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Abstract: A deeper understanding of spatial resolution has led to innovations in microscopy
and the disruption of biomedical research, as with super-resolution microscopy. To foster
similar advances in time-resolved and spectral imaging, we have previously introduced the
concept of ‘biochemical resolving power’ in fluorescence microscopy. Here, we apply those
concepts to investigate how the instrument response function (IRF), sampling conditions, and
photon-statistics limit the biochemical resolution of fluorescence lifetime microscopy. Using
Fisher information analysis and Monte Carlo simulations, we reveal the complex dependencies
between photon-statistics and the IRF, permitting us to quantify resolution limits that have been
poorly understood (e.g., the minimum resolvable decay time for a given width of the IRF and
photon-statistics) or previously underappreciated (e.g., optimization of the IRF for biochemical
detection). With this work, we unravel common misunderstandings on the role of the IRF and
provide theoretical insights with significant practical implications on the design and use of
time-resolved instrumentation.
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citation, and DOI.

1. Introduction

Fluorescence lifetime imaging microscopy (FLIM) is an essential tool that can quantitate
biochemistry in living cells with single-cell or sub-cellular resolution. The fluorescence lifetime
of a fluorophore, i.e. the average time that a fluorophore spends in its excited state after
absorbing a photon, depends on the physico-chemical environment of the fluorophore [1,2].
The fluorescence lifetime of some fluorescent molecules is intrinsically sensitive to parameters
such as pH, viscosity, and oxygen concentration. Other fluorophores are engineered to sense
biologically-relevant quantities such as analyte concentrations, protein-protein interactions,
conformational changes, and post-translational modifications, often measuring variations in
fluorescence lifetimes mediated by Foerster Resonance Energy Transfer (FRET) [3,4].

Time-correlated single-photon counting (TCSPC) is often regarded as the gold-standard in
time-resolved detection. TCSPC measures the arrival time of individual photons relative to a train
of identical excitation pulses of light. Single-photon counting techniques provide the significant
advantage of being ‘shot-noise’ limited, i.e. their noise performance can reach the limits imposed
by the quantised nature of light. The signal-to-noise ratio (SNR) in fluorescence imaging cannot
exceed the limit imposed by Poissonian noise for the number of collected photons, N [5,6]:

SNR ≤
√

N (1)

TCSPC approaches this limit albeit with losses determined by pulse pile-up effects, i.e. the
inability of resolving a second photon while the detection system is still busy handling the electrical
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trace of the first (due to the combined effect of the detector and the electronics dead-times), or
difficulties in detecting multiple photons per light pulse. We have made significant progress
in ameliorating pulse pile-up effects, for example, by utilizing multi-hit time-to-digital [7,8] or
multiplexed time-to-analog converters [9], ultra-fast digitizers [10], fast detectors (e.g. hybrid
photomultipliers [11]), and detector arrays [12–15]. Such innovations permit contemporary
FLIM systems to acquire images with fluorescence lifetime contrast at spatial resolutions typical
of confocal microscopy without significantly compromising imaging speed.

The need to reach higher acquisition speeds may require a trade-off in other instrument
specifications such as the number of bins used to sample fluorescence decays or the instrument
response function (IRF), i.e. the uncertainty over the sampled arrival time of each photon caused
by variabilities in the excitation pulse, the transit time spread of the detector, and the time-jitter
of the detector and electronics [16]. The signal measured on a system, M(t), is thus represented
by the convolution integral of the fluorescence decay, D(t), and the instrument response function,
IRF(t) [1,2,17,18].

M(t) = IRF(t) ⊗ D(t) =
∫ t

0
IRF(u)D(t − u)du (2)

The IRF can be determined by using samples with well-characterised fluorescence lifetime
values or samples with nominal zero-lifetimes (e.g., scattering of the excitation light or second-
harmonic generation) [19,20]. By determining the IRF of the system, iterative reconvolution
can be applied to estimate the fluorescence decay rate from the measured signal. It is generally
accepted that the width of the IRF limits the shortest measurable lifetime value. However,
the impact of the IRF on the overall precision of fluorescence lifetime estimations is not well-
characterised. The effects of other imaging parameters on the precision of TCSPC is much
better understood. For example, Köllner and Wolfrum applied Fisher information theory to
derive an analytical solution for the precision of a system with a given number of time channels,
measurement period, and sample lifetime [5,6,21,22]. Similarly, Draaijer et al. introduced the
figure of merit, F, as Eq. (3), to optimise the performance of time-resolved detection by adapting
the position, width and number of time-bins used for histogramming the fluorescence decay [23]:

F =
σ

τ

√
N (3)

F, also referred to as the photon-economy, is the ratio of the relative error of the lifetime estimate
(σ/τ) to the relative error due to Poissonian noise (N1/2/N = N−1/2). If the lifetime estimate is
only affected by Poissonian noise, then F is equal to 1, and we refer to the system as being efficient
with its collected photons. In this case, the identity in Eq. (1) holds, and FLIM could attain the
maximum SNR. The analysis of F-values has been applied to compare various implementations
of FLIM [5,24] and to optimize imaging parameters [25–28].

