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Abstract— This paper describes a new type of decomposition 

strategy for Evolvable Hardware, which tackles the problem of 
scalability. Several logic circuits from the MCNC benchmark 
have been evolved and compared with other Evolvable Hardware 
techniques. The results demonstrate that the proposed method 
improves the evolution of logic circuits in terms of time and 
fitness function in comparison with BIE and standard EHW.  

Keywords— Evolvable hardware, evolutionary computation, 
logic design, problem decomposition.  

 

I. INTRODUCTION  
Evolvable hardware (EHW) [1] is a technique to 

automatically design circuits using methods inspired by 
natural evolution. The configuration is carried out under the 
control of evolutionary algorithms (EA). Initially evolvable 
hardware was introduced to be applied to real-world 
applications, but due to its limitations in scalability [1][2][3], 
to date no real world applications have been developed for 
relatively large applications. A number of approaches have 
been introduced to overcome these problems. In terms of 
scalability, approaches such as function-level evolution [4], 
bi-directional incremental evolution (BIE) [5] and the divide-
and-conquer method have been introduced [6]. Function-level 
evolution has been proven to be successful in achieving the 
evolution of relatively complex task [4]. One of the main 
weaknesses of this approach is that it still requires human 
intervention to select the most appropriate functions for the 
relative problems. Regarding the divide and conquer method, 
so called increased incremental evolution [7] has been 
introduced to reduce the search space which allows the 
complete evolution of logic circuits up to 10 inputs (5*5 bit 
multiplier) [8]; but a significant weakness is also present, that 
is the difficulties of the definition of the fitness function for 
the initial stages of the evolution, which makes it less suitable 
for completely automatic systems. Furthermore this method 
gives an unconditional imposition to the system: the top-down 
design which does not allow the discovery of new designs. 
BIE evolution is a completely automatic system which does 
not require any knowledge from the designer which is not 
scalable to really large circuits due to the limitations of EHW-
oriented output and Shannon decompositions [5]. Although 
the last two methods have been proven to be successful in the 
evolution of logic circuits, the scalability problem remains to 
be one of the main issues in the evolution of relatively large 

logic circuits in a reasonably short time. This paper addresses 
these issues. 

The proposed method is based on the use of a 
decomposition method where the number of inputs in evolved 
logic circuits is reduced by the introduction of new output 
functions. 

The paper is organised as following: the next section 
considers the basis of the system implemented in order to run 
the method proposed in this paper. Section III explains the 
proposed method and Section IV explores the behaviour of the 
proposed algorithm based on obtained experimental results. 
Section V concludes the work and provides the summary.  

 

II. EXTRINSIC EHW 
In this section an explanation of the system used to evolve 

combinational logic circuits is given. The evolutionary 
algorithms used, together with the fitness functions, 
chromosome representations and genetic operators are also 
presented. 

A. Evolutionary algorithms applied to EHW 
In Fig. 1 a general evolutionary process used in evolvable 

hardware is shown. The chromosome can be generated via 
software or hardware, and then converted into models by 
using software programs such as Spice, VHDL, C++, LISP 
etc., or into circuits by using reconfigurable hardware such as 
FPGA, FPTA, and PLA. After that, the implemented models 
or circuits are evaluated via software or hardware, and the 
fittest individuals are selected in order to reproduce a new 
population for a new lifecycle. The EA process terminates 
when the desired logic circuit is evolved, or other 
requirements are met, such as the maximum number of 
generations, maximum time, maximum memory usage etc. 

