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Most tumours exhibit significant heterogeneity and are best
described as communities of cellular populations competing
for resources. Growing experimental evidence also suggests
that cooperation between cancer clones is important as well
for the maintenance of tumour heterogeneity and tumour
progression. However, a role for cell communication during
the earliest steps in oncogenesis is not well characterized
despite its vital importance in normal tissue and clinically
manifest tumours. Here, we present a simple analytical model
and stochastic lattice-based simulations to study how the
interaction between the mutational process and cell-to-cell
communication in three-dimensional tissue architecture might
contribute to shape early oncogenesis. We show that non-cell-
autonomous mechanisms of carcinogenesis could support and
accelerate pre-cancerous clonal expansion through the
cooperation of different, non- or partially transformed
mutants. We predict the existence of a ‘cell-autonomous time
horizon’, a time before which cooperation between cell-to-cell
communication and DNA mutations might be one of the most
fundamental forces shaping the early stages of oncogenesis.
The understanding of this process could shed new light on
the mechanisms leading to clinically manifest cancers.
1. Introduction
The cooperation between tumour cells and their environment and
the competition between different tumour clones during
carcinogenesis are well established [1]. Other types of
cooperation, for instance, the positive cooperation between
tumour clones, or even non-transformed clones, have been
increasingly recognized as a possible fundamental driving force
in cancer as well [2,3]. The complexity of all possible clonal
interactions, particularly during the late stages of cancer, is
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therefore fostering research aimed to model cancer from an ecological perspective [1,2,4]. Competition for

resources is one of the driving forces for clonal interaction. However, cell-to-cell communication is an
equally fundamental mechanism mediating the interaction of cellular populations through shared
diffusible or immobile molecules, such as cytokine or metabolites. After early modelling work on
angiogenesis [2], the possibility that partially transformed tumour cells might cooperate was
generalized by Axelrod et al. [3]. Several recent experimental findings are now supporting the notion
that cooperation of clones and poly-clonality play an important role in the emergence of cancer.

Glioblastoma multiforme tumours, for instance, exhibit considerable intra-tumoural heterogeneity
including the pathogenic expression of an oncogenic truncation of the epidermal growth factor
receptor (ΔEGFR) gene and EGFR amplification [5]. The less frequent ΔEGFR clones can support an
increased fitness of the more prevalent cells overexpressing EGFR, through secretion of IL6 and LIF
and a paracrine effect. Recently, Reeves and colleagues [6] have used multi-colour lineage tracing with
a Confetti mouse line together with the topical administration of a carcinogen, to study clonal
evolution during early oncogenesis. Interestingly, the authors observed benign papillomas harbouring
an HRAS Q61L mutation with streaks of Notch mutant clones. Although these Notch mutants were
considered infiltrating clones with no active role in the oncogenic process, Janiszewska & Polyak [7]
noted that cooperation between the Notch and HRAS mutants could not be excluded and that streaks
of Notch clones are reminiscent of structures found in non-mutualistic colonies of budding yeast.
Although unproven, it is conceivable that the less frequent clones can provide, altruistically, a fitness
advantage to the HRAS mutant cells similarly to what has been observed for glioblastoma multiforme
[5,8] or for WNT-secreting wild-type HRAS clones supporting HRAS mutants [9]. While facilitating
the oncogenic process, a non-mutualistic clone would be then outcompeted by more aggressive clones
after a clonal sweep and diversification into multiple intermixed mutants [6] suggestive of mutualistic
clonal interactions [7].

However, it is unclear if these observations, often obtained using model systems with carcinogens or
established tumour clones, can be recapitulated at the low-mutational rates occurring naturally [10].
Furthermore, it is unknown at which stage of carcinogenesis, non-cell-autonomous mechanisms might
have a role [9]. As cell-to-cell communication and clonal interaction are often neglected in formal
models of carcinogenesis, we propose a model for the interaction between the mutagenic process and
cell-to-cell communication within a three-dimensional tissue architecture. We developed the simplest
possible analytical models and test them with stochastic lattice-based simulations [2,11–15] and
discrete-time Markov chain modelling [16,17] to capture the basic emergent properties of early
oncogenesis in the presence of mutations and clonal cell-to-cell communication. We propose that the
extremely low-mutational frequency encountered in physiological conditions does not render
cooperation between mutations in adjacent cells unlikely but—rather the opposite—that synergy
between the mutational process and cell-to-cell communication might play a fundamental role in
carcinogenesis.
2. Results
2.1. A model for mutationally driven cooperation in oncogenesis
The question addressed in this work is not if cooperation between mutant (partially transformed) cells
can occur, but how likely or when distinct mutations can occur in different cells cohabiting within the
same tissue. Therefore, we develop a simple mathematical model to gain insights into answering these
fundamental questions. We consider a low-mutational rate ρ0, constant throughout oncogenesis and
equal for each possible oncogenic mutation [18]. With oncogenic mutation, we refer to any mutation
that at any given time (not necessarily when it occurs) might contribute to the increased fitness of a
clone that will eventually evolve into cancer, either through cell-autonomous or non-cell-autonomous
mechanisms.

