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Summary. Understanding how healthcare costs vary across different de-23

mographics and health conditions is essential to developing policies for24

healthcare cost reduction. It may not be optimal to apply the conventional25

mean regression due to its sensitivity to the high level of skewness and26

spatiotemporal heterogeneity presented in the cost data. To find an alter-27

native method for spatiotemporal analysis with robustness and high esti-28

mation efficiency, we combine information across multiple quantiles and29

propose a Bayesian spatiotemporal weighted composite quantile regres-30

sion (ST-WCQR) model. An easy-to-implement Gibbs sampling algorithm31

is provided based on the asymmetric Laplace mixture representation of32

the error term. Extensive simulation studies show that ST-WCQR out-33

performs existing methods for skewed error distributions. We apply ST-34

WCQR to investigate how patients’ characteristics affected the inpatient35
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hospital costs for alcohol-related disorders and identify areas that could36

be targeted for cost reduction in New York State from 2015 to 2017.37

Keywords Asymmetric Laplace distribution, Bayesian inference, Com-38

posite quantile regression, Healthcare cost data, Spatiotemporal model39

1. Introduction40

According to the U.S. Centers for Medicare & Medicaid (2020), the total41

health expenditure in the United States grew from $74.1 billion in 197042

to $3.8 trillion in 2019, taking up a rising share of the economy. This43

is not a surprising phenomenon and is known as Baumol’s Cost Disease44

(Baumol and Bowen, 1965). However, this massive spending could be45

substantially reduced. Approximately two-thirds of the privately insured46

patients who showed up in the emergency department (ED) could be47

treated in the physician offices where the average costs would decrease48

by 91.8% (UnitedHealth Group, 2019). Moreover, hospitals can improve49

efficiency in resource allocation after acquiring a good understanding of50

patterns of hospital costs. Healthcare cost reduction has become more im-51

portant than ever as the Covid-19 pandemic financial impact is estimated52

to be $50.7 billion in losses per month for hospitals (American Hospital53

Association, 2020), and it will continue to be an essential focus in post-54

pandemic financial recovery. To help develop effective interventions for55

cost reduction, we examine the spatiotemporal dynamics and the critical56

determinants of inpatient hospital costs for one of the common reasons57

for the avoidable ED visits – alcohol-related disorders (nearly 10% of ED58

visits are avoidable) (Myran et al., 2019).59

Geographic variation in healthcare has been documented in a mount-60

ing number of studies (Wennberg and Gittelsohn, 1973; Newhouse et al.,61

2013). Evidence shows that the progressive liberalization of alcohol sales62

in the United States has led to the unequal availability and heteroge-63

neous patterns of related problems across populations and regions (Con-64

nor et al., 2016; Miller et al., 2017; Witkiewitz et al., 2019; Rowell-Cunsolo65

et al., 2020). From a healthcare policy-making perspective, it is of in-66

terest to summarize how the key factors determine the variation in the67

healthcare outcomes globally (Shoff et al., 2014) since the improvement68

of population health demands a shared commitment and partnerships69

across regions (Institute of Medicine (US) Committee on the US Com-70

mitment to Global Health, 2009). Such an objective is usually achieved71

by using global models which assume constant coefficients across space72
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and time to explore the overall covariate effects at a global level (Law73

et al., 2014; Reilly et al., 2019). As there remains a great amount of74

heterogeneity after accounting for the disparities in covariates, various75

types of random intercepts have been considered in the spatiotemporal76

models with spatiotemporally invariant slopes (Knorr-Held, 2000; Neelon77

et al., 2015). However, the assumption of homogeneous covariate-response78

associations cannot provide sufficient information for effective and effi-79

cient local interventions (Shoff et al., 2014). It may also overlook some80

locally spatiotemporal processes, leading to model misspecification for81

very heterogeneous data (Fotheringham, 1997). To capture the localized82

covariate-response associations, varying covariate effects may be assumed83

as a form of heterogeneity (Huang, 2017; Khalili and Chen, 2007) and84

efforts have been made to develop varying coefficient regression models85

for the spatiotemporal analysis (Lu et al., 2009; Lee et al., 2021). In86

the existing spatiotemporal studies, few studies have incorporated both87

heterogeneity and homogeneity into one framework. For analysis of the88

areal-referenced alcohol-related hospital costs, we develop a spatiotem-89

poral mixed-effects model with random slopes and random intercepts to90

help achieve global and local objectives for health improvements and con-91

sider variable selection for priority-setting of the healthcare plans due to92

the limited society’s resources.93

Given that the healthcare cost data are often characterized by a high94

level of skewness and spatiotemporal heterogeneity (Gittelsohn and Powe,95

1995; Newhouse et al., 2013; Newhouse and Garber, 2013; Neelon et al.,96

2015; Yang et al., 2019), it remains a challenge to conduct robust and effi-97

cient statistical inference for the conditional mean of the costs given possi-98

ble determinants. Using the ordinary least-square (LS) (Legendre, 1805)99

estimator or the quadratic loss may not be an optimal choice due to their100

sensitivity to non-normal errors, outliers, and extreme values (Koenker101

and Bassett, 1978). Since the pioneering work of Koenker (1984), com-102

posite quantile regressions (CQRs) have emerged as a robust and efficient103

alternative to the mean regression (e.g., via the LS method) in a variety104

of models. Note that conditional quantile functions are a set of parallel105

hyperplanes for linear models with error terms independent of the covari-106

ates (Koenker and Bassett, 1978). CQR was first proposed to combine107

multiple quantile regressions (QR) (Koenker and Bassett, 1978) with the108

equality-of-slopes condition for efficient and robust coefficient estimation109

in the classical linear model (Koenker, 1984). From a more general mod-110
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eling perspective, CQR aims to find a set of parallel regression curves and111

can be viewed as a compromise between a set of quantile regression curves112

with different slopes and intercepts and a single summary regression curve113

(Ma and Yin, 2011). Zou and Yuan (2008) found that compared with the114

LS estimator, CQR has a relative efficiency greater than 70% regardless115

of the error distribution and sometimes can be arbitrarily more efficient116

than the LS and single quantile-based methods. For sparse linear mod-117

els, Huang and Chen (2015) proposed a Bayesian CQR with lasso penalty,118

which is further developed by Alhamzawi (2016) and Zhao et al. (2016)119

using other sparsity inducing priors for better performance, especially un-120

der the case of heterogeneous errors. Tian et al. (2017) propose a pseudo121

composite asymmetric Laplace distribution to conduct Bayesian CQR122

for longitudinal analysis. For semiparametric varying-coefficient partially123

linear models, Kai et al. (2011) studied the substantial efficiency gain124

of the proposed CQR estimators for non-normal errors over the LS and125

single quantile-based techniques. They emphasized that even though the126

estimation consistency of the CQR estimator breaks down for asymmet-127

ric error distributions, the bias term converges to the mean of error,128

which is assumed to be zero when the number of combined quantile levels129

is large. Sun et al. (2013) combined quantile regressions with different130

weights to eliminate the bias terms caused by the asymmetry and propose131

a weighted composite quantile regression (WCQR) for the local linear re-132

gression. They demonstrated the improvements in estimation efficiency of133

WCQR over equally-weighted CQR and local linear LS estimators for ho-134

moscedastic models with asymmetric errors and heteroscedastic models.135

The idea of CQR could also be found in other statistical problems such as136

inference for the single-index model (Jiang et al., 2016), regressions with137

missing data (Luo et al., 2019), and the conditional correlation learning138

(Ma and Zhang, 2016; Xu, 2017). Though lots of work has been done139

for CQR, few have investigated its performance in spatiotemporal anal-140

ysis which has received increasing attention in recent years in fields like141

health and medical science (Norton and Niu, 2009; Jhuang et al., 2020),142

environmental science (Reich, 2012; Brynjarsdóttir and Berliner, 2014;143

Knoblauch and Damoulas, 2018), and criminology (Law et al., 2014; Hu144

et al., 2018). Given that fitting complicated spatiotemporal structured145

random effects is challenging via the frequentist methods (Law et al.,146

2014; Neelon et al., 2015), we study CQR from a Bayesian perspective147

for the spatiotemporal analysis.148
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The main contributions of this paper are as follows. First, we develop149

