
Improving EHW Performance Introducing a New
Decomposition Strategy

Emanuele Stomeo
Electrical and Computing Engineering Department

Brunel University
Kingston Lane, Uxbridge, UK UB8 3PH

emanuele.stomeo@brunel.ac.uk

Tatiana Kalganova
Electrical and Computing Engineering Department

Brunel University
Kingston Lane, Uxbridge, UK UB8 3PH

tatiana.kalganova@brunel.ac.uk

Abstract— This paper describes a new type of decomposition

strategy for Evolvable Hardware, which tackles the problem of
scalability. Several logic circuits from the MCNC benchmark
have been evolved and compared with other Evolvable Hardware
techniques. The results demonstrate that the proposed method
improves the evolution of logic circuits in terms of time and
fitness function in comparison with BIE and standard EHW.

Keywords— Evolvable hardware, evolutionary computation,
logic design, problem decomposition.

I. INTRODUCTION
Evolvable hardware (EHW) [1] is a technique to

automatically design circuits using methods inspired by
natural evolution. The configuration is carried out under the
control of evolutionary algorithms (EA). Initially evolvable
hardware was introduced to be applied to real-world
applications, but due to its limitations in scalability [1][2][3],
to date no real world applications have been developed for
relatively large applications. A number of approaches have
been introduced to overcome these problems. In terms of
scalability, approaches such as function-level evolution [4],
bi-directional incremental evolution (BIE) [5] and the divide-
and-conquer method have been introduced [6]. Function-level
evolution has been proven to be successful in achieving the
evolution of relatively complex task [4]. One of the main
weaknesses of this approach is that it still requires human
intervention to select the most appropriate functions for the
relative problems. Regarding the divide and conquer method,
so called increased incremental evolution [7] has been
introduced to reduce the search space which allows the
complete evolution of logic circuits up to 10 inputs (5*5 bit
multiplier) [8]; but a significant weakness is also present, that
is the difficulties of the definition of the fitness function for
the initial stages of the evolution, which makes it less suitable
for completely automatic systems. Furthermore this method
gives an unconditional imposition to the system: the top-down
design which does not allow the discovery of new designs.
BIE evolution is a completely automatic system which does
not require any knowledge from the designer which is not
scalable to really large circuits due to the limitations of EHW-
oriented output and Shannon decompositions [5]. Although
the last two methods have been proven to be successful in the
evolution of logic circuits, the scalability problem remains to
be one of the main issues in the evolution of relatively large

logic circuits in a reasonably short time. This paper addresses
these issues.

The proposed method is based on the use of a
decomposition method where the number of inputs in evolved
logic circuits is reduced by the introduction of new output
functions.

The paper is organised as following: the next section
considers the basis of the system implemented in order to run
the method proposed in this paper. Section III explains the
proposed method and Section IV explores the behaviour of the
proposed algorithm based on obtained experimental results.
Section V concludes the work and provides the summary.

II. EXTRINSIC EHW
In this section an explanation of the system used to evolve

combinational logic circuits is given. The evolutionary
algorithms used, together with the fitness functions,
chromosome representations and genetic operators are also
presented.

A. Evolutionary algorithms applied to EHW
In Fig. 1 a general evolutionary process used in evolvable

hardware is shown. The chromosome can be generated via
software or hardware, and then converted into models by
using software programs such as Spice, VHDL, C++, LISP
etc., or into circuits by using reconfigurable hardware such as
FPGA, FPTA, and PLA. After that, the implemented models
or circuits are evaluated via software or hardware, and the
fittest individuals are selected in order to reproduce a new
population for a new lifecycle. The EA process terminates
when the desired logic circuit is evolved, or other
requirements are met, such as the maximum number of
generations, maximum time, maximum memory usage etc.

B. Evolutionary algorithms
In the given extrinsic EHW approach the (1+λ)

rudimentary evolutionary strategy is used [9][10], where λ
represents the population size. Once the fitness function of
each individual is calculated, the fittest individual is selected
and duplicated for the population of the next generations and it
is brought up to date by using a mutation operator.

This work is supported in part by the EPSRC under Grant GR/S17178/.