Currently, our understanding of the resolution limit of FLIM is curtailed by our lack of a
theoretical foundation. While it is generally accepted that broader IRFs result in worse resolution,
a theoretical framework that describes the interdependence between the IRF width, sampling
conditions, and photon-statistics is lacking. Here, we provide the Fisher information analysis
and Monte Carlo simulations to fill this gap in knowledge. Given that the recent developments
of fast and efficient FLIM systems within the biomedical community have been stimulated by
methodological advances, such as hybrid photomultiplier tubes [11], multi-hit time-to-digital
converters [7,8], integrated smart-pixel technologies [29,30], and ultra-fast digitizers [10],
we specifically focused on how limitations in the instrument temporal resolution impacts the
‘biochemical resolving power’ [26]. We envisage that a deeper understanding of the trade-offs
required for the development of FLIM systems designed for biomedical applications will aid the
community to break new ground in the development and application of biochemical imaging.
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2. Methods

2.1. Simulations

We implemented Monte Carlo simulations in Python (www.python.org) using NumPy [31] and
SciPy [32], and generated plots by Matplotlib [33]. The Jupyter notebooks used to generate all of
the figures of this work are available at the GitHub repository Esposito-Lab/BiochemicalResolution
[34]. We simulated fluorescence decays by generating the probability density function (PDF) of
the exponential decay with lifetimes between 0.2 and 15 ns at intervals of 0.4 ns for a repetition
period of 25 ns and for numbers of time-channels between 4 and 1024. We then convolved the
exponential PDF with an IRF generated using the same instrument parameters and shaped as
a Gaussian with a standard deviation at intervals between 0.01 and 1 ns or as a rectangle of
similar width. Finally, we added Poissonian noise to the resulting decay curves after rescaling to
simulate a signal containing 75,000 photons. Unless otherwise described, the signal was then
fit by iterative reconvolution using the simulated IRF and a Levenberg-Marquardt algorithm to
obtain the lifetime estimate. The Levenberg-Marquardt algorithm was implemented using the
curve_fit function in the Python scipy.optimize module. We fitted the simulated data with the
known IRF. However, to quantify the information losses caused by the lack of an experimental
IRF, we also fit the width of the IRF for a subset of the simulations. We used the variance in the
lifetime estimates of 5,000 simulations to evaluate F-values.

2.2. Numerical and analytical estimates

Numerical and analytical methods used to characterise Fisher information were developed
using Mathematica (Wolfram Research, Inc., Champaign, IL). These are freely available as
Mathematica Notebooks at the GitHub repository Esposito-Lab/BiochemicalResolution [34].
The notebook ‘DiracIRF_FisherInformation_V1.nb’ introduces the formalism described already
by the seminal papers of [6,22]. The notebook ‘GaussianIRF_FisherInformation_V1.nb’ extends
this formalism for the more general case of a Gaussian IRF of finite width. These files also
include the code for the numerical evaluations of the F-value for the Gaussian IRF case study.

2.3. System performance loss

We represented performance loss between two systems as the area between their F-value over
lifetime curves. To evaluate the performance loss between Gaussian shaped IRFs and Dirac IRFs,
we used the numerically derived F-values and evaluated over the lifetimes of 10 ps and 15 ns
at intervals described by Eq. (10). Due to numeric instabilities at lower lifetimes, differences
between the Gaussian and Dirac IRFs that were negative were set to zero. To evaluate the
performance loss between Gaussian and rectangular shaped IRFs and between measured and
fitted IRFs, the Monte Carlo simulation derived F-values were used instead of the numerically
derived F-values because of the challenges in obtaining analytical solutions for different IRF
shapes and for fitted IRF conditions. Due to instabilities in simulating at faster decay constants,
we evaluated over a shorter lifetime range of 0.6 to 15 ns.