a spatiotemporal mixed-effects model with random slopes and random in-150

tercepts to understand the spatiotemporal patterns of the alcohol-related151

inpatient hospital costs across seven health service areas of the New York152

State from 2015 to 2017 and identify the important determinants at both153

state and local levels. The model not only improves regional estimation154

from a technical point of view, but also reveals healthcare disparities155

in different areas, serving as a quantitative reference for the formula-156

tion of both state-wide and place-based policies. Second, we develop a157

continuous shrinkage prior by combining the horseshoe prior and the spa-158

tial structure to select the random slopes. It enables us to identify key159

factors with spatially varying effects while accounting for spatial corre-160

lations arising from the neighboring regions. The prior induces a low161

false positive rate as demonstrated in the simulations, contributing to162

the priority setting of locally tailored healthcare policies for effective and163

efficient cost reduction. Third, we propose a Bayesian spatiotemporal164

weighted composite quantile regression (ST-WCQR) as an alternative to165

the conventional mean regression. By pooling information across mul-166

tiple quantiles, ST-WCQR inherits robustness from QR and improves167

the estimation efficiency compared with the conventional mean regres-168

sion and single-quantile methods for asymmetric distributions. We verify169

this through extensive simulation studies via an easy-to-implement Gibbs170

sampling algorithm. To our knowledge, this is the first study on WCQR171

in spatiotemporal analysis.172

2. Alcohol-related inpatient hospital cost data173

As a leading cause of preventable death, alcohol-related disorders, includ-174

ing alcohol intoxication, alcohol use disorder, and alcohol withdrawal, an-175

nually cost the United States more than $249 billion (Sacks et al., 2015)176

and cause approximately 88,000 deaths (Witkiewitz et al., 2019). This177

paper aims to unveil the spatiotemporal dynamics of alcohol-attributable178

inpatient hospital costs and their determinants to help formulate inter-179

ventions for a more efficient resource allocation, related costs reduction,180

and public health. We concentrate on the alcohol-related inpatients ad-181

mitted from ED that provides 24-hour costly lifesaving care and serves182

as a major portal for inpatient admissions (Schuur and Venkatesh, 2012).183

We obtain the dataset collected by the Statewide Planning and Research184

Cooperative System (SPARCS) from https://health.data.ny.gov185
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Table 1. Descriptions of all the variables in the cost data.
Variables Description
Costs Inpatients hospital costs ($) for alcohol-related disorders per admission.
Year The year of discharge: 2015, 2016, 2017.
Areas Health service areas where hospitals are located: WNY, Finger Lakes,

Southern Tier, CNY, Capital/Adirondack, Hudson Valley, NYC.
LOS Length of stay (days) in a hospital.
Gender Patient gender: Male (M), Female (F).
Age Age groups in years at the time of hospital discharge: 0 to 17, 18 to 29,

30 to 49, 50 to 69, 70 or Older.
Race Patient race: White, Black/African American, Multi-racial, Others.
Ethnicity Patient ethnicity: Hispanic, Non-Hispanic, Multi-ethnic.
SOI Severity of illness: Minor, Moderate, Major, Extreme.
ROM Risk of mortality: Minor, Moderate, Major, Extreme.
Surgical The APR-DRG classification of medical or surgical: Medical, Surgical.
Payment Type of payment: Federal insurance programs, Private insurance, Self-pay, Others.

(New York State Department of Health, 2019). It provides de-identified186

patient-level records of hospital inpatient discharges from 2015 to 2017187

for seven health service areas in New York State, i.e., Western New York188

(WNY), Finger Lakes, Southern Tier, Central New York (CNY), Capi-189

tal/Adirondack, Hudson Valley, and New York City (NYC).190

We preprocess the data set by removing records that have empty en-191

tries and combining the detailed payment categories into more general192

groups, i.e., federal financial health insurance programs (e.g., Medicaid193

and Medicare), private insurance (e.g., Blue Cross/Blue Shield), self-pay,194

and others (e.g., department of corrections). The final data set contains195

26,448 alcohol-related records across the seven areas over three years.196

Table 1 summarizes all the variables used in the analysis. Among197

these variables, the severity of illness (SOI, the degree of physiologic de-198

compensation or organ system derangement) and the risk of mortality199

(ROM, the likelihood of dying) are measures assessed through a uniform200

set of diagnosis-based methods in the All Patient Refined Diagnosis Re-201

lated Groups payment system used by many US hospitals for inpatient202

visit classification (Averill et al., 2003). Each patient is assigned to one203

of the four SOI levels and one of four ROM levels.204

Exploratory data analysis shows the characteristics of the inpatients205

with alcohol-related disorders. The percentage of hospital discharges with206

an alcohol-related primary admitting diagnosis among all discharges in207

New York State has steadily grown from 1.99% in 2015 to 2.23% in 2016208

and 2.30% in 2017. Among all the discharges with an alcohol-related prin-209



Bayesian Spatiotemporal Modeling for Inpatient Hospital Costs 7

Figure 1. (a) Histogram of the inpatient hospital costs attributable to the
alcohol-related disorders. (b) Histograms of the centered log of the alcohol-
related costs by year.