Proceedings of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems
Singapore, 1-3 December, 2004��

0-7803-8643-4/04/$20.00 © 2004 IEEE 439

Tatiana Kalganova
Text Box
Stomeo E. and T. Kalganova (2004) Improving EHW performance introducing a new decomposition strategy. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS'2004). Singapore. Published by IEEE SMC Society Singapore Chapter and IEEE R&A Society Singapore Chapter. pp. 439 - 444

Figure 1 Generic evolutionary process used in EHW

C. Chromosome encoding
The chromosome defines the connection in the logic

circuits between the inputs and the outputs. The chromosome
encoding used takes into account the aspects of any
combinational logic network: cell functionality and inter-
connectivity of the cells between the inputs and outputs of the
circuit [9]. In our approach the logic circuit is presented as a
rectangular array of logic gates. Each logic cell in this array is
uncommitted and can be removed from the network if it is
redundant. All the logic functions are chosen from the set of
AND, OR, EXOR, NOT and MUX. The chromosome is
represented by a 3 level structure: geometry, circuit and gate.
At the first level the global characteristics of the circuit are
defined: the internal connectivity, number of rows and
columns of the rectangular array. At the second level the array
of cells is created and the circuit's outputs are determined; and
the third level represents the structures of each cell in the
circuit [9].

Figure 2 System used for evolving logic circuits

D. Dynamic Fitness Function

The fitness function is responsible for measuring the
evaluation of the process. In our experiment we took into
consideration a dynamic fitness function, which has two main
criteria: first functionality, the fully functional circuit is
evolving and second, only after the circuit is completely
evolved, optimization which allows us to reduce the number of
active gates and improve the quality of the evolved fully
functional circuit. That way the dynamic fitness function ftot is
calculated as follows:







≤+

≤
=

onoptimizati 100totf ff

design 100totf f

totf
21

1 (1)

Where the functionality of the evolved circuit is calculated
as follows:

∑∑
− −

=

− −⋅
⋅

=
12 1

0

1
1 2100

n

cf

m

i
ii

i dy
pm

f (2)

where m and n are the number of outputs and inputs of the
evolved logic function respectively; p is the number of ON
and OFF sets in the Boolean function (if p=2n, then the
Boolean function is completely specified, else the function is
incompletely specified); yi is the ith digit of the output
combination produced by evaluation of the circuit, di is the
desired output for the fitness case fc. |yi-di| is the absolute
difference between the actual and the required outputs.

The fitness function for the optimization stage is calculated
as:

 ∑ ∑ ⋅−⋅= lglglglg2 pup NNNNf
 (3)

Where Nlg is the number of all the logic gates, Nplg is the
number of the primitive logic gates and Nulg is the number of
used logic gate. Fig. 3 shows the progress of the fitness
function during the evolution of the functionality for the
following function:

 () xsqrtf = (4)

with 4 inputs and 3 outputs. Once the circuit is completely
evolved (100% functionality is achieved), the optimization
stage starts to improve the overall quality of the circuit: it can
seen that the number of primitive active gates is reducing in
each generation.

E. Genetic operators
The genetic operators used are: gene mutation, tournament

selection and elitism [11].

440

dynamic fitness function

0

10

20

30

40

50

60

1 7 22 115 167 450 750 1914 1928 1998 2125 2373 3537 6038 12521 19040 20502 36124

number of generations

N
um

be
r

of
 p

ri
m

iti
ve

 a
ct

iv
e

ga
te

s

10

100

1000

10000

Fi
nt

es
s F

un
ct

io
nPrimitive Active Gates

Fitness Function

Figure 3 This graphic shows the effect of the use of the dynamic fitness
function during the evolution of logic circuits. When the fitness function
reaches 100% (functionality evolved), the optimization process begins.

III. PROPOSED METHOD
In this section the proposed method, which speeds up the

evolutionary process and optimizes the logic circuit is
explained. The proposed method improves the stalling effect
and scalability for evolving logic circuits.

