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Abstract—Neuromorphic computing is expected 
to realize fast and energy-efficient artificial 
neural networks and address the inherent 
limitations of von Neumann architectures in 
dedicated communication applications. To realize 
this vision, we identify the existing challenges in 
neuromorphic computing and provide a specific 
solution from the perspectives of device, circuit, 
and system. At the device level, we fabricate a 
metal oxide-based memristor with high stability, 
low power, and good scalability, serving as the 
fundamental component of neuromorphic 
computing system. At the circuit level, the basic 
circuit units and necessary peripheral circuits are 
designed to realize efficient vector-matrix 
multiplication and different functions, including 
nonlinear activation operation, subtraction 
operation, added operation, etc. At the system 
level, a flexible neuromorphic computing system 
with a hardware-friendly training approach is 
proposed, it can perform affective communication 
with good trade-off between accuracy and time 
consumption. This study is expected to achieve 
the deep integration of nanotechnology, 
energy-efficient integrated circuits, and 
neuromorphic computing systems into 
communication applications. 

Index Terms—Metal oxide-based memristor, 
basic circuit units, neuromorphic computing 
system, affective communication 

I. INTRODUCTION
euromorphic computing is a computing paradigm 
inspired by biological brain, which enables fast 

and energy-efficient Artificial Neural Network 
(ANN) hardware implementation for highly 
sophisticated tasks [1]. Notably, neuromorphic 
computing system shows the ability to cache 
countless amounts of data and constantly conduct 
computing, offering promising solutions to break the 
von Neumann bottleneck, which are attracting 
increasing interest in recent years [2]. So far, a 
number of neuromorphic computing systems have 
been proposed using different electronics devices, 
such as spintronic devices, ferroelectric devices, 
complementary, phase-change memory devices, etc. 
[3]. Memristors are two-terminal electronic devices 
that exhibit non-volatility, high density, long 

retention, and long endurance, which are potential 
candidates for neuromorphic computing [4]. 
Recently, memristor-based neuromorphic computing 
systems with different learning algorithms have been 
developed to realize specialized neural networks, 
such as Long Short-term Memory (LSTM) networks, 
Spiking Neural Networks (SNNs), Convolutional 
Neural Networks (CNNs), which can be extended to 
realize a variety of applications e.g., affective 
communication. In [5], a LSTM network was 
fabricated using memristor crossbar arrays, which 
can store a large number of parameters and offer 
in-memory computing capability. In [6], a 
high-performance and uniform memristor crossbar 
array was fabricated for the implementation of CNN 
with parallel-computing capability. [7] presented a 
hardware design of ANN based on memristor 
crossbar array. The whole circuit system can be used 
to complete the sentiment analysis task with high 
accuracy and low power consumption. In [8], a 
bionic memristive system with the functions of 
emotional learning and generation was constructed, 
which can perform affective computing based on 
multimodal information. [9] presented a multimodal 
neuromorphic sensory-processing system via 
memristor circuits, offering an environmentally 
friendly method with easily deployable hardware. 

Despite these advantages, the existing 
memristor-based neuromorphic computing systems 
still suffer from several limitations. The key 
challenges can be identified from the perspectives of 
device, circuit, and system. At the device level, due 
to the non-uniformity of the function layers and 
electrodes, the device-to-device and cycle-to-cycle 
performances have shown some variations, which 
may lead to the imprecise encoding of network 
weights in the neuromorphic computing. At the 
circuit level, the general basic circuit units are still 
lacking, which makes the existing neuromorphic 
computing systems are intensive and 
non-configurable. Considering the diversity of neural 
networks, the universality and flexibility of 
neuromorphic computing systems are hard to 
guarantee, which may lead to additional resource 
consumption. At the system level, most 
neuromorphic computing systems do not provide the 
complete circuit design, and the training process 
always relies on some computer/software aided 
strategies. In addition, the traded-off between testing 
accuracy and time consumption is hard to balance.  
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To address these common issues, the potential 
remedies are provided below: From the perspective 
of the device, since the device stability is critical to 
the neuromorphic computing accuracy, the highly 
reliable dynamic memristive devices are required. 
From the perspective of the circuit, since the general 
basic circuit units are important for the construction 
of flexible neuromorphic computing systems, 
compact basic circuit units with reconfigurable 
capability are required. From the perspective of the 
system, efforts are needed to develop 
hardware-friendly training algorithms that can realize 
a compact, high-accuracy, and energy-efficient 
neuromorphic computing system. For clarity, the 
drawbacks of the existing memristor-based 
neuromorphic systems and the corresponding 
solutions are provided in Fig. 1.  