cipal admitting diagnosis over the three years, male inpatients accounted210

for 73.3%. The number of patients was consistently higher for males211

than females for all age groups (Supplementary Figure D.1). Approxi-212

mately 88.4% of all the patients admitted with alcohol-related disorders213

were between the age of 30-69. We also observe that the percentage of214

alcohol-related hospital admissions with high (major or extreme) ROM215

and SOI levels increased with age. Moreover, the proportions of patients216

with high ROM or SOI levels grow more rapidly for males than females217

as they become 70 or older (Supplementary Figure D.2).218

Alcohol-related inpatient hospital costs vary spatiotemporally. With219

20% of the patients accounting for 57.5% of the total costs in the New220

York State, the costs are highly right-skewed as shown in Figure 1(a).221

The skewness remains even after taking the logarithm of costs (Figure222

1(b)). In New York State, the average costs per hospital discharge rose223

from $7,683.51 in 2015 to $9,412.86 in 2016 and to $10,671.99 in 2017.224

Average costs of the health service area were the highest in the south-225

east and lowest in the northeast. Among the seven health service areas,226

Hudson Valley had the highest number of hospital discharges for patients227

diagnosed with alcohol-related disorders (5,570, 21.06% of all the related228

discharges in New York State) and the highest average costs ($12,756.87).229

Though the discharge counts in NYC (4,743, 17.93%) did not rank high,230

its average costs ($11,886.40) were the second-highest among the seven ar-231

eas. The average costs were the lowest in Capital/Adirondack ($5,601.76).232
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For a deeper understanding of the spatiotemporal dynamics and the233

driving factors of the alcohol-attributable inpatient hospital costs, we aim234

to answer the following questions by using a mixed-effects model:235

(a) What are the spatiotemporal trends for the inpatient hospital costs236

of alcohol-related disorders in New York State?237

(b) Are there some high-cost areas that could be targeted for inter-238

ventions to reduce hospital costs?239

(c) What are the key state-wide determinants of the hospital costs that240

require across-region collaborations and efforts to improve the healthcare241

systems, and how do these factors shape the costs?242

(d) Are there any important localized factors of costs that demand243

carefully tailored place-based policies for healthcare equality?244

(e) How to pool the information from nearby spatiotemporal units to245

improve the small-area estimation? This is critical in the analysis as we246

observe that the number of cases in the spatiotemporal units (ranging247

from 32 to 2,930) exhibits a high level of variability.248

3. Spatiotemporal weighted composite quantile regression model249

Suppose that regions of interest (districts, counties, etc.) are indexed250

by i = 1, . . . , n and periods of time (hours, years, etc.) under study251

by j = 1, . . . , J . Let Kij be the number of the observed cases in re-252

gion i and period j, N =
∑n

i=1

∑J
j=1Kij be the total sample size, and253

D = {yijk,xijk}i=1,...,n;j=1,...,J ;k=1,...,Kij
be the observed data, where yijk254

is the continuous response of interest for the k-th subject in region i255

and period j and xijk = (xijk,1, . . . , xijk,p)
⊤ ∈ Rp is the corresponding256

p-dimensional covariate vector. Consider a discrete-time linear mixed-257

effects model specified as258

yijk = m(xijk;β,θi, ϕi, ψj , γij) + ϵijk, ∀i, j, k,
m(xijk;β,θi, ϕi, ψj , γij) = x

⊤
ijk(β + θi) + ϕi + ψj + γij ,

(1)

where the response and the covariates are centered for identifiability in259

the proposed composite method, m(xijk) represents the conditional mean260

of the response, and ϵijk’s are independent and identically distributed er-261

ror terms that follow an unknown distribution with mean zero and are262

independent of covariates. The p-dimensional time-invariant and spa-263

tially varying covariate effects are decomposed into two parts, i.e., the264

mean effects β = (β1, . . . , βp)
⊤ at the global level and the local devia-265

tions θ1, . . . ,θn to the overall mean effects. After adjusting for the co-266
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variate effects, we follow Knorr-Held (2000) to divide the spatiotemporal267

variation into spatial effects ϕi, temporal effects ψj , and the spatiotem-268

poral interactions γij which are three independent unobservable random269

intercepts. Denote the n × p random slope matrix as Θ = (θ1, . . . ,θn)
⊤

270

with each column representing the spatially varying effects of a covari-271

ate. Also, we adopt the following notations: y = (y111, . . . , ynJKnJ
)⊤,272

X = (x111, . . . ,xnJKnJ
)⊤, ϕ = (ϕ1, . . . , ϕn)

⊤, ψ = (ψ1, . . . , ψJ)
⊤, and273

the vectorized n×J matrix γ composed of γij is denoted as γ̃ = vec(γ) =274

(γ11, . . . , γnJ)
⊤. The proposed model (1) includes the model with ho-275

mogenous covariate effects, yijk = x
⊤
ijkβ+ϕi+ψj+γij+ ϵijk, as a special276

case when θi = 0,∀i. Though temporal heterogeneity in slope could also277

be considered in the model, we do not include it for the analysis of the278

alcohol-related cost data as we expect the temporal patterns could be279

captured through the random intercepts and the spatial pattern of the280

covariate effects may not change over a short or moderate period of time.281

Next, we introduce the CQR to estimate the unknown parameters in282

model (1). Consider a finite number of quantile levels 0 < τ1 < · · · < τL <283

1. Given that the independence between the error terms and covariates284

guarantees parallel regression curves (Koenker and Bassett, 1982), the285

objective function of the proposed ST-WCQR is given by286

Argmin
α,β,Θ,ϕ,ψ,γ

L∑
l=1

n∑
i=1

J∑
j=1

Kij∑
k=1

wlρτl {yijk − αl −m(xijk;β,θi, ϕi, ψj , γij)} , (2)

where α = (α1, . . . , αL)
⊤ is a vector of quantiles of the error term with287

respect to τ1, . . . , τL, wl > 0 is a quantile-specific weight, ρτl(u) = u{τl −288

1(u < 0)} is the quantile-specific check function for l = 1, . . . , L, and 1(·)289

is an indicator function. It is worth pointing out that the conditional290

mean of the response is what the weighted composite quantile regres-291

sion aims to estimate by employing a weighted average of check func-292

tions with the same coefficient vector across quantiles (Kai et al., 2010;293

Sun et al., 2013). Using the same coefficients enables the proposed es-294

timator to combine information across different quantiles for estimation295

efficiency and inherit the robustness from the QR; otherwise, the specifi-296

cation of quantile-dependent coefficients would lead to QRs (Huang and297

Zhan, 2021). To allow for different amounts of contribution from quan-298

tile regression curves to coefficient estimation, quantile-specific weights299

are employed in (2). When these weights are equal, ST-WCQR reduces300

to the spatiotemporal CQR that generally leads to less efficiency and less301
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robustness (Bradic et al., 2011; Sun et al., 2013; Jiang et al., 2014; Huang302

and Chen, 2015; Tian et al., 2017). In addition, ST-WCQR also serves303

as a unified approach for both mean regression and quantile regression304

since the ST-WCQR with L = 1 reduces to the quantile regression.305

Due to the undifferentiability of the check function at point zero, there306

is no explicit solution to the optimization problem (2). This paper pro-307

vides a solution from a Bayesian perspective. Suppose that yijk follows308

a pseudo composite asymmetric Laplace distribution PCALD(µ,σ, τ )309

(Tian et al., 2017) with probability density function given by f(y|µ,σ, τ ) ∝310 ∏L
l=1

1
σl
exp{−ρτl(

y−µl

σl
)}, where µl = αl +m(x), µ = (µ1, . . . , µL)

⊤ is a311

vector of location parameters, σ = (σ1, . . . , σL)
⊤ is a vector of scale312

parameters, and τ = (τ1, . . . , τL)
⊤ is a vector of skewness parameters.313

Then, minimizing the objective function (2) is equivalent to maximizing314

the pseudo-likelihood function315

L(α,β,Θ,ϕ,ψ,γ,σ|D) =
∏
l

∏
i

∏
j

∏
k

1

σl
exp

{
−ρτl

(yijk − αl −m(xijk)

σl

)}
. (3)

