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Abstract

Cochlear implant provides hearing perception to people with severe to profound hearing
loss. The electrode array inserted during the surgery directly stimulates the hearing nerve
according to the frequency bands. The complications during the cochlear implant insertion
may cause trauma leading to infection, residual hearing loss and poor speech perception. The
motivation for this work is to reduce the trauma induced during electrode array insertion
process by carefully designing a sensing method, an actuation system and data driven control
strategy to guide electrode array in scala tympani. Due to limited intra-operative feedback
during the insertion process, complex bipolar electrical impedance is used as a sensing
element. For this, custom impedance meter is implemented along with multiplexers to scan
the electrodes to record their bipolar impedance magnitude, phase, and their resistive and
reactive components. A 3-DoF actuation system is used for automated insertion and machine
learning algorithms are employed for feedback control to steer electrode array atraumatically.

This work is mainly focused on electrode array insertion direction, trajectory, and depth.
Insertion trajectory is thought to influence trauma induced, final array placement and insertion
failure. Initial experiments were performed to see the changes in complex impedance when
certain electrode rub against the scala typani wall. It has been concluded that when the
electrode array slide along the wall, the electrodes involved show high impedance magnitude
and less negative impedance phase. Further several experiments were performed when array
was inserted from three different directions; medial, middle and lateral. Complex impedance
data recorded during insertion from different directions has the potential to discriminate
different trajectories. Supervised machine learning approach is used to train and test the
models for the prediction of different insertion trajectories and insertion depth. This method
has shown the efficacy for not only achieving high prediction accuracy on full insertion
complex impedance data but also on sub-sequence data. Further, prediction based on shorter
data windows are utilized in feedback control loop for real-time control strategy that helps
insert the array without any damage to its surroundings. Finally, linear insertion depth
estimation of electrode array has been carried out using complex impedance data. A hybrid
convolution and recurrent neural network regression model is utilized to predict insertion



depth at every millimeter. It has been found that our complex impedance data is consistent
and reliable and sensitive to the contact of electrode array with scala tympani walls during
insertion.

The contribution of this work is to predict different insertion direction, electrode array path
and insertion depth using complex impedance data and machine learning tools. Furthermore,
a preliminary autonomous system is demonstrated for real time classification and correction
of electrode array path during insertion using closed loop control strategy.
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Chapter 1

Introduction

1.1 Motivation

Medical robots have great potential to provide precision based surgical capabilities,
rehabilitation and care. Surgical robots are designed keeping in mind workspace or clinical
setting of a specific surgical procedure, sterilization of the equipment (easily detachable),
accuracy and safety [1]. Surgical robots have exceptional geometric accuracy and they are
able to integrate multiple sources of numerical and sensor data, however, they have poor
judgment, limited ability to integrate and interpret complex information and they are less
adaptive to new situations. Therefore, it is vital for robots to have strong feedback sensing
systems to cater for complex situations.

Surgical robots have been employed in knee replacement drilling [2] and minimally
invasive laparoscopy [3] in recent times. Research is on going in order to take surgical
robotics in to micro-level procedures such as in opthalmic and otology fields. In otology,
for instance, there has been studies going on to automate cochlear implant insertion process
since 2005. An actuation system with precise feedback control systems is suitable for such
procedure that needs to alleviate induced trauma during insertion process. Also, such robots
are capable of better position and force control than human threshold and they do not tremor
like humans.

A cochlear implant (CI) is an electronic substitute to the normal hearing that bypasses the
mechanical mechanism of stimulating the hearing nerves [4]. It instead directly stimulates the
hearing nerve through electrical pulses using an electrode array. Among other CI components
(mic, sound processor, transmitter and receiver), a thin flimsy electrode array is inserted
into the inner ear that has multiple embedded electrodes (according to the manufacturer
and model) to carry different frequency sound signals. After the relaxation of CI candidacy
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criteria in several countries [5], it is fundamentally important to preserve residual hearing
during the surgery to avoid variability in speech outcomes post implantation.

It is widely accepted that residual hearing loss is due to the trauma induced during the
surgery [6]. The trauma induced may also lead to infection and reduced implant performance.
Trauma induced could be due to different reasons. For example, electrode array touching the
inner ear walls with sensitive tissues, array tip fold-over and basilar membrane puncture due
to array translocation may cause more or less damage according to the performed insertion [7].
Currently, cochlear implantation procedure involves preoperative planning and postoperative
evaluation using CT scan images [8]. It is possible to get limited intraoperative information
through flouroscopy during insertion [9] but it involves radiation and could be dangerous.
There is, therefore, no safe inexpensive intraoperative procedure available to point out trauma
or faulty array placement during surgery.

During manual surgical procedure, surgeon can not see inside the inner ear while inserting
the electrode array. In order to perform atraumatic insertion, the insertion forces should be
limited due to sensitive inner ear anatomy that is beyond the sensitivity of human hand for
such small forces in manual surgical procedure. Due to these reasons, different forms of
damage is expected. For measuring forces during insertion, several research works have
been done with different EA designs, insertion techniques and speed [10][11]. However, the
limitation of force sensing method is its inability to measure local insertion forces across
different section of EA.

All the cochlear implant systems have built-in impedance measurement mechanism
to check the functionality of electrodes after the implant. Impedance measurements and
tomography have been employed in various biomedical research areas, for example in needle
steering, catheter insertion etc. Although CI systems have built-in impedance capabilities,
none of them have clinically used the complex impedance yet. In current CI systems only
impedance magnitude is measured and analyzed clinically after the surgery. However, the
interface between the CI electrode and its surroundings (perilymph fluid and tissues) is also
important both in terms of postoperative speech outcomes as well as during the surgery.
Impedance measurements of electrode contacts are influenced by their position in the cochlea
[12],[13],[14]. Therefore, complex impedance measurements during insertion can be a good
sensing element for a robotic tool for speed, trajectory and position control.

1.2 Aims and Objectives

The aim of this thesis is therefore to develop an automated system that could help to
reduce trauma during electrode array insertion. An automated system compromises of an
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actuation unit, a sensing modality and closed loop control strategy to steer the electrode
without damaging the inner ear and for optimal placement. The objectives of the work are as
follows:

1. A sensing system that is able to give useful information regarding behaviour of different
parts of electrode array during the insertion. The information should be useful enough
to discriminate between different electrode array trajectories, position and depth.

2. Sophisticated signal processing algorithms utilisation for analyses of sensor data that
is helpful in electrode array atraumatic steering.

3. An actuation system with displacement and velocity control with reasonable degree of
freedom for electrode array steering into the scala tympani model.

4. A feedback control system that is able to use sensing measurements and make correc-
tions to the electrode array insertion where and when needed.

5. Integration of all components of a robotic system in the form of an easy to use interface.
The overall system should be able to work on real time insertion process.

1.3 Contribution

The research has been on going to find avenues for replacement of manual surgical
procedure of cochlear implantation with automated and atraumatic steering of electrode array
into scala tympani canal. Some studies have introduced integrated sensors into the electrode
array or on its tip for atraumatic steering [15], [16], [17]. These integrated sensors come with
the problem of introducing stiffness to the array which negate the purpose. Other studies
have used external force sensors to measure insertion forces; either under the cochlear model
or on the insertion tool or both. However, they can only measure overall insertion forces and
unable to give discrete electrode trajectory or position information. An alternate solution is
to use electrode impedance measurements that does not need integrated sensor and can also
provide information about discrete parts of electrode array during insertion. Contributions of
this thesis are outlined below:

1. An impedance meter is developed using digital acquisition devices that can measure
bipolar impedance magnitude, phase and resistive and reactive parts of electrodes.
A switching circuit is integrated with it to scan through multiple electrode pairs for
impedance recording.
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2. A method for electrode array localization is developed in terms of its trajectory and
position prediction. Supervised machine learning algorithms are employed to make
predictions using complex impedance recordings of electrodes.

