limitation regarding the 

pre-assumed linear form of the model, whereby an assumption of linear correlation is made 

among the time series values, thus this model cannot process nonlinear patterns. Even 

assuming that linearity is useful and can be a powerful tool in many different fields, it was 

clearly shown in the early 1980s that the application of the linear models on complex real-

world problems is not always sufficiently acceptable [231]. 

During the last two decades, testing and modelling nonlinearity of time series data has been 

developed in several fields, and examples of nonlinear time series models include the bilinear, 

autoregressive conditional heteroscedastic (ARCH), general autoregressive conditional 

heteroscedastic (GARCH), chaotic dynamics, and the threshold autoregressive (TAR) models. 

These models are model-driven approaches, where the relation type between the variables 

needs to be identified, and then the selected model parameters are estimated. Moreover, the 

recent notable activities in ANN research along with its successful forecasting applications 

indicated that they can also be effectively used for time series forecasting [232][233].  

7.3. Time Series and Neural Networks  

As mentioned in the above section, ANNs can be effectively applied to several time series 

prediction and modelling tasks. Contrary to traditional time series methods, ANN is a self-

adaptive, data-driven, nonparametric, nonlinear statistical method, in which only few previous 

assumptions are required about the models for the studied problems. ANN models can be 

helpful in dealing with nonlinear systems in the data series that have an unknown functional 
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relationship. In ANN models, a specific general purpose learning algorithm is used to deal with 

the process of constructing the relationship between the input and output variables. Using 

ANN as a modelling technique for time series estimation and forecasting is an essential task 

in different fields, including statistics. Researchers have been attracted by ANN’s features 

such as the freedom from restrictive assumptions like linearity. Because of the nonlinearity 

feature of ANN models and their powerful handling of noise, they often outperform traditional 

linear methods in time series forecast applications. Two types of time series prediction can be 

made: one-step ahead, or multi-step ahead. In the latter form of prediction, the output of the 

ANN is commonly fed back to the input. The NARX nonlinear autoregressive with exogenous 

input can be efficiently used for these types of time series [234][235].  

The following section describes the NARX-NN model and its main characteristics, then its 

implementation and prediction results are compared with the ANN model previously described 

and used for regression modelling in Chapter 4.  

7.4. NARX Neural Network Model 

NARX Neural Network is among the most powerful ANN models used in time series modelling, 

because of its valuable characteristics such as fast convergence in achieving the optimal 

weights of the network connections between neurons and/or inputs. It is excellent at 

determining long time dependences compared to conventional RNN, and it is an effective 

method compared to other ANNs [236][237]. NARX is based on a nonlinear autoregressive 

neural model with exogenous inputs. In this method the dynamic (time series) of a variable is 

modelled using its past values and the past values of external input (exogenous inputs). Even 

though that the NARX NN model is used for short-term series forecasts, multi-step-ahead 

predictions can be obtained if prior information of the future exogenous inputs is identified. 

This can be achieved in an iterative process by utilising the output of a one-step ahead 

prediction as the input for the following prediction. Basically, the NARX network is described 

as a recurrent dynamic network, which allows connections of feedback that have impact on 

different layers of the network. The mathematical representation of the NARX model can be 

given as: 

 𝑦(𝑠 + 1) = 𝑓 (
𝑦(𝑠), 𝑦(𝑠 − 1), … … . , 𝑦(𝑠 − 𝑑𝑦)

𝑤(𝑠), 𝑤(𝑠 − 1), … … . , 𝑤(𝑠 − 𝑑𝑤)
) (7.2) 

where s represents the time series; d is the number of the specified input and output delays; 

y (s + 1) is the NARX output; (y(s), y (s − 1), ⋯ , y(s − 𝑑𝑦)) indicates the prior values of an 



132 

exogenous output series; (w(s), w (s − 1), ⋯, w(s − 𝑑𝑤 )) contains the variables driving 

exogenous input series; and 𝑓 is the mapping function of the neural network.  

