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Abstract21

Characterising the inter-seasonal energy performance of buildings is a22

useful tool for a business to understand what is normal for its portfolio of23

premises and to detect anomalous patterns of energy demand. When adding24

a new building to the portfolio, it will be useful to predict what will be25

the likely energy use as part of on-going monitoring of the site. For a large26

portfolio of buildings with, say, half-hourly energy use measurements (48 di-27

mensions), analysis and prediction will require machine learning tools. Even28

so, it is advantageous to minimise the amount of data and number of di-29

mensions and features required to find useful patterns in the measurement30

stream. Our aim is to devise a reduced feature set that can generate a sta-31

tistically reasonable representation of daily electricity load profiles of retail32

stores and small supermarkets. We then test if our method is sufficiently33

accurate to predict and cluster measured patterns of demand. We propose34

an automatic method to extract features such as times and average demands35

from electricity load profiles. We used four regression models for prediction36

and six clustering methods to compare with the results obtained using all of37

the readings in the load profile. We found that the reduced feature set gave a38

good representation of the load profile, with only small prediction and clus-39

tering errors. The results are robust as prediction is supervised learning and40

clustering is unsupervised. This simplified feature set is a concise way to rep-41

resent profiles without using small variances of the demand that do not add42

useful information to the overall picture. As modern sensor systems increase43

the volume, availability, and immediacy of data, using reduced dimensional44
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datasets will be key to extracting useful information from high-resolution45

data streams.46

Keywords: clustering, electricity demand, commercial, prediction, machine47

learning, supermarket48

Abbreviations49

ANN Artificial neural networks50

ED Euclidean distance51

EDLP Electricity daily load profile52

kNNR k-nearest neighbours regression53

ML Machine learning54

NP Normalised percentage difference with respect to the original EDLP55

OLS Ordinary least of squares56

SE Supermarkets using only electricity57

SEG Supermarkets using electricity and gas58

SVR Support vector regression59

Symbols60

ei electricity consumed (kWh) between the (i− 1)-th and i-th time interval61

k number of EDLPs used for the prediction62

p number of previous years used to predict the EDLP63

s0 off-peak time period in the EDLP64

s1 time period of the off-peak to peak transition time in the EDLP65

s2 peak time period in the EDLP66

s3 time period of the peak to off-peak transition time in the EDLP67
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t0 first time interval of the EDLP where the slope of the off-peak/peak tran-68

sition starts69

t1 first time interval of the EDLP where the main peak stabilises70

t2 first time interval of the EDLP where the peak starts to decrease71

t3 first time interval of the EDLP where the non-peak behaviour stabilises72

after the peak73

~t t0, t1, t2 and t474

y year used to compute the EDLP75

D number of time intervals of the EDLP76

B set of supermarket building characteristics used to predict the EDLP77

Ls EDLP of the supermarket s78

S, S ′ sets of new and existing supermarkets respectively79

2-feat µ(s0), µ(s2), m(s1), m(s3) and ~t80

4-feat µ(s0), µ(s2), m(s1) and m(s3)81

8-feat µ(s0), µ(s2), m(s1), m(s3) and ~t82

µ(si) mean of the energy values that are in si83

m(si) slope of the line that crosses the energy values that are in si84

1. Introduction85

The aim of reducing greenhouse gas emissions is shared by most coun-86

tries [1, 2] with the UK aiming at greenhouse neutrality by 2050 [3]. As energy87

use in buildings across the EU accounts for more than 30% of final energy88

demand [4], cutting and time-shifting energy demand of all types of buildings89

(residential, commercial, services and industrial) are needed to achieve these90

targets. Residential buildings have received much attention [5, 6, 7], whilst91

commercial and industrial buildings less so due to the lack of open data-sets92

and their heterogeneity [8, 9].93
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The total energy demand and the temporal profile are useful performance94

indicators for buildings estate management, investment decisions, site acqui-95

sitions, and improvement programmes. Knowing the expected demand of a96

store establishes a baseline for: 1) planning annual energy budgets for the97

portfolio of stores, 2) negotiating energy supply contracts, and 3) detecting98

stores with abnormal or anomalous usage. Inevitably there are differences99

between stores, with the key being understanding the variability and what100

is acceptable usage for any store. Grouping the stores based on common101

demand patterns reveals existing distinct behaviours in the store portfo-102

lio [10, 11, 12, 13]. This informs which measures might be more effective or103

cost-efficient for each group, and identifies stores whose demand patterns do104

not match any of the discovered groups (anomalous behaviour).105

In general, clustering techniques are unsupervised machine learning algo-106

rithms that divide data-sets into groups (clusters) without a priori informa-107

tion [14, 11]. Both prediction and clustering of energy demand is commonly108

performed over electricity daily profiles (EDLP), which are a concise, infor-109

mative, and intuitive way to represent, analyse and visualise the electricity110

demand of any source [11, 12]. EDLPs are data representations for which111

the electricity demand during a day is computed with a temporal granularity,112

D. This temporal resolution indicates the number of points (demand values)113

that formed the profile, e.g. if D = 24 each demand value is the hourly114

demand. A disadvantage of using full EDLPs is the so-called “curse of di-115

mensionality” [15], meaning that some machine learning (ML) algorithms116

can have temporal and memory issues when working with high-dimensional117

data-sets. By the same token, too few data points for training the algorithms118

risk over-fitting the model.119

We propose representing EDLPs using only a small set of characteristic120

features (dimensional reduction) that are automatically extracted from the121

profile instead of using the D-dimensional daily profile. We separately in-122

vestigate both predicting and clustering the EDLPs using only the extracted123

features. New supermarkets profiles are predicted using the historical de-124

mand of other stores. Four different ML regression algorithms are imple-125

mented to predict EDLPs over a data-set of 213 supermarkets during a six126

year period. Experiments in clustering EDLPs are performed using six dif-127

ferent algorithms over the supermarket data-set and a data-set of 641 retail128

stores, independently. Both data-sets are real data obtained from smart me-129

ters. Based on the proposed extracted features and these two ML problems,130

the questions that we try to answer are:131
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• How accurately can D-dimensional EDLPs be represented using a small132