3. Real time prediction and correction of electrode array path is demonstrated using an
integrated robotic system with actuation, sensing and control unit.

4. A linear insertion depth estimation model is developed that may help surgeons with
intra-operative and post-operative electrode array depth during surgery.

1.4 Thesis Outline

This thesis has seven chapters including the introductory chapter. After the first chapter,
the thesis is organized as follows:

Chapter 2 presents current state of the art in the domain of robotic cochlear implantation.
It starts off with explanation of auditory system and cochlear implant system. It also
explains different types of trauma induced during the insertion process. Further, different
robotic systems developed so far so CI application; briefly the drilling robots and extensively
electrode array insertion actuators. In the end, the sensing elements that could be used with
such robotic system are presented. Finally, machine learning and deep learning algorithms
are presented with focus on classification and regression problems.

Chapter 3 introduces the methodology and experimental setup that has been used for this
work. It describes different parts of the experimental setup in detail along with how impedance
measurements of electrodes are carried out. Preliminary results of such experiments are also
presented at the end.

Chapter 4 evaluates machine learning algorithms for electrode array trajectory predic-
tion using full insertion complex impedance data. Moreover, machine learning pipeline is
explained and results are presented using different combination of measurement variables
and number of electrode pairs used in the prediction.

Chapter 5 further evaluates machine learning algorithm for trajectory and path predic-
tions on raw complex impedance data for electrode array localization. Further to that, main
focus of this chapter is to present control strategy for real time trajectory and path prediction
and correction. Classifier in a loop system is introduced as a closed loop feedback system for
steering of electrode array.

Chapter 6 describes an advance model developed for electrode array linear insertion
depth estimation. First, it evaluates machine learning models for final insertion depths.
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Furthermore, a hybrid regression model of 1D convolution and recurrent neural network is
presented that can estimate linear depth at every instance of 1mm.

Chapter 7 concludes the thesis with its potential for atraumatic electrode array localiza-
tion, limitations of the research and finally the future directions to extend this research.
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Chapter 2

Literature Review

2.1 Cochlear Implantation

It has been four decades, cochlear implant (CI), an electronic device, is providing
restoration of auditory perception in patients with sensorineural hearing loss [18]. The CI
mechanism directly stimulate the nerve system by electric means bypassing the damaged
sensory hair cells which are responsible for transconduction of acoustic signals into electrical
signals in normal human ear.

Fig. 2.1 Human ear anatomy [NIH open source image]

The outer part of normal human ear anatomy (Figure 2.1) receives sound waves through
pinna, travels through the ear canal and vibrates the tympanic membrane (ear drum) due
to their pressure. There are three bony structures (malleus, incus and stapes) in the middle
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ear which forms ossciles and it delivers mechanical energy to the oval window received
from tympanic membrane. Oval window is one of the two openings of cochlea, the other
is round window. Cochlea is a spiral shaped structure in the inner ear which is filled with
fluid. Mechanical energy from oval window transfers to the fluid in the cochlea and produces
waves in the fluid. Inner hair cells bend due to these waves and change this movement into
electrical pulses for auditory nerve. Electrical impulses (information) are then sent to the
brain through auditory nerve, where they are interpreted as sound [19].

There are three fundamental types of hearing loss. (1) Conductive, which is due to
abnormalities in external ear (ear canal/drum) or ossciles in the middle ear. This type of
hearing loss can be treated with hearing aids. (2) Sensorineural, which occurs when the inner
ear (cochlea) is damaged. This malfunction is the result of corrupt hair cells or auditory
nerve which in turn unable to send electrical pulses to the brain. Sensorineural hearing loss
is always almost permanent and can be treated with cochlear implant. (3) Mixed hearing loss
is the combination of conductive and sensorineural loss. Hybrid electro-acoustic cochlear
implants are used to treat such hearing loss.

Cochlear implant system has mainly two major parts; one is worn outside the ear consists
of a microphone, speech processor and, a transmitter and one part is inserted inside the ear
anatomy, by drilling a hole, consists of a receiver and, a thin flimsy electrode array (EA)
(Figure 2.2). Speech signals are picked by the microphone, converted into digital codes
by the processor and transmitted to the transplanted part of the device. The inner part is
responsible to convert the digital codes in to electrical pulses which eventually stimulate
different portion of the nerve system via electrode array, placed into scala tympani (ST) of
cochlea.

Fig. 2.2 Cochlear implant system and anatomy of cochlea[NIH open source image][20]
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Electrode array is inserted in to ST through round window membrane by drilling the
mastoid bone. Insertion process of EA can result in complications. A patient can lose residual
hearing if electrode array insertion results in damaging the delicate structure of the inner ear
[21]. This includes injury to the lateral or modiolar wall and distortion of basilar membrane.
There are three objectives of EA insertion for better hearing outcomes: (1) deep insertion
in to cochlear to cover lower frequency range, (2) close proximity to the modiolus wall to
ensure greater operating efficiency and (3) to preserve residual hearing by preserving inner
ear structure [22]. In order to accomplish first two goals, there is always a high chance of
insertion trauma.

2.1.1 Electrode Array Designs

Electrode arrays are designed with specific properties to keep intra-cochlear trauma to
the minimum during implantation [23]. The EA design has become more important as the
benefit of electro-acoustic stimulation has been established [24]. Three types of electrode
arrays are commercially available: (1) Straight EAs are positioned close to the lateral wall of
cochlea; (2) perimodiolar EA hugs modiolar wall of the cochlea; (3) mid-scala EA which
resides in the middle of the ST, however, often considered as perimodiolar type. Electrode
arrays come in different lengths to accommodate diverse cochlea structures and sizes. The
overall length (base to tip) of most commonly available EAs ranges from 16mm-31.5mm,
however, active stimulation length containing all stimulation channels is different than overall
length. The number of stimulation channels ranges from 12-24 in different EA designs.
Complete insertion of active stimulation length of array is usually not possible due to inner
ear anatomical variations and the angle at which round window opening lies [23]. Figure 2.3
is showing electrode arrays segregated according to their overall lengths and angular insertion
depths. Deeper insertion due to lengthy EA may be advantageous in terms of processing
wider frequency band but it increases chances of damage to the cochlea structure during
insertion.

EA design also determines its efficiency which is considered to be at peak when it is
placed close to the neural activation site. Modiolus hugging EA operate at lower current
thresholds than the straight lateral wall EA and believed to be performing better [25].

Atraumatic EA insertion is an important factor in the design process. It is almost
impossible to avoid insertion trauma with any EA design currently available. Pre-curved
perimodiolar design is mostly likely to cause intra-cochlear injury because of the stylet wire
which is responsible for bringing the EA in the curved shape [22]. There is possibility of
penetration in spiral ligament at the end basal turn due to stiff tip. Another factor of trauma
is stiffness due to bundling of wires and basal stiffener in EA. It is also impossible to abort
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pre-curved EA insertion in case of buckling, however, surgeon can abort insertion in case of
straight design.