The probability for a single cell to accrue two specific mutations independently within a given time
interval is thus p20 (with p0 = ρ0t≪ 1). The probability that two neighbouring cells exhibit one given
mutation each independently is, unsurprisingly, the same. Initially, we assume non-dividing cells in a
well-organized tissue that after accumulating these two mutations acquire a fitness advantage. We will
refer to these cells as initiated or transformed, but we will use these terms very loosely only to
indicate a gain in fitness.
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Figure 1. Tissue organization and non-cell-autonomous mechanisms. (a) A simple model where cells accumulate two mutations or
two mutations occur in different cells within the same neighbourhood. (b) When the probability of accruing mutations is low, within
a tissue of N cells, there will be more opportunities for mutations to co-occur within a given neighbourhood rather than within the
same cell. (c) The neighbourhood of a cell can be described as a problem of geometrical tessellation of space which will depend on
tissue organization, here shown a simple example of hexagonal pillars tesselating space. (d ) Gradients of shared resources (e.g.
growth factors or metabolites) might be then induced by either one or the other cell triggering interactions by juxtacrine or
paracrine effects.
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In a tissue with N cells, the probability of cell-autonomous initiation of one mutant cell is simply
pia ¼ Np20pa Similarly, the probability of non-cell-autonomous initiation is pin ¼ NCp20pn. pa and pn are
defined as the probabilities that one cell harbouring the right pair of mutations—either by itself or
within its neighbourhood—survives tumour-suppressive mechanisms (figure 1a). C is a coordination
number, i.e. the number of cells within the neighbourhood of a reference cell (figure 1b,c). Within the
validity of common assumptions (e.g. equally probable, spatio-temporally invariant and independent
mutational events), the probability of initiation within a group of N cells is the sum of pia and pin

pi ¼ Np20pa 1þVpn0
pa

� �
, ð2:1Þ

with Ω = Cpn/pn0 and where pn0 is the probability that one cell is transformed when directly in contact
with another mutant. pn (and thus Ω) depends on tissue organization and the type of cell-to-cell cue
that contributes to the process of transformation (figure 1d ). With this simple notation, the answer to
our central question can be thus separated into the study of tissue organization (the factor Ω) and the
magnitude of pn0 compared with pa.

To model the organization of tissue wherein mutated cells are resident, several aspects of tissue
organization have to be considered:

(i) the more distant a neighbouring cell is, the lower the probability of cooperative non-cell-
autonomous effects should be, i.e. pn shall be a function of distance (d );

(ii) C is the sum of cells in extended neighbourhoods or the sum of Ck, i.e. the number of cells in the
k-neighbourhood (at a distance dk), where k = 1 defines cells in contact (i.e. d1 = 0);

(iii) Ck depends on tissue architecture that we model as a problem of three-dimensional tessellations of
space;

(iv) tissues are compartmentalized and, therefore, boundary effects should be considered.

Therefore, in general, the factor Ω can be described as the cumulative effect on the probability of initiation
of a reference cell from each cell within a tissue as a consequence of a cell-to-cell communication