set of features?133

• Using only this set of features is it possible to predict future EDLPs134

of new stores with different ML methods, as accurately as when using135

the whole EDLP?136

• Using only this set of feature is it possible to cluster the electricity137

demand as accurately as when using the whole EDLP?138

• Is it possible to extend and generalise this representation over other139

commercial data-sets that have other temporal resolution?140

The paper is structured in the following way. We review the literature for141

ML related to energy analytics is in Section 2. In Section 3 we explain the pre-142

processing of the real-world data-sets and the computational experiments.143

The results obtained for these experiments and discussion about them are in144

Section 4. Finally, we draw conclusions and propose future work in Section 5.145

2. Literature review146

Predicting electricity demand of buildings (regardless of type) can be di-147

vided into two basic approaches: model-driven and data-based. The model-148

driven approach uses sophisticated high-resolution engineering methods based149

on the thermal, energy, and architectural features of the building to simu-150

late its energy demand. In data-driven approaches, the energy performance151

of the building is directly modelled with numerical and statistical methods.152

There are extensive reviews on methods to predict, model and benchmark153

energy use in buildings [16, 17, 18, 19, 20, 21]. A possible classification of the154

data-driven techniques used to predict energy demand [20, 21] is: 1) conven-155

tional statistical techniques, 2) classification-based models, 3) support vector156

regression (SVR) model, 4) artificial neural networks (ANN), 5) genetic algo-157

rithms, 6) grey models, 7) fuzzy model and 8) other models (e.g. case-based158

reasoning). Our study exploits the first four classes of techniques, and we159

focus our review on the prediction of demand in commercial buildings and160

supermarkets.161

Conventional statistical techniques include change-point algorithms and162

linear regression models such as autoregressive models and ordinary least163

squares (OLS). Autoregressive models have been used to predict short-term164
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heat load for a single building [22] and, in combination with ANN, used165

to predict the annual electricity consumption of 787 education facilities in166

South Korea over a period of seven years [23]. Schrock and Clarige [24] used167

a change-point algorithm and a year of 15-min electricity readings of one168

grocery store to predict hourly and daily consumption. Linear regression169

has been applied to the prediction of 1-h heat load profiles of 116 buildings170

(health, education, business, and hotels) over three years [25]. The same171

linear models have also been used on data from 215 UK large supermarkets172

to estimate the total annual electricity demand [26], and by [27] to estimate173

annual energy-use intensity for UK 30 supermarkets using building features174

such as floor area and building age and the number of customers. In the175

context of climate change adaption [28] exploited temperature and humidity176

values to predict weekly electricity and gas demand for a single supermarket177

for the period 2030-2059 using multiple linear regression analysis.178

Classification-based models include algorithms that were extended to per-179

form regression. The k-nearest neighbour regression (kNNR) algorithm was180

used to forecast the next day consumption of 6,000 domestic Irish build-181

ings in [29], and for the hourly air conditioning load of an office building in182

China [30]. Random forest (set of decision trees) and ANN (separately) were183

used to predict hourly HVAC loads of a Spanish hotel [31] over a period of 15184

months. Similarly, decision trees, ANN and linear regression are compared185

to predict weekly electricity consumption of 1200 dwellings during the winter186

and summer of one year [32].187

ANN has been used to predict the energy demand in 17 studies from 1996-188

2015 [19]. Short-term electricity demand of a commercial building complex189

using 15-min resolution data was predicted using ANN in [33]. Daily diurnal190

cooling load is forecasted for three university buildings with ANN in [34],191

using data recorded over two years. Both ANN and SVR were compared192

when predicting hourly cooling load in an office building in China [35] and193

hourly energy consumption of an office building in Shanghai [36]. Electric-194

ity consumed by the HVAC and refrigeration systems of one supermarket is195

predicted using ANN [37]. ANN, Gaussian process regression, linear regres-196

sion and dynamic mode decomposition are compared in the prediction of 1-h197

weekday profiles of a commercial building [38]. Lastly, deep learning models198

(large neural-networks) have been also explored for this problem, however199

they need large data-sets to estimate the model parameters. For example,200

Hafeez et al. [39] used deep learning for short-term load forecasting over three201

power-grids with hourly resolution. A deep learning network and a genetic202
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algorithm were combined to predict the 1-h daily profile in an office building203

over one year [40]. This work applies the clustering of daily weather profile204

before predicting the demand.205

Support Vector regression (SVR) models were used by Dong et al. [41] to206

predict monthly energy consumption of four commercial buildings in Singa-207

pore. Models based on SVR have also been used to predict the energy load208

(hours to days) of a French residential building [42]. SVR and six other tech-209

niques was also investigated by [43] to predict next-hour residential building210

electricity consumption for three houses. Jain et al. [44] examine the impact211

of temporal (e.g. daily, hourly, 10 min intervals) and spatial (e.g. , whole212

building, by floor, by unit) granularity to short-term prediction. Experi-213

ments were performed using SVR over data from a multi-family residential214

building in the USA. Granell et al. [13] compared four techniques, kNNR, or-215

dinary least of squares linear regression, ANN, and SVR in predicting whole216

EDLPs of new supermarkets using data from a portfolio of 213 UK super-217

markets with readings spanning six years.218

From this range of techniques we can conclude that there is no con-219

sensus about the superiority of a specific technique. Studies that compare220

several techniques usually report marginally differences in the prediction re-221

sults e.g. [30, 32, 13, 43], or contradictory results e.g. ANN over-performs222

SVR [36] and vice-versa [35]. These results support our selection of four dif-223

ferent types of predictors to address our problem. In addition, our prediction224

work addresses some of the areas that have received less attention. First, re-225

tail is clearly under-represented in the literature. For example, according to226

reviews by Chung [16] and Li et al. [21] only 22% and 33%, respectively, of227

investigations were about consumption in commercial buildings, and fewer228

still in other studies [17, 18]. Particularly notable is the severe lack of work229