Fig. 2.3 Images of MED-EL electrode arrays and information of other commercially available
electrode arrays. Figure from Dhanasingh[23]

2.1.2 Surgical Techniques

There are two aspects to the surgical techniques; firstly whether electrode array is inserted
through round window (with or without drilling its edges) or neighboring cochleostomy, and
secondly the insertion technique utilized. Trauma prevention, ease in insertion and better
visualization are epitome of selection of surgical techniques. However, human ear anatomy
also plays a factor in selection, for instance, in case of position of the insertion (round window
or cochleostomy) [26].

There are three insertion techniques most frequently employed for EA insertion; Standard
Insertion Technique (SIT), partial withdrawal and Advance Off-Stylet (AOS). Standard
insertion technique is used to insert straight lateral wall EA with bare surgeon hands. Partial
withdrawal and advance off-stylet techniques are both utilized to insert perimodiolar EA. The
difference is the way stylet is removed during insertion process. In partial withdrawal, stylet
is removed at the end of the insertion process to resume pre-curved state to hug modiolar wall.
In advance off-stylet technique, stylet is withdrawn in a continuous manner after EA reaches
close to lateral wall. The advantage of this technique is to avoid array lateral wall contact and
ultimately reducing the trauma induced [27]. Although this technique is advantageous than
other techniques, however, even the experienced surgeosn are unable to avoid translocation
due to stiff tip of perimodiolar electrode array [28].
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2.1.3 Insertion Trauma

Damage to the inner ear during insertion process is a concerning factor as this dictates
long-term survival of the neurons to be responsive [29]. Another factor is to preserve residual
hearing which may be lost due to insertion trauma. It is primarily factual for patients who
are recipient of electro-acoustic cochlear implant where preservation of remaining auditory
function is of utmost importance. Preservation of residual hearing also improves the post
surgery hearing outcomes in other patients. Trauma induced during electrode insertion can
be classified as a grade. Grade 0 represents no injury to the internal structure of cochlea
during the insertion process (Figure 2.4 (A)). This means either electrode array does not
touch the inner walls or touches but with very little force that there is no damage. Roland [21]
performed cochlear implant experiments and observed damage to the different parts of the
intra-cochlea structure. Damage to the lateral wall or basilar membrane is consider as grade
1 trauma. In Figure 2.4 (B), there is damage to the lateral wall around the brackets although
basilar membrane is not punctured. This type of injury occurs due to intrusion of the array
tip or array body pressure imparted on the area where basilar membrane and spiral ligament
conjoin. Lateral wall damage does not only happen in case of straight array insertion, it is
also observed in perimodiolar type arrays if the stylet is not removed in time (Figure 2.4 (G)).
When basilar membrane is involved in such injury, it may just be lifted or array penetrates in
to scala media. Figure 2.4 (C) demonstrates rapturing of basilar membrane which takes it
away from its spiral ligament attachment. In such an injury, basilar membrane is torn but
electrode array does not enter scala vestibuli. Grade 2 trauma is due to the penetration of
spiral ligament by the electrode array tip. In this kind of penetration, cochlear duct remains
in its position, however, it is up-lifted moved by the array tip with damage to the scala media
(Figure 2.4, (D)). Grade 3 trauma is due to the displacement of electrode array from ST
to scala vestibul which results in mixing of endolymph and perilymph fluid. The highest
degree of trauma is grade 4 in which electrode array fractures the osseous lamina (Figure 2.4
(E,F)). This type of trauma is severe because there is possibility of degeneration of ganglion
cell in the damaged area [30] . An image guided robotic drilling system was designed by
Majdani [31] in which cameras are placed at the center point of the robot, at the base of the
robot and at the temporal bone holder (Figure 2.6 (A)). The robot used for this purpose is
a small industrial robot with 6-DoF and loading capacity of 3 Kg. The Robot has remote
sensor interface to connect with remote-control unit which operates on build in control
program. This system was tried on 10 cadaver specimens and target position deviation was
0.78±0.28 mm.There was no violation of facial nerve, however, there was chorda tympani
nerve violation in one of the experiments [31].
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Fig. 2.4 Insertional Trauma:(A) Normal insertion without damage to lateral wall. (B, C, D)
Lateral wall trauma. (E,F) Osseous lamina fracture. (G) Lateral wall and basilar membrane
trauma due to perimodiolar electrode array insertion. (H) Posterior spiral vein susceptible to
electrode-induced trauma. Figures from Roland [21]

2.1.4 Insertion Failure

Several types of complications can arise during cochlear implant insertion which may or
may not result in trauma. Figure 2.5 (left) represents tip scrapping during insertion process
and it is already discussed in section 2.1.3. Figure 2.5 (center) dictates the tip fold-over
failure which is rare occurrence during insertion process of straight array. However, it mostly
happens in case of perimodiolar array especially when stylet is removed earlier than it should
be. In this type of failure, the tip of the array folds over itself during the insertion process
which results in poor placement of the electrode array. When array folds over, some of
the electrodes would poorly stimulate the auditory nerve. This failure also doubles cross-
sectional area of array which essentially increases the risk of trauma induced as it slides in to
ST [14]. Figure 2.5 (right) demonstrates the buckling of the EA during insertion. This failure
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occurs when electrode tip is experiencing resistance during insertion and further effort of
insertion would result in either internal or external buckling. It is assumed that stiffer rear of
EA avoids buckling failure but its downside is more pressure exerted on tip during insertion.

Fig. 2.5 Three potential sources of intracochlear insertion trauma. Left (Tip Scraping), middle
(Tip Fold-over), and right (Buckling). Figure from Clark [15]

2.2 Robotic Cochlear Implantation

In order to avoid trauma during insertion process, several techniques have been employed
such as developing new types of soft and flexible EAs, novel insertion tools and techniques,
measuring and minimizing the insertion forces, measuring electrical properties of EA to
predict and approximate the position of the EA during insertion, magnetic and image guided
insertion, and employing robots for automated mastoidectomy drilling and EA insertion.

Drilling robots will be discussed first in this section followed by the robots used for EA
insertion.

2.2.1 Robotic Drilling Systems

For cochlear implantation, surgeons have to use drill for an opening to the cochlea either
through round window or cochleostomy. The objective of drilling procedure is to access
cochea for EA insertion avoiding proximity to the facial recess and chorda tympani nerve.
This is the most time consuming and invasive procedure in the CI surgery and it may also
result in inducing trauma. A better opening to the cochlea may also help in less trauma
induced during the EA insertion process [31, 32].

Figure 2.6 is displaying selected robotic drilling systems designed by different researchers
around the world. However, the robotic system designed by Bell [33] is the only one deployed
for an actual surgery in 2017 (Figure 2.6 (C)). The rest of them are in testing phases and
employed in cadaver drilling tests.

The robot built by Bell [33] is for stereotactic CI with high accuracy levels and suitable
for complex clinic environment as compared to other robots. As it can be seen in Figure
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(2.6(C)), this robotic system consists of five DoF serial arm with reasonable weight and
dimensions. Its design allows for easy mounting on the operating room table using regular
flexible arms. A typical surgical drill is connected to its effector as well as a built-in force
sensor for an intuitive haptic interaction for the surgeon. Optical tracking system is used
for tool position verification. The robot is connected to a touch screen interface that is used
to control the robot and surgeon’s guidance through the whole process. After testing on 15
temporal bones, its accuracy (with confidence interval) turned out to be 0.51±0.41 mm with
an angular misalignment of 0.88±0.40°.