B. Evolutionary algorithms 
In the given extrinsic EHW approach the (1+λ) 

rudimentary evolutionary strategy is used [9][10], where λ 
represents the population size. Once the fitness function of 
each individual is calculated, the fittest individual is selected 
and duplicated for the population of the next generations and it 
is brought up to date by using a mutation operator. 
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Figure 1 Generic evolutionary process used in EHW 

C. Chromosome encoding 
The chromosome defines the connection in the logic 

circuits between the inputs and the outputs. The chromosome 
encoding used takes into account the aspects of any 
combinational logic network: cell functionality and inter-
connectivity of the cells between the inputs and outputs of the 
circuit [9]. In our approach the logic circuit is presented as a 
rectangular array of logic gates. Each logic cell in this array is 
uncommitted and can be removed from the network if it is 
redundant. All the logic functions are chosen from the set of 
AND, OR, EXOR, NOT and MUX. The chromosome is 
represented by a 3 level structure: geometry, circuit and gate. 
At the first level the global characteristics of the circuit are 
defined: the internal connectivity, number of rows and 
columns of the rectangular array. At the second level the array 
of cells is created and the circuit's outputs are determined; and 
the third level represents the structures of each cell in the 
circuit [9]. 

 
Figure 2 System used for evolving logic circuits 

D. Dynamic Fitness Function 

The fitness function is responsible for measuring the 
evaluation of the process. In our experiment we took into 
consideration a dynamic fitness function, which has two main 
criteria: first functionality, the fully functional circuit is 
evolving and second, only after the circuit is completely 
evolved, optimization which allows us to reduce the number of 
active gates and improve the quality of the evolved fully 
functional circuit. That way the dynamic fitness function ftot is 
calculated as follows: 
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Where the functionality of the evolved circuit is calculated 
as follows: 
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where m and n are the number of outputs and inputs of the 
evolved logic function respectively; p is the number of ON 
and OFF sets in the Boolean function (if p=2n, then the 
Boolean function is completely specified, else the function is 
incompletely specified); yi is the ith digit of the output 
combination produced by evaluation of the circuit, di is the 
desired output for the fitness case fc. |yi-di| is the absolute 
difference between the actual and the required outputs. 

The fitness function for the optimization stage is calculated 
as: 

 ∑ ∑ ⋅−⋅= lglglglg2 pup NNNNf
 (3) 

Where Nlg is the number of all the logic gates, Nplg is the 
number of the primitive logic gates and Nulg is the number of 
used logic gate. Fig. 3 shows the progress of the fitness 
function during the evolution of the functionality for the 
following function: 

 ( ) xsqrtf =  (4) 

with 4 inputs and 3 outputs. Once the circuit is completely 
evolved (100% functionality is achieved), the optimization 
stage starts to improve the overall quality of the circuit: it can 
seen that the number of primitive active gates is reducing in 
each generation. 

E. Genetic operators 
The genetic operators used are: gene mutation, tournament 

selection and elitism [11]. 
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Figure 3 This graphic shows the effect of the use of the dynamic fitness 
function during the evolution of logic circuits. When the fitness function 
reaches 100% (functionality evolved), the optimization process begins. 

 

III. PROPOSED METHOD 
In this section the proposed method, which speeds up the 

evolutionary process and optimizes the logic circuit is 
explained. The proposed method improves the stalling effect 
and scalability for evolving logic circuits. 

A. Limitations of EHW evolution 
In order to identify the limitations of the previous systems, 

a number of experiments have been carried out. The purpose 
of these experiments was to quantify how the performance of 
the evolutionary process is dependant on the complexity of the 
tasks used. The logic circuits were evolved using the extrinsic 
EHW approach with (1+5) rudimentary evolutionary strategy 
described in detail in Section II. The system set-up used for 
evolving the logic circuits is in Table 1. The obtained results 
were classified according to the number of inputs and outputs 
of the logic functions. In Fig. 4 the relationship between the 
dimension of the circuits and the required number of 
generations in order to evolve them is considered. In Fig. 5 the 
average of the redundancy r for the evolved circuit is given. 
The redundancy has been calculated as: 

 
lgN
lgaN

r −= 1  (5) 

where Nalg is the number of active gates required for the 
evolved circuit and Nlg is the number of the total logic gates. 
The summarized experimental results presented in Fig. 4 show 
that the number of generations required in order to evolve a 
logic circuit is mainly dependent on the number of inputs. The 
system set-up together with the EHW algorithm used is able to 
evolve only the circuit for which the result is given on the Fig. 
4. The system considered is not able to evolve more complex 
logic circuits. Based on the obtained results one may conclude 
that there is a need for the development of a method that 
would concentrate on the input decomposition for EHW 
systems. The experimental results prove that such a method 
will produce better scalability results than the methods 
focused on the output decomposition. This paper is devoted to 
proposing one such method. 

