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Abstract
In this paper, an approximate Gaussian state estimator is developed based on generalised
polynomial chaos expansion for target tracking applications. Motivated by the fact that
calculating conditional moments in an approximate Gaussian filter involves computing
integrals with respect to Gaussian density, the authors approximate the non‐linear dy-
namics using polynomial chaos expansion. Second‐order as well as third‐order poly-
nomial chaos expansions were used for approximate filtering, to derive the necessary
recursive algorithm and also provide certain algebraic simplifications which reduce the
computational burden without significantly affecting the filtering performance. Two
comprehensive numerical experiments for multivariate systems, including one for a multi‐
model system, demonstrate the potential of the new algorithms.
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1 | INTRODUCTION

Target tracking [1–4] is a state estimation problem to estimate
the kinematics of a target, such as the position, the velocity and
the turn rate, from noisy measurements received from the
sensors. In target tracking problems, the process and mea-
surement equations are usually non‐linear, and a closed‐form
optimal estimate is not available. There is no single non‐
linear filter which clearly outperforms all other filtering algo-
rithms for a range of tracking problems. Hence, the selection
of filtering algorithm depends on a trade‐off between estima-
tion accuracy and computational complexity, which is specific
to each application. Several filtering heuristics have been
developed over time to address this. The first popular non‐
linear filter was the extended Kalman filter (EKF) [5, 6]. It is
based on first‐order Taylor series approximation of the process
and measurement functions around the previous estimate and
uses the standard recursive Kalman filter (KF) structure.
However, for highly non‐linear systems, the EKF performs
poorly [5, 7].

Due to the limitations of the EKF, more advanced esti-
mation techniques have been developed. In the literature,
mainly two approaches are available for non‐linear filtering. In
the first one, the prior and the posterior probability density

functions (PDFs) are approximated as Gaussian. Their mean
and covariances are evaluated with a few deterministic sample
points and the associated weights [8]. The cubature Kalman
filter (CKF) [9], the interpolatory CKF (ICKF) [10], the
embedded CKF (ECKF) [11], the unscented Kalman filter
(UKF) [12, 13] and the Gauss‐Hermite filter (GHF) [14],
among others, are examples of such estimators. In another
approach, the prior and posterior pdfs are approximated with a
large number of random particles generated using importance
sampling and their corresponding probability weights. It is
popularly known as particle filter (PF) [15]. Although the PF
and its variants can achieve high estimation accuracy, their
computation demand is relatively higher than that of the first
class of filters. This problem becomes worse with an increase
in the system dimension.

In this paper, we will employ polynomial chaos to arrive at
Gaussian prior and posterior densities of the state estimate.
Polynomial chaos theory was first introduced in Ref. [16],
where Hermite polynomial was used to model a stochastic
process with the help of Gaussian random variables. Later, the
authors in Ref. [17] presented generalised chaos theory by
using orthogonal polynomials for different continuous and
discrete distributions. In Ref. [18], the chaos expansion is used
to represent power flow response. The chaos expansion is
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reported to converge in L2 space for a general class of sto-
chastic processes having finite second moments [17, 19].
Polynomial chaos‐based square‐root Kalman filter was devel-
oped in Ref. [20], where the coefficients are calculated from the
ensemble Kalman filter and the filter gain is calculated from
the coefficients. A few attempts have been made to develop an
estimation method with the help of generalised polynomial
chaos for a non‐linear system adopting the EKF approach [21]
and the ensemble Kalman filter approach [22]. Both the papers
considered continuous stochastic processes rather than discrete
time processes, which are (arguably) more realistic in target
tracking applications with discretely sampled measurements.
Further, for a highly non‐linear system, the generalised poly-
nomial chaos EKF (gPC‐EKF) performs poorly [23].

A second‐order polynomial chaos expansion of a multivar-
iate non‐linear function leads to terms of the form xixj. In
addition to these terms, a third‐order polynomial chaos expan-
sion leads to terms of the form xixjxk. We call the terms in the
expansion with i = j for second‐order terms and i = j = k for
third‐order terms as ‘alike terms’ and any terms with i ≠ j are
called as ‘cross terms’. Since approximate Gaussian filters, such
as the CKF, ICKF, ECKF and UKF, among others, involve
computing conditional moments of the state with respect to
Gaussian density, it is intuitively attractive to use a polynomial
expansion of the underlying non‐linear functions using Hermite
polynomials (i.e. polynomial chaos expansion), which provide an
optimal approximation in L2 sense. Recently, Xu et al. [23] used
polynomial chaos expansion to approximate non‐linear func-
tions and subsequently derive an algorithm for estimating states
of a discrete non‐linear system. They considered only a second‐
order polynomial chaos expansionwith alike terms. Further, they
used noise covariances to distribute the collocation points (CPs)
around the mean. This makes the algorithm sensitive with filter
initialisation and estimation diverges in tracking the truth in
many scenarios.

In this paper, we also adopt the polynomial chaos expan-
sion to approximate a non‐linear function. Our specific con-
tributions to Ref. [23] are as follows: (i) Ref. [23] considered
only second‐order polynomial chaos expansion with alike
terms. In this paper, we develop an estimation algorithm using
up to third‐order polynomial chaos expansion. (ii) Further, we
consider both alike terms and cross terms in both second‐
order and third‐order expansion, and evaluate the effect of
neglecting cross terms both empirically through comprehen-
sive examples and in terms of flop counts. (iii) Ref. [23] used
(2n + 1) number of CPs on the axis at a distance of

ffiffiffi
3
p

from
the origin. Instead of using such highly constrained CPs, we
use generalised CPs, for example, as suggested in Refs. [24, 25].
We propose a structured procedure to choose CPs for poly-
nomial chaos filtering and show that the proposed filters with
generalised CPs achieve a high degree of accuracy and low
track loss compared to existing approximate Gaussian filters.

The developed filters are applied to two target tracking
problems, where we have seen that the estimator derived in
Ref. [23] provides a comparable results with the existing
Gaussian filters such as the CKF [9], the ICKF [10] and the
UKF [12, 13]. However, the proposed method provides more

accurate tracking compared to Ref. [23] and other existing
Gaussian filters at a modest increment in computational cost.
The computational budget required for the proposed filter is
studied in terms of flop counts and is compared with the
existing filters.