A. Limitations of EHW evolution
In order to identify the limitations of the previous systems,

a number of experiments have been carried out. The purpose
of these experiments was to quantify how the performance of
the evolutionary process is dependant on the complexity of the
tasks used. The logic circuits were evolved using the extrinsic
EHW approach with (1+5) rudimentary evolutionary strategy
described in detail in Section II. The system set-up used for
evolving the logic circuits is in Table 1. The obtained results
were classified according to the number of inputs and outputs
of the logic functions. In Fig. 4 the relationship between the
dimension of the circuits and the required number of
generations in order to evolve them is considered. In Fig. 5 the
average of the redundancy r for the evolved circuit is given.
The redundancy has been calculated as:

lgN
lgaN

r −= 1 (5)

where Nalg is the number of active gates required for the
evolved circuit and Nlg is the number of the total logic gates.
The summarized experimental results presented in Fig. 4 show
that the number of generations required in order to evolve a
logic circuit is mainly dependent on the number of inputs. The
system set-up together with the EHW algorithm used is able to
evolve only the circuit for which the result is given on the Fig.
4. The system considered is not able to evolve more complex
logic circuits. Based on the obtained results one may conclude
that there is a need for the development of a method that
would concentrate on the input decomposition for EHW
systems. The experimental results prove that such a method
will produce better scalability results than the methods
focused on the output decomposition. This paper is devoted to
proposing one such method.

TABLE 1 INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT WITH (1+λ)ES

Number of generations 800.000
Population size 5
Number of runs or each experiments >50
Elitism is applied
Cell mutation rate 0.05
Selection pressure 1

Rows 10
Columns 10 Circuit layout
Level Back 10

Figure 4 Average of the number of generations required to
evolve logic circuits with n inputs and m outputs.

Figure 5 Average values of the redundancy for evolved logic
circuits. All the experiments have been carried out with the
configuration given in Table 1.

Therefore, a new system, which is capable of reducing the
number of required generations and at the same time
improving the fitness functions and evolving larger logic
circuit is considered.

B. The proposed method
Let us assume that the following system with n inputs and

m outputs, see Fig. 6a, should be evolved using either the
extrinsic EHW approach described in section II or using BIE.
The functionality of this system can be described by the truth
table given in Fig. 6b, where p=2n is the number of products
(or so called number of input-output combinations). The
system depicted in Fig. 6a can be decomposed into two sub-
systems as shown in Fig. 7a.

441

Figure 6 The general description of evolved circuit (a) the schemata of
the evolved system; (b) the truth table for the evolved system

The sub-system G with r inputs and s outputs represents the

evolvable part of the newly created system, where:

 rq 2= (6)

 rnms −⋅= 2 (7)

The sub-system H with (s+n-r) inputs and m outputs
represents the fixed part of the circuit that is mainly generated
using multiplexers. This part does not participate in the
evolutionary process. The structure of this sub-circuit depends
on the number of used inputs and outputs.

This sub-system G can be evolved using either the
traditional EHW approach or any other scalable approach such
as divide-and-conquer, bi-directional incremental evolution,
etc. The complexity of the evolutionary process will depend
on the type of method used. In the traditional EHW methods,
the entire truth table is always used to evaluate the quality of
evolved circuits.

Let us consider the process of generating the truth table for
sub-system G. Let us assume that r should be always less than
n (r<n), where r is the number of inputs in the G sub-system
and n is the number of inputs in the initial system. The new
truth table, shown in Fig. 7b, is calculated by applying the
following procedure:

• Generation of all the input-output combinations of
the truth table G.

• Identify the s/m input-output combinations, where the
inputs of the truth table G match in sequence the
inputs combination of the initial system.

• The outputs of the initial truth table relative to the
previously identified inputs become the outputs of
the reduced truth table, wherever a matching input
has been identified.