in the literature on predicting energy use by supermarkets. There are differ-230

ences between patterns of energy demand in commercial and retail premises,231

but also similarities in niche sectors [8]. Secondly, the prediction of daily pro-232

files [39, 25, 13, 40] is not common, most of the long-term prediction studies233

use weekly, monthly, or annual demand. Thirdly, prediction experiments234

using retail data-sets with a size that can be considered representative (hun-235

dreds of buildings) are also infrequent. Finally, predicting the future demand236

of new buildings for a long period of time (more than three or four years) is237

a highly unusual approach; most studies predict the future demand for the238

study building and they usually do not use several years of continuous data.239

Reviews of clustering methods applied over electrical data can be found240
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in [11, 12, 10]. Most studies have used residential data-sets, but some work241

clustering electricity profiles of commercial and industrial customers has been242

completed. For example, 292 Greek industrial and service customers are243

clustered using a two-stage ML algorithm [45]. Wavelet decomposition was244

used [46] to select significant features to describe the hourly load profiles245

of 9,092 Danish industrial and commercial loads for two-week data. Later,246

they applied clustering using the k-means algorithms over these features.247

In [47] they investigate several clustering techniques such as k-means and248

hierarchical algorithms to cluster 234 non-residential customers, and a data249

set of 1,877 UK business from the entertainment sector was used to perform250

clustering with a Dirichlet process mixture model [48].251

A recent review of dimensional reduction techniques appears in [10]. Di-252

mensional reduction has been attempted for electricity demand modelling253

and clustering [46], and for symbolic aggregate approximation with hier-254

archical clustering [49]. Representing the data with principal component255

analysis, the curvilinear component analysis, and the Sammon map are in-256

vestigated by [47]. The effect of the time resolution when clustering domestic257

EDLPs [50] was investigated by averaging over regular intervals instead of258

extracting key features based on the specific shape of the retail EDLP as we259

do here. Residential demand profiles have been characterised and clustered260

with a set of five points that match the peaks [51].261

3. Methods262

First we describe the data-sets used to perform the experiments. Sec-263

ondly, the features to represent the EDLP and methods to extract them are264

explained. Thirdly, we describe the prediction algorithms, evaluators, and265

experiments. Finally, clustering algorithms and evaluators are defined.266

3.1. The data-sets267

Two data-sets are used to perform the experiments. The first comprises268

1-h resolution electricity meter readings (kWh) from 213 UK supermarkets269

of the same chain for the period 2012–17. The detail of the meta-data fea-270

tures available of each supermarket are described elsewhere [13], but are271

summarised as: floor area subdivided into eight categories (e.g. chilled, pro-272

duce, storage), geographical location, daily average external temperature,273

and electricity consumption. There are 129 supermarkets that use electricity274
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and gas (SEG) and 84 supermarkets that use only electricity (SE). The sec-275

ond data-set comprises 663 UK retail stores (single company) with electricity276

meter readings at 0.5-h resolution acquired between April 2013 and October277

2014. In this case, the only meta-data fields are the address and outlet type278

category that summarise the location of the store (e.g. arterial route, high279

street retail park, shopping centre).280

For both data-sets an analytic filtering pre-process removes anomalous281

readings with zero or negative values, accounting for less than 0.8% of the282

data. In addition, stores with less than the equivalent of half a month of283

data (360 and 720 readings for the supermarket and retail store data-sets284

respectively) are removed: For the retail store data-set this was 22 shops285

leaving 641 stores for analysis, whilst for the supermarkets it varied from286

year-to-year [13].287

3.2. Features extraction to represent the EDLP of supermarkets288

Like most retailers, the supermarkets have a fixed daily schedule: they289

usually open in the morning to close later in the evening [52]. Based on290

these schedules, the electricity consumption patterns are quite similar to each291

other with a typical inverted-U shape. Figure 1 shows the daily profiles, for292

different seasons, of four different supermarkets and retail stores from our293

data-sets. These eight EDLPs show similar patterns characterising the peak294

and off-peak periods, however, they exhibit variability during these periods.295

Energy demand by supermarkets are greater than that of retail stores.296

Based on these behaviours we can define four time periods in which im-297

portant changes occur (Figure 2):298

t0 indicates the first time interval of the EDLP where the slope of the off-299

peak/peak transition starts.300

t1 is the first time interval of the EDLP the main peak stabilises.301

t2 is the first time interval of the EDLP the peak starts to decrease.302

t3 is the first time interval of the EDLP where the non-peak behaviour sta-303

bilises after the peak.304

These periods follow the conditions that ti ∈ [0, D − 1], 0 ≤ i ≤ 3 and305

ti < ti+1, 0 ≤ i ≤ 2. In the example given in Figure 2 their value are: t0 = 6,306

t1 = 9, t2 = 15 and t3 = 21, corresponding to 6.00am, 9.00am, 3.00pm and307
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Figure 1: Example Winter and Summer daily profiles of four different supermarkets (Sup)
and retail stores (Pho).

9.00pm, respectively. By defining the vector grouping the four time features308

as ~t = {t0, t1, t2, t3}, we can divide the EDLP into four intervals using:309

off-peak time period in which the supermarket is closed and the demand310

is a stable baseload of refrigeration, as HVAC and lighting should311

be switched-off or to minimum power. Formally, it is s0 = [0, t0 −312

1[∪[t3, D − 1] e.g. horizontal green lines in Figure 2.313

off-peak to peak transition short period occurring a little before the store314

is opened to customers when the HVAC, lighting, and other services315

ramp to their peak values. Formally, it is s1 = [t0−1, t1] e.g. horizontal316

yellow line in Figure 2.317

peak period in which the demand is constantly high as the supermarket is318

open. The appliance power consumption is usually stable, but short-319

10



term variability may occur (see EDLPs of Figure 1). Formally, it is320

s2 = [t1, t2 − 1] e.g. horizontal pink line in Figure 2.321

peak to off-peak transition short period following the closure of the store322

to customers, but staff may still be present. Modern appliances should323

not have a very long temporal lag for reducing their demand when they324

are switched-off. Formally, it is s3 = [t2 − 1, t3] e.g. horizontal grey325

line in Figure 2.326

Given any interval of time s = [t, t′] with t′ > t, we define two generic327

operators: 1) µ(s) as the mean of the energy values from time t to t′,328

i.e. µ(s) =
∑t′

i=t ei/(t
′ − t + 1) and 2) m(s) is the slope of the line that329

crosses the points (t, et) and (t′, et′), i.e. m(s) = (et′ − et)/(t′ − t).330

We can describe the profile using eight features: the four time periods331

of the events (~t), consumption of the off-peak and peak periods (µ(s0) and332

µ(s2)), and the slopes of the transitions (m(s1) and m(s3)). The demand333

values of µ(s0) and µ(s2) are the average during all the values of the off-peak334