3. Results

3.1. Fisher information theory

First, we have derived analytically the description of the Fisher information related to the
amplitude and the fluorescence lifetime estimates for the case study of a generic TCSPC system
with a Gaussian IRF. Briefly, we evaluated the convolution integral shown in Eq. (2) for a
Gaussian with a standard deviation of σirf centred at t0 and with an amplitude of the exponential

http://www.python.org
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of A.

g(t) =
A
2

e
σ2

irf−2τ(t−t0)

2τ2 erfc

(︄
σ2

irf − (t − t0)τ
√

2σirfτ

)︄
(4)

We then integrated Eq. (4) to evaluate the number of photons Λ(t) counted from an excitation
pulse to time-delay t.

Λ(t) = B
(︃
erf

(︃
t

√
2σirf

)︃
+ eρ

2
erfc(ρ) − eρ

(︂
ρ−

√
2t

σirf

)︂
erfc

(︃
ρ −

t
√

2σirf

)︃)︃
(5)

For the convenience of notation, we write Eq. (5) as a function of parameters B = Aτ/2,
ρ = τ−1σirf/

√
2 and t0 = 0. The analytical estimation of the photon counts detected in a given

time-bin indexed by 1 ≤ i ≤ m is described by G(i) = Λ(iT) − Λ((i − 1)T), where G(i) is used in
our notation to indicate the expectation of Λ(iT) − Λ((i − 1)T), and T is the period of the pulse
train. With this notation, we can evaluate the log-likelihood analytically, as shown in Eq. (6).

logL(B, ρ) = B(eρ(ρ−2ω)erfc(ρ − ω) − eρ
2
erfc(ρ) − erf(ω))+

m∑︂
i=1

G(i)log(K + B
(︃
erf

(︃
iω
m

)︃
− erf

(︃
(i − 1)ω

m

)︃
+

eρ
(︂
ρ−

2(i−1)ω
m

)︂
erfc

(︃
ρ −

(i − 1)ω
m

)︃
− eρ(ρ−

2iω
m )erfc

(︃
ρ −

iω
m

)︃)︃)︃ (6)

Here, we have introduced ω = σ−1
irf mT/

√
2 that, together with B and ρ permits a convenient

parametrisation of the log-likelihood on a time base defined by the width of the IRF. We have
also used a regularisation constant K, to avoid numerical instabilities when the argument of the
logarithm might become 0. The Cramer-Rao [6,26,35] bound for an unbiased estimator of the
fluorescence lifetime τ can be quantified with the study of the Fisher information matrix I(B, ρ),
that in this case can be written as:

I(B, ρ) = −
⎛⎜⎝

E
(︂
∂2logL
∂ρ2

)︂
E

(︂
∂2logL
∂ρ∂B

)︂
E

(︂
∂2logL
∂ρ∂B

)︂
E

(︂
∂2logL
∂B2

)︂ ⎞⎟⎠ (7)

E is the expectation operator, which estimate for G(i) can be easily evaluated as in Eq. (8).

G(i) =

B
(︂
1 − erf

(︂
(i−1)ω

m

)︂
− erfc

(︁ iω
m

)︁
− eρ(ρ−2 iω

m )
(︂
erfc

(︁
ρ − iω

m
)︁
− e

2ρω
m erfc

(︂
ρ − (i−1)ω

m

)︂)︂)︂ (8)

The top-left value of IT is the variance of ρ, which then permits to evaluate the F-value of a
TCSPC system with a Gaussian IRF, substituting ρ = τ−1σirf/

√
2 and ω = σ−1

irf mT/
√

2.

FGaussian =
τ

σirf

⌜⃓⃓⃓⃓⃓⎷
2N

E
(︂
∂2logL
∂ρ∂B

)︂
E

(︂
∂2logL
∂ρ2

)︂
E

(︂
∂2logL
∂ρ∂B

)︂
− E

(︂
∂2logL
∂B2

)︂2 (9)

Here, we present numerical evaluations of FGaussian (Fig. 1(a-e)) because we could not simplify
the analytical solution (available in the supporting Mathematica Notebook) to an intuitive short
form. The regularisation constant K was set to 10−6 not to alter the general solution and permitting
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divergence for low values of τ while avoiding indefinite forms. The solutions were evaluated
numerically on a lattice of ∼1.3 104 parameter values defined by Eqs. (10).