C. Case study
Let us consider the process of the generation of a truth

table for sub-system G based on the simple example. Let us

consider the truth table corresponding to the function (4) with
4 inputs and 3 outputs. The truth table of this function is
shown in Fig. 8a. Supposing that a sub-system G with only 2
inputs is to be generated. In order to do so, first we identify
the subset of input variables used in sub-system G.
Considering that {x0,x1,x2,x3} is the set of input variables for
the initial system, then the sub-set {x0,x1} can be considered as
a set of input variables for sub-system G. Note, that at the
moment the set of input variables chosen to be inputs for sub-
system G is carried out randomly. Some EHW-oriented
algorithms should be developed to accommodate the optimal
choice of input sub-set from all available input variables. Once
the input sub-set for G is identified, the next step is to generate
all the input combinations. The next step is to identify the
input combination just generated in the initial truth table. For
example, let us generate the input-output combination for
{x0,x1}={0,0}. In this case the truth table F is analyzed and the
output of all the m/s input combinations that include {0,0}
for {x0,x1} are considered as output for sub-circuit G. Once the
outputs are generated for input combination {0,0}, the input
combination {0,1} is considered. The generated truth table for
sub-system G is given in Fig. 8b.

.

.

.

.

.

.

.

.

x
x

x

0

1

r-1

.

.

.

.

.

.

.

.

s

.

.

.

.

.

.

.

.

f
f

f

0

1

m-1

G

.

.

.

.

.

.

.

.

x
x

x

r

r+1

n-1

.

.

.

.

.

.

.

.

g

g

0

s-1

H

x x x g gg g...................gg
r-10 1 m-1

0
0

1

1

0
0

1

1

0
1

0
1

....................................

....................................

....................................

....................................

0 1 s-12m-1m

....................................

....................................

....................................

....................................

1

1+(q-1)s/m

2

2+(q-1)s/m

s/m

(q-1)s/m

(s/m)+1 (s/m)+2 2s/m

qs/m

1+(q-2)s/m 2+(q-2)s/m

q
q

q

0

1

r-1

(a)

(b)

Figure 7 (a) proposed decomposition of the initial logic circuit, here: r and g
refer to the number of inputs and outputs of the reduced sub-system
respectively. (b) truth table of the evolved part of the proposed sub-system

Figure 8 (a) the truth table of the function F; (b) the newly generated truth
table for sub-system G, where .i is the number of inputs, .o is the number of
outputs; .p is the number of products

442

IV. EXPERIMENTAL RESULTS

In this section, the results of the logic circuits evolved by
using the proposed approach are shown. The aim of the
experiments is to prove that the proposed method improves
scalability for designing logic circuits in EHW in comparison
with existing methods. A number of logic circuits taken from
the MCNC benchmark [12] have been evolved. The obtained
results have been compared with the performance of BIE
technique, because this technique allows one to evolve
relatively large logic circuits. The obtained results have not
been compared with standard EHW approach due to its
limitation in evolution of relatively large logic circuits.
Several attempts to evolve the logic circuits using standard
EHW approach have been made, but almost none of them
were successful for the logic circuits considered in this paper.
In other words, no fully functional solutions have been
achieved for the chosen MCNC benchmark functions during
evolution using the standard EHW approach. The initial data
used for the experiments are given in Tables 2 and 3. The
experimental results obtained for all evolved logic circuits
demonstrated that the number of generations required to
evolve the circuit with the proposed method is decreased by
up to 15.09%. The total time required is also reduced by up to
8%. Furthermore the total fitness functions are increased by up
to 741%, which means that the evolved circuit with the
proposed method accomplish better optimization. All the
improvements are exposed in Table 4, which shows number of
inputs and outputs of the evolved circuit; the reduction
(expressed in percentage) of the number of generations and
the reduction of the time obtained with the proposed method
compared with BIE. In the same table the improvement of the
fitness function values is also given. Fig. 9-12 show the
relationship between the fitness functions, the number of
generations and the time spent for each experiment. Let us call
“reduced-circuit” a circuit which is obtained by applying the
proposed method to the truth table of the original circuit. Each
graph compares the evolution results between the original
logic circuits taken from the MCNC benchmark and two
different “reduced circuits”. For all the evolved logic circuits,
it can be noticed that a smaller amount of generations are
required for evolving the “reduced circuits” and at the same
time better values of fitness function are achieved. The same
results for the time spent for each experiment are found. For
any of the given graphs it can be noticed that when the number
of inputs is reduced the fitness function value for each
experiment is increased and the time and the number of
generations is reduced. In Table 5 the average and the
standard deviation of the evolved circuits are given. For the
circuit "t841.pla", only the results of the proposed method are
given, this is because the BIE approach is not able to evolve it.