and peak respectively, and they are a linear approximation of the demand335

during these time intervals. Values of m(s1) is the rate of demand increasing336

by hour when moving from off-peak to peak period (this value is always337

positive as demand increases during this period.). The value of m(s3) is338

always negative as the demand decreases during the peak/off-peak transition339

interval. Given these eight features, the estimated profile ~e′ = {e′0, . . . , e′D−1}340

can be reconstructed using Euclidean geometry:341

• Off-peak values are equal to µ(s0):, e
′
i = µ(s0), 0 ≤ i < t0 and t3 ≤ i <342

D343

• Values of the off-peak/peak transition are computed with the linear344

equation y = x ∗ m(s1) + b where independent term b is computed345

by substituting the equation with the data point (t0 − 1, µ(s0)): e
′
i =346

i ∗m(s1) + b, t0 ≤ i < t1.347

• Peak values are equal to µ(s2): e
′
i = µ(s2), t1 ≤ i < t2.348

• Values of the peak/off-peak transition are calculated with the linear349

equation y = x ∗m(s3) + b′ where term b’ is computed by substituting350

equation with the data point (t2−1, µ(s2): e
′
i = i∗m(s3)+b

′, t2 ≤ i < t3.351
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As an example, Figure 2 shows a reconstructed profile (red lines) obtained352

using the eight selected features and a real profile (black line) of a supermar-353

ket EDLP. The off-peak demand is estimated well, likewise the central part354

of the peak demand. However, the beginning of the peak demand is underes-355

timated and the end is overestimated. The discrepancy (error) between the356

reconstructed profile (~e′ = {e′0, . . . , e′D−1}) and the real values of the profile357

(~e = {e0, . . . , eD−1}) is quantified using evaluators:358

Euclidean Distance (ED) in which discrepancies between the EDLPs ab-359

solute values are accumulated (in kWh),360 √√√√D−1∑
i=0

(ei − e′i)2 (1)

Normalised Percentage (NP) difference with respect to the original EDLP361

(NP) computes the relative distance considering the proportion of the362

error with respect to the total consumption of the original profile,363

100 ∗
∑D−1

i=0 |ei − e′i|∑D−1
i=0 ei

(2)

The ED and the NP between the modelled and real EDLPs of Figure 2 are364

15.8 kWh and 3.9% respectively. The evaluators ED and NP are extended365

over the whole data-set using the average ED and NP respectively for all366

stores.367

As the whole feature set can be obtained directly with the time period368

vector ~t, they can be automatically computed searching using the objective369

function to minimise the error:370

~̂t = arg min
~t

(Ev(~e, ~e′~t)) (3)

where ~e′~t is the reconstructed profile using ~t, and Ev is an evaluator computed371

over the two EDLPs. For evaluator Ev, we use the ED. A brute-force search372

method in which all possible values of ~t are explored to find the optimal373

solution ~̂t as it is restricted search. For the example (Figure 2) the set of374

features obtained using this objective-function method are ~t = (6, 9, 15, 21),375

µ(s0) = 32.0 kWh, µ(s2) = 100.0 kWh, m(s1) = 16.2 kWh/h and m(s3) =376

−9.2 kWh/h. The utility of this approach needs to be demonstrated for377

problems such as prediction and clustering.378
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Figure 2: Modelled profile based on the eight proposed features (red line) and real profile
(black line).

3.3. Computational prediction experiments379

Experiments are performed using only the extracted features to predict380

electricity demand of new supermarkets. The EDLP of a new supermarket381

Ls = e0, . . . , eD−1 for a year y is predicted based on historical profiles of382

existing supermarkets S ′ and the supermarket building characteristics B. Ls383

is the EDLP of the new supermarket s, ei is the electricity consumed (kWh)384

between the (i− 1)-th and i-th time interval, D is the number of intervals, S385

and S ′ are the set of new and existing historical supermarkets, respectively386

(S∩S ′ = ∅). The set of store characteristics B is the set of available informa-387

tion about the supermarket building such as the floor area divided by usage388

and the supermarket geographical location. Therefore, we train a regression389

ML algorithm with all the supermarkets of S ′ where the independent vari-390

ables (input) are the store characteristics B and the dependent variable to391

predict (output) is ei, 0 ≤ i < D.392
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As we do not know which store characteristics B use nor how many stores393

k to select to train the ML model, the best combination of (k,B) is searched394

using Equation 4.395

(k̂, B̂) = arg min
k,B

∑
s∈S

Ev(Ls, Ls(k,B))) (4)

where S is the set of new supermarkets, Ls is the real EDLP of supermarket396

s, Ls(k,B) is the predicted energy profile when using parameters (k,B) and397

Ev(Ls, L
′
s(k,B)) is the evaluator that measures the error between the pre-398

dicted and real profile. As Ev we use the average Euclidean distance over all399

the real and predicted stores:400

ED =

∑
s∈S EDs

|S|
(5)

where EDs is the ED computed over the real and predicted EDLPs of the401

supermarket s.402

Four different ML algorithms are investigated:kNNR [14], ANN [14], SVR [53],403

and OLS [54].404

We only use the extracted features to represent the ELDP i.e. these fea-405

tures are predicted using as input the store characteristics B instead of pre-406

dicting the whole profile. The diagram of Figure 3 illustrates the steps of the407

experimental set-up:408

1. The eight features of each supermarket (~t, µ(s0), µ(s2), m(s1) and409

m(s3)) are computed.410

2. These features are predicted independently for each supermarket s′411

using the regression model using as input the store features (B′s). That412

is, for each supermarket s′, the eight features of the EDLP of year y413

are predicted with the regression algorithm. This ML model is trained414

with the features extracted of the EDLP computed in previous years415

y − t of the stores of the set S − {s′}.416

3. The profile of the predicted store is reconstructed with the eight pre-417

dicted features of the store (~t′, µ′(s0), µ
′(s2), m

′(s1) and m′(s3)). The418

evaluators are computed between this reconstructed profile and the419

original profile of the test supermarket (s′).420

4. Parameter search (k,B) is performed and final error is computed over421

the best parameter combination (k̂, B̂) that minimizes Equation 4.422
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Figure 3: Logical flow of the prediction experiments using the features to represent the
profiles.