V ¼ p�1
n0

X
k

Ckpnk(dk): ð2:2Þ

For convenience, we describe Ck just for two different tissue topologies, a tissue organized in stacked
hexagonal pillars or a thin layer of similar hexagonal pillars (see Supplementary Methods, §S.1 in
electronic supplementary material). In the former case, cells tessellate a three-dimensional space, and
we neglect effects at the periphery. In other words, we assume that the number of cells contained
within a tissue is larger than the cells at its periphery. Figure 1 illustrates the progression of the
number of cells included in subsequent neighbourhoods that can be described analytically as Ck =
6k2 + 2 (electronic supplementary material, equation S1.2 with s0 = 6). For a significantly more
constrained topology where only three layers exist C1 = 8 and Ck>1 = 6(3k− 2) (electronic
supplementary material, equations S1.3–4 with s0 = 6). This description permits us to illustrate some
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Figure 2. Numerical validation of the oncogenic field solutions. (a) Comparison between the numerical evaluation of equation (2.2)
for finite values of kmax and the estimates of the oncogenic field factor Ω obtained by the analytical representations for kmax→∞
for a three-dimensional (3D, equation (2.3)) and three-layered (TL, equation (2.4)) tissue model. The solid lines represent the
analytical solutions within the limits of its convergence (l > 2 for TL in blue and l > 3 for 3D in red). The results evaluated
over smaller (empty circles) and larger (solid circles) neighbourhood with 10 and 100 cell radii, respectively, represent cases
where the assumption of a tissue of infinite extension used to evaluate equations (2.3)–(2.4) is not valid. (b) Identical
comparisons as described in (a) but for the exponential decay model for a three-dimensional tissue. Both the analytical
solution (equation (2.5), kmax→∞) and numerical estimates of the finite series (equation (2.2), kmax = 10, 100) converge
to the value of Ω∼ 8 for steep decays. (c) Values for Ω computed for a general case where the oncogenic field decays
jointly as the inverse of a power law and exponentially (equation (2.6)). Equation (2.6) (solid lines) is compared with the
finite sums (kmax = 10, 100) for the same parameter sweep shown in (a) and (b), i.e. with the inverse power from 1 to 10
and with a decay constant kc from 0.1 to 10.
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analytical examples about the possible effects of tissue organization on the probability of cooperation
between mutations.

2.2. Oncogenic field effect
Without loss of generality, we assume that the interaction between two mutant cells is mediated by a
shared diffusible product [3], for instance a growth factor or a metabolite. Eldar et al. [19] have
modelled how the concentration of a signalling molecule (a morphogen) secreted by a cell decays in
space. Typically, the morphogen concentration is abated by passive diffusion and linear degradation
resulting in exponentially decaying concentration gradients. However, ligand–morphogen interactions
can induce nonlinear mechanisms of morphogen degradation resulting in power law decays.
Therefore, we first analyse the decay of an oncogenic field akin to morphogen gradients using power
or exponential decays because of their physiological relevance [19–22].

For the case of a power function ( pn(k) = pn0k
−l) and a three-dimensional tissue described by

hexagonal pillars (Ck = 6k2 + 2), the factor Ω can be described analytically (see Supplementary
Methods, §S.2 and equation S.2.4 with s0 = 6 in electronic supplementary material for proof) as follows:

V(l) ¼ 6z(l� 2)þ 2z(l), ð2:3Þ
where ζ is the Riemmann Zeta function and is finite only for an argument larger than one (here l > 3).
Therefore, for a large interconnected tissue, oncogenic biochemical gradients induced by a mutant cell
must decay very steeply for non-cell-autonomous mechanisms not to dominate. In the limiting case
where only the 1-neighbourhood is relevant for transformation (l→∞), the Riemann Zeta function
converges to unity and therefore Ω = 8. This is just the number of cells in direct contact with the
reference cell (C1), showing mathematical consistency and providing a lower boundary to Ω in
the case of small effects in a very constrained topology. Conversely, for shallower gradients where the
Riemann Zeta function does not converge (l < 4), these probabilities will be significantly larger. We
obtained these results modelling tissues of non-finite extensions to derive analytical solutions.
However, through numerical estimations, it is simple to demonstrate how these observations are
generally valid and correct also for small volumes of cells (figure 2a,b). For example, in a small
neighbourhood with a radius of 10 cells, Ω∼ 11.5 (l = 4) and Ω∼ 340 (l = 1), values (figure 2a, solid
circles) that reach 12 and 3 × 104, respectively, for a neighbourhood with a radius of 100 cells
(figure 2a, empty circles). Similarly, we demonstrate that for a thin three-layer tissue (see



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201532
5
Supplementary Methods §S.2 and equation S.2.8 in electronic supplementary material for proof),

V ¼ 12z(l� 1)� 8z(l)þ 4
3
: ð2:4Þ

This series converges for l > 2, it assumes a value of 11.7 for l = 3, and numerical estimations show that
Ω reaches values of approximately 24 and approximately 50 for l = 2 within a limiting neighbourhood
with a 10 or 100 cell radius, respectively (figure 2a, empty and solid circles). In the limit case where
only the first neighbourhood is relevant (l→∞), Ω∼ 5.3. Therefore, even within this rather
constrained topology, Ω obtains rather large values.

Gradients described by power functions are shallower than exponentially decaying gradients at
longer distances. Although both gradients are physiologically relevant, power-like functions might
overestimate Ω. It can be readily demonstrated (equation (2.5), see also Supplementary Methods §S.3
in electronic supplementary material) that even for steep gradients decaying of a third at every cell
distance (kc = 1), Ω can assume double-digit values (figure 2b).