τ = τ01.05v with v = 1, . . . , 151 and τ0 = 10 ps

m = 2s with s = 1, . . . , 12 (10)

σirf = {1 ps, 100 ps, 250 ps, 500 ps, 1 ns, 2 ns, and 5 ns}

Fig. 1. Fisher information and instrument response function. a-e) Fisher information
analysis was used to estimate the photon economy (F-value) of TCSPC systems for Gaussian
IRFs with standard deviations of 100 ps (blue), 250 ps (orange), 500 ps (green), 1 ns (red),
and 2 ns (purple). The F-value is equal to one when the signal is limited only by Poissonian
noise (solid grey line). For reference, the F-value of a Dirac IRF for each system is also
shown (black dashed line). The inserts show a magnified area of the plot (from −0.25 to
3.75 ns, and for F-values between 0.95 and 1.45). Systems with 4 (a), 16 (b), 64 (c), 256 (d),
and 1024 (e) time-bins for a 25 ns measurement period were considered. f) The difference
between the area under the curves shown in panels (a-e) for a Gaussian- and a Dirac- IRF is
used as a measure of performance loss caused by non-ideal instrument response function.

In the rest of the work, the period of the pulse train is equal to 25 ns.

3.2. Increasing IRF widths reduce photon efficiency

Figure 1(a-e) shows the F-value estimated with Eq. (9), with the black dashed line representing
the reference performance of a Dirac-excitation. For a time-resolved system with only four
time-bins (Fig. 1(a)), similar to some time-gating implementations [12,36], the F-values are
nearly indistinguishable from the theoretical limits of a Dirac IRF (here σirf=100, 250, 500, 1000,
and 2000 ps are shown). For low time-bin resolutions (Tm−1), sampling limits performances,
and the width of the IRF does not cause further losses in precision, at least until the IRF is
comparable to the resolution of the photon-arrival times histogram (here Tm−1∼6 ns/bin).

In Fig. 1(b-e), the number of time-bins are increased to 16, 64, 256, and 1024 (equivalent to
Tm−1∼1.6, 0.4, 0.1, and 0.02 ns), respectively. As expected, the F-values for both the theoretical
Dirac-limit and finite Gaussian IRFs improve as the number of time-bins increases, particularly
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at shorter decay times. However, the improvement for Gaussian IRFs with broader width (1–2
ns) are more modest.

To further quantify the effects of the IRF, we evaluated the performance loss as the area under
the curve between the Gaussian IRF and the theoretical Dirac-limit F-values. Figure 1(f) again
illustrates that while the performance loss generally increases with the IRF width, the loss is
minimal until the IRF width is similar to the time-bin resolution. Therefore, for systems with
fewer time-bins, a wider IRF can be tolerated before a loss in performance is observable. While
the results shown in Fig. 1 are somewhat expected, taken together, it illustrates that very narrow
IRFs are only beneficial for very short fluorescence lifetime values and systems with a high
time-bin resolution. It has been previously noted that an increase above 64 time-bins will only
provide minor improvements in the photon economy of a system [22,25]. We have then found
that with a 64 time-bins system at 40 MHz, an IRF up to 250 ps can be tolerated with only
minor deterioration in system performance. Increasing the number of time-bins beyond 64 and
decreasing the IRF will not significantly improve the photon economy for most lifetimes over the
measurement period; however, it may improve the photon economy at very short lifetimes. The
capability of a TCSPC system to measure fluorescence lifetimes shorter than the IRF width has
been reported in the past [37]. With these results, we can appreciate how this is both a function
of instrument parameters and photon-budget. Short fluorescence lifetimes require an increasing
number of photons to be characterised. Compared to the best performance achievable by TCSPC
(F=1), to achieve the same precision for a short lifetime, the detection of F2 photons would be
necessary. For shorter lifetimes, the loss of Fisher information due to an IRF wider than 250 ps
becomes so high that it makes any measurement impractical.

3.3. The shape of the IRF determine TCSPC photon-efficiency

Next, we cross-validated the numerical estimations of Eq. (9) (Fig. 1(a-c)) with Monte Carlo
simulations (Fig. 2; 4, 16, and 64 time-bins) achieving a very close match between the two
independent methods. Having shown the excellent performance of Monte Carlo simulations, we
used this approach to understand the dependencies of TCSPC photon-efficiencies on different
parameters because analytical solutions for general cases can be arduous to obtain. In Fig. 3(a-c),
we compare the F-value of Gaussian- (solid curves), and rectangular- (dashed curves) shaped
IRFs of equal full-width at half-maximum in 16 and 256 time-bin systems. For a Gaussian, the
FWHM is equal to 2.355 σ [38]. For narrow FWHM values (e.g., 100 ps), the F-value of both
Gaussian and rectangular cases are very similar converging, unsurprisingly, to the Dirac solution.
However, with the increasing width of the IRF, the photon-efficiency of the Gaussian-shaped
IRF deteriorates faster than the rectangular IRF as shown in Fig. 3(d). In comparing 16 to
256 time-bin systems, higher time-bin resolution decreases the system performance loss due to
IRF shape. The comparison of performance between Gaussian and rectangular IRF of equal
FWHM leads to two conclusions. Trivially, we observe that the shape of the IRF impacts the
photon-efficiency of a TCPSC system significantly. More interesting, rectangular IRFs of low
but finite duty-cycle can outperform systems with Gaussian IRFs.