TABLE 1 INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT WITH (1+λ)ES 

Number of generations 800.000 
Population size 5 
Number of runs or each experiments >50 
Elitism is applied 
Cell mutation rate 0.05 
Selection pressure 1 

Rows 10 
Columns 10 Circuit layout  
Level Back 10 

 

 
 

Figure 4 Average of the number of generations required to 
evolve logic circuits with n inputs and m outputs. 
 

 
Figure 5 Average values of the redundancy for evolved logic 
circuits. All the experiments have been carried out with the 
configuration given in Table 1. 

Therefore, a new system, which is capable of reducing the 
number of required generations and at the same time 
improving the fitness functions and evolving larger logic 
circuit is considered. 

B. The proposed method 
Let us assume that the following system with n inputs and 

m outputs, see Fig. 6a, should be evolved using either the 
extrinsic EHW approach described in section II or using BIE. 
The functionality of this system can be described by the truth 
table given in Fig. 6b, where p=2n is the number of products 
(or so called number of input-output combinations). The 
system depicted in Fig. 6a can be decomposed into two sub-
systems as shown in Fig. 7a.  
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Figure 6 The general description of evolved circuit (a) the schemata of 
the evolved system; (b) the truth table for the evolved system 

 
The sub-system G with r inputs and s outputs represents the 

evolvable part of the newly created system, where: 

 rq 2=  (6) 

 rnms −⋅= 2   (7) 

The sub-system H with (s+n-r) inputs and m outputs 
represents the fixed part of the circuit that is mainly generated 
using multiplexers. This part does not participate in the 
evolutionary process. The structure of this sub-circuit depends 
on the number of used inputs and outputs. 

This sub-system G can be evolved using either the 
traditional EHW approach or any other scalable approach such 
as divide-and-conquer, bi-directional incremental evolution, 
etc. The complexity of the evolutionary process will depend 
on the type of method used. In the traditional EHW methods, 
the entire truth table is always used to evaluate the quality of 
evolved circuits. 

Let us consider the process of generating the truth table for 
sub-system G. Let us assume that r should be always less than 
n (r<n), where r is the number of inputs in the G sub-system 
and n is the number of inputs in the initial system. The new 
truth table, shown in Fig. 7b, is calculated by applying the 
following procedure: 

• Generation of all the input-output combinations of 
the truth table G. 

• Identify the s/m input-output combinations, where the 
inputs of the truth table G match in sequence the 
inputs combination of the initial system. 

• The outputs of the initial truth table relative to the 
previously identified inputs become the outputs of 
the reduced truth table, wherever a matching input 
has been identified. 

C. Case study 
Let us consider the process of the generation of a truth 

table for sub-system G based on the simple example. Let us 

consider the truth table corresponding to the function (4) with 
4 inputs and 3 outputs. The truth table of this function is 
shown in Fig. 8a. Supposing that a sub-system G with only 2 
inputs is to be generated. In order to do so, first we identify 
the subset of input variables used in sub-system G. 
Considering that {x0,x1,x2,x3} is the set of input variables for 
the initial system, then the sub-set {x0,x1} can be considered as 
a set of input variables for sub-system G. Note, that at the 
moment the set of input variables chosen to be inputs for sub-
system G is carried out randomly. Some EHW-oriented 
algorithms should be developed to accommodate the optimal 
choice of input sub-set from all available input variables. Once 
the input sub-set for G is identified, the next step is to generate 
all the input combinations. The next step is to identify the 
input combination just generated in the initial truth table. For 
example, let us generate the input-output combination for 
{x0,x1}={0,0}. In this case the truth table F is analyzed and the 
output of all the m/s  input combinations that include {0,0} 
for {x0,x1} are considered as output for sub-circuit G. Once the 
outputs are generated for input combination {0,0}, the input 
combination {0,1} is considered. The generated truth table for 
sub-system G is given in Fig. 8b. 
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Figure 7 (a) proposed decomposition of the initial logic circuit, here: r and g 
refer to the number of inputs and outputs of the reduced sub-system 
respectively. (b) truth table of the evolved part of the proposed sub-system 
 