In this case, 1/σ1, . . . , 1/σL serve as weights for the composite method.316

The asymptotic justification of PCALD could be provided in the same317

way as ALD in the Bayesian QR (Sriram et al., 2013). However, such318

a complex likelihood function makes the posterior distribution of β ana-319

lytically untractable. One solution is to use the random walk metropolis320

algorithm, but parameter tuning is required for the optimal accept rate.321

Note that PCALD is an extension of ALD which has a mixture repre-322

sentation (Kozumi and Kobayashi, 2011) of ϵ
d
= ξV +

√
ζσV Z, where323

ϵ ∼ ALD(µ, σ, τ), µ is a location parameter, ξ = 1−2τ
τ(1−τ) , ζ = 2

τ(1−τ) ,324

V |σ ∼ Exp(1/σ), and Z ∼ N(0, 1). Then, the likelihood function (3) can325

be decomposed into a hierarchical structure of326 
L(α,β,Θ,ϕ,ψ,γ,v,σ|D)

=
∏
l

∏
i

∏
j

∏
k

1√
2πζlσlvijk,l

exp

{
− (yijk − αl −m(xijk)− ξlvijk,l)

2

2ζlσlvijk,l

}
,

vijk,l|σl ∼ Exp(1/σl), ∀i, j, k, l,

(4)

where v = (v⊤1 , . . . ,v
⊤
L )

⊤,vl = (v111,l, . . . , vnJKnJ ,l)
⊤, ξl =

1−2τl
τl(1−τl) , and327

ζl =
2

τl(1−τl) for l = 1, . . . , L. After assigning appropriate priors to un-328

known parameters as in Section 4, this mixture representation of the329

PCALD yields an easy-to-implement Gibbs sampling algorithm for the330
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posterior estimation. Its updating procedure only involves sampling from331

Gaussian distributions, inverse Gaussian (InvGauss) distributions, and332

inverse gamma (IG) distributions.333

4. Bayesian inference334

We adopt intrinsic conditionally autoregressive (ICAR) priors (Besag,335

1974) for the random effects to model the spatiotemporal dependency.336

To be specific, the conditional prior of the spatial effect of region i given all337

other spatial effects ϕ(−i) is specified as ϕi|ϕ(−i), σ
2
ϕ ∼ N

(
1
bi

∑
i∗∈∂i ϕi∗ ,

σ2
ϕ

bi

)
,338

where ∂i denotes the surrounding regions of region i, the prior mean is339

the average spatial effect of the bi surrounding regions, and σ2ϕ is the340

conditional variance. Then, under the Brook’s Lemma (Banerjee et al.,341

2003), the joint prior distribution of spatial effects ϕ = (ϕ1, . . . , ϕn)
⊤ is342

π(ϕ|σ2ϕ) ∝ exp
{
− 1

2σ2ϕ
ϕ⊤Pϕ

}
, (5)

where P = B −A is the spatial structure matrix, B = diag(b1, . . . , bn),343

and A is the adjacency matrix whose (i1, i2)-th entry equals 1 if region344

i1 and i2 are neighbors and 0 otherwise. Since P1 = 0, P is singular and345

the “density” (5) is improper. The common practice to restore propriety346

is to impose the constraint
∑n

i=1 ϕi = 0 via “centering-on-the-fly”, i.e.,347

recentering the vector of sampled random effects from the working full348

conditional distributions around its mean after each MCMC iteration349

(Banerjee et al., 2003; Norton and Niu, 2009; Neelon et al., 2013).350

Similarly, as we expect effects for neighboring periods of time and351

spatiotemporal units to be alike, we also assign an ICAR prior to ψ and352

a multivariate ICAR (MICAR) prior to γ̃. Then, their joint priors are353

π(ψ|σ2
ψ) ∝ exp

{
− 1

2σ2
ψ

ψ⊤Rψ
}
, (6)

and354

π(γ̃|σ2
γ̃) ∝ exp

{
− 1

2σ2
γ̃

γ̃⊤(R⊗ P )γ̃
}
, (7)

where ⊗ denotes the Kronecker product, σ2ψ and σ2γ̃ are the conditional355

variances, and the J × J temporal structure matrix R has entries356

Rgu =


2 if 2 ≤ g = u ≤ J − 1,

1 if g = u = 1 or J,

−1 if |g − u| = 1,

0 others.

(8)
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The ICAR prior with the temporal structure matrix R imposed on the357

temporal effects is actually a first-order random-walk prior since the re-358

sulting conditional prior of ψj is ψj |ψj−1, σ
2
ψ ∼ N(ψj−1, σ

2
ψ) for j =359

2, . . . , J (Rue and Held, 2005). The MICAR prior for γ̃ in (7) corre-360

sponds to Knorr-Held type IV interaction that arises from the product of361

the above spatial and temporal structured effects (see Knorr-Held (2000)362

for further details). Note that there are few observations available for363

some spatiotemporal units in the alcohol-related cost data. By “borrow-364

ing strength” across space and time, these ICAR (MICAR) priors not only365

help obtain reliable spatiotemporal predictions consistent with nearby re-366

gions and periods but also benefit small-area estimation for the analysis.367

For this reason, these priors are popularly adopted in the existing spatial368

and spatiotemporal studies (Norton and Niu, 2009; Farnsworth andWard,369

2009; Law et al., 2014; Neelon et al., 2015). Constraints
∑J

j=1 ψj = 0370

and
∑n

i=1 γij =
∑J

j=1 γij = 0 are imposed via “centering-on-the-fly” in371

MCMC to make the priors proper (Goicoa, 2018).372

We consider variable selection to identify critical factors to the costs,373

contributing to priority setting in the health care services. The horseshoe374

prior (Carvalho et al., 2010) is an increasingly commonly used continuous375

shrinkage prior that outperforms other common scale-mixture priors like376

Bayesian Lasso (Park and Casella, 2008) and the normal-exponential-377

gamma prior (Griffin and Brown, 2005). In this paper, we adopt it for378

the selection of the average effects β1, . . . , βp, which leads to379

βh|τ2β, λ2βh
∼ N(0, τ2βλ

2
βh
), τ2β ∼ C+(0, 1), λ2βh

∼ C+(0, 1), h = 1, . . . , p, (9)

where τ2β determines the global shrinkage for all the common effects, λ2βh
380

controls the local shrinkage for βh, Λ
2
β = diag(λ2β1

, . . . , λ2βp
), and C+(0, 1)381

denotes the standard half-cauchy distribution. Based on the similarity382

of the shrinkage weights 1 − κh = 1/(1 + τ2βλ
2
βh
) with the posterior in-383

clusion probabilities under the two-groups model, Carvalho et al. (2010)384

put forward a thresholding rule, i.e., a parameter is considered as a sig-385

nal if 1 − κ̂h > 0.5. It attains the Bayes oracle under a 0-1 additive386

loss up to a multiplicative constant (Datta and Ghosh, 2013). Though387

other criteria for variable selection (such as credible intervals (van der Pas388

et al., 2017)) can be used, we find in simulations that the thresholding389

rule yields a strong control of the false-positive rate to select the non-zero390

coefficients as demonstrated in Carvalho et al. (2010) and thus adopt it391



Bayesian Spatiotemporal Modeling for Inpatient Hospital Costs 13

in the costs analysis to avoid the undesirable cases of the insufficient al-392

location of the limited sources. For conditional conjugacy, we adopt the393

hierarchical representation of C+(0, 1) (Neville, 2013), which is394

τ2β|ηβ0
∼ IG(1/2, 1/ηβ0

), ηβ0
∼ IG(1/2, 1),

λ2βh
|ηβh

∼ IG(1/2, 1/ηβh
), ηβh

∼ IG(1/2, 1), h = 1, . . . , p.
(10)