The two essential points of this experimental set-up are 1) the ML algo-423

rithm predicts the summarised features of the profile, and 2) the evaluation424

is performed comparing the reconstructed profile using the predicted features425

with the real profile to predict (not with the reconstructed profile over the426

real features). Due to the second point it is feasible to compare the results427

obtained with these experiments with the results obtained when predicting428

the whole profile. As the values of ~t are integer numbers, the closest integer429

is selected to the value returned by the regression model.430

Fewer than 30 supermarkets are opened each year and we assume that431

each is opened within year y. The historical EDLPs of the other |S| − 1432

supermarkets are used to predict the EDLPs of the new ones, improving the433

robustness of the experiments. The leaving-one-out technique [14] uses all434

the data points — except the one being estimated — as predictors (repeated435

|S| times) to compute the EDLP of the new one for year y.436

Experiments are carried out separately over EDLPs of the supermarkets437

computed for 2013–2017, seasons (Winter, Summer and Spring/Autumn),438

and SE/SEG sets [13]. We employ the brute-force approach (Equation 4) to439

search all parameter combinations (k̂, B̂). The maximum number of combi-440

nations, for each season is (2|F |−1)∗(|S|−1) = (2|11|−1)∗(129−1) = 262, 016.441
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For ANN and SVR (temporally more complex) we used stepwise regres-442

sion [14] with the whole feature set B (using all the supermarkets, k = |S|).443

For the ANN, we use a logistic function as an activation function, over a two444

internal layer net, i.e. the configuration of the network is |B|-4-2-1, where445

|B| is the number of features. The function neuralnet of the R language [55]446

is used with the default parameters, i.e. the resilient backpropagation algo-447

rithm with 105 maximum steps for the net training. For SVR, we used a448

radial basis kernel function to model the non-linearly. The function svm of449

the R language [56] is used with default parameters. The parameters of the450

ML methods are the same that were used in [13] to enable comparison with451

previous work. Both R scripts were invoked for each one of the computing452

experiment from the generic C++ code.453

3.4. Clustering experiments454

Clustering experiments group all the available EDLPs computed dur-455

ing a specific year for each data-set independently. The result depend on456

both the algorithm and the way the data is represented. Our aim is to457

compare clustering results—not algorithm performance—with the two data458

representations. Thus we selected two types of clustering algorithm: parti-459

tioning and agglomerative hierarchical. The partitioning algorithm we chose460

was k-means [47, 11, 45, 57, 58]. For the agglomerative hierarchical algo-461

rithm [47, 11, 45, 57] there is more choice depending on the criterion used to462

compute the distance to merge the clusters: Single link algorithm, Complete463

link algorithm, Unweighted pair group method average algorithm (UPGMA),464

Unweighted pair group method centroid algorithm (UPGMC), Weighted pair465

group method centroid algorithm (WPGMC) and Ward or minimum variance466

algorithm (WARD).467

We selected six evaluators [59] to asses the clustering results: the cluster-468

ing dispersion indicator (CDI), Davies-Bouldin index (DBI), modified Dunn469

Index (MDI), mean index adequacy (MIA), scatter index (SI), and variance470

ratio criterion (VRC). These evaluators are based on the similarity of the471

data elements within each cluster, and the difference among elements of the472

other clusters.473

The clustering is performed using directly three sets of features:474

8 features (8-feat): µ(s0), µ(s2), m(s1), m(s3) and ~t.475

4 features (4-feat): µ(s0), µ(s2), m(s1) and m(s3).476

16



2 features (2-feat): m(s1) and m(s3).477

However, we decided to evaluate directly over the whole profiles. The reason478

for this is that the output of clustering is the grouping in which all the data-479

points (in our case EDLP) can be distributed based on the ML algorithm.480

As all the evaluators use the intra-point distance, we consider that the fairest481

way to compare the quality of the obtained grouping is to compare over the482

same set of points. Clustering results using the eight features are compared483

with respect to the clustering obtained using the whole EDLP. For the k-484

means algorithm 100 repetitions with different random initialisation were485

performed and the evaluations are averaged. The number of clusters (input486

parameter of the algorithm) is 2–10 exploring all the values. All the software487

was coded in C++.488

4. Results and Discussion489

We have performed a large number of computational experiments. For490

clarity, we discuss separately the results obtained for: 1) representing the491

EDLPs using the eight features, 2) the prediction experiments and 3) the492

clustering experiments. Prediction experiments were not performed using493

the retail stores data-set as there was only one year of data.494

4.1. Representing supermarket EDLPs with the selected features495

An example of the features for the Winter 2017 profile of a SEG super-496

market is in Section 3.2. Histograms of Figure 4 show the range of values for497

the features t0, t2, m(s1) and µ(s2) extracted from the Winter 2017 profiles498

of all the 129 SEG supermarkets.499

For the periods t0 (Figure 4a) and t1, there are only four different hours500

in which they occur, and one of the hours is much frequent than the oth-501

ers: 6am (70.5% of supermarkets) and 8am (50.4%) for t0 and t1 respectively.502

The period t3 also has one value more frequent than the others (9pm, 55.0%),503

however there are eight different values for the t2 (Figure 4b). The histograms504

exhibit little variability of values and the distribution is Gaussian. However,505

the most important insight is the variability in which the peak and off-peak506

can begin and end. This shows that using a fixed time for these moments is507

an over-simplification that does not properly represent the real pattern of the508

demand. In addition, the range of values for these time slots is restricted,509

indicating common patterns for the supermarkets. Intervals for the mean510
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(a) Time slot t0. (b) Time slot t2.