There are two modes of training the NARX Network model: series-parallel (open loop) and 

parallel (closed loop). In the first mode, the feedback delayed information is taken from the 

real values; in the second mode, the estimated outputs are fed back and contained within the 

output’s regressor. It is useful to point out that these modes can also be applied through the 

prediction stage. These modes are different in one main point related to the time delay line of 

the output, whether the time delay will use the real output during the training and prediction 

such in series-parallel or will use the estimated output from the output layer such in the parallel 

mode. The future value of the time series y(s-1) in the series-parallel is predicted using the 

past and present values of w(s) and the real past values of the time series y(s). While the 

prediction in the parallel mode is achieved by using the past and present values of w(s) and 

the past forecasted values of the time series �̂�(s). There are two advantages of using series-

parallel mode. First, using the real values as input for the feedforward network leads to more 

accurate results. Second, the architecture of the resulting network is purely feedforward one, 

and frequently used MLP algorithms can be deployed for training. Therefore, in this study, the 

series-parallel mode was first applied during the training stage of the NARX-NN model. 

Following the training stage, the NARX-NN model was converted to parallel mode, which is 

useful for making the multi-step-ahead prediction.  

The initial design of the NARX NN model was as a feedforward backpropagation network. The 

map function F (.) at the beginning is undetermined and it is approximated through the training 

stages of the prediction. The MLP is the internal architecture that makes this approximation. 

MLP can provide a robust structure to learn any form of continuous nonlinear mapping. A 

simple MLP structure involves three layers: input, hidden, and output layer. Other components 

include neurons, weights, and activation functions. 

During the training stage, the information is directed from the input layer to the output layer. 

Within each layer, the multiplication process carries out between the input vector and the 

weights vector to produce the scalar outcome, then the activation function is designed to 

achieve the neuron output. Furthermore, after presenting all the inputs and target values to 

the network, the training function used to update the network weights and biases to achieve 

the best performance output value. 

In the case of the NARX NN model, the Bayesian regularisation backpropagation algorithm is 

mainly used for training the NARX NN network and updating the weight and bias values by 

Levenberg-Marquardt optimisation. This algorithm reduces the combination of squared errors 
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and weights and then defines the correct combination to generate a network that performing 

well and prevents overtraining. 

7.5. Implementation 

All estimation and forecasting of time series modelling presented in this chapter was 

implemented using MATLAB’s Neural Network Time Series and Neural Net Fitting toolbox. 

The Neural Network Time Series app can be started directly from the Apps tab, under Machine 

Learning and Deep Learning, or by typing (ntstool) in the MATLAB command window. In this 

app, a neural network can be trained to solve three types of time series problems: NARX 

networks, NAR networks, and nonlinear input-output networks. The NARX network type is 

known as nonlinear autoregressive with exogenous (external) input. This form can be used to 

predict future values of a time series y(t) from a given past values d of that time series and 

past values of a second time series x(t). The second type of time series problems is the NAR 

network, which is called nonlinear autoregressive. This type involved only one series, in which 

the future values of a time series y(t) are predicted only from past values of that series, given 

by the following:  

 𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑑))    (7.3) 

Nonlinear Input-Output Network is the third type of time series problems, similar to NARX 

model in involving two series: an input series x(t) and an output series y(t). In this type of time 

series, the values of y(t) can be predicted from previous values of x(t), but without knowledge 

of past values of y(t). The Nonlinear Input-Output Network model can be given as: 

 𝑦(𝑡) = 𝑓(𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑑))    (7.4) 