Fig. 2.6 Diverse Robotic drilling systems for cochlear implantation. Figure from (A) Majdani
[31] , (B) Bret [34] , (C) Bell [33], (D) Klenzner [35], (E) Kratchman [32]

A force controlled guided robot presented by Klenzner [35] is aimed at demonstrating
collision free drilling path from facial nerve to the planned mark of cochloestomy (Figure
2.6 (D)) . Screw markers were placed for registration on temporal bone and a 3D trajectory is
planned by using computer tomography (CT) data. In order to visualize the trajectory, a 1.9
mm endoscope is placed on the robotic system. Experiments were performed four times with
registration errors (deviation from planned mark) from 0.17-0.37 mm and a mean of 0.25
mm which is less than tolerance level of 0.5mm.

An arm supported (Figure 2.6(B)) and a hand guided robotic drills are designed by
Brett [34]. The main feature of both types of drilling system is intelligent interaction with
tissue structures by using smart sensor embedded in to drill bit and adjust motion strategy
accordingly. The advantage of a hand guided robot is the flexibility of adjusting trajectory.
In hand guided robot, sensing system also distinguishes between surgeon’s intended and
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involuntary motion during the procedure.The system compromises of drill unit, a hard wired
control unit for interpreting sensory signals and a PC to visualize signals. However, arm
supported system (drilling unit) is mounted on flex-lock arm which gives flexibility of free
movement and stabilization. The force level during hand guided robotic drilling of porcine
cochlea has a range of of 1.4-2.86N with a mean value of 1.99N.

Figure 2.6 (E) shows a re-positionable automated image-guided microsterotactic (AIM)
frame designed by Kratchman [32]. It is designed using standard Gough-Steward parallel
robot. Similar to Klenzner approach, trajectories were calculated using CT scans data of
patients. The actuation part of the part is six linear piezo-electric motors which can generate
2N maximum output force. It also has position sensor with minimum resolution of 0.5 µm. A
custom control program written in MATLAB provides approximation of a target pose using
trajectory data. Experiments performed on phantom cochlea model present an accuracy of
0.20±0.07 mm and an accuracy of 0.38 mm in a cadaver experiment.

2.2.2 Robotic Electrode Array Insertion

The main concern during CI surgery is the chances of trauma induced during electrode
array insertion procedure. This is attributed to the fact that surgeon performs insertion by
hand (potential tremor) without any visualization of inner ear and limited sensing feedback. A
robotic insertion system with precise speed, trajectory and position control can be a solution.

An automated insertion tool for EA insertion was the emphasis of early research in this
domain. A very basic automated tool was designed by Roland [36] shown in Figure 2.7 to
evaluate intracochlear insertion dynamics, forces involved, trauma induced and electrode
position using a contour array. The automated insertion tool has Instron® force sensor to
measure basal turn intracochlear forces. The accompanying Instron® software application
measures force and displacement data at regular intervals during the insertion of 2 mm/s rate.
Automated insertion experiments were performed on cochlear models as well cadavers using
contour EA (using standard insertion technique) and contour advance EA (using advance
off-stylet technique). Fluoroscopic images were taken during the insertion process to study
array dynamics in the cochlea turns. The mean insertion forces were far less when using
advance off-stylet technique compared to standard insertion technique.
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Fig. 2.7 Mechanial system for electrode array insertion in cochlear phantom model. Load
cell is placed to measure insertion forces. Figure from Roland [36]

Going forward, a 2 DoF experimental robotic insertion system with force monitoring was
developed by Zhang [37] to study ability of a robotic system using active-bending EA (Figure
2.8). The setup is comprised of a linear actuator, amplifier, force sensor, electrode actuator
and 2-D cochlea phantom model. Mathematical model, kinematics and path planning for
steerable EAs are developed to reduce intra-cochlear forces and resulting insertion trauma.
Insertion forces were evaluated in case of steerable and non-steerable electrode arrays
where the former type was supported by a mathematical model and path planning algorithm.
Insertion forces were 70% less in case of steerable electrodes with planned path and control
as compared to non-steerable electrodes.

Fig. 2.8 Experimental setup of automated electrode array insertion. (1) amplifier (2) linear
actuator (3) force sensor (4) electrode actuator (5) implant support (6) electrode array (7) 2D
cochlea model. Figure from Zhang [37]
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Zhang further his research of robotic insertion in [38] with the design of 4-DoF tool and
insertion speed force feedback (ISFF) system (Figure 2.9). As can be seen in Figure 2.9, there
is freedom of 4 way movement (q1,q2,q3,q4). Insertion forces, steering of tip and approach
angle were evaluated using different DoF systems. It was found out that 4-DoF system has
the least insertion forces as compared to 1-DoF and 2-DoF systems due to added freedom
of adjusting insertion angle in 4-DoF tool. Insertion forces decreased when insertion speed
force feedback mechanism was used with steerable EA whereas an increase was observed
with non-steerable EA. It is also observed that steerable electrodes help in preventing array
buckling.

Fig. 2.9 (a)Robotic system model. (b) cochlea model (c) 1DoF insertion. (d) 2DoF insertion.
(e) 4 DoF. Figure from Zhang [38]

Fig. 2.10 Experimental test-bench with 3D ST phantom model. Figure from Zhang [38]

Based on the results obtained in [37][38], a second generation robot has been designed
and constructed (Figure 2.10). A small and compact parallel robot is designed using 6
actuators that manipulate its moving platform through 6 independently controlled linear
actuators (cylinders). The design is similar to Stewart-Gough platform. The base of the robot
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is held stationary and steerable electrode is placed on the moving platform. An additional
motor is used to control the pull of the strand when using steerable EA. A force sensor is
mounted on the moving platform which is capable of detecting spatial forces and moments
in any direction. The robot is able to move at a maximal speed of 5.7 mm/s in space. A
Phontom Omni haptic device is used to control the robot. This joystick allows the surgeons
to move the robot, following the hand motions. The computer shows and records the surgery
information, such as insertion depth, insertion speed and sensed force.

Fig. 2.11 Advance robot design with 6 linear actuators. Figure from Zhang [39]

An automated insertion tool is also presented by Rau [10] as shown in Figure 2.12.
Perimodiolar EA were inserted in the cochlea model using AOS technique. The robotic
system has two gearless motors with top velocity of 5 mm/s, position certainty of 1 µm and
displacement range of 45 mm. One of the drivers is connected to the gripper to grab the
electrode carrier. Other driver is connected to the stylet which is used to keep it in a desired
position. A protective layer is used to cover the EA and gripping mechanism.The upper
jaw of the tool has Instron 5542 force sensor (10N load cell) connected with cochlea plastic
model to measure insertion forces. Insertion forces were measured with different insertion
feed rate and insertion depths were observed. These results can help better electrode array
designs and insertion techniques for implantation.

Hussong [40] proposed a custom automated insertion tool for CI (Figure 2.13a) which is
optimized for better insertion depth. It consists of a plier-like grasping mechanism for the
electrode and a wired hook to retract the stylet. The pliers and the wired hook are connected to
the gearless linear nano-positioners with integrated position sensors. The actuators are based
on piezo technology, offering a resolution of 5nm and positioning accuracy of 1µm. The
actuators travel range is 45 mm and the maximum velocity 5 mm/s and provide translational
1-DoF movement. The actuators are sequentially placed upon each other with a plastic plate
between them to which the pliers are connected. A u-shaped tube, covering the electrode as
well as the grasping mechanism, acts as a protection and guidance with the drill canal. The
actuators are controlled using a custom made software written in C++ on a standard PC. The

18



software provides a GUI and allows setting actuator trajectories independently. An external
Modular Control System is provided by the actuator’s manufacturer, includes a position
control device and realizes the set trajectories.