The rest of the paper is organised as follows. Section 2
presents the Gaussian approximated filter under the Bayesian
framework. In Section 3, we first approximate the function
using polynomial chaos expansion, and subsequently derive the
polynomial chaos Kalman filter (PCKF). The computation
complexity of the proposed PCKF is compared with the CKF
and UKF in Section 4. The simulation results are presented in
Section 5, followed by a brief discussion and conclusions.

2 | BAYESIAN FRAMEWORK OF
APPROXIMATE GAUSSIAN FILTERING

The process and the measurement equation in discrete‐time
state space model are given as

X k ¼ f X k−1ð Þ þ ηk−1; ð1Þ

Yk ¼ h Xkð Þ þ νk; ð2Þ

where X k ∈ Rn and Yk ∈ Rny are the state and measurement
vectors. f ð⋅Þ : Rn → Rn and hð⋅Þ : Rn → Rny are process and
measurement function, respectively. The process noise, ηk−1,
and measurement noise, νk, are assumed to be Gaussian with
mean zero and covariance matrices Qk−1 and Rk, respectively.
It is also assumed that the initial state, X 0, the process and
measurement noise are independent to each other.

In Bayesian filtering, the state X k is being estimated
recursively using the measurement Y1:k in two steps: (i) pre-
diction step (ii) update step. In the prediction step, using
Chapman–Kolmogorov equation we construct the prior pdf
p X kjY1:k−1ð Þ from the knowledge of p Xk−1jY1:k−1ð Þ:

p X kjY1:k−1ð Þ ¼

Z

p X kjX k−1ð Þp X k−1jY1:k−1ð ÞdX k−1: ð3Þ

In the update step, Bayes' rule is used to construct the
posterior density function p X kjY1:kð Þ

p XkjY1:kð Þ ¼
p YkjX kð Þp X kjY1:k−1ð Þ

R
p YkjXkÞp X kjY1:k−1ÞdX k:ðð

ð4Þ

For a linear system, the prior and posterior density func-
tions (Equations 3–4) remain Gaussian, and the first two
moments of the posterior density can be obtained recursively
using the Kalman filter. For a non‐linear system, the prior and
posterior pdfs are no longer Gaussian. However, many
approximate Gaussian filtering algorithms assume them to be
Gaussian and calculate the mean vector and the covariance
matrix recursively [6, Chap. 6, 9, 12, 14]. The prior mean can
be calculated as [9, 14, 26]

2 - KUMAR ET AL.
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bX kjk−1 ¼

Z ∞

−∞
f X k−1ð ÞN X k−1; bX k−1jk−1; Pk−1jk−1

� �
dXk−1:

ð5Þ

The prior error covariance PXXkjk−1

� �
, the expected value of

measurement bYkjk−1

� �
, the covariance of measurement

PYYkjk−1

� �
and the cross‐covariance of state and measurement

PXYkjk−1

� �
can also be expressed in a similar way [9, 14]. For

exact expressions, see Section 2 of Ref. [26].
After receiving the new measurement, Yk, we construct the

posterior mean and the posterior covariance as

bX kjk ¼ bX kjk−1 þ Kk Yk − bYkjk−1

� �
; ð6Þ

and
PXXkjk ¼ P

XX
kjk−1 − KkPYYkjk−1K

T
k ; ð7Þ

where the Kalman gain (Kk) is expressed as

Kk ¼ PXYkjk−1 PYYkjk−1

� �−1
: ð8Þ

In general, for any arbitrary non‐linear function, the in-
tegrals in estimating the conditional mean and the conditional
covariance matrices are computationally intractable. In this
paper, we use polynomial chaos expansion of the non‐linear
function to evaluate these integrals.

3 | POLYNOMIAL CHAOS‐BASED
KALMAN FILTER

The polynomial chaos expansion is a series expansion of
Gaussian random variables in terms of Hermite polynomials
[27, p. 44]. In the next subsection, we discuss the functional
approximation using polynomial chaos expansion and develop
the filtering algorithm in subsequent subsections.

3.1 | Approximation using polynomial chaos
expansion

Here, we approximate the transition function, f ðXÞ, where the
state X follows Gaussian distribution with mean bX and
covariance P. It is important to note that the approximation is
not generally on the mean value; rather, it is determined by the
sample points. This point is made clearer later in the discus-
sion, when we talk about the prior mean. At first, we transform
X into a standard Gaussian random variable, x, following
X ¼ bX þ Sx, where P = SST. After the transformation, the

function f ðXÞ becomes f bX þ Sx
� �

, and its dth order chaos

expansion can be written as [18, 28]

f bX þ Sx
� �

≈ a0 þ
Xn

i1¼1

ai1H1 xi1ð Þ

þ
Xn

i1¼1

Xi1

i2¼1
ai1i2H2 xi1; xi2ð Þ

þ
Xn

i1¼1

Xi1

i2¼1

Xi2

i3¼1
ai1i2i3H3 xi1; xi2; xi3ð Þ þ⋯

þ
Xn

i1¼1

Xi1

i2¼1

⋯
Xid−1

id¼1

ai1i2⋯idHd xi1; xi2;…; xid
� �

;

ð9Þ

where ai1i2⋯id are the coefficients of the chaos expansion,
x1 x2 ⋯ xn½ �

T
¼ x, and Hd(x1, x2, …, xn) is the Hermite

polynomial of degree d, which is given by [17, 18]

Hd x1; x2;…; xnð Þ ¼ ð−1Þdexp
1
2
xTx

� �
∂n

∂x1∂x2⋯∂xn

exp −
1
2
xTx

� �

:

ð10Þ

Hermite polynomials are orthogonal in the inner product
sense [27, p. 45] that is, E[HpHq] = 0 if Hp ≠ Hq, where the
expectation is taken with respect to the standard Gaussian
measure. Further, polynomial chaos expansion as expressed in
Equation (9) converges in the mean square sense to the true
function [27, 28] and the squared error of approximation de-
creases with the increase in order of expansion. In Refs. [18,
27, 28], it has been mentioned that the approximation of de-
gree more than three provides only a marginal improvement in
accuracy and is overshadowed by the increase in computational
burden.