 
Figure 8 (a) the truth table of the function F; (b) the newly generated truth 
table for sub-system G, where .i is the number of inputs, .o is the number of 
outputs; .p is the number of products 
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IV. EXPERIMENTAL RESULTS 

In this section, the results of the logic circuits evolved by 
using the proposed approach are shown. The aim of the 
experiments is to prove that the proposed method improves 
scalability for designing logic circuits in EHW in comparison 
with existing methods. A number of logic circuits taken from 
the MCNC benchmark [12] have been evolved. The obtained 
results have been compared with the performance of BIE 
technique, because this technique allows one to evolve 
relatively large logic circuits. The obtained results have not 
been compared with standard EHW approach due to its 
limitation in evolution of relatively large logic circuits. 
Several attempts to evolve the logic circuits using standard 
EHW approach have been made, but almost none of them 
were successful for the logic circuits considered in this paper. 
In other words, no fully functional solutions have been 
achieved for the chosen MCNC benchmark functions during 
evolution using the standard EHW approach. The initial data 
used for the experiments are given in Tables 2 and 3. The 
experimental results obtained for all evolved logic circuits 
demonstrated that the number of generations required to 
evolve the circuit with the proposed method is decreased by 
up to 15.09%. The total time required is also reduced by up to 
8%. Furthermore the total fitness functions are increased by up 
to 741%, which means that the evolved circuit with the 
proposed method accomplish better optimization. All the 
improvements are exposed in Table 4, which shows number of 
inputs and outputs of the evolved circuit; the reduction 
(expressed in percentage) of the number of generations and 
the reduction of the time obtained with the proposed method 
compared with BIE. In the same table the improvement of the 
fitness function values is also given. Fig. 9-12 show the 
relationship between the fitness functions, the number of 
generations and the time spent for each experiment. Let us call 
“reduced-circuit” a circuit which is obtained by applying the 
proposed method to the truth table of the original circuit. Each 
graph compares the evolution results between the original 
logic circuits taken from the MCNC benchmark and two 
different “reduced circuits”. For all the evolved logic circuits, 
it can be noticed that a smaller amount of generations are 
required for evolving the “reduced circuits” and at the same 
time better values of fitness function are achieved. The same 
results for the time spent for each experiment are found. For 
any of the given graphs it can be noticed that when the number 
of inputs is reduced the fitness function value for each 
experiment is increased and the time and the number of 
generations is reduced. In Table 5 the average and the 
standard deviation of the evolved circuits are given. For the 
circuit "t841.pla", only the results of the proposed method are 
given, this is because the BIE approach is not able to evolve it. 

 

TABLE 2 INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT WITH BIE 

Population size 5 

Number of runs or each experiments ≥ 100 
Cell mutation rate 0.05 
Selection pressure 1 

 

 
TABLE 3. INITIAL DATA: DIMENSION SIZE AND LEVEL BACK OF THE CIRCUIT 

LAYOUT USED DURING SIMULATIONS. 
Circuit layout used 

Name 
Rows Columns Level Back 

9sym 3 80 80 
add2_7c 10 10 10 
addm4 3 80 80 
co14 3 80 80 
con1 3 80 80 
rd84 3 80 80 
t841 4 100 100 

 
 

TABLE 4. STATISTICAL RESULTS FOR THE EVOLUTION OF MCNC 
BENCHMARKS FOR MORE THAN 100 RUNS. THE TABLE SHOWS THE 
IMPROVEMENTS IN PERCENTAGE OF THE PROPOSED METHOD COMPARED WITH 
BIE SOLUTIONS. 