Based on this, we explore and propose a flexible 
and energy-efficient neuromorphic computing 
system for affective communication. The main 
contributions brought about in this work are the 
following: 

1) A metal oxide-based memristor with high
stability, low power, and good scalability is prepared. 
It can serve as a promising candidate to emulate 
high-accuracy neuromorphic computing in 
communication technology. 

2) A flexible neuromorphic computing system
based on general basic circuit units and necessary 
peripheral circuits is proposed, which aims at solving 
computationally hard problems with configuration 
and universality unattainable. 

3) Based on the proposed neuromorphic
computing system, a full hardware implementation of 
affective communication is developed, which 
provides a success case study for balancing the 
trade-off between accuracy and time consumption. 
Importantly, we also discuss the future direction of 
neuromorphic computing using advanced 
manufacturing and integration technologies. 

II. MEMRISTOR FABRICATION AND TESTING

A. Fabrication of Ag/TiOx nanobelt/Ti Memristor
Metal oxide materials offer an attractive option for

the fabrication of relatively inexpensive 
neuromorphic devices with low-energy switching 

and high stability [10]. In this paper, the Ag/TiOx 
nanobelt/Ti memristor is prepared based on 
hydrothermal synthesis method and magnetron 
sputtering method, in which the former is used to 
prepare TiOx nanobelt and the latter is used to prepare 
Ag electrodes. 

Step 1: deionized water and ethyl alcohol are 
employed to clean the surface of the Ti substrate for 3 
seconds. 

Step 2: the Ti substrate is transferred to a muffle 
furnace and annealed at 200 °C for 3 hours. 

Step 3: 2.0g NaOH is dissolved in 20mL deionized 
water, stirred for 30 minutes at room temperature 
until it is completely dissolved. 

Step 4: 2.0g TiO2 powder is dispersed in prepared 
NaOH solution, and then continuously stirred by a 
magnetic stirrer for 3 hours to fabricate the precursor. 

Step 5: the mixed precursor is transferred to a 
50mL hydrothermal reactor. At the same time, a 
heat-treated Ti substrate is inserted into the 
hydrothermal reactor. 

Step 6: after hydrothermal reaction at 200℃ for 48 
hours, a blue-gray film is grown on the surface of the 
Ti substrate. 

Step 7: the TiOx nanobelt arrays can be obtained 
by cleaning the bluish-gray film with 10% 
hydrochloric acid for 90 seconds and deionized water 
for 10 minutes. 

Step 8: the TiOx nanobelt samples are thermally 
processed at 80°C for 24 hours to remove possible 
residual HCL. 

Step 9: the relative humidity is controlled at the 
range of 95%~100%. Magnetron sputtering is used to 
fabricate Ag electrodes on the TiOx nanobelt. Then, 
the Ag/TiOx nanobelt/Ti memristor is achieved. 
B. Performance Testing

Since the non-uniformity of the function layers and
electrodes may lead to the imprecise encoding of 
network weights in the neuromorphic computing, it is 
necessary to investigate the stability of the Ag/TiOx 
nanobelt/Ti memristor through an electrochemical 
workstation (CHI-660D). The electrical 
characteristics, mainly referring to the ampere-volt 
data is measured (at ± 6V scanning voltages), as 
shown in Fig. 2.  

From Fig. 2, the I–V sweep curves obtained by 140 

Fig. 1 Memristor-based neuromorphic computing system architecture. 
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memristors show high degree of overlap, 
demonstrating that the Ag/TiOx nanobelt/Ti 
memristor has good device-to-device stability. 
Meanwhile, the prepared memristor also exhibits 
resistive switching behavior. Specifically, in stage 1, 
the memristor keeps in the High Resistance State 
(HRS). As the scanning voltage increases from 0V to 
3V, there is very little change in the device current 
until the applied voltage exceeds 3V, the current 
starts to increase with the scanning voltage and 
reaches a maximum, meaning that the memristor 
changes from HRS to Low Resistance State (LRS) , 
and the “SET” process is completed; in stage 2, when 
the scanning voltage decreases from 3V to 0V, the 
memristor remains in LRS; in stage 3, memristor 
remains in LRS as the scanning voltage is reversed 
from 0V to -3V; in stage 4, the current gradually 
decreases as the scanning voltage changes from -3V 
to 0V. When the scanning voltage is higher than -3V, 
the memristor changes from LRS to HRS, meaning 
that the “RESET” process is completed. 
Furthermore, 500 highly overlapped I–V profiles are 
observed in the inset of Fig. 2, indicating that the 
Ag/TiOx nanobelt/Ti memristor has excellent 
cycle-to-cycle stability. 