We have shown that an IRF below 250 ps does not have a significant impact on fluorescence
lifetime estimates. This observation is valid when the IRF is well-known a priori and used in
iterative reconvolution fitting [17,18,39]. However, fitting the IRF width causes a considerable
loss of precision of fluorescence lifetime estimates for lifetime values of any magnitude. For
example, Fig. 3(e-f) illustrates the information cost of estimating the IRF width rather than
measuring it for a Gaussian IRF of 250 ps in 16 and 256 time-bin systems. Similar to the case with
IRF shape, higher time-bin resolution decreases the system performance loss due to estimating
relative to measuring the IRF as shown in Fig. 3(g). The experimental characterisation of the
IRF is thus essential not just to improve the accuracy of fluorescence lifetime estimates (the fit of
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Fig. 2. The impact of the IRF on photon economy studied by Monte Carlo simulations.
a-c) Monte Carlo simulations were performed to cross-validate the Fisher information analysis
shown in Fig. 1. Fluorescence lifetime signals were simulated and lifetimes were estimated
for systems with Gaussian IRFs with standard deviations of 100 ps (blue), 250 ps (orange),
500 ps (green), 1 ns (red), and 2 ns (purple). Each simulation run comprised 75,000 photon-
events and was repeated 5,000 to calculate F-values. Systems with 16 (a), 64 (b), and 256 (c)
time-bins sampling a 25 ns measurement period were considered. The theoretical F-value,
of a Dirac IRF for each system is shown as reference (black dashed line).

a wrong IRF model results in inaccurate decay values) or the minimal fluorescence lifetime that
can be resolved but also the precision of fluorescence lifetime estimates more generally.

3.4. Impact of the IRF onto the biochemical resolving power of a microscope

Fluorescence lifetime imaging microscopy is often used in biomedical research to probe cellular
biochemistry. In biochemical imaging applications, the measurement of absolute values of
fluorescence lifetimes is often of little interest. Instead, it is often the ability to distinguish between
spatiotemporal variations of a fluorescence lifetime estimate (e.g., the comparison between two
pixels or the time response within a pixel) that is more relevant. Köllner and Wolfrum defined
separability (S) as a measure of the capability of a system to differentiate between two lifetime
measurements, τ1 and τ2: [22]:

S =
|τ1 − τ2 |√︂
σ2

1 + σ
2
2

(11)

where σ1 and σ2 are the standard deviations of the measurements of τ1 and τ2, respectively. To
illustrate how separability is affected by the IRF, we used our numerical estimations of F-values
to express separability by assuming the collection of 2,000 photons per measurement. Using
Eq. (11), we compared the separability of two hypothetical probes with a dynamic range of 10%;
the first probe operates in the lower lifetime region with a range between 0.50 and 0.55 ns and a
second probe in the higher lifetime region with a range between 2.0 and 2.2 ns (Fig. 4(a)).

For narrow Dirac-like IRFs, the separability between the two probes are similar due to both
distinguishing a 10% change in lifetimes. As the IRF width increases, the separability of
both probes decreases. However, the probe operating at longer lifetimes is less affected by the
increasing IRF. The longer lifetime probe remains above a separability of 2 up to an IRF width
of approximately 2.0 ns, while the shorter lifetime probe can only tolerate up to an IRF of
approximately 0.5 ns.

To increase the separability, more photons can be collected per measurement, as shown in
Fig. 4(b-c). The increase in separability as additional photons are collected is shown for the
probe operating in the lower lifetime region (Fig. 4(b)). For this probe, increasing the IRF width
from 0.1 to 1.0 ns requires an increase from approximately 1,000 to 10,000 photons to maintain
the same level of separability, which translates to the same fold increase in image acquisition
time. In comparison, for the probe operating in the higher lifetime range, the same increase in