V ¼ ek
�1
c
(2þ s0)e2k

�1
c þ (4þ s0)ek

�1
c þ 2

[ek�1
c � 1]3

: ð2:5Þ

The analysis of power law and exponential decays are rather instructive, and they are often used to
model morphogen gradients as a solution to the reaction–diffusion equation for one-dimensional
problems and for specific three-dimensional architectures. We can also demonstrate (see Supplementary
Methods §S.4 in electronic supplementary material) that for pnk ¼ pn0k�le�(k�1)k�1

c , i.e. when the
oncogenic gradient jointly decays as an inverse power law and exponentially,

V ¼ ek
�1
c [2Lil(e�k�1

c )þ s0Lil�2(e�k�1
c )], ð2:6Þ

where Li is the polylogarithm. This analytical solution describes the expectation forΩ for an oncogenic field
induced by stochastic (mutationally driven) point-sources of shared resources in an ideal three-
dimensional tissue (figure 2c) in the presence of degradation. Once again, at the limit for a fast decaying
concentration gradient, the value of Ω∼ 8, long-distance interactions (kc≫ 0) can drastically increase the
magnitude of Ω and with high values found also for small clusters of cells (figure 2c, blue and red circles).

We can thus infer a general consideration from the mathematical description of the proposed case
studies that are aimed to exemplify the possible synergy between the mutational process and non-cell-
autonomous effects. Unsurprisingly, the specific tissue geometries and the properties of concentration
gradients result in rather different magnitudes of an ‘oncogenic field’. However, either through
juxtacrine (contact-dependent) or paracrine (short or long distance) signalling, mutations in tissue
neighbourhoods that can cooperate through cell-to-cell communication are likely to have a significant
role in oncogenesis, in addition to mutations co-occurring within a cell.
2.3. Cell-autonomous time horizon
So far, we have discussed if and how likelymutationally driven non-cell-autonomousmechanismsmight be;
next, we address the question about when these mechanisms are more likely to occur. Indeed, we have
shown that non-cell-autonomous mechanisms can increase the probability that mutations contribute to
carcinogenesis by a factor Ω. A corollary to this observation is that cooperation between non-
transformed cells might contribute to tumour initiation earlier than cell-autonomous mechanisms. For
simplicity, we consider only the mutational process and neglect pa, pn and pn0. One cell accrues pairs of
mutations at the rate ρ0 but within a neighbourhood cooperating cells accrue mutations at an apparent
rate of r0

ffiffiffiffi
V

p
. First, we tested this simple mathematical inference with Monte Carlo simulations (figure 3

and Methods, §4.2). We simulate the independent and stochastic appearance of four types of mutations
(A, B, C and D) at a rate of ρ0 = 10−6 mutations/day on a lattice of N = 106 cells with 2000 replicates.
When one cell accrues mutations A and B, it is flagged as an AB mutant; when a cell becomes a C
mutant and in its neighbourhood, there is a D mutant, the C mutant will be listed as a CD
(cooperating) clone. The average time for a double-mutant cell to appear (〈tAB〉) is 2.43 ± 0.04 simulation
years (mean ± standard deviation computed over five independent Monte Carlo simulations each made
of 2000 runs with 1 year defined as 365 simulation days). The distribution of 〈tAB〉 values depends only
on ρ0 and N but not on Ω and, therefore, we show the average of the four distributions of 〈tAB〉 values
(figure 3a, black curve) as reference for the cooperating mutants. The distribution of the waiting times
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Figure 3. Monte Carlo simulations of the cell-autonomous time horizon. (a) Probability distribution of the waiting times for the
occurrence of the first two co-occurring mutations (AB clones, black curve) or for the first cooperating mutations (CD clones, coloured
curves) through non-cell-autonomous mechanisms for Ω values equal to 4, 8, 12 and 24. The coloured curves are the average of the
five independent simulations runs (see Methods). The black curve is the average of 20 (four values of Ω × 5 repeats) runs as each
simulation had its own AB-control. (b) Distribution (normalized to maximum for better visualization) of the number of CD clones at
the end of the simulations (t = tend). tend is the time at which at least one AB and one CD clone are detected. (c) The average time
(〈tCD〉) at which the first cooperating CD clone is observed scales with the square root of Ω (red line) compared with the average
time (〈tAB〉) at which the first AB-mutant appears. The average number of cooperating mutations within a neighbourhood at t =
tend (〈NCD〉) scales as Ω (blue curve). Errors are standard deviations for five independent sets of Monte Carlo simulations. (d)
Distribution of the waiting times for CD clones as shown in (a) but replotted on a new time-base defined, for each curve, as
t/tΩ. tΩ was predicted by the Markov Chain model using equation (2.8b). The distributions predicted by the Markov Chain
model (equations (2.7), black curves) fully overlap with the result of the numerical simulations (circles). For better comparison,
the distributions were normalized to the sum and offset with a constant.
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for the appearance of CD clones depends on the value of Ω (figure 3a, coloured curve) and exhibits an
average time (〈tCD〉) of about 1.23 ± 0.02, 0.86 ± 0.03, 0.70 ± 0.06 and 0.50 ± 0.04 months for Ω values
equal to 4, 8, 12 and 24, respectively—scaling as Ω−0.5 (figure 3c). Thus, we can define ta (〈tAB〉 in our
simulations) as the average time for a tissue of N cells to accrue two mutations, which is inversely
proportional to ρ0N. By definition, ta—the time horizon after which cell-autonomous mechanisms might
dominate—is preceded by a latency period during which single mutations are more likely. However,
our model predicts the existence of a significantly long period tΩ = taΩ