III. FLEXIBLE CIRCUIT DESIGN SCHEME FOR
NEUROMORPHIC COMPUTING SYSTEM

Neuromorphic computing is one of the potential 
candidates to understand neuronal communications 
and functionalities, enabling specialized ANN 
hardware implementation. Our motivation is to 
design a flexible neuromorphic computing system 
via memristive circuits, aimed at solving 
computationally hard problems with configuration 
and universality unattainable. Take LSTM network 
as an example, we presented two basic circuit units 
and used a hardware-friendly training approach, 
which can perform the standard LSTM network and 
its eight variants with less total area and power 
consumption. 
A. Basic Circuit Units

A typical LSTM cell contains three gates, i.e., the
forget gate, the input gate, and the output gate, as 
shown in Fig. 3. Specifically, xt is the input vector at 
the present step, ht and ht-1 are the output vectors at 
the present and previous time steps, respectively. σ is 
the logistic sigmoid function, which yields it, ft, and ot 
for the input gate, forget gate, and output gate. ct 

denotes the cell state. Weights W, recurrent weights 
U, and bias b are all network parameters for the 
implementation of cell activation and each gate.

The LSTM cell can be characterized by two main 
phases, i.e., the linear matrix operation and the gated 
nonlinear activation. Correspondingly, the specific 
hardware implementation of neuromorphic 
computing system with LSTM framework can also 
be separated into two basic circuit units, i.e., the 
linear matrix operation circuit and nonlinear 
activation circuit, using 2-µm Complementary 
Metal-Oxide-Semiconductor (CMOS) technology.  

The linear matrix operation circuit: the memristor 
crossbar array, biasing circuit, and the auxiliary 
circuit jointly constitute the linear matrix operation 
circuit. Notably, the memristor crossbar array 
(labeled by the orange/purple rectangle in Fig. 3) is 
responsible for matrix-vector multiplication. The 
memristors installed at the crossbar array intersection 
are represented by their conductance Gw,ij and Gu,ij. 
Notably, weights W and recurrent weights U can be 
calculated by the difference of the conductance. 

Ra1, a2, a3, a4 and Rb1, b2, b3, b4, b5) are regular resistors 
in auxiliary circuit and biasing circuit, respectively. 
Vb is the additional input of the biasing circuit 
(labeled by the blue rectangle in Fig. 3), representing 
the bias parameter in LSTM. The output Vob can be 
achieved by the linear matrix operation.  

The nonlinear activation circuit: an appropriate 
design scheme for the nonlinear activation function 
in LSTM is presented in Fig. 3 (labeled by the red 
rectangle). The voltage Vob is interconnected to one 
side of an N-Metal-Oxide-Semiconductor (NMOS) 
source-coupled pair, biased with a current sink Imax. 
The output current Iout can be achieved by the 
production of the current sink Imax and the normalized 
current In. According to Ohm’s law, the output 
voltage Vout can be obtained. Notably, the proposed 
circuit is a general activation circuit, which can 
realize almost all the activation functions by tuning 
circuit parameters.

B. Hardware-friendly Training Method
The specific hardware-friendly training method

with six phases is illustrated below: 
Phase 1. Initialization: mainly aims at the 

memristor crossbar array and the voltage Vh, t. At the 
beginning of the training, the resistances of all the 
electronic devices installed at the intersections of the 
crossbar array can be initialized to an intermediate 
value between LRS and HRS. The voltage Vh, t can be 
initialized to random value within the range of [0, 1]. 

Fig. 2 Performance testing of Ag/TiOx nanobelt/Ti memristor. 
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Phase 2. Forward computation: the voltages Vx,t, 
Vh,t and Vb,t are injected to the LSTM cell, the vectors 
at, it, ft, and ot can be achieved. Then, the elements in 
vectors at, it, ft, ot, and ct-1 are jointly used to calculate 
the new vector Vh,t. 

Phase 3. Error calculation: according to the 
subtraction circuit [11], the errors between outputs 
and targets can be obtained. 

Phase 4. Gradient calculation: the obtained errors 
are applied into the gradient calculation circuit [11], 
the desired weights can be obtained immediately.  

Phase 5. Weight programming: we adjust write 
voltage Vwrite and protect voltage Vpro in crossbar 
array, offering controllability in weight 
programming. Specifically, when the desired weights 
are obtained, the expected conductance and the 
relevant write voltage Vwrite can be calculated and 
applied to the corresponding row of the target 
memristor pair with a pulse width of 50ns. At the 
same time, the remaining memristors are kept 
unchanged under a protect voltage Vpro. The 
corresponding conductance will change to the 
desired value within a short time, and the weight 
programming is completed.  