The NARX model is better in providing predictions than the input-output model, because it 

employs a further information included in the past values of y(t). However, some applications 

may not have past values of y(t), so in these situations it would be useful to use the input-

output model instead of the NARX model. In this research, NARX-NN model was used for time 

series modelling. The three behavioural risk factors (smoking, obesity, inactivity) were used 

as predictors to determine the prevalence rate of diabetes. In the first step, three models for 

each risk factor have been developed using the (NARX-NN) model (ntstool) from Neural time 

series app in MATLAB using the historical datasets from 1999 to 2013 for each factor. The 

developed models were then used to predict the data of the three factors from 2014 to 2025.  
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Figure 7.1 shows the block diagram of the developed NARX-NN model, which was first trained 

in open-loop mode. The structure of the developed model is a two-layer feedforward network, 

with a sigmoid transfer function in the hidden layer and a linear transfer function in the output 

layer. The structure of this network has been set with 10 neurons in the hidden layer and one 

delay, and the Levenberg-Marquardt backpropagation algorithm (trainlm) was selected as the 

optimised training method. Figure 7.2 shows how the NARX-NN model transformed from 

open-loop to closed-loop for making the multi-step-ahead prediction. Figure 7.3 shows the 

step-ahead prediction network diagram which is used to get predicted timestep values early.  

In the next step, the predicted datasets of the three risk factors fed into the Neural Network 

fitting app (nftool) as independent variables, with the morbidity data of diabetes as a 

dependent variable, as illustrated in Figure 7.4. Finally, after training the NARX-NN model, it 

was tested using the predicted datasets from time series models of the three factors from 2014 

to 2025 to undertake predictions of diabetes prevalence for both men and women. The 

performance of the NARX-NN model was evaluated using four statistical evaluation measures, 

these are MSE, RMSE, MAPE, and the coefficient of determination R-squared, and then the 

obtained results were compared with those of the ANN model whose regression modelling is 

presented in Chapter 4. 

 

Figure 7.1: NARX neural network time series block diagram 
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Figure 7.2: NARX neural network time series closed loop block diagram 

 

Figure 7.3: NARX neural network time series predict one-step ahead block diagram 

 

Figure 7.4: Fitting neural network block diagram 

7.6. Results and Discussion 

This section presents the results obtained by NARX-NN time series modelling for each risk 

factor (smoking, obesity, and inactivity) for both men and women. The estimated results of 

diabetes prevalence rate for men and women from the constructed NARX-NN model using 

time series prediction data are also provided. The developed NARX-NN model is compared 

with the ANN model developed for regression in Chapter 4. The comparison is carried out by 

evaluating their performance using four statistical evaluation measures, specifically MSE, 
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RMSE, MAPE, and the coefficient of determination R2. Their equations were given previously 

in Chapter 3. 

Table 7.1 and Table 7.2 show the time series modelling results of the three risk factors 

(smoking, obesity, and inactivity) for both men and women training data (1999-2013) and test 

data (2014-2025) respectively. In addition, Table 7.3 and Table 7.4 show the results of 

diabetes prevalence by NARX-NN and ANN models for both men and women using training 

data (1999-2013) and test data (2014-2025), respectively. The NARX-NN model was 

successfully estimated the values corresponding to the past (1999–2013) and predicted the 

values of the future (2014–2025) for each risk factor for both men and women datasets, and 

then predicted the prevalence rate of diabetes.  

Figure 7.5 and Figure 7.6 show graphs of diabetes prevalence by NARX and ANN models, for 

morbidity data of the period 1999-2013, for men and women respectively. These graphs 

compare the prevalence rate of diabetes obtained by NARX-NN and ANN models with actual 

values. It can be clearly shown from these graphs that NARX-NN model outperformed the 

ANN model when compared relative to the actual values.  