In this work, we confine ourselves to chaos expansion up
to third order while approximating the non‐linear state tran-
sition function and the measurement function. From Equa-
tion (9), we approximate the transition function with chaos
expansion of third order as follows:

f bX þ Sx
� �

≈ a0 þ
Xn

i1¼1
ai1H1 xi1ð Þþ

Xn

i1¼1

Xi1

i2¼1
ai1i2H2 xi1; xi2ð Þ

þ
Xn

i1¼1

Xi1

i2¼1

Xi2

i3¼1
ai1i2i3H3 xi1; xi2; xi3ð Þ

≈ a0 þ AHðxÞ; ð11Þ

where the matrix H(x) and A are given by

HðxÞðm−1Þ�1 ¼ H1 x1ð Þ ⋯ H3 xn; xn; xnð Þ½ �
T
; ð12Þ

and

An�ðm−1Þ ¼ a1 a2 ⋯ annn½ �; ð13Þ

KUMAR ET AL. - 3

 17518792, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.12338 by B

runel U
niversity, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



respectively. The total number of terms in the approximated
polynomial is denoted by m, and for a third‐order polynomial
chaos expansion, m¼ nþ3

3

� �
. Note that as per our nomencla-

ture in the Section 1, a0 and coefficient a with subscript i1 = i2
for second‐order terms and subscript i1 = i2 = i3 for third‐
order terms in Equation (11) are alike terms and the rest of
the coefficients are cross terms.

From Equation (10), we know that

H1 xi1ð Þ¼ xi1;

H2 xi1; xi1ð Þ ¼
x2i1 − 1
� �

ffiffiffi
2
p ; H2 xi1; xi2ð Þ ¼ xi1xi2;

H3 xi1; xi1; xi1ð Þ ¼
x3i1 − 3xi1
� �

ffiffiffi
6
p ; H3 xi1; xi2; xi2ð Þ ¼

xi1 x2i2 − 1
� �

ffiffiffi
2
p ;

H3 xi1; xi2; xi3ð Þ ¼ xi1xi2xi3:

Similar to Equation (11), we approximate the measurement
function (Equation 2) as

h bX þ Sx
� �

≈ b0 þ
Xn

i1¼1
bi1H1 xi1ð Þþ

Xn

i1¼1

Xi1

i2¼1
bi1i2H2 xi1; xi2ð Þ

þ
Xn

i1¼1

Xi1

i2¼1

Xi2

i3¼1
bi1i2i3H3 xi1; xi2; xi3ð Þ

≈ b0 þ BHðxÞ;
ð14Þ

where B is a matrix of dimension ny � (m − 1), and can be
expressed in a similar fashion as Equation (13).

3.2 | Polynomial chaos approximation‐
based filter

In this subsection, we derive the filtering algorithm for the
following approximate non‐linear system:

Xk ¼ a0 þ AH X k−1ð Þ þ ηk−1;

Yk ¼ b0 þ BH X kð Þ þ νk; ð15Þ

where a0, b0, A and B are as defined in the previous section and
X k ¼ bX k þ Sx, with S being a Cholesky factor of the
covariance matrix of Xk and x being a random variable with
standard normal distribution. The following three lemmas
allow computation of moments using polynomial chaos
expansion of non‐linear functions.

Remark 1 For a standard Gaussian random variable x, the
matrix H(x) has the following properties:

E½HðxÞ� ¼ 0; ð16Þ

E HðxÞHðxÞT
h i

¼ I: ð17Þ

Lemma 1 For the system in Equation (15), the prior mean and
the error covariance are given by

bX kjk−1 ¼ a0; ð18Þ

PXXkjk−1 ¼ AA
T þQk−1: ð19Þ

Proof The prior mean can be calculated as

bX kjk−1 ¼ E XkjY1:k−1½ �:

Now, using the affine transformation [29, pp. 36–37]
Xk−1 ¼ bX k−1jk−1 þ Sk−1jk−1xk−1, the above equation becomes

bX kjk−1 ¼ E f bX k−1jk−1 þ Sk−1jk−1xk−1

� �
þ ηk−1

h i

¼ E a0 þ AH xk−1ð Þ þ ηk−1½ �

¼ a0:

The predicted estimation error is

X k − bX kjk−1 ¼ AH xk−1ð Þ þ ηk−1: ð20Þ

The prior error covariance can be calculated as

PXXkjk−1 ¼ E X k − bX kjk−1

� �
X k − bX kjk−1

� �T
jY1:k−1

� �

¼ E AH xk−1ð Þ þ ηk−1ð Þ AH xk−1ð Þ þ ηk−1ð Þ
T

h i

¼ AE H xk−1ð ÞH xk−1ð Þ
T

h i
AT þQk−1

¼ AAT þQk−1:

Lemma 2 For the system in Equation (15), the expected
value of one‐step‐ahead measurement, bYkjk−1, the covariance
of the same measurement, PYYkjk−1, and the cross covariance

of the state and the measurement, PXYkjk−1

� �
, are, respec‐

tively, given by

bYkjk−1 ¼ b0; ð21Þ

4 - KUMAR ET AL.
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PYYkjk−1 ¼ BB
T þ Rk; ð22Þ

PXYkjk−1 ¼ AB
T : ð23Þ

Proof The expected value of measurement is

bYkjk−1 ¼ E YkjY1:k−1½ �:

Using Equations (2) and (14), the above equation can be
written as

bYkjk−1 ¼ E b0 þ BH xkð Þ þ νkð ÞjY1:k−1½ � ¼ b0:

Now, since
Yk − bYkjk−1 ¼ BH xkð Þ þ νk; ð24Þ

the covariance of the measurement can be expressed as

PYYkjk−1 ¼ E Yk − bYkjk−1

� �
Yk − bYkjk−1

� �T
jY1:k−1

� �

¼ E BH xkð Þ þ νkð Þ BH xkð Þ þ νkð Þ
T

h i

¼ BE H xkð ÞH xkð Þ
T

h i
BT þ Rk ¼ BBT þ Rk:

ð25Þ

Further, the cross‐covariance can be calculated as

PXYkjk−1 ¼ E X k − bX kjk−1

� �
Yk − bYkjk−1

� �T
jY1:k−1

� �

¼ ABT :