Inspired by Mu et al. (2021), we combine the horseshoe prior and the395

spatial structure matrix to identify which covariates have the spatially396

correlated effects deviating significantly from the overall mean. Recall397

that Θ·h ∈ Rn, i.e., the h-th column of the random matrix Θ, represents398

the spatially varying effects of the h-th covariate on the response. We399

propose a spatial horseshoe prior (SHP) for Θ·h for h = 1, . . . , p:400

π(Θ·h|τ2Θ, λ2Θh
) ∝ exp

{
− Θ⊤

·hPΘ·h

2τ2Θλ
2
Θh

}
, τ2Θ ∼ C+(0, 1), λ2Θh

∼ C+(0, 1), (11)

where τ2Θ controls the global shrinkage of all the random slopes, λ2Θh
401

adjusts the local shrinkage for Θ·h, Λ2
Θ = diag(λ2Θ1

, . . . , λ2Θp
), and P402

is the spatial structure matrix defined in (5). Constraints
∑n

i=1Θih =403

0 for h = 1, . . . , p are imposed via “centering-on-the-fly” in MCMC404

for prior propriety. For variable selection, we use the thresholding rule405

1/(1+ τ̂2Θλ̂
2
Θh

) < 0.5 like that for the horseshoe prior and demonstrate its406

satisfactory performance in Section 5. Using the hierarchical representa-407

tion as in (10), we yield408

τ2Θ|ηΘ0 ∼ IG(1/2, 1/ηΘ0), ηΘ0 ∼ IG(1/2, 1),

λ2Θh
|ηΘh

∼ IG(1/2, 1/ηΘh
), ηΘh

∼ IG(1/2, 1), h = 1, . . . , p.
(12)

Denote Ω = {α,β,Θ,ϕ,ψ, γ̃, τ2β, τ2Θ,Λ2
β,Λ

2
Θ, ηβ0

, ηΘ0
, {ηβh

, ηΘh
}ph=1,

σ2ϕ, σ
2
ψ, σ

2
γ̃ ,v,σ}. After assigning the aforementioned priors and indepen-

dent normal priors to αl for l = 1, . . . , L as well as independent inverse
gamma priors to σl’s and random effect variances σ2ϕ, σ

2
ψ, and σ2γ̃ , we

derive the joint posterior distribution of the unknown parameters as

π(Ω|D) ∝L(Ω|D)π(α)π(v|σ)π(σ)π(β|τ2β,Λ
2
β)π(τ

2
β|ηβ0

)π(ηβ0
)π(Λ2

β|ηβh
)

p∏
h=1

{π(ηβh
)π(ηΘh

)}×

π(Θ|τ2Θ,Λ
2
Θ)π(τ2Θ|ηΘ0

)π(Λ2
Θ|ηΘh

)π(ϕ|σ2
ϕ)π(ψ|σ2

ψ)π(γ̃|σ
2
γ̃)π(σ

2
ϕ)π(σ

2
ψ)π(σ

2
γ̃). (13)

Posterior estimates of parameters are obtained via a Gibbs sampling al-409

gorithm with unknown parameters iteratively updated using their full410

conditional posterior distributions until convergence. The details of the411

algorithm for ST-WCQR are provided in the supplementary materials.412
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5. Simulation studies413

This section investigates the performance of the ST-WCQR when the er-414

ror distribution differs from the PCALD under various settings, including415

the cases of homogeneous and heterogeneous covariate effects, dense and416

sparse effects, and symmetric and asymmetric errors. For each setting,417

we examine the ST-WCQR with L = 1, 3, 5, 9, among which ST-WCQR418

with L = 1 reduces to the quantile regression for model (1) (denoted by419

STQR). For comparison, we develop for the spatiotemporal model (1) a420

conventional mean regression method (STMR) by assuming normal error421

terms (Lindley and Smith, 1972), multivariate normal prior for β, and422

ICAR priors for Θ·h’s (see supplementary Section B.2 for its Gibbs sam-423

pling algorithm). We also compare the methods with the spatiotemporal424

quantile regression method (STQR Neelon) (Neelon et al., 2015) built for425

a spatiotemporal model with a common slope vector across space. It is426

worth mentioning that since the error terms are independent of the co-427

variates, all the methods mentioned above offer estimates for the same428

quantities and are thus comparable. We set the number of regions and429

time points as in the cost data and conduct all the simulations in R.430

Example 1. (Homogeneous covariate effects) The data are generated431

from the model with homogeneous covariate effects across all regions:432

yijk = xijkβ+ϕi+ψj + γij + ϵijk, i = 1, . . . , 7; j = 1, 2, 3; k = 1, . . . , 500, (14)

where the p-dimensional covariate vectors xijk’s are independently sam-433

pled from N(0,Σ) with Σh1h2
= 0.5|h1−h2| for h1, h2 = 1, . . . , p and the434

random effects ϕ, ψ, and γ̃ are generated from ICAR priors with condi-435

tional variances σ2ϕ = σ2ψ = σ2γ̃ = 2 and structure matrices P and R of the436

cost data in Section 2. Simulations are conducted for (a) a dense case with437

β = 1, (b) a sparse case with β = (1,−2, . . . , (−1)p/2−1p/2, 0, . . . , 0)⊤,438

and (c) a very sparse case with β = (1,−2, . . . , (−1)p/4−1p/4, 0, . . . , 0)⊤439

for p = 8, 20, respectively. Under each setting, we consider heterogeneous440

error terms ϵijk = σijϵ
∗
ijk with σij ∼ Ga(2, 2) allowing for spatiotempo-441

ral heterogeneity. Choices for the distribution of ϵ∗ijk includes a standard442

normal distribution N(0, 1), a t distribution t(3), a cauchy distribution443

Cauchy(0, 1), a log-normal distribution LN(0, 1), a chi-square distribuiton444

χ2(2), and a gamma distribution Ga(2, 2).445

Example 2. (Spatially varying covariate effects) By adding random446

effects to the regression coefficients, we generate heterogeneous data with447
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spatially varying covariate effects under the same settings as Example 1:448

yijk = xijk(β + θi) + ϕi + ψj + γij + ϵijk. (15)