Insertion of Nucleus Contour EA were carried out in cochlea phantom model and human
cochlea specimens using the testbed in Figure 2.13b. It was found that a mean angular
insertion depth of 410° was achieved in lubricated cochlea model and 330° in cadaver.

Fig. 2.12 Automated insertion tool setup with load cell to measure forces. Motion of the
electrode array in to ST model and style withdrawal are carried out by lower gripping jaw.
Figure from Rau [10]

Schurzig [41] took the design of Hussong [40] to the next level by incorporating a force
sensing mechanism with automated insertion tool (Figure 2.14). Force sensing mechanism is
housed alongside the insertion tool and is based on flexible thin-film elements. The force
profiles of this experimentation will be discussed in 2.3.1.
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(a) (b)

Fig. 2.13 (a) Robotic electrode array insertion tool with description of the components. (b)
System setup for insertion. Figure from Hussong [40]

Fig. 2.14 Automated insertion tool setup with integrated force sensing unit. Figure from [27]
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Most of the robots discussed are in vertical placement, however, Mirrior [11] has designed
an automated insertion tool which is placed horizontally (Figure 2.15). Again, the purpose
of this automated tool is to measure insertion forces. The test bench includes a electro-
mechanical inserter with 1-axis force sensor and an insertion tube to cover the EA. This
sensor is placed between inserter and blunt pin whereas 6-axis force sensor is placed below
cochlea model. The speed of the actuator used for insertion is controlled by an input voltage.
Forces exerted by the inserter were measured by 1-axis force sensor whereas the friction
forces between cochlea and EA were recorded by 6-axis sensor. Advanced Bionics 1J lateral
wall electrode arrays are used in the experiments. The effect of tube material (plastic/metal),
the insertion speed and lubrications on friction and insertion forces were observed. The
results of these forces will be discussed in 2.3.1.

Fig. 2.15 Automated insertion tool: (1) Flexible arm (2) Linear actuator. (3) 1-axis force
sensor. (4) Blunt pin. (5) Insertion tube. (6) Electrode array. (7) sensor cable. (8) DC power
unit. (9) Digital interface card cable. Figure from Miroir [11]

Pile [42] developed 3-DoF parallel robot with fourth actuator for stylet with wire actuated
prismatic legs having new approach of coordinated insertion of perimodiolar array in order
to minimize shape discrepancy (between shape EA and inner ear). In order to separate DC
motor actuators from the end effectors and better control over weight distribution, wire
actuation is applied (Figure 2.16. A 6-axis force/torque sensor is used to hold the end
effector compromising of actuator and a gripper. First step in designing the robot is to obtain
an accurate specification of allowable orientation workspace for CI surgery. This robot is
designed with task specifications as follows: targeting accuracy <0.4 mm, tool maximum
diameter 2.0 mm, range of insertion speed 0.5-5 mm/s, angle of approach of 6°-17° and
insertion force of nearly 0.05 N. An optical tracker is used to collect position and orientation
information of EA gripper in an experimental setup. Digital microscope was used to capture
images during the insertion process in transparent phantom model provided by Cochlear Ltd.
Insertion forces results from this robotic insertion experiments will be discussed in 2.3.1.
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Fig. 2.16 (a) Experimental setup of the insertion robot with digital microscope recording the
insertion process. (b) ST plastic model covered in a case. Figure from Pile [42]

An image guided automated insertion system was introduced by Bruns [43] in 2017
(Figure 2.17). This imaging system is capable of accurately positioning the insertion tool at
the entry point of the cochlea and aligned with favorable entry vector. For the localization
of automated tool, an optical tracker is utilized and a graphical user interface (GUI) system
with specific patient’s CT (planning) scan data guides the surgeon for any possible error in
real-time. It has been observed that 0.31 mm is the average alignment accuracy for even
layman users.

Fig. 2.17 Image guided automatic insertion tool for cochlear implantation. Figure from Bruns
[43]
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2.2.3 Integrated Steering Mechanism

All of the automated systems presented thus far are using commercially available elec-
trode arrays to find solution for atraumatic insertion. In this section, the systems with
integrated steering mechanism will be discussed.

A magnetic guided insertion system was presented by Clark [15] in which magnetically
tipped EA is guided as it is inserted in to the cochlear with the help of a manipulator magnet
placed near the patient’s head which apply magnetic torque to the array tip causing it to bend
away from the ST walls (Figure 2.19).

To achieve EA guidance, a small permanent magnet is placed at the tip of a scaled array
(83 mm) and a large manipulator magnet is placed near patient’s head to apply a magnetic
field to the array tip which is controlled by a motor. The motor is allowed to translate along
its rotation axis, varying the distance between the manipulator and the patient, effectively
changing the strength of the applied magnetic field on EA tip and hence manipulating bending
movement of the EA.

Two control algorithms have been deployed to synchronize the motions of the manipulator
magnet and insertion of EA. 1) Maximum field method (only rotation needed) 2) Maximum
Torque method (variable distance needed). Experiments were performed with non guided
and magnetically guided arrays. Non guided EA made its first contact with ST wall at 17.5
mm while max-torque and max-field at 39 mm and 37.5 mm respectively.

Fig. 2.18 Concept of magnetic guidance of electrode array in to ST with 3DoF. Figure from
Clark [15]
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Fig. 2.19 Test bench of electrode array insertion through magnetic guidance.(1) prototype.
(2) Force sensor. (3). Custom mounting fixture (4) ST model. (5) Vertical linear actuator. (6)
Manipulator magnet. (7) Horizontal linear actuator. Figure from Clark [15]

The solution provided by Wise [16] is based on MicroElectroMechanical (MEM) tech-
nology. High density silicon based electrode arrays are developed with integrated mechanism
for stimulation, recording, and position control (Figure 2.20). The system consists of 32
electrode sites which are handled by 4 channels for stimulation, 8 strain gauges for real-time
shape sensing and a tip sensor to avoid possible contact with intra-cochlear structure by
measuring the tip forces. For the position localization, the array can be pre-stressed to hug
the modiolus.

Fig. 2.20 (a) Cochlear microsystem with microprocessor, data converter and wireless interface
connected to an electrode array. (b) Electrode array with wall contact and position sensing
strain gauges. Figure from Wise [16]
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2.3 Sensing Methods

The aim of applying sensing techniques during the insertion process is to relate the
sensing measurements with induced trauma, position of the array with respect to intra-
cochlear structure, and insertion depth and angle.

2.3.1 Insertion Forces

Force sensing is an important research topic for an atraumatic EA insertion. The main aim
of an atraumatic insertion is to reduce the insertion forces due to sensitive inner ear anatomy.
A human hand is unable to detect such small forces (in mN range) and ultimately different
forms of damage are expected. For these reasons, automated insertion tools discussed in
2.2.2 are investigated with insertion speed and angle control, and force sensing capabilities.
Researchers have used different types of electrode arrays, insertion techniques, ST friction,
and insertion speed to evaluate the impact of insertion forces.