ð26Þ

3.3 | Determining the coefficients

Next, we discuss how to calculate the coefficients a0, b0, A and
B. From Equation (11)

f bX þ Sx
� �

¼ a0 þ AHðxÞ

¼ a0 A½ �n�m

"
1

HðxÞ

�

m�1

¼ A0H 0ðxÞ:

ð27Þ

Our objective is to determine the matrix A0. As there are m
coefficients to be evaluated, we need m independent linear
equations. We generate these equations using m CPs; ξi ∈ Rn,
i = {1, 2, …, m}. This gives mn equations such that

χ ¼HA0T ; ð28Þ

where χ is a matrix with dimension m � n given by

χ ¼

f T bX þ Sξ1
� �

f T bX þ Sξ2
� �

⋮
f T bX þ Sξm
� �

2

6
6
6
6
6
4

3

7
7
7
7
7
5

m�n

;

and the matrix H ∈ Rm�m is given by

H¼

H 0T ξ1ð Þ
H 0T ξ2ð Þ

⋮
H 0T ξmð Þ

2

6
6
4

3

7
7
5

m�m

:

Once we solve the above linear equation, we receive

A0T ¼H−1χ: ð29Þ

We can also evaluate the matrix B0 ¼ b0 B½ � in a similar
fashion. Note that the prior mean bX kjk−1 ¼ a0, as given by
Equation (18), is effectively determined by our choice of CPs.

3.4 | Generation of collocation points

As mentioned earlier, the CPs are a set of points in n
dimensional real space which are required to calculate the
coefficients of polynomial chaos expansion. As the accuracy
of the proposed filter depends on the choice of CPs, it is
advised to choose a set of CPs that can capture high prob-
ability density region [24, 25, 27]. For a normal distribution,
the mean and the mode coincide, and the high probability
region is concentrated around the mean. Firstly, single
dimension CPs are generated by solving the roots of (d + 1)
th Hermite polynomial. For example, if we want to proceed
with the second‐order polynomial chaos approximation, we
need to find out the roots of a third‐order Hermite poly-
nomial. Next, these points are combined using the product
rule to create a set of suitable CPs. If the origin is not
included in the set of points, it is added. As mentioned above,
for a standard normal random variable, the origin is the mode
that is, the point of highest probability. Thus, the set of
probable CPs consists of (d + 1)n or (d + 1)n + 1 number of
points for even or odd order of polynomial chaos approxi-
mation, respectively. From the set of acceptable CPs, we need
to select m linearly independent points and solve the system
of linear equations which results in the values of the co-
efficients. Now, the question is which m CPs to select from
the set. For this, we prioritise the CPs which are near to the
origin and check the rank condition till the desired number of
support points are collected. Please see the Algorithm 1 for
the generation of support points and see Algorithm 2 for the
filtering algorithm (termed PCKF). It is worth mentioning

KUMAR ET AL. - 5
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that the selection of CPs is not unique, and other choices are
possible, including suggestions in Refs. [30–34]. Note that
when we initialise the filter, bX 0j0 is not the mean; it is a
sample point drawn from a known prior distribution [5, p.
246, 6, p. 54]. Of course, the mean itself can be chosen as the
sample point in question, although the effect of bias due to
sampling of initial value tends to dissipate quite quickly for
most practical systems.

Algorithm 1 Generation of CPs

• Calculate the roots of (d + 1)th order
Hermite polynomial

• Use product rule to generate a set of
probable CPs, mn�ðdþ1Þn

• if (d + 1) is even
- m = concatenate (m, 0n�1)

• end if
• Calculate the Euclidean distance of CPs,

and ascend them to get ξ¼ ξ1 ξ2 ⋯ ξðdþ1Þn
h i

• Calculate H = H0T(ξ1)
• for i = 2 : length(ξ(1, :))

- HH = concatenate(H, H0T(ξi))
- if HH is full row rank
- H = HH
- else
- i = i + 1

- end
- if rank (H) = m, break

• end for

Remark 2 The selection of CPs includes some additional
computation burden. However, this is independent of the
filtering algorithm and the CPs can be computed in advance.

Remark 3 In some degenerate models, it might be the case that
all points merge in some clusters such that it is not possible to
define a full rank matrix Hm�m. In this case, the coefficients
will be non‐unique and a least squares solution of Equa-
tion (28) can still be used. In this paper, we have not accounted
for such a case.

Remark 4 A mixed strategy can be adopted for time and
measurement updates if the process equation is linear and the
measurement equation is non‐linear. As the process equation is
linear, the time update step can be performed by the standard
Kalman filtering algorithm, and the measurement update step
is performed using the non‐linear Gaussian filters.

Remark 5 If the process and measurement equations are non‐
linear, different orders of expansion can be used. Depending
on the degree of linearity, each step (time update and mea-
surement update) could be treated differently. Although it can
be adopted, we have used the same order of expansion
throughout the paper.

4 | COMPUTATIONAL COMPLEXITY

Here, in terms of floating‐point operations (flops) count, we
calculate the computational complexity of the proposed PCKF
and compared it with the CKF and UKF. The addition or
subtraction of any two matrix A ∈ Ri�j and B ∈ Ri�j requires
ij flops. The multiplication of any two matrices A and B with
dimension i � j and j � l requires il(2j − 1) flops [35, 36]. The
Cholesky and inverse operation of any square matrix A ∈ Ri�i

require i3/3 + 2i2 and i3 flops, respectively [35, 36]. Total
cumulative computational complexity of the PCKF algorithm
in terms of flops is

C n; ny;m
� �

¼ 2m2 nþ ny
� �

þm 6n2 − n − ny þ 2n2y þ 2nny
� �

þ 2=3n3 þ 2n2 − 2n2y − 3nny

þ 4nn2y þ n
3
y þ ny þ 2n2ny;

ð30Þ

where n, ny and m are defined as before. The cumulative
computation burden of the CKF and UKF with m numbers of
sample points are given by

C n; ny;m
� �

¼m 6n2 þ 5nþ 5ny þ 2n2y þ 2nny
� �

þ 2=3n3 þ 5n2 þ n2y þ 4nn2y

þ n3y þ ny þ 2n2ny:

ð31Þ

Remark 6 From the Algorithm 2, note that the inverse of the
polynomial basis matrix, H, can be calculated outside the
estimation loop. Hence, flops count for computingH−1, which
is 2m3, is not included in the Equation (30).