−0.5≤ t < ta when mutationally
driven cooperation between adjacent cells is more likely than mutationally driven cell-autonomous
mechanisms to occur.

For instance, in the limiting case where only the first neighbourhood significantly contributes to
tumour initiation (Ω = 8), during approximately 65% of the time interval preceding ta, clonal
cooperation is likely to be a fundamental mechanism that synergizes with the mutational process to
support partially transformed clones. For Ω values of 4, 12 and 24, this interval will be about 50%,
70% and 80% of ta. The scaling of tΩ as taΩ

−0.5 is shown in figure 3c from the plot of 〈tAB〉/〈tCD〉
(figure 3c, red) and the scaling of the number of mutations in a given neighbourhood defined by Ω
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at ta is shown from the plot of 〈NCD〉 (figure 3c, blue). Because of the stochastic nature of the mutational

process, the distribution of waiting times for double mutants (AB and CD) are broad. This
heterogeneity results in no CD cooperating clones in about 40%, 20%, 15% and 8% of the simulation
runs with Ω 4, 8, 12 and 24, respectively. In the majority of the cases, however, cooperating mutants
preceded AB clones and for larger values of Ω the probability for mutations to appear within a
tissue neighbourhood is so high that CD mutants are likely to reoccur multiple times randomly
(figure 3b).

Next, to better explain and generalize the origin of the scaling factor Ω−0.5, we modelled the
mutational process as a discrete-time Markov chain [16,17] (see Supplementary Methods §S.5 and
Mathematica Notebooks in electronic supplementary material). We show that for a ‘two-hits’ model,
the distributions shown in figure 3a can be described analytically as follows:

pAB(t) � 2tNr20e
�t2Nr20 ð2:7aÞ

and

pCD(t) � 2tNr20Ve�t2Nr20V: ð2:7bÞ

Figure 3d shows the very good match between the Monte Carlo simulations and the Markov chain
model. Using equations (2.7), we can then estimate the cell-autonomous time horizon as the average
time required to observe the first AB clone in N cells (equation (2.8a)) and, similarly, the average
latency to observe the first cooperating CD clone (equation (2.8b)).

ta ¼ tABh i ffi 1
2r0

ffiffiffiffi
p

N

r
ð2:8aÞ

and

tV ¼ tCDh i ffi 1
2r0

ffiffiffiffiffiffiffiffi
p

NV

r
¼ taV�0:5, ð2:8bÞ

where tΩ is indeed rescaled by a factor Ω−0.5 relative to ta as observed in the Monte Carlo simulations.
Equations (2.8) provide estimates for ta = 2.43 years and tΩ = 1.21, 0.86, 0.70 and 0.50 years (for Ω = 4,
8, 12 and 24, respectively), values that are in excellent agreement with the numerical simulations. We
note that for the more general case where m mutations cooperate through non-cell-autonomous
mechanisms, the scaling factor Ω−0.5 would assume the form V�d=m shown in electronic
supplementary material, equation S.5.9, with d representing the number of mutations that cooperate at
distance defined by the parameter Ω. For example, in the case where a mutant cell C interacts with a
mutant cell D via paracrine effects and D reciprocates, the scaling factor is Ω (d =m = 2). However, if a
C-mutant with m− 1 mutations benefits from a D-mutant (with a single mutation) in its
neighbourhood, this scaling factor is V�1=m.

We note that even assuming a role for synergy between the mutational process and cell-to-cell
communications during the earliest steps in oncogenesis (t < ta), chance will determine the first
occurrence of co- or cooperating mutations (as a function of Ω), possibly influencing the evolutionary
trajectory of a tumour and contributing to tumour heterogeneity.
3. Discussion
A role for non-cell-autonomous mechanisms in cancer is well established, often as a mechanism of
interaction between cancer cells and the surrounding tissue [2,23–26]. The cooperation of non- or
partially transformed clones as a driving force underlying oncogenesis has also been hypothesized [3],
and there is nowadays accumulating evidence suggesting that a description of oncogenesis focused
exclusively on cell-autonomous mechanisms might under-represent the importance of oncogenic
signalling in cancer [5,9,26].