Table 7.5 shows the overall performance of both NARX-NN, and ANN models evaluated by 

the statistical evaluation metrics (MSE, RMSE, MAPE, and R2). Based on the results, it can 

be observed that the best performance was given by NARX-NN model, with RMSE = 0.02 for 

men data and RMSE = 0.1287 for women data, and MAPE= 0.0006 for men and MAPE= 

0.0095 for women. All the evaluation metrics show that the performance of the NARX-NN 

model was better than that of the ANN model in predicting the prevalence of diabetes for both 

men and women datasets. Furthermore, Figure 7.7 presents a graph that compares the 

performance evaluation metrics’ results of NARX-NN and ANN models for men and women 

data, indicating the good performance of the proposed neural network time series model.  
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Men training data after modelling by 

neural network time series 
Women training data after modelling by neural 

network time series 

Years Smoking Obesity Inactivity Smoking Obesity Inactivity 

1999 21.4 15.5 93.2 0.9 18.0 96.8 

2000 21.7 17.3 90.4 1.0 19.6 96.0 

2001 22.1 19.6 88.4 1.1 24.1 93.8 

2002 22.5 22.1 87.4 1.3 31.8 90.5 

2003 22.9 24.1 86.4 1.5 38.9 88.3 

2004 23.7 26.1 80.5 1.6 38.9 84.6 

2005 24.1 26.3 72.4 1.8 39.5 83.0 

2006 24.5 27.0 71.5 1.8 40.4 82.7 

2007 25.8 28.7 72.3 1.7 41.8 81.0 

2008 26.0 30.7 72.9 1.9 43.2 78.9 

2009 25.8 31.5 66.6 1.9 44.6 77.8 

2010 26.0 32.3 58.3 2.0 46.0 77.4 

2011 26.2 33.7 56.5 2.1 46.8 77.3 

2012 26.6 35.2 55.9 2.2 47.4 77.1 

2013 26.9 35.9 55.0 2.5 48.2 76.9 

Table 7.1: Time series modelling results of the three risk factors for men and women (training data), 

1999-2013 
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Figure 7.5: Diabetes prevalence by NARX and ANN models (men morbidity data 1999-2013) 

 

Figure 7.6: Diabetes prevalence by NARX and ANN models (women morbidity data 1999-2013) 
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Men testing data after modelling by neural 

network time series 
Women testing data after modelling by 

neural network time series 

Years Smoking Obesity Inactivity Smoking Obesity Inactivity 

2014 27.25 36.46 53.27 2.33 48.99 76.60 

2015 27.48 37.06 51.46 2.61 49.78 76.07 

2016 27.68 38.09 49.44 2.67 50.66 75.07 

2017 27.86 39.66 47.17 3.06 51.63 73.81 

2018 27.85 41.76 45.26 3.46 52.64 72.40 

2019 28.00 44.19 44.45 3.79 53.64 71.30 

2020 28.16 46.60 44.18 4.01 54.55 70.65 

2021 28.34 48.65 43.31 4.13 55.32 70.25 

2022 28.56 50.19 42.00 4.20 55.92 70.05 

2023 28.72 51.21 40.93 4.21 56.33 69.93 

2024 29.11 51.83 40.30 4.24 56.56 69.88 

2025 29.53 52.17 40.02 4.25 56.65 69.85 

Table 7.2: Time series modelling results of the three risk factors for men and women (test data), 

2014-2025 

Years 
Men  Women 

NARX-NN ANN NARX-NN ANN 

1999 9.7 9.7 7.0 7 

2000 9.9 9.7 7.1 7.26 

2001 10.0 9.7 7.3 7.4 

2002 10.2 9.7 7.7 7.5 

2003 10.5 9.71 8.2 7.7 

2004 10.9 9.8 8.2 8.14 

2005 11.3 10.65 8.6 8.78 

2006 11.8 11.9 8.9 8.99 

2007 12.3 12.36 9.5 9.25 

2008 12.7 12.69 9.9 9.69 

2009 13.1 13.09 10.2 10.19 

2010 13.4 13.35 10.5 10.53 

2011 13.6 13.7 10.7 10.78 

2012 13.8 14.09 10.8 10.88 

2013 13.9 14.01 10.9 11.85 

Table 7.3: Diabetes Prevalence results by NARX-NN and ANN models for men and women (training 

data), 1999-2013 
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Years 
Men  Women 