Name in out 
Number of 
generations 

Time 
Fitness 

function 
9sym 9 1 15.09 11.29 175.48 
add2_7c 8 4 26.49 19.34 436.32 
addm4 9 8 78.79 45.81 178.78 
co14 14 1 27.50 8.80 262.30 
con1 7 2 74.31 47.74 741.38 
rd84 7 4 43.74 32.03 174.64 
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Figure 9. Relationship between the final fitness function reached at the end of 
each experiment and the number of generations required to evolve the circuit 
9sym.pla 
 

00000

05000

10000

15000

20000

25000

30000

35000

40000

45000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time [s]

Fi
na

l v
al

ue
 o

f f
itn

es
s f

un
ct

io
n

BIE 9sym.pla 9 inputs and 1 output
Proposed with 6 inputs and 8 outputs
Proposed with 4 inputs and 32 outputs

 
Figure 10. Relationship between the final fitness function reached at the end 
of each experiment and the CPU time required to evolve the circuit 9sym.pla 
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Figure 11 Relationship between the final fitness function reached at the end of 
each experiment and the number of generations required to evolve the circuit 
rd84.pla 
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Figure 12. Relationship between the final fitness function reached at the end 
of each experiment and the CPU time required to evolve the circuit rd84.pla 

TABLE 5. EXPERIMENTAL RESULTS 
Result 

Info circuit Number of generations 
performed 

Total time spent Final fitness function 

name in out average standard 
deviation average standard 

deviation average standard 
deviation 

BIE 9 1 67199 11451 2866 367 15976 6177 
6 8 28741 6857 745 151 15971 4010 9sym 

Proposed 
4 32 10142 2131 323 59 28034 4208 

BIE 7 4 28121 9334 269 77 3036 882 
5 16 11665 3897 90 80 7465 1930 add2_7 

Proposed 
4 32 7448 1847 52 13 13248 2370 

BIE 9 8 168053 16621 10713 1623 40847 8201 addm4 
Proposed 7 32 132414 12261 4908 658 73027 8332 
BIE 14 1 184476 22448 70877 5380 5024 1824 co14 
Proposed 10 16 50733 18467 6240 1116 13179 5088 
BIE 7 2 6584 3075 286 99 3015 1401 

5 8 7092 2384 212 60 10036 2844 con1 
Proposed 

3 32 4893 1229 136 30 22358 3902 
BIE 8 4 87752 12777 781 91 13571 2867 

6 16 56764 10180 410 91 16473 2661 rd84 
Proposed 

5 32 38379 7691 250 50 23701 3650 
BIE 16 1 Impossible to evolve t841 
Proposed 9 128 570496 87952 19098 4809 399486 34315 

 
Based on the results found one may conclude that the main 

advantages of this method, as proven from the simulation are: 
• Less computational requirements 
• Fewer number of generations required to evolve 

the system 
• Better optimization of the evolved circuit 
• The possibility of evolving larger circuits 
• The system is completely automatic and does not 

require any information from the user 

V. CONCLUSION 
In this paper a new decomposition method for the 

evolution of logic circuits has been introduced. The 
performance of the proposed algorithm has been tested based 
on the evolution of standard logic functions from the MCNC 
benchmark library. The performance of the algorithm has been 
compared with the performance of bi-directional incremental 
evolution. The experimental results confirmed that the 
proposed approach requires significantly less time, fewer 
generations to evolve fully functional solutions and the 
evolved circuits reach higher values of fitness function. In 
other words the experimental results confirmed that the 
proposed method produces better optimization, even though 
the work done is concentrated only on the evolution of fully 
functional circuits rather than in the optimization of evolved 
circuit. Further work will be concentrated on the development 
of algorithms to identify the optimal set of inputs used in sub-
system G. 
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