Experiments in Drosophila melanogaster have also shown that inter-clonal cooperation between
mutants harbouring an oncogenic KRAS mutation or inactivation of the tumour suppressor scrib can
support tumorigenesis mediated by JNK and JAK/STAT signalling [27]. Recently, Marusyk et al. [9]
have used a mouse xenograft model to test the effects of clonal heterogeneity, demonstrating that
clones expressing the chemokines IL11 are capable of stimulating overall tumour growth through a
non-cell-autonomous mechanism, while clonal interference maintains genetic intra-tumour
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heterogeneity [9]. Similarly, Inda et al. [5] have shown how intra-tumour heterogeneity observed in

glioblastoma can be maintained through cross-talk between mutants harbouring a ΔEGFR that secrete
IL6 and LIF to support fitness in clones with EGFR amplification [5]. Cleary et al. [28] has also shown
that WNT-producing HRAS wild-type clones can support tumorigenicity and clonal heterogeneity by
cooperating with clones harbouring mutant oncogenic HRAS [28]. These observations support the
emerging notion that intra-tumoural heterogeneity is often of poly-clonal origin and is an active
process supported by non-cell-autonomous mechanisms. However, the role for poly-clonality and
clonal cooperation during earlier stages of oncogenesis can be seen in contradiction with the low
estimates of mutational rates in cancer [10]. Furthermore, it is unclear if clonal cooperation has a role
during early oncogenesis or only at later stages when a heterogeneous tumour is established [28].

Aiming to contribute to filling this gap in knowledge, we developed simple analytical and
computational models for mutation-driven oncogenesis in the presence of cell-to-cell communication.
Using similar assumptions used to model mutationally driven oncogenesis, we have studied if, how
and when it is likely that cell-to-cell communication might cooperate with the mutational process from
the perspective of basic principles. Our analysis raises provoking observations on the earliest steps in
oncogenesis. We show that, irrespective of the background mutational rate, if a set of transforming
mutations are sufficiently likely to occur within a single cell in the lifetime of a patient, an equally
rare yet oncogenic set of mutations are equally (or more) likely to contribute to tumorigenesis
through non-cell-autonomous mechanisms. We have introduced the parameter Ω, which captures the
impact of tissue organization and non-cell-autonomous mechanisms on cancer evolution. We
modelled non-cell-autonomous mechanisms in analogy to morphogens during embryonic
developments. Ω describes the magnitude with which paracrine, juxtacrine and other mechanisms
mediated by shared substrates (e.g. growth factors and metabolites) might impact the transformation
of a cell or clone. As such, Ω represents an oncogenic field effect, where oncogenic fields have the
opposite outcome of morphogens by contributing to the de-regulation of tissue homeostasis.
Furthermore, we have identified a stage of oncogenesis during which clonal cooperation might not
simply coexist with the clonal competition but even dominate before the emergence of clones capable
of growing autonomously. With the help of our model, experimentally, the problem is reduced to the
measurement of quantities such as pn0 and pa or the abundance of genes that, once mutated, can
drive oncogenesis by non-cell-autonomous mechanisms. We argue that the magnitude of the
oncogenic field effect (Ω) and the prediction of an autonomous time horizon suggest a significant role
for mutationally driven and non-cell-autonomous mediated poly-clonal evolution of cancer during, at
least, a very early stage of oncogenesis.

The model described here is purposely simple aiming to illustrate the basic principles emerging by
the cooperation of the mutational process with non-cell-autonomous mechanisms [3], a phenomenon
that, to our knowledge, is often neglected when models of somatic evolution of cancer are studied
analytically [11]. For this reason, we did not include the description of more complex and important
features of real tissues such as clonal dynamics, tissue homeostasis, tissue mechanics and other
mechanisms for gradient formation of biomolecules. Each of these processes can change
considerably the magnitude of the effects we described. The concentration gradients on their own,
for instance, can be enhanced by compartmentalization, abrogated by diffusion into lumens or the
vascular system, or affected by systemic alterations of shared resources (e.g. hormones, lipids). If a
proliferative tissue is considered, with a fitness advantage for cooperative clones compared with
wild-type cells, the presence of these non- or partially transformed clones could be even more
significant, increasing the probability to accrue further mutations at a faster pace and shaping the
initial period of oncogenesis.