NARX-NN ANN NARX-NN ANN 

2014 14.69 14.5 10.74 11.5 

2015 15.06 15.1 11.94 11.7 

2016 15.73 15.8 12.16 12.3 

2017 16.72 16.6 13.19 13.1 

2018 17.70 17 14.87 14.1 

2019 18.15 17.7 15.84 15.5 

2020 18.34 18.2 16.08 15.9 

2021 18.42 18.6 16.14 16.4 

2022 18.44 18.8 16.16 16.8 

2023 18.45 18.9 16.16 17 

2024 18.42 19.1 16.17 17.1 

2025 18.37 19.2 16.17 17.2 

Table 7.4: Diabetes Prevalence results by NARX-NN and ANN models for men and women (test 

data), 2014-2025 

Evaluation metrics  NARX-NN model  ANN model 

Men Women Men Women 

MSE 0.0006 0.0166 0.0081 0.0595 

RMSE 0.02 0.1287 0.0899 0.2437 

MAPE 0.0006 0.0095 0.0252 0.0137 

R2 0.99 0.99 0.99 0.97 

Table 7.5: Statistical evaluation metrics results 

 

Figure 7.7: Performance evaluation metrics results of NARX-NN and ANN models for men and 

women data 
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7.7. Summary 

This chapter presented the NARX-NN model developed for the three behavioural risk factors 

(smoking, obesity, and inactivity) for both men and women datasets employing Neural Network 

Time Series app in MATLAB. The simulated data by time series approach were used to 

construct ANN model using Neural Network Fitting app in MATLAB for predicting the 

prevalence rate of diabetes for men and women. The chapter compared between this model 

and the ANN model previously used in regression modelling in Chapter 4. This comparison 

was based on evaluating their performance according to different statistical metrics. It was 

indicated by these evaluations that the performance of the developed NARX-NN model using 

time series data in this chapter outperformed the ANN model applied in Chapter 4. The 

obtained results indicated that using time series modelling was successful in estimating the 

values corresponding to the past and predicting the values of the future for each risk factor for 

both men and women datasets, and then in predicting the prevalence rate of diabetes. 
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Chapter 8  

Conclusions and Future Work 

8.1. Conclusions 

The primary aim of this thesis was to study trends in the prevalence rate of diabetes along 

with the related behavioural risk factors among Saudis to predict future disease burden using 

mathematical modelling, by applying different machine learning techniques. To that end, 

various regression and classification methods were developed and integrated to enhance 

model prediction performance. The design and implementation of the proposed predictive 

models was discussed and examined. In order to give better results and develop a powerful 

predictive model, seven ensemble methods were used to combine the predictions of the 

individual models. This helped in overcoming the disadvantages of each individual model by 

pooling attributes in combination with other models. The efficiency of the developed models 

in predicting diabetes on men and women datasets for different age groups was compared, 

both in terms of their intrinsic performance in this study, and with observed data from other 

studies.  

The statistical metrics including RMSE, MSE, MAPE, R-squared, and classification accuracy 

were used to evaluate the performance efficiency of the developed models. Very competitive 

results obtained by the ANFIS regression model and WAVR, which makes them the preferred 

models in terms of accurate outputs. The experimental results on the predictive performance 

analysis of the classification models show that Weighted KNN performed well on the prediction 

of diabetes prevalence rate, with the highest accuracy and less training time compared to 

other classification methods, for the datasets of both men and women. 

Regarding the time series modelling, the proposed NARX-NN model outperformed the 

standard ANN based predictor model with the lowest error, as presented in Chapter 7. Good 

results were obtained in comparison with ANN model, which indicates that the NARX neural 

network model can successfully use its output feedback loop to improve its predictive 

performance in time series predictions of diabetes prevalence and the related risk factors.  