Let p∗ = #{βh ̸= 0, h = 1, . . . , p} be the number of nonzero fixed effects.449

The random slope matrix Θ = (θ1, . . . ,θn)
⊤ is generated as a sparse450

matrix whose entries in the first [p∗/2] columns are sampled independently451

from the ICAR distribution (5) with σ2ϕ = 2, where [·] denotes the floor452

function.453

Example 3. (Sensitivity analysis) We further consider the case when454

the generation of the spatially correlated coefficients are contaminated:455

yijk = xijk(β + θi + ui) + ϕi + ψj + γij + ϵijk, (16)

where the spatially correlated (spatially structured) θi ∈ Rn is generated456

from the ICAR distribution (5). Let U = (u1, . . . ,un)
⊤ be an n×p matrix457

of the unstructured additive effects. Specifically, we set the contamination458

rate as 20%, i.e., 20% entries (selected randomly) in the first p∗ columns459

of U are independently sampled from the uniform distribution U(−1, 1)460

and other entries are set as 0’s.461

We set the quantile levels combined in ST-WCQR as τl = l/(L +462

1) for l = 1, . . . , L and use the noninformative prior IG(0.001, 0.001)463

for σ2ϕ, σ
2
ψ, σ

2
γ̃ , σl, and the prior N(µ0,αl

, 103) for αl with µ0,α1
, . . . , µ0,αL

464

equally spaced between −1 and 1. All the posterior estimations are ob-465

tained through 15, 000 MCMC iterations with a burn-in period of 7,000466

and a thining parameter of 5. Trace plots and Geweke’s z-tests (Geweke,467

1992) show that all the chains achieve convergence.468

Following Kai et al. (2011), we evaluate the spatiotemporal predic-469

tions ŷ by the average of median absolute prediction error MAPE =470

1
T

∑T
t=1median{|ŷ(t)ijk − y

(t)
ijk|, ∀i, j, k} over T = 20 simulations, where ŷ

(t)
ijk471

is the prediction in the t-th simulation run. Coefficient estimation are as-472

sessed by mean squared errors (MSEs), i.e., MSE(stat) = 1
pT

∑p
h=1

∑T
t=1(β̂

(t)
h473

−βh)2 for non-zero spatially stationary effects and MSE(vary) = 1
npT

∑
i,h,t474

(β̂
(t)
h + Θ̂

(t)
ih − βh −Θih)

2 for the spatially varying covariate effects, where475

β̂
(t)
h ’s and Θ̂

(t)
ih ’s are estimates of the fixed and random slopes, respectively.476

MSEs are also computed for the estimated random intercepts. For exam-477

ple, MSE for the spatial effects is calculated by MSEϕ = 1
nT

∑T
t=1

∑n
i=1(ϕ̂

(t)
i478

− ϕ
(t)
i )2, where ϕ̂

(t)
i is the estimate of ϕ

(t)
i in the t-th simulation for all i479

and t. To conduct variable selection, we use the thresholding rule in Sec-480

tion 4 for ST-WCQR and STQR and 95% credible intervals (CIs) for other481
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methods. We consider the precision=TP/(TP+FP), recall=TP/(TP+FN),482

and a summarizing criterion F1-score = 2 · recall · precision/(recall +483

precision) (Van Rijsbergen, 1979) to evaluate the variable selection pro-484

cedure, where FN denotes the number of the significant covariates not485

selected by the method, and TP and FP denote the number of the signif-486

icant and nonsignificant covariates selected by the method, respectively.487

Table 2 compares the performance of ST-WCQR, STMR, STQR, and488

STQR Neelon for asymmetric errors when p = 20 and β = (1,−2, 3,−4, 5,489

0, . . . , 0)⊤. Results for other settings are relegated to supplementary ma-490

terials. Similar results are observed for different choices of p and β.491

We find that for symmetric errors, STQR usually has the best pre-492

diction performance among the four methods, and ST-WCQR performs493

nearly as well as STQR. By taking advantage of useful information across494

quantiles, ST-WCQR performs comparably to and sometimes better than495

STQR for variable selection. STQR Neelon fails to select and estimate496

the varying coefficients as STQR and ST-WCQR do in Examples 2 & 3497

and has the largest prediction errors for data with heterogeneous effects.498

However, many real-world data may not be symmetrically distributed499

and may even be highly skewed like the cost data in Section 2. For asym-500

metric error distributions, ST-WCQR provides satisfactory performance501

and has consistently sharp advantages over other methods in terms of502

spatiotemporal prediction, coefficient estimation, and variable selection,503

regardless of whether covariate effects are homogeneous or heterogeneous.504

This suggests that ST-WCQR is robust to heterogeneous effects and non-505

normal errors. The superiority of the composite method over the conven-506

tional mean regression and the single quantile-based counterparts for the507

asymmetric errors and heterogeneous data is consistent with results in508

the previous studies for the classical linear regression (Huang and Chen,509

2015; Zhao et al., 2016; Alhamzawi, 2016) and longitudinal analysis (Tian510

et al., 2017, 2021). It is not surprising to find that ST-WCQR has higher511

estimation efficiency than the single quantile-based STQR and STMR,512

especially for the random intercepts. This suggests the advantage of513

pooling information from multiple quantile curves. Moreover, it is worth514

mentioning that compared with other methods, ST-WCQR has the best515

performance in selecting both homogeneous covariate effects and spa-516

tially varying covariate effects. It has a sharp advantage of controlling517

the false-positive rate, a finding consistent with Carvalho et al. (2010) for518

the horseshoe prior in linear regression.519
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Table 3. Comparison of cross-validated MAPEs for the cost data.

Method STQR Neelon STQR STMR
ST-WCQR

L = 3 L = 5 L = 7 L = 9
MAPE 0.279 0.262 0.264 0.251 0.248 0.245 0.244

6. Analysis of the alcohol-related inpatient hospital costs520

We apply ST-WCQR to model the relationship between the logarithm of521

costs and the demographic and health factors after centering the response522

and standardizing the continuous covariates. Based on the characteristics523

of the majority of patients, we set the reference group as non-Hispanic524

(90.19%), white (72.72%), male (73.3%) patients between the age of 50-69525

(46.09%) with federal insurance (71.35%), who receive medical treatment526

(96.48%) with an average length of stay (LOS) (4.9 days) for minor ROM527

(65.71%) and moderate SOI (52.50%), and who have no spatiotemporal528

effects. Representing eight categorical variables in Table 1 by dummy529

variables with the reference group results in twenty-one covariates in530

the model. Then, we fit the proposed Bayesian ST-WCQR with L = 1531

(STQR), 3, 5, 7, 9 for the cost data using the same priors as specified in532

Section 5, and compare the results with STQR Neelon (Neelon et al.,533

2015) and STMR using normally distributed errors (Lindley and Smith,534

1972). We run their Gibbs sampling algorithms in R for 15, 000 iterations535

with a burn-in period of 7,500 and keep every second draw from the sam-536

pler for posterior estimation. MCMC convergence is observed by trace537

plots and Geweke’s z-tests (see Supplementary Figure D.3).538

In the literature on spatiotemporal analysis, the common ways to539

evaluate the performance of the models include the time-wise holdout540

methods (i.e., withhold some observations from the last part of the time541

series as the testing set and train the model on the remaining observa-542

tions) (Oliveira et al., 2021; Walker et al., 2022) and the “target-oriented”543

cross validation (CV) strategies (i.e., variants of CV that deal with ei-544

ther spatial dimensional or temporal dimension or both, which includes545

leave-location-out CV, leave-time-out CV, and leave-location-and-time-546

out CV) (Meyer et al., 2018; Gao et al., 2019; Arowosegbe et al., 2022).547

For the doubly nested spatial structure of the cost data (patients nested548

within hospitals that are nested within health service areas), we adopt a549

modified leave-location-out CV to evaluate the performance of the four550

spatiotemporal regression methods. We use the facility ID assigned to551

each hospital by the New York State Department (which is provided in552
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Table 4. Comparison of the results for β̂ and their CIs in parenthesis by ST-WCQR with L = 9,
STMR, STQR, and STQR Neelon.