However, tissues are complex systems and diverse mechanisms of tissue homeostasis in different
tissues might conflict with this perspective. In the case of a fast self-renewing tissue like the intestinal
epithelium within which the cell-of-origin for common tumours is likely to be a stem cell [29], the
highly compartmentalized stem-cell niche might pose an effective barrier to oncogenic field effects.
The intestinal epithelium is one of the most proliferative tissues subject to a high mutagenic burden
and it has been broadly studied both mathematically [13,30] and experimentally [29,31,32]. A small
group of adult stem cells reside within the colonic crypt and maintain the homeostasis of the villi
lining the intestine [29]. Within the crypt and the villus, the balance between proliferation and
differentiation is maintained by a complex network of signals (e.g. WNT, Notch, BMP and EGF)
generated by specialized Paneth cells within the crypt and cells within mesenchyme lining the crypt
[32]. Mutations in the WNT (e.g. APC or CTNNB), EGFR (e.g. KRAS, PIK3C or BRAF) and TGF-β
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(e.g. SMAD4) signalling pathways gradually render cells independent from niche signals to grow

autonomously and promoting cancer. While it is still more likely that two mutations are acquired
within adjacent stem cells rather than within one cell, neutral genetic drift or selection fix or purge
genetic mutations within the crypt that will be thus, most of the times, monoclonal [29]. However, not
all mutations occur in the stem cells within the crypt [33] and tissue homeostasis is likely to be
maintained by crypt fusion and fission leading to field cancerization [15] supporting the possibility
that partially or non-transformed clones might interact not within a monoclonal crypt but between
patches harbouring different mutations [29,34].

These considerations might hold true also for other highly proliferative tissues, such as the well-
described human epidermis and the oesophageal epithelium [35–38]. In these tissues, homeostasis is
maintained by a balance between the probability for progenitor cells to divide symmetrically or
asymmetrically, giving birth to two progenitor cells, two differentiating cells, or—more commonly—
one differentiating and one progenitor cell [35,38]. Alcolea et al. [35], for example, have shown that
mutations in the Notch pathway reduce the probability for a progenitor cell to generate two
differentiating cells and induce wild-type cells to differentiate. In combination with P53 mutations,
this cell fate imbalance leads to field cancerization [35]. Considering the experimental observations on
later stages of carcinogenesis we have already discussed [5,6,8,9,27,28] and our results, it is
conceivable that mutations might also cause cell fate imbalance through non-cell-autonomous
mechanisms during early oncogenesis. As cell fate determination and the occurrence of mutations are
stochastic processes, the role of non-cell-autonomous mechanisms not only might vary across different
tissues depending on their organization but also within the same tissue of origin.

We described in figure 3 that the occurrence of a double-mutant clone that might acquire a fitness
advantage autonomously, even if less likely, can still precede the occurrence of two cooperating
single-mutants. Similarly, genetic drift and selective pressure could either maintain or collapse one or
both of the cooperating populations [9]. Therefore, each tissue and each tumour might be affected
differently by non-cell-autonomous mechanisms, mechanisms that could alter the evolutionary
trajectory of tumours that later acquire full independence from cooperating clones, thus also
contributing to tumour heterogeneity [7,9]. As computational modelling of multicellular tissues can
describe complex homotypic and heterotypic interactions, including short- and long-range
interactions and tissue mechanics [14,39,40], computational models rather than analytical tools might
be more appropriate to investigate the possible role for ‘oncogenic fields’ in complex mutagenic
environments.

The somatic mutation theory is the prevailing model of carcinogenesis which has been described
mathematically with several different approaches [11,13,18,41–44]. Modelling work based on
evolutionary game theory (e.g. [2,45,46]) and analysis of clonal heterogeneity [9], among others, have
already highlighted the importance of clonal competition and cooperation in cancer. However,
mathematical models of somatic mutation theory often do not include cooperation between non- or
partially transformed mutants, particularly when studying the earliest stages of carcinogenesis.
Through the lens of the ‘toy model’ we presented here, we show that tissue organization and cell-to-
cell communication might cooperate synergistically with a mutationally driven process, particularly
during the early stages of carcinogenesis. We emphasize that our work is not in contradiction with
prevailing models of oncogenesis, as it is based on similar assumptions but includes explicitly the
possibility that non-transformed mutant cells can cooperate. The mathematical analysis we presented
was not elaborated to capture more complex phenomena occurring during oncogenesis. However, our
analysis suggests that to improve our understanding of carcinogenesis, the identification of the genes
and the shared resources that can mediate clonal cooperation—such as growth factors (e.g. mitogens,
interleukins, etc.) or metabolic by-products that are often at the basis of cooperative behaviour in
lower organisms [47–49]—might be of fundamental importance.
4. Methods
4.1. Analytical methods
The detailed derivation of equations (2.1)–(2.8) shown in this work is provided in electronic
supplementary material, Methods. The discrete-time Markov chain model is described in electronic
supplementary material, §S.5 and its implementation is also provided in an annotated Mathematica
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notebook ‘firstpassageproblem_v2.nb’ included in this submission and available also from the GitHub

repository alesposito/CloE-PE [50].