Research Article Vol. 12, No. 7 / 1 July 2021 / Biomedical Optics Express 3782

Fig. 3. The impact of the IRF shape and measurement on photon economy. a-c) Monte
Carlo simulations were performed to compare the photon economy between Gaussian and
rectangular shaped IRFs. Gaussian IRFs (solid lines) with a standard deviation of 100 ps
(blue), 1 ns (red), and 2 ns (purple) were compared to rectangular IRFs (dashed lines) at
equivalent FWHM. These IRFs are shown for a system of 256 time-bins (a). The photon
economy was compared in systems of 16 (b) and 256 (c) time-bins. d) The differences
between the areas under the curves represent the performance loss for Gaussian- relative
to rectangular- instrument response functions for both systems with 16 (pink) and 256
(yellow-green) time-bins. e-f) Monte Carlo simulations were also performed to compare
the photon economy of iterative reconvolution data fitting where the IRF width is estimated
by fitting (orange) or experimentally (blue). For example, the measurement is simulated
with a Gaussian IRF with a standard deviation of 250 ps in a system with 16 (e), and 256
(f) time-bins. g) The performance loss caused by fitting the IRF width is shown for both
systems with 16 (pink) and 256 (yellow-green) time-bins.
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Fig. 4. The biochemical resolution of fluorescence lifetime imaging. a) The separability
of two fluorescence lifetime decays decreases for broad instrument response functions, here
shown for a photon-budget of 2,000 photons collected with a system of 256 time-bins. We
show instances of two probes exhibiting fluorescence lifetime variations of 10% for a sensor
exhibiting a short fluorescence lifetime (switching from 0.50 to 0.55 ns; blue curve) and
a longer one (from 2.0 to 2.2 ns; orange curve). b-c) The increase in collected photons
needed to maintain separability between a Gaussian IRF with a standard deviation of 100 ps
(blue) and 1 ns (red) was evaluated for both probes. In panels a-c) we show the reference
separability of 2 (dashed black line) where two fluorescence lifetimes can be considered
distinguishable. d) The resolving power of a fluorescence lifetime imaging system is shown
for reference fluorescence lifetimes of 500 ps (blue) and 2 ns (orange) as a function of IRF
width, evaluated for a photon-budget of 2,000 photons collected with a system with 256
time-bins. e) From plots of resolving power as function of fluorescence lifetime and IRF
width (100 ps (blue), 250 ps (orange), 500 ps (green), 1 ns (red), and 2 ns (purple)), we
inferred the smallest resolvable fluorescence lifetime to achieve at least a resolving power of
3 (f). The dashed curves shown in panel e) show the reference line of R=3 (horizontal line)
and the correspondent resolution limit (vertical line) for a broad IRF of 2 ns width (purple).
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the IRF requires a significantly smaller increase in photons collected to maintain the separability
(Fig. 4(c)).

While separability quantifies the ability to distinguish between two fluorescence lifetime
estimates, the biochemical resolving power describes the smallest change (∆τ) that can be
measured for a given fluorescence lifetime τ0. We have previously defined the biochemical
resolving power as R = τ0/∆τ, which is equivalent the definition of resolving power in
spectroscopy, R = λ/∆λ [26]. In analogy to the spatial resolution of a microscope, we
have previously derived the biochemical resolving power using the Rayleigh criterion, which
corresponds to a separability of 2. By substituting τ1, τ2, and σ1=σ2=σ0 with τ0+∆τ/2, τ0-∆τ/2,
and F0τ0/

√
N, respectively, the biochemical resolving power is expressed as (see Ref. [26] for

the full derivation):

R =
√︃

pN
8

(12)

where the photon-efficiency of a FLIM system, p = F−2 [24], and the number of detected photons,
N, determine the biochemical resolving power of a microscope [26].

Using Eq. (12), we compared the effects of an increasing IRF on resolving power between a
lifetime of 0.5 and 2.0 ns. Figure 4(d) shows that the resolving power decreases at a faster rate
for a shorter lifetime. Figure 4(e) shows the dependency of R on both fluorescence lifetime and
IRF width. We can use this parametric representation to infer which is the minimum measurable
fluorescence lifetime as a function of IRF width, number of bins and photon-counts. For example,
in Fig. 4(e) we show the resolution limit (vertical dashed lines) achievable with a target R value set
to 3 (horizontal dashed lines). Figure 4(f) shows the smallest measurable fluorescence lifetime
values with R=3 for different sampling resolutions and instrument response function widths.
These minimum lifetimes are also summarized in Table 1. Replacing the photon-efficiency
for a given lifetime in Eq. (12) and solving for N (i.e., N = 8p−1R2) we can then estimate the
number of photons necessary to reach this resolution limit. For example, a TCSPC system with
a Gaussian IRF of 100 ps, 256 time-bins and a laser repetition period of 25 ns could resolve a
fluorescence lifetime of ∼20 ps with a target R of 3. In these conditions p is ∼0.03; thus, the
number of photons necessary to resolve a short fluorescence lifetime of 20 ps would be ∼2,700.
Other combinations of minimum resolvable lifetimes and IRF widths are summarized in Table 2.