(c) Mean µ(s2) (d) Slope m(s1).

Figure 4: Histograms with values for t0, t2, m(s1) and µ(s2) features computed over the
SEG supermarkets (Winter 2017 profiles).

values (kWh) in Figure 4c and slopes values (kWh/h) in Figure 4d need to511

be used as they are continuous variables. Nine different intervals are created512

for the histograms and an additional bucket with the extreme values. Both513

average demand values for peak and off-peak periods show an important vari-514

ability in their respective values. One reason for this large range of demand515

values is the large variability of the floor area. These two histograms are not516

normally distributed.517

The same analysis can be computed for any season, year and store type.518

Results would be similar as the variability of the shape of the profiles is not519

very high. This is demonstrated when computing the errors. The NP evalu-520

ator between the real the reconstructed profiles (all years, seasons and set of521
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stores) are computed. For the SE stores, the best NP results are 5.8%, 4.5%522

and 5.3% for 2017 Winter, Summer and Spring/Autumn ELDPs respectively.523

For the SEG stores, the best NP results are 4.3%, 4.1% and 4.1% for 2017524

Winter, Summer and Spring/Autumn ELDPs respectively. We note that525

the error increases when the profiles are computed over older years. The526

worst NP scores is 7.2% computed over stores just with electricity over the527

Winter 2014 profiles. Comparing seasons, errors over Winter profiles are al-528

ways slightly greater than for Spr/Aut profiles and errors over these ones are529

greater than for Summer profiles. The error for stores that consume electric-530

ity and gas is lower than stores than consume only electricity. This indicates531

that the heating system increases the complexity of the profile making the532

approximation of it using the proposed features more difficult. In analysing533

the shape of the profiles, we see that the demand fluctuations during the534

main peak are more common in Winter than Summer profiles, e.g. the 10am535

peak in Figure 2, or the afternoon in Figure 1. These fluctuations increase536

the error when modelling the consumption by averaging the demand over537

long periods, as we do with the reconstructed profile.538

When representing the retail stores using the proposed feature and all539

the seasonal data ED = 1.0kWh and NP=3.8%. Errors for this data-set540

are lower than errors obtained with the supermarkets as they have lower541

demand and a more regular U-inverted shape. Figure 5 displays the real542

and re-computed EDLPs for the case with the lowest NP (0.5%), median NP543

(3.5%) and worst NP (11.7%). The reconstructed EDLP in Figure 5a and544

Figure 5b match quite well the respective real EDLP. In the case of Figure 5c,545

the error is greater as there is an additional peak in the peak period and a546

valley in the off-peak period. Our model does not represent properly such547

events, but this type of event is unusual. Similar scores can be seen when548

using the Summer, Winter and Spring/Autumn profile.549

4.2. Prediction experiments550

Prediction experiments are independently performed for all supermarket551

EDLPs computed during each year (2013-2017), season (Winter, Summer and552

Spring/Atumns) and store type (SE and SEG) giving a total of 5*3*2=30553

different sets. An example of prediction for a particular supermarket (the554

example in Figure 2) is shown in Figure 6. The black profile is the real555

demand, the red and green profiles are predicted using the feature represen-556

tation. These were the best predictions (considering the parameter search557

that minimises ED over all the set of stores) and they were obtained using558
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(a) Lowest NP. (b) Median NP.

(c) Greatest NP

Figure 5: Real and reconstructed EDLP using the features with the lowest, median and
worst NP scores for the retail store data-set.

OLS with features={GM area, Cafeteria area, Sales area, Office area, Chilled559

area} and k=98 for the whole profile representation and features={GM area,560

Cafeteria area, Sales area, Storage area, Chilled area, Location} and k=75561

for the key feature representation. The values for the evaluators are ED=64.0562

kWh and NP=16.6% when predicting the features and ED=59.5 kWh and563

15.6% when predicting the whole profile. In this case, using the features564

implies a relative increase of the error of 7.5% and 6.4% with respect to the565

whole profile prediction for ED and NP evaluators, respectively.566

Table 1 shows the results for the NP evaluator obtained when averaging567

the evaluator over all the supermarkets in the set.568

The lowest error for the NP evaluator is 12.5% (Summer 2017) using569
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Figure 6: Real and predicted profiles using both the feature representation and the whole
profile for one supermarket.

the OLS regression method for supermarkets using electricity and gas. This570

result is in line with those for the whole profile [13] and can be summarised571

thus:572

• Errors computed over cold seasons are greater than errors obtained573

during warm seasons i.e. Summer profiles are better predicted than574

Spring/Autumn profiles, which are better than Winter profiles. The575

most likely cause is the uncertainty and variability of the heating system576

consumption:577

• Errors obtained during most recent years are usually smaller than for578

old data. We suggest that stores tend to become more homogeneous579

as older appliances are routinely replaced.580

• There are only small differences when comparing algorithms. However,581
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the OLS usually outperforms the other three regression methods which582

is due to the modest size of the data-sets.583

• Stores with electricity and gas are better predicted than stores using584

electricity only. This too relates to the level of complexity added by585

the need to also predict the heating demand.586

Comparing the results obtained using the feature set and those using587

whole profile representations shows the feasibility of exploiting reduced di-588

mensionality to predict EDLPs. Figure 7 shows the ED values using both589

representations. The scores when using the full dimensional set (the whole590

profile) to predict the ELDP are better than using the reduced feature set.591

However, in many cases the difference is insignificant, especially for the most592

recent years. Using the ED evaluator the absolute difference is an average593

of 4.0 kWh (6.0%) and 4.4 kWh (8.3%) for SE and SEG, respectively, when594

comparing the two methods. For both SE and SEG, NP using the feature595

set is 0.9 points worse than using the whole profile. The relative differences596

for this evaluator are 4.6% and 5.9% for SE and SEG respectively.597
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TypSt Year Season KNN OLS SVR ANN
Wint 23.5 22.0 21.2 22.5
Sum 20.8 18.9 19.4 19.6