TABLE 2 INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT WITH BIE

Population size 5

Number of runs or each experiments ≥ 100
Cell mutation rate 0.05
Selection pressure 1

TABLE 3. INITIAL DATA: DIMENSION SIZE AND LEVEL BACK OF THE CIRCUIT

LAYOUT USED DURING SIMULATIONS.
Circuit layout used

Name
Rows Columns Level Back

9sym 3 80 80
add2_7c 10 10 10
addm4 3 80 80
co14 3 80 80
con1 3 80 80
rd84 3 80 80
t841 4 100 100

TABLE 4. STATISTICAL RESULTS FOR THE EVOLUTION OF MCNC
BENCHMARKS FOR MORE THAN 100 RUNS. THE TABLE SHOWS THE
IMPROVEMENTS IN PERCENTAGE OF THE PROPOSED METHOD COMPARED WITH
BIE SOLUTIONS.

Name in out
Number of
generations

Time
Fitness

function
9sym 9 1 15.09 11.29 175.48
add2_7c 8 4 26.49 19.34 436.32
addm4 9 8 78.79 45.81 178.78
co14 14 1 27.50 8.80 262.30
con1 7 2 74.31 47.74 741.38
rd84 7 4 43.74 32.03 174.64

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Total number of generatios per experiment

Fi
na

l v
al

ue
 o

f f
itn

es
s f

un
ct

io
n

BIE 9sym.pla 9 with 9 inputs and 1 output
Proposed with 6 inputs and 8 outputs
Proposed with 4 inputs and 32 outputs

Figure 9. Relationship between the final fitness function reached at the end of
each experiment and the number of generations required to evolve the circuit
9sym.pla

00000

05000

10000

15000

20000

25000

30000

35000

40000

45000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time [s]

Fi
na

l v
al

ue
 o

f f
itn

es
s f

un
ct

io
n

BIE 9sym.pla 9 inputs and 1 output
Proposed with 6 inputs and 8 outputs
Proposed with 4 inputs and 32 outputs

Figure 10. Relationship between the final fitness function reached at the end
of each experiment and the CPU time required to evolve the circuit 9sym.pla

443

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20000 40000 60000 80000 100000 120000 140000

Total number of generatios per experiment

Fi
na

l v
al

ue
 o

f f
itn

es
s f

un
ct

io
n

BIE rd84.pla with 8 inputs and 4outputs
Proposed with 6 inputs and 16 outputs
Proposed with 5 inputs and 32 outputs

Figure 11 Relationship between the final fitness function reached at the end of
each experiment and the number of generations required to evolve the circuit
rd84.pla

0

5000

10000

15000

20000

25000

30000

35000

40000

0 200 400 600 800 1000 1200

time [s]

Fi
na

l v
al

ue
 o

f f
itn

es
s f

un
ct

io
n

BIE rd84.pla with 8 inputs and 4 outputs
Proposed with 6 inputs and 16 outputs
Proposed with 5 inputs and 32 outputs

Figure 12. Relationship between the final fitness function reached at the end
of each experiment and the CPU time required to evolve the circuit rd84.pla

TABLE 5. EXPERIMENTAL RESULTS
Result

Info circuit Number of generations
performed

Total time spent Final fitness function

name in out average standard
deviation average standard

deviation average standard
deviation

BIE 9 1 67199 11451 2866 367 15976 6177
6 8 28741 6857 745 151 15971 4010 9sym

Proposed
4 32 10142 2131 323 59 28034 4208

BIE 7 4 28121 9334 269 77 3036 882
5 16 11665 3897 90 80 7465 1930 add2_7

Proposed
4 32 7448 1847 52 13 13248 2370

BIE 9 8 168053 16621 10713 1623 40847 8201 addm4
Proposed 7 32 132414 12261 4908 658 73027 8332
BIE 14 1 184476 22448 70877 5380 5024 1824 co14
Proposed 10 16 50733 18467 6240 1116 13179 5088
BIE 7 2 6584 3075 286 99 3015 1401