Phase 6. Completion: until the entire 
neuromorphic computing system settles, the training 
process is finished, otherwise, return to the Phase 2.  

Actually, the energy-efficient hardware 
implementation of training methods is complex and 
challengeable, especially when the inevitable 
variations occur in the interconnected analog circuit 
components. Compared with the conventional 
memristor-based neuromorphic computing that 
always use a computer/software aided method to 
perform the weight updating, all the computations 
can be completely realized by hardware circuit in this 
work, which offers benefits in terms of 
communication overhead, convergence speed, and 
power consumption. 

C. Flexible Design Scheme
Different with the existing memristor-based

neuromorphic computing systems, the proposed two 
basic circuit units and hardware-friendly training 
method can not only be used to construct the standard 
LSTM network, but also be extended to the 
implementation of its variants, including No Forget 
Gate (NFG), No Input Gate (NIG), No Output Gate 
(NOG), No Input Activation Function (NIAF), No 
Output Activation Function (NOAF), Gated 
Recurrent Unit (GRU), Peephole LSTM, and 
ConvLSTM, as demonstrated in Fig. 4. 

Fig. 4 Flexible design scheme for the LSTM variants. 
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From Fig. 4, the specific design scheme can be 
realized by the two proposed basic circuit units and 
necessary peripheral circuits (including the 
multiplication circuit, the subtraction circuit, and the 
added circuit). For different LSTM variants, the 
corresponding circuit structure can be regarded as a 
recombination of the two basic circuit units and 
peripheral circuits, which is compact and flexible 
compared with the existing memristor-based 
neuromorphic computing systems. The specific 
comparison is discussed from the perspective of 
computing device, circuit and system, as shown in 
Table 1. 

From Table 1, different material-based memristors 
can be used to realize the neuromorphic computing 
systems. Compared with other competitors, the 
prepared memristor with high stability has a wide 
resistance range to accommodate a large number of 
resistance states, which enables broad applications in 
neuromorphic computing. Meanwhile, the proposed 
circuit has advantages in terms of area overhead 
(achieving minimum value: 74.83μm2) and power 
consumption (achieving minimum value: 100.99μW), 
which indicates that the proposed system is cost 
saving and energy-efficient. Furthermore, different 
with [4-9], this work provides a flexible scheme with 
fully hardware-implemented training strategy that 
can realize a specialized ANN and its variants, 
indicating a more universal application. 

IV. APPLICATION IN AFFECTIVE COMMUNICATION
Realization of affective communication indicates 

that computers could sense, recognize, and respond 
to human emotion, which is a great breakthrough in 
intelligent computing [12]. For validation, the
proposed neuromorphic computing system is used to 
perform affective communication as present in this 
sub-section. 
A. Algorithm description

The entire process can be divided into two phases,
i.e., the training phase and the classification phase.
Notably, three classical text datasets, i.e., the Internet
Movie Database (IMDB) dataset (50% data for
training and the remaining 50% data for testing),
Stanford Sentiment Treebank (SST-2) dataset (72%
data for training, 19% data for testing, and the
remaining 9% data for validating), and Yelp-2 
dataset (94% data for training and the remaining 6%
data for testing) and a synthetic dataset generated by
the Easy Data Augmentation (EDA) method are used 
in this part. The specific algorithm description is
provided as follows:

Training phase: 
Step 1: The training data (i.e., the character 

strings) should be firstly preprocessed, by removing 
all the punctuations and additional spaces, converting 
capital letters to the corresponding small ones, etc.  

Step 2: A well-trained word2vec model [13] is 
used to  convert the preprocessed text data into the 
embedding vectors. Notably, these embedding 
vectors can be deemed as the text features in affective 
communication. Then, the input voltages can be 
obtained through the Min-Max normalization. 

Step 3: The input voltages are injected to the 
proposed neuromorphic computing system, and the 
training process begins. Notably, the specific training 
method is described in the Section III-B, here we do 
not repeat all details again.  

Step 4: When the training is completed, a 
well-trained neuromorphic computing system is 
generated. Then, the validation data is applied to 
verify the performance of the constructed system. 

Classification phase: 
Step 1: Similarly, a text data is firstly 

preprocessed, all the punctuations and additional 
spaces are removed, and the capital letters is 
converted to the corresponding small ones. 