Table 1. Minimum Resolvable Lifetimes for Time-bin and IRF Combinationsa

Time-bins

4 16 64 256 1024

IRF (ps) Minimum Lifetime (ns)

100 0.85 0.21 0.04 0.02 0.02

250 0.84 0.19 0.06 0.05 0.05

500 0.82 0.17 0.11 0.11 0.10

1000 0.76 0.24 0.21 0.21 0.21

2000 0.70 0.44 0.42 0.42 0.42

aTable 1. Minimum resolvable lifetimes. The smallest resolvable fluorescence lifetimes achievable with a resolving
power of 3 and a photon budget of 2,000 were evaluated for various time-bin and IRF combinations.

Taken together, the data shown in Fig. 4 characterises the two fundamental aspects of
‘resolution’ for time-resolved instrumentation: i) the ability to separate two different fluorescence
lifetimes and ii) the smallest measurable fluorescence lifetime. While the latter definition (ii)
is commonly used as a reference for resolution, oftentimes in biology, the ability to separate
two lifetimes is what matters. Both properties are affected by specification of instruments, but
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Table 2. Required Photons for Minimum Resolvable Lifetimes for IRF Widthsa

Minimum Resolvable Lifetime (ns)

0.02 0.05 0.10 0.25 0.50

IRF (ps) Photons Collected

100 2,710 290 120 80 70

250 22,570 2,320 430 110 80

500 104,470 12,680 2,330 270 110

1000 >1,000,000 61,800 12,890 1,280 270

2000 >1,000,000 >1,000,000 62,470 7,290 1,310

aTable 2. Photons required for minimum resolvable lifetimes. The number of photons required were evaluated for a
given minimum resolvable fluorescence lifetimes and IRF width that is achievable with a resolving power of 3.

we show that the ability to separate lifetimes in the range that are often used for biological
applications are more lenient on the required IRF and time-bin requirements.

4. Discussion

The role of photon-statistics for time-resolved measurements has been widely characterised.
However, to our knowledge, a quantitative description of how the instrument response function
contributes to the precision of a measurement and ultimately limits the resolution of a time-
resolved technique was lacking. To fill this knowledge gap, we have applied Fisher information
theory and Monte Carlo simulations to evaluate the role of IRFs on photon economy. First,
we described the theoretical considerations which characterised the performance of a time-
resolved system from the perspective of decay-time resolution which offers provocative practical
considerations.

Unsurprisingly, a narrower IRF and denser sampling of the fluorescence decays improve the
overall system performance converging to the ideal performance (F=1). However, for a given
photon-budget, the improvements achievable by narrower IRFs are limited by the histogramming
bin resolution. Notably, for typical high-end time-tagging electronics, timing precisions and the
minimum time-bin widths are positively correlated. However, the impact on the photon-efficiency
of a time-resolved system also depends on the dead-time of the electronics and detectors (higher
dead-times, higher photon-losses), the transit time spread of the detectors (typically in the range
of 20–200 ps) which will contribute to the system IRF, and the quantum efficiency of the detector.
For example, when seeking to maximise the photon-budget by selecting detectors with high
quantum efficiencies and electronics with low dead-times, compromises might be necessary on
the nominal system IRF.

Leading manufacturers of TCPSC systems supply hybrid photo-multiplier tubes (PMTs) such
as the bialkali HPM-100-06 (Becker-Hickl GmbH) and PMA-06 (PicoQuant GmbH) that exhibit
excellent dead-times (<1ns), very low transit time spread (20–50 ps), and good quantum efficiency
spanning the UV and visible spectrum (a peak 28% at 400 nm). The equivalent packaged detector
with a GaAsP photocathode (HPM-100-40 or PMA-40) significantly improves the quantum yield
of such devices in the visible range (from <20% for the bialkali to ∼45% for the GaAsP). With
all other experimental parameters equal, using a GaAsP photocathode instead of a hybrid PMT
could provide up to three times higher photon-counts for a green fluorophore. From Eq. (3), we
can then infer that for a shot-noise limited system, we could achieve a

√
3 improvement in the

(biochemical/lifetime) resolving power of a detection system. However, the −40 series of hybrid
PMTs exhibit a much higher (120 ps) transit time spread compared to the −06 series. Our work
would then suggest that for nanosecond-lived fluorescence lifetimes (or for lifetimes >500 ps in
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this case), the loss in resolving power caused by the IRF is insignificant and the
√

3 improvement
determines the performance of the system. However, when measuring shorter lifetimes (<50 ps),
assuming that the time-tagging electronics provide sufficient time resolution (>256 time-bins),
the transit time spread of the GaAsP photo-cathode will incur a high enough penalty that it cannot
be offset by the

√
3 improvement in collection efficiency.