In 2004, Adunka [44] compared a new prototype electrode array (Flex AES) with C40+
array type in terms of the trauma induced, their intra-cochlear proximity and the insertion
forces. However, there was no correlation drawn between insertion forces and the extent of
trauma induced. Microscope and radiography techniques were used in the cadaver insertion
experiments to observe intra-cochlear trauma. Forces were measured during the 23 mm
insertion (only one cochlear turn) experiments in ST phantom model. Insertion forces were
reduced by more than 40% when the new prototype Flex AES was used compared to C40+
array. This is due to relatively softer tip, high flexibility and small size of the new array.
There was no substantial damage to the inner cochlea structures while using new prototype.
In a similar study, Nguyen et al. [45] compared two EA designs with different proximal
diameter (0.94 mm vs 0.5 mm) and distal tip diameter (0.5 mm vs 0.4 mm). An automated
insertion tool developed by Miroir was used for perform 23 insertions in human cochlea
specimens and insertion forces were measured. According to the results, lower insertion
forces were recorded beyond 270°depth in case of thin array and it was also inserted deeper
than the other EA.

According to Zhang [37], robotically inserted novel steerable electrode array has com-
paratively less insertion forces (70%) than straight array. Steerable EA was also favorable
in preventing buckling during insertion. However, tip folding or over insertion can occur
in such EA insertion. In order to reduce the insertion forces, kinematics and path planning
for steerable EA are developed. Two different EAs are designed to yield different bending
shapes that best approximates the shape of the cochlea. Mathematical modeling for direct
kinematics and path planning of EA have been done which is first simulated on MATLAB
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and then experimentally validated. A 1-DoF robotic insertion system with force monitoring
was deployed. Experiments are performed with and without control of EA bending and it
is evident that there is reduction in insertion forces if bending control is in place. Insertion
forces were measured with 2-DoF and 4-DoF robotic systems in [39] and found reduced
forces with these systems compared to 1-DoF system. In another study, conducted by Clark
[15], reported 50% reduction in insertion forces with magnetically tipped array as compared
to non-guided straight EA. Magnetically tipped EA is guided as it is inserted in to the cochlear
with the help of a manipulator magnet placed near the patient’s head which apply magnetic
torque to the array tip causing it to bend away from the ST walls. The detailed working of
this system is explained in 2.2.3. Overall, max torque method is experiencing less insertion
forces as compared to max field method. Non-guided method is inferior to both the guided
methods in terms of insertion forces by 50%.

The research carried out by Todd [46] employed three insertion methods (standard
insertion technique, advance off-stylet, and partial withdrawal) on three different electrode
array designs (Contour Practice, Contour 24 and Contour Advance) to access the force
delivery and electrode trajectories (position) during implantation. Net insertion forces
(frictional force, input force from user, relaxation force, and adhesive force) are measured
using Instron® 5543 measurement device with 10N load cell and analyzed along with
electrode trajectories. The impact of frictional forces (after measuring for varying degree of
roughness and lubrication using Tribometer) on final force delivery is separately assessed. It
was observed that insertion forces were lower when soft tipped Contour Advance EA was
inserted using AOS technique as compared to other EA designs and insertion techniques.
Result analysis suggests that carrier strength (due to stylet), contact pressure (soft/hard tip),
frictional force (rough/ lubricated surface, carrier contact with ST outer or inner walls),
electrode trajectory (turn/straight, close to outer/inner wall) and surgical techniques are all
contributing factors in force delivery. In an earlier study by Roland [36], similar results were
observed. Forces involved in inserting Contour advance electrode using AOS technique was
lower than insertion using SIT (mean 0.012 vs 0.075 N).

Insertion forces were recorded by employing advance off-stylet technique to insert
Contour Advance electrodes (Cochlear Ltd.) in to an artificial arcylic ST model using an
automated tool [10]. Insertion forces were measured with Instron® 5542 sensor with 10 N
load cell which is accompanied with measurement software .20 insertions were performed
with different velocities (0.3,0.4,0.5 mm/s) to note its effect on the insertion forces. Tip
fold-over insertion failure were observed on 5 instances out of 20. Furthermore, insertion
forces rose by 40% at the end of AOS movement. During the instances of tip fold-over,
insertion forces instantly increased 8 times with respect to mean value. It was observed that
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mean insertion forces were higher when array was inserted with lower insertion feed rate. In
contrast, results from experiments performed by Kontorinis et al. [47] showed that insertion
forces increases with increased insertion speed (insertion speed varies from 10-200 mm/min
resulted in mean insertion forces of 180-240 mN). On the same lines, another recent study
done by Rau et al. found that insertion forces decreased with ultra low insertion speed of 0.03
mm/s as compared to speed of 2 mm/s and 4 mm/s [48]. According to Zhang [49], insertion
forces decreases with increasing insertion velocity. However, Mirior et al. performed similar
experiments with straight electrode and did not find any difference in forces with respect to
insertion speed.

Schurzig et al. [27] compared standard insertion technique and advance off-stylet tech-
niques in terms of the force profiles using an automated insertion tool with in house force
sensing capability. Four insertions were performed with SIT and four with AOS technique
in a 3-D ST model. Force profiles were nearly similar upto 7 mm insertion depth (before
the first basal turn) during both types of insertion which was averaged at 6 mN. During the
insertion depth between 7-17 mm, average forces experienced in AOS insertion were 8±6
mN with maximum of 34 mN. On the other hand, average forces remained at 46±27 mN
with a peak value of 93 mN. There was significant difference in force profiles beyond 9.74
mm insertion depth because AOS technique avoids array to touch lateral wall during the first
basal turn.

Comparative study was conducted by Majdani [50]between forces due to robotic insertion
and human operator insertion. 26 insertions were carried by three different surgeons and
8 insertions by an automated tool. Forces due to robotic insertion were higher than the
insertions by surgeons, however, robotic insertion was more reliable with less force maxima.

The test bench for experiments performed by Mirior et el. in [11] using automated
insertion tool was discussed in 2.2.2. A straight lateral wall EA was used to perform insertion
in a 3D ST model and impact of insertion tube material, ST model/temporal bones and
insertion speed rate on the friction forces were examined. Array friction forces (measured
with 1-axis force sensor) in plastic insertion tube were lower as compared to metal tube
and stand at 90±28 mN versus 140±34 mN. Lubrication inside insertion tube also helped
decrease the friction forces. 6-axis force sensor was to measure friction forces between EA
and cochlea model/temporal bones and compared with force profiles of 1-axis sensor. There
was mean error of 10±2 mN when both force profiles are compared in ST phantom model
whereas a mean of 10±1 mN was observed in all temporal bone experiments.

There is dire need to establish strong relationship between insertion forces and the
histological proof of extent of the trauma induced. In the experiments conducted by Seta
et al. [51], automated insertion tool developed by Mirior [11] was used to implant straight
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lateral wall EA in 12 cadavaric temporal bone specimens. Relationship between insertion
forces and trauma was established after cochlea anatomy CT scan data, array proximity
and force profiles are correlated with post operative microscopic images and histological
damage assessment. There were 6 traumatic insertions out of 12; translocation in 5 and
basilar membrane fracture in one. An early force spike of 0.03±0.018 N in the region of
150-180°insertion depth was observed in traumatic insertion experiments. It was due to array
touching the lateral wall on the first cochlea turn. Analysis of Variance (ANOVA) test was
carried on force profiles data of both traumatic and atraumatic insertions and found that
different values were observed at the same insertion depths (p<0.001).