Covariates STQR Neelon STQR STMR ST-WCQR
LOS 0.629(0.619,0.639) 0.697(0.683,0.709) 0.494(0.486,0.503) 0.641(0.636,0.646)

Extreme ROM 0.365(0.311,0.413) 0.361(0.313,0.411) 0.427(0.372,0.484) 0.366(0.347,0.384)
Extreme SOI 0.339(0.295,0.388) 0.281(0.236,0.324) 0.393(0.343,0.443) 0.313(0.297,0.330)
Major ROM 0.258(0.230,0.287) 0.257(0.229,0.284) 0.308(0.274,0.341) 0.268(0.257,0.278)

Surgical 0.215(0.184,0.247) 0.183(0.154,0.212) 0.209(0.172,0.246) 0.200(0.188,0.212)
Multi-ethnic 0.432(0.255,0.608) 0.215(−0.117,0.481) 0.181(−0.194,0.500) 0.197(−0.043,0.385)

Major SOI 0.217(0.198,0.235) 0.189(0.170,0.206) 0.223(0.201,0.244) 0.190(0.183,0.197)
Moderate ROM 0.183(0.167,0.198) 0.168(0.153,0.183) 0.175(0.155,0.194) 0.173(0.167,0.179)

Minor SOI −0.108(−0.121,−0.095) −0.115(−0.129,−0.101) −0.159(−0.178,−0.141) −0.141(−0.146,−0.135)

Age 18-29 −0.088(−0.108,−0.067) −0.094(−0.115,−0.075) −0.107(−0.136,−0.081) −0.112(−0.119,−0.104)

Other races 0.112(0.091,0.137) 0.065(0.043,0.088) 0.044(0.014,0.075) 0.102(0.090,0.114)
Others payments 0.088(0.041,0.135) 0.083(0.035,0.131) 0.116(0.060,0.172) 0.095(0.078,0.111)

Multi-racial 0.118(0.034,0.201) 0.081(−0.029,0.205) 0.122(−0.052,0.300) 0.067(−0.009,0.148)

Age 30-49 −0.053(−0.065,−0.042) −0.056(−0.068,−0.045) −0.059(−0.074,−0.045) −0.062(−0.067,−0.058)

Self-pay 0.019(−0.001,0.041) −0.019(−0.04,0.001) −0.028(−0.057,0.001) −0.027(−0.036,−0.017)

Age 0-17 0.053(−0.079,0.184) 0.038(−0.052,0.166) 0.018(−0.149,0.178) 0.024(−0.018,0.075)

Black/African American 0.026(0.008,0.047) 0.008(−0.007,0.025) −0.007(−0.031,0.018) 0.021(0.013,0.031)
Hispanic 0.072(0.047,0.099) 0.017(−0.011,0.045) 0.014(−0.028,0.055) −0.015(−0.034,0.002)

Female −0.012(−0.024,−0.001) −0.013(−0.025,−0.001) −0.013(−0.028,0.002) −0.014(−0.019,−0.009)

Age ≥ 70 0.016(−0.015,0.046) −0.005(−0.029,0.018) 0.005(−0.027,0.037) −0.005(−0.016,0.004)

Private insurance 0.014(0.001,0.028) −0.001(−0.013,0.012) 0.006(−0.012,0.023) 0.003(−0.002,0.009)

the cost data) to divide the spatiotemporal observations into 10 folds of553

approximately the same size, ensuring that all the discharge records from554

one hospital would belong to the same fold. This suggests that the fu-555

ture information of one location would not be used to predict the past in556

the CV. Then, each fold is iteratively used as the testing set to compute557

MAPE with models trained on the data from the remaining fold. The558

average MAPEs over the 10 folds for each model are summarized in Ta-559

ble 3. It is shown that ST-WCQRs have better prediction performance560

than other methods and ST-WCQR with L = 9 performs the best. We561

also employ a holdout method with 10% of the total observations ran-562

domly withheld from the last year for model validation. The results are563

quite similar to those in Table 3. In addition, we study the sensitivity by564

changing the hyperparameters of the priors and find the results from ST-565

WCQR with L = 9 are quite robust to the choice of these priors (results566

are not shown for saving space).567

Table 4 compares the estimates of overall average effects β and their568

95% CIs from the four spatiotemporal methods based on the full dataset.569

As the horseshoe prior is better at suppressing noise than many other570

priors and leaving obvious signals unshrunk (Carvalho et al., 2010), it is571

expected that for median regression methods, STQR usually gives closely572

matched large coefficient estimates to STQR Neelon estimates and shrunk573

results for smaller coefficient estimates. Furthermore, we find that the CIs574

provided by STQR are often narrower than those by STQR Neelon. As575

for regression of the conditional mean of the costs, all the CIs estimated576
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by ST-WCQR with L = 9 are much narrower than those of STMR. This577

suggests that a more precise estimation can be provided by ST-WCQR.578

By using ST-WCQR with L = 9 and the thresholding rule mentioned579

in Section 4, LOS and Extreme ROM are identified to have the statis-580

tically significant state-wide effects on the average costs. This finding581

is supported by the previous studies documenting that LOS and acute582

clinical features are strongly associated with the increased inpatient costs583

(Fine et al., 2000; Wei et al., 2010). More precisely, an additional day in584

hospital for the reference patient group increases the average costs on the585

original scale by 11.16% (95% CI [11.07%, 11.24%]) (see a detailed dis-586

cussion on the interpretation of the coefficients in the log-linear regression587

in Halvorsen and Palmquist (1980)). This suggests that efforts to reduce588

LOS, for example, through discharge planning (Wei et al., 2015) and in-589

patient addiction consult service (Weinstein et al., 2018), may be positive590

steps toward effectively lowering the alcohol-related hospital costs. Costs591

also surge by 44.16% (95% CI [41.54%, 46.84%]) for inpatients at extreme592

ROM, which highlights the need to promote early entry to treatment. As593

it is found that many individuals who suffer from alcohol-related disor-594

ders are reluctant to seek treatment until they experience emergent or595

advanced illness (Tuithof et al., 2016; Connor et al., 2016), interventions596

that promote early entry to treatment before the disorders are well devel-597

oped may help reduce the population burden of the alcohol-related harms.598

For example, such promotion can be achieved by brief behavioral inter-599

vention (Connor et al., 2016) and systematic screening (Carvalho et al.,600

2019) in primary care. Though STMR identifies these two covariates as601

significant factors as well, ST-WCQR yields a sparser model with greater602

interpretability and produces more precise coefficient estimates with nar-603

rower CIs. These findings are of great importance for knowledge-based604

priority settings in healthcare plans. From a policy-making perspective,605

the ST-WCQR significantly narrows down the possible focuses of inter-606

vention to efficient ones and highlights the importance of the state-wide607

joint efforts towards improved hospital management for effective hospital608

length of stay as well as efficient patient triage and resource allocation in609

the ED for the extreme-risk patients.610

Furthermore, there is a statistically significant spatial heterogeneity611

in hospital costs for Multi-racial patients and Multi-ethnic patients. This612

finding reinforces previous studies that there exists a difference in health613

care spending by minority groups (Dieleman et al., 2021) and this dispar-614
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Table 5. The estimated significant spatially varying effects and their CIs from ST-WCQR with L = 1
(STQR) and L = 9 by the thresholding rule.