4.2. Numerical simulations
The numerical evaluation of the analytical results (figure 2a–c) was performed with the Matlab
script ‘analytical_and_numerical_comparisons.m’ (v4, Mathworks, version 2018) freely available from the
GitHub repository alesposito/CloE-PE [50]. The numerical estimations simply compare the value obtained
from the approximated analytical solutions described in the appendices to direct numerical estimate
computed on given neighbourhoods with features described in the main text. For the case of a three-
dimensional tissue (§2.2 and Supplementary Methods §S.2 in electronic supplementary material), the
values of equation (2.3) (electronic supplementary material, equation S.2.4 in its more general form)
were compared with those of the finite series V ¼ Pkn

k¼1 (k
2s0 þ 2)k�l for different power functions.

Data shown in figure 2a are computed with kn equal to 50 and 100, l ranging from 1 to 10, and s0 = 6.
Within the same parameter space, we compare the analytical description of a three-layer thin tissue
represented by equation (2.4) (or electronic supplementary material, equation S.2.8) to the numerical
estimates of V ¼ 2þPkn

k¼1 s0(3k � 2)k�l. Similarly, figure 2b shows a comparison between electronic
supplementary material, equation S.3.6 describing Ω for a three-dimensional tissue with an oncogenic
field decaying as an exponential function (Supplementary Methods §S.3 in electronic supplementary
material) and the finite series V ¼ Pkn

k¼1 (k
2s0 þ 2)e�(k�1)k�1

c . Also in this case, the parameters used in the
numerical evaluations were kn = 50 and 100, and s0 = 6 with the inverse of the decay constant k�1

c

spanning the 0.1 to 10 range. Last, for the distribution jointly decaying as a power and exponential
function (Supplementary Methods §S.4 in electronic supplementary material, and figure 2c), numerical
estimates of V ¼ Pkn

k¼1 (k
2s0 þ 2) k�le�(k�1)k�1

c were compared with equation (2.5) (or electronic
supplementary material, equations S4.3 and S.4.4 for l = 1) on the same parameter space described for the
other cases.

The Monte Carlo simulations (figure 3) used to evaluate the relationship between the time horizon for
cell-autonomous mechanisms (ta) and non-cell-autonomous mechanisms are available as the Matlab script
‘polyclonal_mutation_cooccurence_check.m’ (v7) freely available from the GitHub repository alesposito/CloE-PE
[50]. We simulated a lattice of 106 cells with a mutational rate equal to 10−6 mutations per cell per simulated
day (simday). At each simday and at each node of the lattice, four random numbers (nm, withm =A, B, C or
D) were drawn from uniformly distributed numbers in the [0,1] interval. For any of the indexes A, B, C or D
where nm was lower than or equal to 10−6, the correspondent cell was switched from non-mutant to
mutant. Cells were then allowed to accumulate these four mutations for a maximum of 100 000
simdays. When a cell acquires both A and B mutations, an AB-mutant cell is established and logged.
When a D mutation appears in a neighbourhood of a C-mutant, a CD-cooperative clone is logged. CD-
cooperative mutants are detected using convolution filters that detect the co-occurrence of a D-mutant
within the centre of a reference neighbourhood and C-mutant in its immediate vicinity. The publicly
available code implements the following neighbourhoods scans equivalent to Ω value of 4, 8 and 12.
For Ω = 4, detection in position north (N), east (E), south (S) and west (W); for Ω = 8, as for the previous
case but with the addition of NE, NW, SE and SW; for Ω = 12, as for the previous case but with the
addition of one non-adjacent cell in N, E, S and W position. As soon as at least one AB and one CD-
cooperating clone occurs, the simulation is interrupted. Simulations are then repeated 2000 times and
the distributions of the appearance of first AB or CD clones, and number of CD clones at the
appearance of an AB clone are generated. When results are presented in simulation years, the number
of simulated days was simply divided by 365.

The scripts were run on a Dell Precision 5810 workstation using an Intel Xeon E5-1625 CPU and 64
GB RAM. The 20 Monte Carlo simulations shown in figure 3 (five repeats of the four conditions) are
computationally intensive and were run in parallel for about 9 days.

The code and data used to generate figure 3 are also available from the GitHub repository alesposito/
CloE-PE [50] (figure3.zip).

Data accessibility. All the code and data used in this paper are available at the GitHub repository alesposito/CloE-PE
(https://doi.org/10.5281/zenodo.4410222).
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