20
13

Spr/Aut 22.1 19.3 19.4 20.3
Wint 23.2 21.9 22.6 23.2
Sum 20.6 19.2 20.2 20.5

20
14

Spr/Aut 24.9 21.4 22.9 22.4
Wint 25.1 22.7 23.9 23.3
Sum 23.0 20.2 20.9 21.5

20
15

Spr/Aut 21.8 20.6 20.9 21.4
Wint 25.2 26.3 27.9 27.4
Sum 19.7 18.6 18.8 19.6

20
16

Spr/Aut 19.0 19.0 19.6 20.3
Wint 22.9 21.9 22.8 23.0
Sum 17.7 18.1 17.6 19.2

S
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w
it

h
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.

(S
E

)

20
17

Spr/Aut 21.2 19.6 19.9 20.2
Wint 21.5 18.5 18.9 19.3
Sum 16.3 13.9 13.9 14.3

20
13

Spr/Aut 17.9 15.2 15.8 15.5
Wint 19.9 17.1 17.9 18.6
Sum 16.3 14.9 14.9 14.9

20
14

Spr/Aut 17.3 15.6 15.9 15.8
Wint 18.7 17.4 17.9 17.9
Sum 16.1 15.0 15.5 15.1

20
15

Spr/Aut 16.2 14.7 15.6 15.3
Wint 17.2 17.7 18.1 18.6
Sum 13.6 13.1 14.9 13.7

20
16

Spr/Aut 14.3 13.5 14.4 14.1
Wint 17.5 14.6 15.6 16.2
Sum 15.3 12.5 13.1 13.2

S
to

re
s

w
it

h
el

ec
.

an
d

ga
s

(S
E

G
)

20
17

Spr/Aut 16.0 13.1 13.7 13.9

Table 1: Prediction results using the NP (%) evaluator for the profile represented with
the key features. Results are separated by algorithms, seasons, years and store type.
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To understand the reasons for the greater error using reduced dimen-598

sionality it is necessary to re-think the sequence of processes performed in599

this prediction experiments (Figure 3). In this sequence, both modelling600

and prediction errors can occur throughout in the process chain. First, the601

profile to be predicted is modelled using the features with non-trivial er-602

ror (see Section 4.1). Secondly, like any prediction process the features of603

the EDLP are not perfectly estimated using the regression model. Thirdly,604

when reconstructing the profile using these predicted features we are again605

approximating the whole profile adding new error.606

As the evaluation is performed against the (full dimensional) real profile607

it seems logical to have greater error than predicting directly whole profiles.608

On the other hand, we have shown that the features are able to explain and609

capture the main patterns of the load profile with fewer parameters to predict610

than using the whole profile. Interestingly, as the difference in the results611

are small, the positive factors compensate the negative ones indicating the612

feasibility of using reduced dimensionality.613

4.3. Clustering experiments614

Clustering experiments are performed independently for all supermarket615

EDLPs computed during each year, season, and store type (SE, SEG and616

both together); a total of 5*3*3=45 experiments. Figure 8 shows the results617

obtained when clustering the EDLPs only represented with µ(s0) and µ(s2)618

(2-feat) when using readings during Winter 2017 of SEG supermarkets and619

the k-means algorithm (k=4). The clusters show a clear separation (Fig-620

ure 8a), especially in the µ(s2) feature because the value of µ(s2) is greater621

than µ(s0), giving more weight when computing distances among clusters.622

The real EDLPs of each cluster are used to compute the evaluators. The623

profile of each cluster centroid (Figure 8b) are distinct for both peak and624

off-peak periods.625

To enable comparison, we computed the median with error bars using626

95% confidence intervals using bootstrapping over all 45 experiments. Fig-627

ure 9 shows these results over the supermarket data-set using the k-means628

for each one of the representations (whole profile, 8-feat, 4-feat and 2-feat).629

The results show only small differences between 2-feat clustering compared630

with using the whole profile. Interestingly, for the CDI (Figure 9a) and631

SI (Figure 9b) evaluators the clustering 2-feat results outperform those ob-632

tained with the whole profile when the number of clusters is greater than633
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(a) Clusters (b) Centroids using the EDLPs

Figure 8: Clustering results for EDLPs represented with µ(s0) and µ(s2) (only) using data
for Winter 2017 of SEG supermarkets with k-means (k=4). Clusters 1, 2, 3 and 4 have
15, 26, 57 and 31 points, respectively.

three. Generally, 2-feat scores are better than scores obtained with 4-feat634

and 8-feat.635

The fact that the 8-feat results include ~t are worse than the other cluster-636

ing results is due to two factors: 1) ~t are numeric variables but they represent637

time intervals that are not well modelled by clustering algorithms that use638

Euclidean distances, and 2) the time intervals may add noise when creating639

the clusters as they are evaluated only using the demand differences of the640

whole profile.641

Clustering results are given in Table 2 for all the evaluators averaged642

over all the whole profile (left value) and 2-feat (right value) experiments and643

number of cluster separated by algorithm. The differences between the values644

are small meaning that the results with both representations are similar. It645

might be expected that the whole-profile clustering evaluator would be better646

than the 2-feat results, however, for some algorithms and evaluators e.g. k-647

means and SI, or single link and SI, this is not the case.648

For the retail store data-set, clustering experiments are performed inde-649

pendently for all the EDLPs computed during each season and for the whole650

year (Figure 5) with similar characteristics to the supermarkets data-set.651

When the number of clusters is small (less than four or five) the differences652

between the scores obtained with the whole profile and the reduced feature653

representation is greater than when using more clusters. Results obtained654
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Alg/Eval CDI MDI SI DBI MIA VRC
Kmeans 0.44/0.43 1.26/1.26 24.98/23.97 1.07/1.14 10.59/10.78 134.30/126.02
Single 0.30/0.30 1.14/1.25 6.85/6.64 0.55/0.57 8.88/9.19 10.92/14.47