Far from the limit of resolution (the smallest decay value that could be measured), which
depends in non-straightforward ways on the various parameters discussed, the biochemical
resolving power of a FLIM system is affected more dramatically from the prior knowledge of the
IRF rather than it being extremely narrow. Indeed, we have shown how broader IRFs and even
rectangular-shaped IRFs could provide resolving powers as high as ideal Dirac-like excitation
profiles. This observation is reminiscent of a previous observation reported for frequency-domain
fluorescence lifetime microscopy [24], where rectangular excitation pulses of finite width (1–2 ns)
could provide higher performances compared to typical sinusoidal excitation, permitting a system
to approach the ideal performances of a time-domain FLIM with Dirac excitation. Similarly,
we can now infer that for a system in which the IRF is dominated by the width of the excitation
pulse, broad nanosecond pulses might not significantly deteriorate the performance of a FLIM
system provided that the IRF is experimentally well-characterised, stable and the fluorescence
lifetime decays are sampled sufficiently well.

We note that when fitting a wrong IRF model (for example using a Gaussian approximation for
non-Gaussian IRFs) the accuracy of lifetime estimates deteriorates. However, while systematic
errors might be tolerated in applications where only changes in fluorescence lifetimes are
relevant, the loss of precision and resolution caused by estimating IRF parameters by fitting on a
pixel-by-pixel basis is vastly detrimental. Although an analysis of accuracy is beyond the scope
of this work, we note that the experimental characterisation of the IRF is thus always advisable
not only to retrieve the most accurate results but also to maximise the precision and resolution of
an assay.

While some of these observations might be considered intuitive, our results have both practical
implications (e.g., as described for the selection of a photo-cathode material) and provocative
conclusions.

First, ambiguity between different definitions or types of resolutions should be avoided. For
all practical purposes, in the biomedical field, it is what we define as biochemical resolving
power of a microscope that is relevant. This is a quantity that is limited by the photon-budget and
for experiments using typical organic, inorganic (e.g., Quantum Dots), or genetically encoded
fluorophores and high-end TCSPC systems, the IRF width and shape might have a smaller impact
onto the biochemical resolving power of an instrument than often perceived.

Second, for very short-lived fluorophores, the impact of the IRF is naturally significant.
However, the biochemical resolving power is still photon-budget limited whenever the minimum
bin width is sufficient for sampling the IRF and the fluorescence decay. In this case, the limit of
resolution might be better expressed in terms of the smallest value that could be measured with a
given photon-budget. In fact, the capability for a TCSPC to quantify fluorescence decays with
time constants shorter than the width of the IRF has been illustrated experimentally in the past
with the collection of approximately 1,000 photons in the maximum time channel [37,40].

Third, maximum care should be taken in the collection of as much signal as possible from
the limited photons that typical fluorophores used in biomedical application can emit. As the
photon-budget will ultimately determine the biochemical resolving power in typical assays (e.g.,
sensors based on fluorescent proteins), the excellent resolving power that could be provided
by the high timing-resolution of high-end TCSPC electronics and femtosecond lasers can be
squandered by the use of less sensitive detectors or optical relay systems.

We also note that time-resolved systems are not only utilised in biomedical applications or
fluorescence. Phosphorescence lifetime imaging is often applied to sense molecular oxygen



Research Article Vol. 12, No. 7 / 1 July 2021 / Biomedical Optics Express 3787

in tissues using much longer lifetimes than fluorescence [41]. In comparison, extremely short
delay times are measured in a large variety of instrumentations spanning nuclear physics to mass
spectrometers, and also include 3D ranging technologies used for machine vision and in the
automotive industry. As the theory that we have described here can be directly applicable or
can be adapted to the description of resolving power of timing of any of these applications, we
envisage that this work might expand our understanding and could be used for the improvement
of several time-resolved technologies across different industries.
Funding. Cancer Research UK (OncoLive, C54674/A27487); Medical Research Council (MC_UU_12022/1,
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