From the above two equations, it can be realized that the
flops count for PCKFs are high, particularly so for a high
dimensional system. To illustrate this, we plotted the number of
flops with the dimension of state, n, keeping the ratio fixed as
ny/n = 1/3, in Figure 1. From the figure, it can be seen that the
flops count of PCKF increases considerably with the dimension
of the system. This is mainly due to a large number of cross
terms for a large n. To reduce the computational burden without
compromising the accuracy too much, we also experimented
with polynomial chaos, truncated with only alike terms. Such
truncated polynomial chaos filters with second‐ and third‐order
chaos expansion are represented with PCKF‐2t and PCKF‐3t,
respectively. Polynomial chaos filters with second‐ and third‐
order expansion, with all the terms, are represented as PCKF‐
2 and PCKF‐3, respectively. The proposed PCKF with
second‐order chaos expansion and alike terms of the third order
is represented as PCKF‐2,3t. Note that PCKF‐2t is a modified
version of the algorithm in Ref. [23], with generalised CPs. The
total number of support points required for various PCKFs are
tabulated in Table 1. Further, from Figure 1, we see that the flops
counts for PCKF‐2t and PCKF‐3t reduce substantially when
compared to PCKF‐2 and PCKF‐3, and they are comparable to
those of the CKF and the UKF.
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Algorithm 2 Pseudo code for polynomial chaos filter

Step 1: Initialisation
• Initialise the filter with
bX 0j0 �N X0; P0j0

� �
.

• Calculate collocation points (CPs), ξ,
and polynomial chaos basis matrix H.

Step 2: Time update
• Perform the Cholesky decomposition of
Pk−1|k−1XX ${P}_{k-1\vert k-1}^
{\mathcal{X}\mathcal{X}}$:

PXXk−1jk−1 ¼ Sk−1jk−1STk−1jk−1:

• Evaluate the sample points around
Xˆk−1|k−1 ${\widehat{\mathcal{X}}}_
{k-1\vert k-1}$:

X i;k−1jk−1 ¼ X̂ k−1jk−1 þ Sk−1jk−1ξi;

for i = 1, 2, …, m.
• Propagate the sample points:

χi;kjk−1 ¼ f ðX i;k−1jk−1Þ:

• Calculate the state prediction matrix,

χ ¼ ½χT1;kjk−1 χT2;kjk−1 ⋯ χTm;kjk−1�
T
:

• Calculate the coefficient matrix,
A0 ¼ H−1χð Þ

T.
• Calculate bX kjk−1 and PXXkjk−1 using
Equations (18) and (19), respectively.

Step 3: Measurement update
• Factorise PXXkjk−1 ¼ Skjk−1S

T
kjk−1.

• Generate sample points around Xˆk|k−1
${\widehat{\mathcal{X}}}_{k\vert k-1}
$:

X i;kjk−1 ¼ X̂kjk−1 þ Skjk−1ξi:

• Propagate the sample points with the
measurement function

Yi;kjk−1 ¼ hðX i;kjk−1Þ; i¼ 1; 2;⋯;m:

• Calculate
Y ¼ YT1;kjk−1 YT2;kjk−1 ⋯ YTm;kjk−1

� �T
.

• The coefficient matrix is calculated
using B0T ¼ H−1Y.

• Evaluate bYkjk−1, P
YY
kjk−1 and P

XY
kjk−1 using

Equations (21)–(23).
• Calculate bX kjk and PXXkjk using
Equations (6) and (7), respectively.

F I GURE 1 Flops count versus state dimension
(n) plot of the different filters for ny/n = 1/3, where
n varies from 3 to 30

TABLE 1 No. of support points requirement for various PCKFs

Filter PCKF‐2t PCKF‐2 PCKF‐3t PCKF‐2,3t PCKF‐3

M 1 + 2n nþ2
2

� �
1 + 3n nþ2

2

� �
+ n nþ3

3

� �

Abbreviation: PCKF, polynomial chaos Kalman filter.
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5 | SIMULATION EXPERIMENTS

The developed filters are applied to the following two prob-
lems: (i) a manoeuvering aircraft represented with an inter-
acting multiple model (IMM); (ii) multi‐sensor bearings‐only
target tracking.

Problem 1 A manoeuvering aircraft's dynamics is represented
with multiple models [37], in discrete time domain with the
following equation:

X kþ1 ¼ fμk X kð Þ þ gμk X kð Þημk;

where μk ∈ {1, 2, 3}. The process is assumed to follow either
constant velocity (CV), coordinated turn (CT) or constant
acceleration (CA) model. μk = 1 represents the CV model.
Similarly, μk = 2 and μk = 3 correspond to the CT and the CA
model, respectively. ημk is the process noise for model μk
following the Gaussian distribution with zero mean and
identity covariance matrix. Note that the dimension of the
states and state transition function fμkð⋅Þ are not fixed and they
change with the selected model.

For CV model that is, μk = 1, the state X k ¼ xk½
ykzkvxkvyk�

T , where xk and vxk represent position and velocity
along x axis, respectively. The process and input functions for
that model are

f1 X kð Þ ¼

I2�2 02�1 TI2�2
02�2 I2�2 02�1
01�2 01�2 1

2

4

3

5X k; ð32Þ

and

g1 X kð Þ ¼ α

1
2
T 2 0 0

0
1
2
T 2 0

0 0
1
2
T 2

T 0 0

0 T 0

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

; ð33Þ

respectively. α is the acceleration (also known as maneuver-
ability coefficient). For CT model that is, μk = 2, the state
vector becomes Xk ¼ xk yk zk vxk½ vyk vzkωk�

T
; where

ωk is the turn rate and the process function in such a case
become

The input function for CT model is expressed as

g2 X kð Þ ¼

S1 03�3 03�1

03�3 S1 03�1

01�3 01�3
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2xk þ v

2
yk þ v

2
zk

q

2

6
6
6
6
6
4

3

7
7
7
7
7
5

C; ð35Þ

where

S1 ¼
cos tan−1 vyk=vxk

� �� �
−sin tan−1 vyk=vxk

� �� �
0

sin tan−1 vyk=vxk
� �� �

cos tan−1 vyk=vxk
� �� �

0
0 0 1

2

4

3

5:

The matrix C is defined as

C ¼

1
2
αxT 2 0 0

0
1
2
αyT 2 0

0 0
1
2
αzT 2

αxT 0 0

0 αyT 0

0 0 αzT

0 αy 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

where αx, αy and αz are the components of acceleration which
are constant throughout the simulation. For CA model that
is, μk = 3, the state vector becomes Xk ¼ xk yk zk vxk½

vykvzkazk�
T , where azk is the acceleration along z axis. The process

and the input functions of such model are

f2 Xkð Þ ¼

1 0 0 sin ωkTð Þ=ωk − 1 − cos ωkTð Þð Þ=ωk 0 0
0 1 0 1 − cos ωkTð Þð Þ=ωk sin ωkTð Þ=ωk 0 0
0 0 1 0 0 T 0
0 0 0 cos ωkTð Þ −sin ωkTð Þ 0 0
0 0 0 sin ωkTð Þ cos ωkTð Þ 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð34Þ
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f3 X kð Þ ¼

1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T T 2

=2
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 T
0 0 0 0 0 0 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; ð36Þ

and

g3 X kð Þ ¼
1
2
αz0T 2I3�3

� �T

αz0TI3�3ð Þ
T 0½ 0 αz0 �T

" #T

;

ð37Þ

respectively.
The measurements available to the estimator are the range,

the bearing and the elevation angle of the target. We can write
the measurement equation as

Yk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2k þ y
2
k þ z

2
k

q

tan−1 yk=xkð Þ

tan−1 zk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2k þ y
2
k

q� �

2

6
6
6
4

3

7
7
7
5
þ νk; ð38Þ

The measurement noise, νk, is assumed to be Gaussian
with mean zero and covariance, Rk ¼ diag σ2

r σ2
b σ2

a
� �� �

.
The true trajectory of the target shown in Figure 2 is

constructed by the combination of following mode‐switching
scenarios: During the first six time‐steps, the target follows
the straight line, constant velocity trajectory (CV model). The
next ten time‐steps are hybrid between the CT and CA model,
and the next eight time‐steps are the hybrid between CV and
CT model. The last four time‐steps correspond to the CA

model. The sampling time T is assumed here 0.25 s, and total
observation period lasted for 7 s. The initial truth of the target
is X 0 ¼ 5000m 5000m 1000m 300m=s 300m=s 100m=s −½

ðπ=60Þrad 5m=s2�T ; and the parameters used in this simula-
tion work are listed in Table 2. The newly developed filters viz.
PCKF‐2, PCKF‐2t, PCKF‐2,3t, PCKF‐3 and PCKF‐3t were
compared with some of the established non‐linear filtering
heuristics viz. the EKF, the CKF, the UKF and third degree
ICKF (ICKF‐3). Although several variants of the UKF are
available in literature such as the scaled UKF [38], here we are
comparing with the standard UKF, proposed in Refs. [12, 13].
We set the tuning parameter of the UKF, κ = 3 − n as dis-
cussed in Ref. [12]. All the filters were initialised with the es-
timate, bX 0j0 �N X 0; P0j0

� �
, where P0|0 is the initial error

covariance given as P0|0 = 103 � diag([5 5 5 4 4 4 10−7

2 � 10−2]).
It is assumed that the mode‐switching process is Markov

and is given as

F I GURE 2 Truth target trajectory and
estimated PCKF‐3 for a single representative run.
PCKF, polynomial chaos Kalman filter.

TABLE 2 Tracking parameters

Parameters Values

Α 0.5 m/s2

αx 15 m/s2

αy 20 m/s2

αz 15 m/s2

αz0 20 m/s2

σr 20 m

σb 4 � 10−3 rad

σa 4 � 10−3 rad

q2 5

KUMAR ET AL. - 9
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pij ¼
0:90 0:05 0:05
0:05 0:90 0:05
0:05 0:05 0:90

2

4

3

5:

While this choice is somewhat arbitrary, it was found that
the results are qualitatively very similar for diagonal elements
of the Markov transition matrix between 0.8 and 0.98 [5, p.
457]. In a realistic simulation, the values would be chosen ac-
cording to the switching frequency among the modes. A higher
value of diagonal elements leads to a lower overall root mean
square error (RMSE) and a higher peak RMSE during mode
transition, whereas a lower value yields a larger overall RMSE
and a lower peak RMSE during transition. For this problem,
PCKF‐3 successfully tracks the target, as illustrated in Figure 2.

The performance of all the filters is compared in terms of
the RMSE, track loss and execution time. The RMSE
in range at a time‐step is defined as RMSEran;k ¼

ð 1M
PM

i¼1 ðx
i
k − x̂ikÞ

2
þ ðyik − ŷikÞ

2
þ ðzik − ẑikÞ

2
Þ
1=2
; where M is

total number of ensembles, xik; y
i
k; z

i
k

� �
and bxik;by

i
k;bz

i
k

� �
are

the true and estimated positions at the kth time‐step of ith
ensemble. Similar to the range RMSE, we may also calculate
the resultant velocity RMSE. Again, an estimated target track
for a single run is said to be diverging if the absolute error at
the last step exceeds a predefined threshold (denoted by et).
Figure 3a,b show the range and velocity RMSE for the
different filters calculated over 500 MC runs (excluding the
diverged tracks). Here, we choose the threshold value for
track loss as et = 50 m. From the range RMSE plot
(Figure 3a), it can be observed that the EKF attains the
highest RMSE whereas other filters have comparable RMSE
results. The velocity RMSE plot also exhibits the similar
pattern. Here, it should be noted that the RMSE results of
different filters (except the EKF) look similar because we
have plotted RMSEs excluding the track divergence criteria.
We also provide the mean of the RMSE value (average

RMSE) for position and velocity, obtained from 500 MC runs
in Table 3. The table shows that the proposed PCKF‐3 at-
tains the lowest average RMSEs, whereas the EKF attains the
highest. The others filters' average RMSEs lie between the
Proposed PCKF‐3 and the EKF.