Pressure is directly related to the force and stable intra-cochlear fluid pressure is necessary
to preserve residual hearing. Mittman et al. conducted study to find frequency and amplitude
of fluid pressure during the EA insertion process [52]. Two types of EAs, midscalar and
lateral wall, were used for cochlea plastic insertion. A 0.8 mm diameter micro-optical
Pressure sensor was placed at the apex of cochlea model. The lateral wall array has smaller
mean volume per mm than the mid-scala type (0.23 vs 0.35 mm3). It was found out that
insertion of midscalar array generates more mean pressure (ranges from 0.3-0.5 mmHg) than
lateral wall array (ranges from 0.1-0.3 mmHg). Similar to the concept of integrated steering
mechanism of EAs [15][16], Wade et al. presented a custom array design with integrated
force sensor at the array tip [53].Optical fiber Bragg grating was utilized for integrated force
sensor in custom EA for guinea pigs. Insertions experiments were performed to measure
insertion forces on the array tip in real time. Insertion forces were successfully correlated
with trauma histological data. The system was able to measure maximum insertion force of
254 mN which was associated with grade 3 trauma. Grade 1-2 trauma had a force range of
76-200 mN Wheres grade 3 has a range of 201-254 mN in 12 experiments.

Besides detection of induced trauma, insertion failure (tip fold-over and buckling) detec-
tion is equally important for working atraumatic cochlear implantation. Complications due
to tip fold-over insertion failure is discussed in 2.1.4. Pile el al. employed machine learning
support vector machine (SVM) algorithm to design a system to predictive tip fold-over
failure [54]. The failure was predicted with the help of real time intra-operative insertion
forces with force profile data history of traumatic and normal insertions. Insertion force data
was collected and used with respect to the insertion depth. Insertions of periomodiolar EA
were carried out using an automated tool discussed in 2.2.2 in phantom cochlea model. An
accuracy of 88% was accomplished to detect tip fold-over insertion from a normal insertion.
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2.3.2 Impedance Measurements

Most cochlear implant systems have built-in impedance measurement mechanism to check
functioning of electrodes after the implantation. Impedance measurements and tomography
have been employed in various biomedical areas. So research is also on going to use it for
localization of electrode array during insertion in ST.

2.3.2.1 Stimulation Strategies

The importance of techniques used to stimulate the hearing nerves through electrodes is
significant. It dictates the spread of input current stimuli in the inner ear and effects loudness
and pitch levels. Impedance measurement values are also dependent on these techniques.
There are five types of stimulation strategies governing the cochlear implants 1) Monopolar
2) Bipolar 3) Tripolar 4) Quadrupolar 5) Common Ground

In monopolar systems (Figure 2.21a), an array (active) electrode in the cochlea generates
the field potential with respect to an extra-cochlear return (reference) electrode placed in
tempolaris muscle. The current flows between these two electrodes and field spreads along a
wider area since there is substantial distance between two electrodes [55].

Common ground strategy (Figure 2.21e) is similar to monopolar except the return elec-
trode is the parallel collection of all the remaining electrodes in the array other than one
driving the current. The field distribution in this strategy depends on the impedances of all
the return electrodes.

In bipolar devices, stimulative active electrode is in close proximity to the return electrode
(Figure 2.21b). They are either next to each other or with a gap of an electrode in between.
These intra-cochlear electrodes work in opposite polarity and hence no net current leaving or
entering the cochlea. The distance between active and return electrode dictates the amount of
current spread and eventually the number of neurons stimulated [56].
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Fig. 2.21 Five stimulation strategies for cochlear implant. a) Monopolar, b) bipolar, c) tripolar,
d) Quadrupolar, e) Common Ground Figure from [57]

Tripolar stimulation has three electrodes in action with center electrode acting as an active
stimulating electrode whereas two outer electrodes operate in the opposite polarity as center
electrode. The algebraic sum of the current in cochlea is zero as shown in Figure 2.21c.

Each stimulation technique has its advantages and disadvantages. For example, loudness
level is governed by the number of neurons stimulated and loudness level is higher in
monopolar strategy due to wider spatial spread of current but produces poor pitch. On the
other hand, bipolar gives more spatial selectivity than monopolar and provides better pitch
performance [55].

Zhu et al. compared three stimulation methods in cochlear implants to record their
performance in terms of spatial selectivity. They found out after measuring both physiological
and psychophysical spatial selectivity that focused stimulation (multipolar) presented sharper
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spatial tuning than monopolar method. In a similar study conducted by Jolly et al. compared
field strength and focus in mono, bi and quadrupolar (a form of tripolar (Figure 2.21d))
stimulation strategies. They also found that quadrupolar has more focused field potential in
the layers of ST than other methods. The focused field improves the pitch, reduce channel
interference and limit facial/tactial induced stimulaton by current spread.

The stimulation strategy used in the cochlear implant system also influence the impedance
equivalent model which will be discussed in next section.

2.3.2.2 Equivalent Circuit

Electrodes are widely used to stimulate living tissues as in the cochlear implant system.
Electrodes in CI system are immersed in Perilymp fluid in scala tympani. This fluid is
similar to Sodium-Chloride (NaCl) electrolyte solution. Therefore, it is important to study
the electrode-electrolyte interface and its corresponding equivalent circuit models.

A. Volta first discovered in 1800 that electro-electrolyte junction has electrical potential
which led to the investigation of direct current [58]. Ohm’s law was also discovered in
1826 during the study of this interface and states that current is directly proportional to the
voltage potential and inversely proportional to the resistance in the circuit[59]. In 1834,
Farady coined the term "electrode" during his electro-chemistry experimentation [60]. Earlier
electrode-electrolyte interface was considered as a capacitor and it was Varley [61] who first
measured this capacitance. He was astonished to measure capacitance value of 311 µF of
1-inch-square platinum electrode. This high value paved the way for electrolytic capacitance
discovery. On the circuit modeling front, Helmholtz first pitched the idea of circuit model
of electro-electrolyte interface [62]. In 1879, Helmholtz found out that a charged double
layer exists at the interface which is equivalent to a charged capacitor (Figure 2.22, A). It was
concluded that a resistance must also be part of the circuit because direct current delivered
by voltaic cell passes through the interface. Second attempt to model equivalent circuit
was carried out by Warburg in [63]. He found out that a resistor and capacitance in series
where polarization capacitance Cw and its reactance Xw varies inversely to the square-root
of frequency. The reactance Xw and resistance R are found to be equal and phase angle was
constant at 45 °. Resistance also varies with frequency as capacitive reactance changes with
frequency.

Warburg model was limited to infinitely small current density, on the same line Fricke
[64] reported in 1932 that for a low current density and limited frequency range (0.1-3.5
kHz), polarization capacitance and phase angle remains constant.

Randles [65], in 1947 described a model comprised of a polarization capacitance (Cp)
in parallel with a series capacitance (C) and resistor (R) as shown in Figure 2.22, C. This
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model as well as models by Helmholtz, Warburg and Frikie did not account for direct current
property of interface.

Fig. 2.22 Transformation of the electrode-electrolyte equivalent model. Model by (A)
Helmholtz [62] (B) Warburg [63] (C) Randles [65] (D) Sluyters-Rehbech [66] (E)-(F) Geddes-
Baker [67]

In 1968, Geddes and Baker suggested two models on the basis of various frequency-
Impedance (f-I) curves of electrodes in saline solution. One of the models has Warburg
capacitance (Cw) which was placed in parallel with a Faradic resistance (R f ); this combination
is in series with half-cell battery (E1/2) and Warburg resistance (Rw). In the other model,
Warburg capacitance-resistance pair (CwRw) was shunted by Faradic resistance (R f ). A
half-cell potential is placed in series with this combination. The shunted Faradic resistance
(R f ), in both models, account for direct current property of the electrode-electrolyte interface.