Region Multi-racial Multi-ethnic
Method ST-WCQR STQR ST-WCQR
WNY −0.867(−1.060,−0.668) −0.784(−1.147,−0.464) 0.073(−0.408,0.517)

Finger Lakes −0.103(−0.287,0.094) −0.138(−0.363,0.120) 0.16(−0.283,0.610)

Southern Tier −0.026(−1.029,0.947) −0.016(−0.981,0.913) −0.017(−0.878,0.794)

CNY −0.083(−0.274,0.113) −0.077(−0.330,0.188) 0.052(−1.441,1.363)

Capital/Adirondack 0.974(0.787,1.178) 0.969(0.735,1.247) −0.146(−1.432,1.173)

Hudson Valley −0.069(−0.287,0.163) −0.061(−0.440,0.247) −0.273(−0.749,0.164)

NYC 0.174(−0.271,0.558) 0.106(−0.328,0.576) 0.152(−0.519,0.820)

ity is further quantified by ST-WCQR as summarized in Table 5. To help615

acquire the knowledge of their geographical patterns, additional figures616

that map these estimates are also provided in the supplements (Figure617

D.4). A much greater disparity in average costs for multi-racial patients618

can be observed across health service areas when compared with costs for619

Multi-ethnic patients. For example, compared with the reference group,620

there is a striking increase (by 97.4%, 95% CI (78.7%,117.8%)) in average621

costs for multi-racial patients in Capital and a much lower average costs622

(decrease by 86.7%, 95% CI (66.8%,106.0%)) for multi-racial patients in623

WNY. This spatial heterogeneity corresponds to the key location-specific624

needs required to address in the locally tailored health policy for improved625

effectiveness of policy implementation and healthcare equality. More ef-626

fort is needed to explore the drivers that shape these disparities. For627

median regression of the costs, STQR (ST-WCQR with L = 1) also iden-628

tifies spatial heterogeneity in the median costs of multi-racial patients,629

which STQR Neelon fails to capture because of its spatial homogeneity630

assumption on the slopes. The heterogeneous nature of the effects re-631

vealed by STQR may help explain why STQR Neelon produces wider632

CIs for the multiracial coefficient than many other covariate coefficients633

in Table 4.634

We display the median of the true and estimated alcohol-related costs635

for each area in Figure 2(a). ST-WCQR captures the spatiotemporal636

characteristics of costs well, especially for 2015 and 2016. There is a637

slight deviation in the estimation from the true value in 2017 because the638

total sample size in 2017 is relatively small and is only one-third of the639

sample size in both 2015 and 2016.640

To reveal the disparities in costs across space and time, we also plot641

the yearly spatiotemporal random effects (STRE) ϕi + ψj + γij , which642

represent the deviation in the average costs relative to the reference level643
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Figure 2. (a) The median of true and estimated (by ST-WCQR with L = 9)
alcohol-attributable hospital inpatients costs on the original scale in seven
health service areas of New York State from 2015 to 2017. (b) The estimated
spatiotemporal random effects (STRE), ϕ̂i + ψ̂j + γ̂ij , over the three years by
ST-WCQR with L = 9. Since there is no data for Long Island, we color the area
in grey. Areas are labeled as 1: WNY, 2: Finger Lakes, 3: Southern Tier, 4:
CNY, 5: Capital/Adirondack, 6: Hudson Valley, and 7: NYC.

($5718.67) across space and time in Figure 2(b). It exhibits some degree644

of spatial heterogeneity and local temporal trends in the average costs645

that covariates can not explain, supporting the use of the spatiotempo-646

ral model in this application and also suggesting a need for area-specific647

healthcare costs intervention. More precisely, average costs in the darkest648

area (Hudson Valley in 2016) and the lightest area (Capital/Adirondack649

in 2017) of these plots were $1210.57 higher and $792.84 lower than the650

reference level which was estimated to be $5718.67 per admission on av-651
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erage, respectively. Western areas had relatively stationary STRE values652

over the three years, while it was not the case in the east. Average costs653

in Capital/Adirondack remained at round $570 lower than the average654

costs for the reference group during 2015 and 2016 and the difference655

was further widened as the average costs in Capital/Adirondack in 2017656

suddenly dropped by $223.64. On the contrary, the average costs in both657

Hudson Valley and NYC surged by over $800 in 2016, exceeding the refer-658

ence level by approximately $1,000. Their cost averages remained higher659

than the reference level at $1067.22 for Hudson Valley and $373.65 for660

New York City, making them ideal targets for local intervention to reduce661

alcohol-related costs.662

7. Discussion663

It is challenging to understand the key drivers of hospital costs and the664

spatiotemporal patterns under the heterogeneity and high level of skew-665

ness. In this paper, we propose a robust and efficient alternative to the666

conventional mean regression that summarizes the spatiotemporal co-667

variate effects on the conditional mean of the alcohol-related inpatient668

hospital costs. By combining information across quantiles, we propose669

a Bayesian ST-WCQR model with spatially varying random slopes and670

spatiotemporal random intercepts and adopt continuous shrinkage priors671

to select the important covariates. ST-WCQR enables the investigation672

of both the important region-wide covariate effects and the heterogeneous673

ones across regions, providing a quantitative reference for the priority set-674

ting of the multi-level healthcare policies. Meanwhile, it can also be used675

to identify areas with fast-changing high hospital costs for cost reduction.676

Extensive simulation studies show that compared with STMR, STQR,677

and STQR Neelon (Neelon et al., 2015), ST-WCQR has comparable pre-678

diction performance to the best method for symmetric error distributions679

and is superior in coefficients estimation and prediction performance with680

a low level of the false-positive rate for asymmetric error distributions.681

Moreover, ST-WCQR can be viewed as a unified approach to obtain-682

ing the best prediction performance for both symmetric and asymmetric683

errors since STQR is a special case of ST-WCQR when L = 1. The684

method is also applicable to monitoring the spatiotemporal variation of685

the healthcare costs during and after the Covid-19 pandemic once the686

relevant data becomes available.687

It is worth emphasizing that this paper aims to develop a robust and688
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efficient estimator in spatiotemporal analysis for inference on the condi-689

tional mean of the continuous response. This is accomplished by holding690

the covariate coefficients across quantiles to be the same. The method691

could also serve as a starting point for robust spatiotemporal statistical692

inference beyond the mean regression. Given that there may be shared693

information among quantile-specific coefficients across neighboring quan-694

tile levels, the equality-of-slopes condition could be imposed on several695

different continuous intervals of quantile levels to accommodate the com-696

monality. This would yield robust and efficient spatiotemporal quantile697

regression estimators, contributing to a more refined healthcare policy698

formulation for the high-cost and low-cost populations. Moreover, the699

proposed method can also be adapted to model the spatiotemporal trends700

of discrete variables, such as disease case counts and counts of crime.701
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