Step 2: A well-trained word2vec model is used to 
convert the preprocessed text data into the 
corresponding feature vectors. After the Min-Max 
normalization, the feature vectors can be changed to 
the input voltages within the same size. 

Step 3: The input voltages are injected to the 
well-trained system, and the classification result 0/1 
(the low value 0 represents sadness, while the high 
value 1 represents happiness) can be obtained. 
B. Experimental Results and Analysis

To verify the flexibility and feasibility, the LSTM
variants realized by the proposed system are applied 
to perform affective communication. Meanwhile, 
some existing state-of-the-art methods (including 
circuit-based and soft-based methods) [7, 12, 14, 15] 
are also introduced for comparison purpose. 
Furthermore, four common performance metrics, i.e., 
the Accuracy, F1-Score, Recall, and time 
consumption are applied for objective evaluation. 
The specific comparison information is collected in 
Fig. 5. 

From Fig. 5, all the methods (no matter the circuit 
implementation or the soft implementation) have 
proved effective in affective communication. It can 
be seen that the proposed neuromorphic computing 
system with LSTM configuration outperform the two 
existing circuit-based methods in terms of Accuracy, 
F1-Score, Recall, and time consumption. Meanwhile, 

Table 1. Comparison of representative memristor-based neuromorphic computing systems 

Reference Device Circuit System 
Materials Ron/Roff ratio Stability Area Power Hardware-based design Flexibility 

[4] Egg Albumin ~104 High stability 200.22μm2 / Totally Common 
[5] Pt/TaOx/Ta / / 500.22μm2 270.17mW Totally Common 
[6] TiN/ TaOx/HfOx/TiN / Good stability 7.04×10-2mm2 7.44mW Totally Common 
[7] Pt/TiO2/Pt 102~103 / / / Partially Common 
[8] Memristor model / / / / Totally Common 
[9] 2D material ~102 High stability 0.64mm2 1.21mW Partially Common 

This work Ag/TiOx nanobelt/Ti ~104 High stability 74.83μm2 100.99μW Totally Good 
Note: the selection criterion of references is provided below: content relevance, total cited times, journal academic impact, and timeliness. 
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almost all the soft-based methods are slightly 
superior to the proposed method in terms of 
Accuracy, F1-Score, and Recall (within an 
acceptable range of 5%), while inferior to time 
consumption (approximately 30~35 times). The 
results demonstrate that the trade-off between the 
accuracy and time consumption can be well balanced 
in the proposed neuromorphic computing system. 

V. CONCLUSION
The main hindrance for existing neuromorphic 

computing systems produces device variation, 
lacking general basic circuit units, non-configurable 
system architecture, and inferior trade-off between 
accuracy and time consumption. To address these 
issues, a flexible neuromorphic computing system 
via memristor circuits is investigated in this paper. 
Specifically, the Ag/TiOx nanobelt/Ti memristor is 
prepared and the corresponding stability analysis is 
conducted. Then, two basic circuit units and a 
hardware-friendly training method are proposed. 
Based on these, a flexible neuromorphic computing 
system with less area overhead and power 
consumption is proposed, which can realize the 
standard LSTM network and eight common types of 
LSTM variants, indicating a more universal 
application. Furthermore, the proposed system is 
applied to the affective communication, achieving 
good trade-off between accuracy and time 
consumption. This paper is expected to inspire 
research to design and implement novel 
neuromorphic computing systems by integrating 
advanced nanotechnology, material science, and 
artificial intelligence in order to support the 

development of communication applications. 
VI. FUTURE WORK

Memristor-based neuromorphic computing is an 
interdisciplinary field of research, covering devices, 
circuits, architectures, algorithms and integration 
technologies. It is in a fast-growing stage with 
abundant opportunities and challenges. 

At the device level: Considering the existing 
memory devices are almost fabricated by metal oxide 
materials, which makes the carbon peak and carbon 
neutrality hard to achieve. Highly reliable, low-cost 
and eco-friendly memory devices are required. 
Meanwhile, the corresponding physical mechanism 
should be thoroughly comprehended and analyzed to 
improve device performance.  

At the circuit level: Considering the design of 
large-scale neuromorphic computing system is still 
complex and challengeable, the complexity of basic 
circuit units should be further reduced in the future. 
Meanwhile, with better understanding of brain 
functionalities, brain-inspired learning circuits 
should be designed. These are expected to improve 
the performance of online learning in neuromorphic 
computing.  

At the system level: Considering daily requirement 
has become more diversified, the smarter 
neuromorphic computing system should be further 
design and implemented to deal with more complex 
tasks such as multimodal affective communication 
and telecommunication. 
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