Further, we compare the performance of the filters in
terms of track divergence. The percentage of track loss of all
the filters for et = 50 m, calculated over 10,000 MC runs are
recorded in Table 4. From the table, we can observe that
PCKF‐3, PCKF‐2,3t and PCKF‐2 achieve the lowest per-
centage track loss whereas the EKF attains the highest. PCKF‐
3t, ICKF‐3 and the CKF provide comparable track loss per-
formances which is better than the PCKF‐2t and the UKF.
Lastly, we compare the filter performance in terms of their
execution times. The execution time of all the filters relative to
the EKF (considered to be unity) are provided in Table 4. It
can be seen that the PCKF‐3 is computationally more

F I GURE 3 (a) Range RMSE; (b) Velocity RMSE of the different filters obtained from 500 MC runs (problem 1). CKF, cubature Kalman filter; EKF,
extended Kalman filter; ICKF, interpolatory CKF; RMSE, root mean square error; UKF, unscented Kalman filter

TABLE 3 Average RMSE in range and velocity (problem 1)

Filter Position (m) Velocity (m/s)

EKF 44.65 93.65

CKF 40.90 83.20

UKF 41.16 83.60

ICKF‐3 40.80 82.93

PCKF‐2t 41.18 83.70

PCKF‐2 40.84 83.06

PCKF‐3t 40.87 83.50

PCKF‐2,3t 40.79 82.32

PCKF‐3 40.78 82.24

Abbreviations: CKF, cubature Kalman filter; EKF, extended Kalman filter; ICKF,
interpolatory CKF; PCKF, polynomial chaos Kalman filter; RMSE, root mean square
error; UKF, unscented Kalman filter.
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expensive than the other filters. On the other hand, the PCKF‐
2t attains a comparable execution time as the CKF and the
UKF. Also, the execution time of PCKF‐3t is only slightly
higher than the PCKF‐2t.

Simulation result exhibits that the PCKF‐2, PCKF‐2,3t
and PCKF‐3 provide better track performance than all the
other implemented filters. PCKF‐2 and PCKF‐2,3t can be a
good choice for manoeuvering aircraft tracking problem
due to high accuracy (compared to the EKF, the UKF and
the CKF) and low computational burden (compared to
PCKF‐3).

Problem 2 In this problem, we consider a two sensors
bearings‐only tracking (BOT) problem [39], where the target
follows a nearly straight line path with a nearly constant ve-
locity. The measurement available from the sensors are bearing
angles. The sensors are assumed to be stationary with co‐
ordinates (x1, y1) and (x2, y2), respectively. The process equa-
tion is expressed as

X k ¼ FX k−1 þ ηk−1;

where the target state, X ¼ xk vxk yk vyk
� �T , (xk, yk) and

vxk; vyk
� �

are the position and velocity of the target. The state

transition matrix is F ¼ F1 02�2
02�2 F1

� �

, where F1 ¼
1 T
0 1

� �

and 02�2 is a zero matrix of dimension 2.
The measurement equation becomes

Yk ¼
tan−1 xk − x1ð Þ= yk − y1ð Þð Þ

tan−1 xk − x2ð Þ= yk − y2ð Þð Þ

� �

:

The sensors are located at (x1, y1) = (7700 m, 9000 m) and (x2,
y2) = (6700 m, 6000 m). The process noise is taken as

ηk �N 04�1; Qkð Þ with covariance Qk ¼ q
� M 02�2

02�2 M

� �

,

where M ¼ T 3
=3 T 2

=2
T 2
=2 T

� �

. The process noise intensity is

taken as q
�
¼ 9 � 10−6 m2/s3. The measurement noise is taken

as νk �N 02�1; Rkð Þwith covarianceRk ¼ diag σ2
θ; σ2

θ
� �

, where
σθ = 3°. The sampling time (T ) is assumed to be 1 s, and
the simulation is lasted for 9 min. The initial truth of the target is
X 0 ¼ 9000m −5:144m=s 9000m −5:144m=s½ �

T . The
filers are initialised with the initial posterior state estimate
bX 0j0 ¼ 10000m −7m=s 8000m −7m=s½ �

T
; and the

initial error covariance. P0j0 ¼ diag 50000m2 300m2=s2
��

30000m2 100m2=s2�Þ:
To solve this problem, we implement the EKF, CKF,

ICKF‐3, UKF and the proposed PCKFs (PCKF‐2t, PCKF‐2,
PCKF‐3t, PCKF‐2,3t and PCKF‐3). The tuning parameter of
the UKF is set κ = −1 by following 3 − n [12]. As the
process equation is linear, we use standard Kalman filter for
the time update step and the measurement updated step is
performed using the non‐linear Gaussian filters. Figure 4
shows the stationary sensors location, the truth target tra-
jectory and the estimated trajectory obtained by the proposed
PCKF‐3t for a single representative run. The figure shows
that the proposed PCKF‐3t successfully tracks the target. The
range and velocity RMSE of the different filters excluding the
track divergence (et = 100 m) obtained from 500 MC runs
are plotted in Figure 5a,b, respectively. The range RMSE plot
shows that the proposed third‐order chaos expansion‐based
filters (PCKF‐3t and PCKF‐3) attain the lowest RMSE,
whereas the EKF has the highest RMSE. Other filters, such
as the PCKF‐2,3t, PCKF‐2 and PCKF‐2t, the UKF, the
ICKF‐3 and the CKF have comparable RMSE performances.
The velocity RMSE plot shows that the PCKF‐3 and PCKF‐
2,3t have the lowest RMSE, whereas the EKF attains the
highest RMSE. Other filters provide comparable RMSEs and
they lie between the EKF and PCKF‐3. The slight differ-
ences in RMSEs among the various filters (except the EKF)
are due to the plotting of RMSEs excluding the track loss
criteria. The average RMSEs obtained from 500 MC runs of
all the filters are listed in Table 5. From the table, we observe
that the proposed PCKF‐3 and PCKF‐2,3t achieve the lowest
average RMSE for both the position and the velocity.