These models were applied on diabetes data obtained from KSA, where the level of diabetes 

prevalence is predicted to increase, affected by the increased of population and aging, along 

with significantly rising levels of different DM risk factors. The obtained results from this 

research indicate that demographic as well as behavioural risk factors significantly contributed 

to the increased level of diabetes, with a significance level of 0.05; however, smoking, obesity, 

and physical inactivity were the most significant factors. In addition, the highest prevalence of 
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diabetes from all the age groups was found in the population aged 55-74 years old. The 

highest growth in diabetes prevalence was in men aged 55-64 years, which showed an 

increase in prevalence from 24.91% in 1999 to 53% in 2013. The highest prevalence of 

diabetes for women was in the group aged 65-74 years, indicating an increase from 24.4% in 

1999 to 48.2% in 2013. It was clear from these findings that diabetes prevalence was higher 

among men than women.  

Furthermore, the prevalence of the three risk factors, including obesity, smoking, and physical 

inactivity, varied according to gender. The prevalence of smoking was higher among men than 

women (21.1% against 0.9%, respectively). Women had a higher prevalence rate of obesity 

than men (20.3% against 13.1%). Also, the prevalence rate of physical inactivity was higher 

among women than men (98.1% against 93.9%). 

Diabetes disease is an epidemic expected to rapidly increase in KSA, which indicates the 

need to develop a national surveillance system to examine trends and risk factors of diabetes 

disease on a regular basis. The national transformation plan (Vision 2030) launched by the 

government of KSA stipulates the key objective of developing the economy, which can be 

achieved by investing in control and prevention strategies of non-communicable diseases, 

including diabetes, enabling Saudis to remain active and economically productive for more 

years, with reduced burdens in health costs. Enormous contributions and efforts have been 

made by the government of KSA to develop the population’s health and living standards, but 

the obtained results in this thesis highlight the urgency need for seek more strategies and take 

further actions on diabetes control to overcome with this disease, reduce its complications (or 

at least delay them), increase individuals’ healthy life expectancy, reduce health expenditure, 

and expand national productivity and economic growth. 

8.2. Future Work 

For future research directions, it could be useful to examine the impact of using big datasets 

with more variables. This should include a family record of diabetes, smoking status (whether 

they were active or previous smokers, job demands (considering physical activity levels and 

working hours), medications, and current or previous health status. Also, investigating the 

effect of including more risk factors for diabetes in KSA, such as diet or blood pressure, or 

even including different categories of risk factors (e.g., non-modifiable risk factors), such as 

family history and gestational diabetes. The integration of different risk factors might help to 

obtain more precise predictions of diabetes prevalence and thus contribute to supporting 

health policy makers with more plans and options for intervention. Moreover, examining the 

use of machine learning methods to predict the risk of developing any complications of 



144 

diabetes such as nephropathy, retinopathy, and cardiovascular disease. This would help to 

maintain the quality of life of diabetic individuals and reduce the rising burden of diabetes on 

healthcare budget.  

The structure of the model could also be improved to include information to estimate the future 

health and economic burden associated with diabetes and the related complications using 

measures such as quality adjusted life years (QALYS) and provide estimations of the total 

direct and indirect disease costs. Furthermore, this modelling work of diabetes could be 

enhanced and developed to study other types of chronic diseases such as high blood 

pressure, heart problems, etc. Additionally, the proposed models could be further used to 

estimate specific morbidity and mortality outcomes from other diabetes-related disease such 

as cardiovascular disease, chronic kidney disease, by using the estimated future 

cardiometabolic risk factors’ outcomes to estimate the impact of diabetes on those diseases. 

Furthermore, one could explore the use of the latest modelling technologies, such as deep 

learning and reinforcement learning, to study the prevalence of diabetes disease in KSA or in 

any of the Gulf Cooperation Council Countries (GCC), as they share many similarities in 

environments, lifestyle, social and cultural habits (including diabetes risk factors).  
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