Complete 0.35/0.36 0.76/0.88 14.89/15.79 0.93/1.00 10.06/10.41 116.63/107.78
UPGMA 0.30/0.31 0.57/0.70 9.29/9.40 0.72/0.83 9.34/9.82 90.40/91.02
WPGMA 0.32/0.33 0.65/0.77 13.57/12.78 0.82/0.90 9.50/9.97 96.47/94.18
UPGMC 0.28/0.29 0.56/0.69 8.99/8.83 0.65/0.78 8.94/9.64 84.64/87.24
WPGMC 0.28/0.30 0.60/0.69 9.82/10.09 0.65/0.80 8.98/9.61 80.44/90.69
WARD 0.47/0.49 1.36/1.51 29.01/29.37 1.14/1.23 10.59/10.98 126.54/118.02

Table 2: Clustering results for the supermarket data-set for all evaluators averaged over
all the whole profile (left value), 2-feat (right value), and number of cluster separated by
the algorithm.

with 8-feat are consistently worse than those obtained with the other rep-655

resentations. Clustering results are given in Table 3 or all the evaluators656

averaged over all the whole profile (left value) and 2-feat (right value) exper-657

iments and number of cluster separated by algorithm. The results obtained658

with the whole profile marginally outperform those obtained with the 2-feat,659

with exceptions such a UPGM algorithm and SI evaluator.660

Alg/Eval CDI MDI SI DBI MIA VRC
Kmeans 0.21/0.24 2.90/2.56 13.72/17.06 0.87/0.86 1.66/1.77 750.69/734.90
Single 0.09/0.09 0.52/0.66 2.93/2.91 0.21/0.27 0.85/0.91 141.50/145.86

Complete 0.14/0.17 0.72/0.83 3.96/4.71 0.59/0.66 1.35/1.44 497.56/507.80
UPGMA 0.12/0.12 0.44/0.51 3.34/3.38 0.44/0.49 1.19/1.20 278.29/342.59
WPGMA 0.12/0.13 0.54/0.70 3.46/3.49 0.50/0.53 1.19/1.24 370.92/381.44
UPGMC 0.12/0.12 0.45/0.49 3.41/3.13 0.44/0.47 1.16/1.17 308.14/333.41
WPGMC 0.13/0.13 0.51/0.53 3.62/3.64 0.46/0.49 1.24/1.23 270.93/352.74
WARD 0.66/0.79 5.09/7.81 143.51/139.43 1.21/1.31 2.05/2.47 484.12/388.30

Table 3: Clustering results for the retail stores data-set for all evaluators averaged over all
the whole profile (left value) and 2-feat (right value) experiments, and number of cluster
separated by algorithm.

As a final remark about the clustering results, evaluation scores for the 2-661

feat clustering results are slightly worse than those obtained when using the662
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whole profile when using less than four clusters. However, evaluation scores663

for these two representations are very close when the number of clusters is664

greater than four or averaged over the total number of clusters. The 2-feat665

works well for clustering the profiles because these two features (µ(s0) and666

µ(s2)) are the main behavioural drivers accounting for most of the EDLP.667

5. Conclusions and future work668

Our aim was to investigate whether dimensional reduction could gener-669

ate a statistically reasonable representation the EDLP of a retail store such670

that it could be used to predict the electricity demand for a new store in671

the portfolio of a company. Previously we have shown how this can be done672

using the whole profile, but a simpler representation of the values of the fea-673

tures (e.g. Figure 4) may offer advantages by reducing the complexity of the674

problem. In particular, whether it could help detect trends and anomalous675

behaviours within EDLPs.676

We have studied the impact to reduced-feature sets to represent EDLPs677

for prediction and clustering using real data of two distinct data-sets: super-678

markets with 1-h resolution readings (prediction and clustering) and retail679

stores with 30-min resolution (clustering only). We have demonstrated that680

the extracted features give a good description of the original EDLP i.e. being681

able to re-construct the EDLP with only a small error. However, we need682

to be aware that for a small number of stores (e.g. Figure 5c) the proposed683

representation did not work so well. In general though, we have shown that684

the evaluation scores are the same or only marginally worse than results ob-685

tained using the whole profile. The results are robust as the two tasks are686

different in nature: prediction is supervised learning meanwhile clustering is687

unsupervised.688

This proposed simplified representation is a more concise way to represent689

the EDLP than using the whole EDLP (real resolution values). For some690

types of analyses, small variances of the demand within the time period can691

be considered superfluous information that does not add useful information692

to the overall picture. For example, as the repeated night-time demand values693

(Figure 1) are repeated over a long period, using an average value is sufficient694

to summarise and represent the demand during these periods.695

The main implication for energy managers and researchers is that a re-696

duced number of features is easier to interpret and visualise instead of a high697
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resolution EDLP. The clustering results suggest its utility as dimensional re-698

duction technique to cope with the ‘curse of dimensionality’. More generally,699

we have demonstrated that a simpler way to represent data can work as well700

for some specific energy problems as complex and high resolution represen-701

tation. As modern (networked) sensors increase the volume, availability, and702

immediacy, transforming such high-resolution data streams in a ‘smart‘ way703

based on observed behaviours may be helpful. The proposed features to rep-704

resent the EDLP may have limitations for applications such as investigating705

and predicting demand shifting and demand variability for energy manage-706

ment purposes . This is due to the lack of granularity which will not allow707

detection of demand changes at specific times (e.g. hourly).708

As future work, we suggest that reduced-feature representation can be709

applied to any electricity data-set of retail facilities with a diurnal opening710

schedule. Moreover, this feature-reduction technique can be applied classi-711

fication. Furthermore, combining both clustering and prediction may be an712

interesting approach to separately predict the demand by existing buildings713

that are in each cluster. This is different to predicting the demand of new714

buildings, but large data-sets in both temporal dimensional and number of715

stores would be required for such analysis.716
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Figure 9: Clustering results for the supermarket data-set using the k-means. N.B. the
Y-axis is log scale.
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