5 8 7092 2384 212 60 10036 2844 con1
Proposed

3 32 4893 1229 136 30 22358 3902
BIE 8 4 87752 12777 781 91 13571 2867

6 16 56764 10180 410 91 16473 2661 rd84
Proposed

5 32 38379 7691 250 50 23701 3650
BIE 16 1 Impossible to evolve t841
Proposed 9 128 570496 87952 19098 4809 399486 34315

Based on the results found one may conclude that the main

advantages of this method, as proven from the simulation are:
• Less computational requirements
• Fewer number of generations required to evolve

the system
• Better optimization of the evolved circuit
• The possibility of evolving larger circuits
• The system is completely automatic and does not

require any information from the user

V. CONCLUSION
In this paper a new decomposition method for the

evolution of logic circuits has been introduced. The
performance of the proposed algorithm has been tested based
on the evolution of standard logic functions from the MCNC
benchmark library. The performance of the algorithm has been
compared with the performance of bi-directional incremental
evolution. The experimental results confirmed that the
proposed approach requires significantly less time, fewer
generations to evolve fully functional solutions and the
evolved circuits reach higher values of fitness function. In
other words the experimental results confirmed that the
proposed method produces better optimization, even though
the work done is concentrated only on the evolution of fully
functional circuits rather than in the optimization of evolved
circuit. Further work will be concentrated on the development
of algorithms to identify the optimal set of inputs used in sub-
system G.

ACKNOWLEDGMENT
E. Stomeo thanks A.M. Walsh for her help and support

and the BIIS research group at Brunel.

REFERENCES
[1] Yao, X.; Higuchi, T.; “Promises and challenges of evolvable hardware”

IEEE Trans. Systems, Man and Cybernetics, Part C, vol. 29, pp. 87 - 97,
February 1999.

[2] V. K. Vassilev, J. F. Miller “Scalability problems of digital circuit
evolution” Proc. of the 2nd NASA/DOD Workshop on Evolvable
Hardware, pp. 55-64. Los Alamitos, CA: IEEE Computer Society

[3] C. A. Coello, A. D. Christiansen and A. A. Hernández, “Towards
automated evolutionary design of combinational circuits”, Computers
and Electrical Engineering, Pergamon Press, Vol. 27, No. 1, pp. 1-28,
January 2001

[4] T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, Weixin Liu, M. Salami,
“Evolvable hardware at function level”; IEEE International Conference
on Evolutionary Computation, pp. 187 - 192, April 1997

[5] T. Kalganova, “Bidirectional incremental evolution in evolvable
hardware”, Proc. of The Second NASA/DoD Workshop on Evolvable
Hardware. IEEE Computer Society. Palo Alto, California, USA.

[6] J. Torresen, “A divide-and-conquer approach to evolvable hardware”,
Evolvable Systems: From Biology to Hardware. Second International
Conference, ICES 98, volume 1478 of Lecture Notes in Computer
Science, pp 57-65. Springer-Verlag, 1998.

[7] J. Torresen, “Increased complexity evolution applied to evolvable
hardware”, ANNIE'99, November 1999, St. Louis, USA.

[8] J. Torresen, “Evolving multiplier circuits by training set and training
vector partitioning”. In proc. of Fifth Int. Conf. on Evolvable Hardware
(ICES03), Springer LNCS 2606, pp. 228-237, March 2003

[9] T. Kalganova, J. Miller, “Evolving more efficient digital circuits by
allowing circuit layout evolution and multi-objective fitness”. Proc. of
the First NASA/DoD Workshop on Evolvable Hardware. IEEE
Computer Society, pp. 54–63. July 1999

[10] J. Miller. “An empirical study of the efficiency of learning Boolean
functions using a Cartesian genetic programming approach” In Proc. of
the Genetic and Evolutionary Computation Conference, volume 1, pp.
1135–1142, Orlando, USA, July 1999.

[11] D. E. Goldberg. Genetic algorithm in search, optimization and machine
learning. Addison-Wesley Publishing Company, Incorporated, Reading,
Massachusetts, 1989.

[12] S. Yang. “Logic synthesis and optimisation benchmark user guide
version 3.0, MCNC, 1991”.

444

	Previous Menu
	Main Menu
	Getting Started
	Foreword
	Sessions
	Authors

	Search CD-ROM
	Search Results
	Print