Further, we compared the filters in terms of track loss and
execution time, which are listed in Table 6. We calculate the
percentage of track loss with track loss bound (et = 100 m),
from 10,000 MC runs. From the table, we see that the EKF
has the highest percentage of track loss, whereas the PCKF‐
3t, PCKF‐2,3t and PCKF‐3 attain the lowest. Other filters
such as the PCKF‐2t, PCKF‐2, CKF, ICKF‐3 and UKF have
similar track loss performance. The relative execution time of
the different filters with respect to the EKF is provided in
Table 6. From the table, we see that the PCKF‐3, PCKF‐2,3t
and PCKF‐2 have higher computation demand than the
EKF. The proposed PCKF‐3t requires a bit more execution
time than the UKF.

The simulation result shows that the proposed PCKF‐3t
provides a much better estimation than the existing filters

TABLE 4 Track loss and relative execution time of different filters
(Problem 1)

Filter Track loss (%) Relative exe. time

EKF 40.62 1.00

CKF 26.05 1.96

UKF 27.31 2.04

ICKF‐3 25.52 2.04

PCKF‐2t 27.22 1.92

PCKF‐2 24.03 2.93

PCKF‐3t 25.39 2.30

PCKF‐2,3t 23.95 3.25

PCKF‐3 23.90 9.35

Abbreviations: CKF, cubature Kalman filter; EKF, extended Kalman filter; ICKF,
interpolatory CKF; PCKF, polynomial chaos Kalman filter; UKF, unscented Kalman
filter.
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such as the EKF, CKF and UKF at a reasonable computation
burden. Hence it can be a good choice for the practitioners
for underwater BOT problem.

Based on the simulation results of both the target tracking
experiments, we draw following conclusions:

1) The proposed PCKF‐2t provides filtering performance
comparable to the CKF and the UKF for both the prob-
lems. The computational cost of the PCKF‐2t is also
comparable to the CKF and UKF.

2) The PCKF‐3 outperforms all the other filters for both the
target tracking problems. But its computational time is
higher than other filters.

3) The PCKF‐3t, PCKF‐2 and PCKF‐2,3t provide similar or
better estimation results than the other quadrature filters at
a reasonable added computation cost. Hence either of them
can be a good choice for on‐board applications.

4) From the simulation results of both the target tracking
problems, we see that among the proposed filters, PCKF‐3
achieves the best estimation accuracy whereas the PCKF‐2t

F I GURE 5 (a) Range RMSE; (b) Velocity RMSE of different filters obtained from 500 MC runs (problem 2). CKF, cubature Kalman filter; EKF, extended
Kalman filter; ICKF, interpolatory CKF; PCKF, polynomial chaos Kalman filter; RMSE, root mean square error; UKF, unscented Kalman filter.

F I GURE 4 Truth and estimated trajectory for a
single representative run. PCKF, polynomial chaos
Kalman filter.
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attains the least. On the other hand, the computation de-
mand of PCKF‐2t is the least whereas PCKF‐3 has the
highest. If computational budget allow us, then the PCKF‐
3 can be a good choice. PCKF‐3t, PCKF‐2 and PCKF‐2,3t
may offer a good compromise between the computation
cost and estimation accuracy as well as track loss
performance.

6 | DISCUSSION AND CONCLUSION

This paper proposed a Gaussian state estimation algorithm
based on polynomial chaos approximation of non‐linear dy-
namics for the target tracking applications. The process and
measurement update are performed with the help of the
polynomial chaos expansion and a set of CPs. We used up to
third‐order polynomial chaos expansion to derive the filtering
algorithm. For a high‐dimensional system, the proposed

filters (PCKF‐2 and PCKF‐3) use a large number of CPs,
which eventually increases their computation cost. The
computation complexity of the proposed PCKF is reduced
by removing the cross terms from the chaos expansion. As a
result, a few variants of it, namely PCKF‐2t, PCKF‐3t and
PCKF‐2,3t, are developed. The performances of the pro-
posed filters (PCKF‐2t, PCKF‐2, PCKF‐3t, PCKF‐2,3t and
PCKF‐3) are compared with the EKF, the CKF, the ICKF‐3
and the UKF for two target tracking problems. The proposed
PCKFs provide better performance than the EKF and better
or comparable performance with other Gaussian filters for
both the simulated problems at small additional increment of
the computation cost. The high execution time of the pro-
posed filter is a drawback, which may prove to be a deterrent
in using the proposed filter for a high dimensional system
such as GNSS positioning and tracking. PCKF‐2,3t and
PCKF‐3 can be good choice if the computational budget al-
lows it; PCKF‐3t may offer a good compromise between
computational speed and estimation accuracy as well as track
loss performance. The proposed filters thus increase the
choice available to engineers when it comes to designing on‐
board filters in order to achieve specific computational
complexity versus filtering performance trade‐off. Explora-
tion of the proposed PCKFs under the model and noise
mismatch scenario remains a topic for potential future
research.
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TABLE 6 Percentage of track loss and relative execution time of
different filters (problem 2)

Filter Track loss (%) Relative exe. time

EKF 28.57 1.00

CKF 5.10 2.11

UKF 6.59 2.21

ICKF‐3 4.42 2.21

PCKF‐2t 5.57 2.43

PCKF‐2 5.56 3.17

PCKF‐3t 0.13 2.95

PCKF‐2,3t 0.12 3.55

PCKF‐3 0.12 5.81

Abbreviations: CKF, cubature Kalman filter; EKF, extended Kalman filter; ICKF,
interpolatory CKF; PCKF, polynomial chaos Kalman filter; UKF, unscented Kalman
filter.

TABLE 5 Average RMSE in position and velocity of different filters
(problem 2)

Filter Position (m) Velocity (m/s)

EKF 93.95 1.95

CKF 41.21 1.69

UKF 41.36 1.69

ICKF‐3 39.75 1.67

PCKF‐2t 41.42 1.61

PCKF‐2 41.10 1.60

PCKF‐3t 39.23 1.48

PCKF‐2,3t 39.15 1.47

PCKF‐3 39.00 1.45

Abbreviations: CKF, cubature Kalman filter; EKF, extended Kalman filter; ICKF,
interpolatory CKF; PCKF, polynomial chaos Kalman filter; RMSE, root mean square
error; UKF, unscented Kalman filter.
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