In 1970, Sluyters-Rehbach [66] presented a rather complex model of electrode-electrolyte
interface as presented in Figure 2.22, D. This model contains the Warburg impedance
(RwCw) and a resistance (θ ) in series with a parallel resistance-capacitance pair (CpRp); this
combination has then a parallel capacitance (Cd).
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Fig. 2.23 A method to measure potential of electrode-electrolyte interface. Left: Equivalent
circuit. Right: Current-Votlage waveform [68]

In 1974, Carr et al. [68] proposed a method to measure potential of a single electrode-
electrolyte interface. A current stimulus is applied across test electrode 1 and a reference
electrode 2 whereas potential is measured between electrode 1 and electrode 3 as shown
in Figure 2.23, left. The resistance (r) resides between electrode 1 and potential-sensing
electrode 3 and (Re) represents resistance between electrode 1 and reference electrode 2
where both these resistances are due to electrolyte between electrodes. According to Figure
2.23, right, voltage appearing across test electrode 1 and 3, when a long constant current
stimuli is applied across electrode 1 and 2, can be divided in three phases. One of the phases,
voltage (Va) is across a series combination of r and parallel RwR f ; next the curve presents
charging of capacitor Cw. The voltage Vb is across series combination of resistances r and
R f as the capacitor is fully charged and Vc represents the voltage when capacitor Cw is
discharging through series R f and Rw.

Geddes and Roeder, in 2001, did experiments to measure direct-current Faradic resistance
(R f ) in the electro-electrolyte interface [69]. Figure 2.24 shows Warburg circuit model
between two electrodes. The reactance Xw and Faradic resistance R f provides the direct
current in the circuit. The resistance Rs is the resistance between two electrodes due to
electrolytic solution between them. It is understood that polarization capacitance Cw and Rw

decreases with increasing frequency. Therefore, at very high frequencies, the total impedance
is equivalent to the resistance Rs which can be easily found with frequency-impedance curve.
In order to find Faradic resistance R f , a square wave current stimuli was applied across the
electrodes, the pulse width of which is longer than the time constant τ of the circuit. The
current will flow through R f 1,Rs,R f 2 when Cw is fully charged during the current pulse.
Therefore, the voltage between two electrodes would be presented as E f = i(2R f +Rs)

as R f is same for both electrodes. Faradic resistance R f can now easily be calculated by
R f = 0.5(E f /i−Rs).
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Fig. 2.24 Bipolar impedance model in saline solution (between two electrodes). Figure from
[69]

Fig. 2.25 Lumped impedance model of implanted cochlea. Figure from [70]

Suesserman and Spelman came out with a lumped parameter model in 1993 that ap-
proximately simulates electrical properties of an in-vivo implanted cochlea [70]. In this
lumped model (Figure 2.25), 2 pairs of interscalar electrode and a single pair of extrascalar
(reference) electrodes are used to measure one intrascalar (Zst) and two transscalar (Za,Zb)
impedances within an implanted cochlea. The electrode pairs are believed to be at same
potential due to their close proximity. One of the electrodes in a pair drives the current while
the other pair measures the potential. This way, three unknown cochlea tissue impedances
can be measured.
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The impedance model proposed by Vanpoucke et al. in [71] and shown in Figure 2.26
contains components of both electrode-electrolyte interface impedance as well as tissue
impedance. The arrow in the figure shows monopolar impedance model when electrode 2
is active where the excited electrode is inside cochlea and reference electrode is external
to cochlea. The current path is through the interface impedance ZC (capacitance and re-
sistance in parallel), tissue impedance ZT ISSUE (a resistance) and through to the external
ground electrode. This work successfully analyzed the structure of intra-cochlear potential
measurements with respect to cochlea anatomy and electrode array design.

Fig. 2.26 General impedance model of electrode array in scala tympani. Arrow shows a
path of monopolar current flow from intra-cochlear stimulating electrode to outer ground
electrode [71].

2.3.2.3 Impedance for Insertion Guidance

The first real-time impedance measurement system during array insertion was developed
by Tan et al. [12]. Both monopolar and bipolar impedance measurements were taken
during insertion with AOS technique to observe impedance change after stylet removal.
Impedance was measured during insertion in human cadaver as well as in live surgeries. A
biphasic current pulse of 25 µA width and an amplitude of 74 µA is used as input stimuli
and corresponding voltage is measured by continuously sequentially scanning the electrodes.
Impedance is then calculated by dividing voltage by current. This software system interacted
with a commercially available cochlear implant system and hence no extra hardware was
required. Using monopolar stimulation technique, impedance change was more pronounced
in basal end electrodes whereas it was more prominent in apical electrodes when using
bipolar technique. A correlation between impedance values and intra-cochlear array position
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was also seen where high impedance values observed near the cochlear walls. Monopolar
measurement technique delivered better results than bipolar in terms of EA localization.
Certainly, it was the first step to use impedance measurements as a way to control EA position
during insertion for atraumatic process.

Electrical bipolar impedance was measured during insertion of perimodiolar electrode
array using two different insertion techniques (SIT and AOS) in order to evaluate different
impedance measurements and conclude relationship between impedance and proximity of
EA from modiolar wall. Total impedance comprises of three key impedances; electrode
impadance (Ze), cochlear impedance (Zc), fluid impedance (Zf). Relationship between the
impedance measured value and proximity of EA to the wall was attributed to the amount
of fluid between the EA and the modiolar wall at a specific contact. Analysis of variance
(ANOVA) test was applied to the filtered data set (implant used, bone specimen and insertion
technique used) and found out there was clear separation between SIT and AOS impedance
measurements where impedances during AOS insertion are higher than SIT. It was also
concluded that impedance values are dependent on bone and EA properties. Moreover,
conductive fluid between electrodes would be more significant in bipolar than monopolar
measurements.

The impedance of each electrode in the array is usually measured after the surgery to
check any short/open circuit scenario. The current method only tests the overall impedance
and not its components. Tykocinski et al. proposed an impedance equivalent model to
evaluate impedance components; access resistance and polarization impedance, which is
necessary to know the symptoms of changing impedance. The degradation of electrode
surface would change polarization impedance whereas change in access resistance would
be governed by intra-cochlear environment [72]. Giardina et al. used this model/method
to investigate relationship between EA monopolar impedances (Access resistance (Ra),
polarization resistance (Rp) and polarization capacitance(Cp)) and its proximity in ST during
implantation by employing linear regression model (independent variables were insertion
depth and impedances to predict dependent variable-distance to the modiolus)[13]. Voltage
response of each electrode, to a biphasic current pulses (amplitude of 34 µA, lasting 179.6
µsec per phase and separated by 100 ms), were recorded at 56 kHz sampling rate by using
9 bit resolution A/D converter. Total of 272 (saline+16 EA insertion depths; 17*16=272)
impedance recordings were made per EA insertion. By measuring the impedances of each
electrode during insertion, it was observed that deeper locations have a more resistive path to
ground. Although distance of EA to the modiolus changes during insertion, however, at the
base of the cochlear, the distance from the electrodes to the modiolus was large, array was
consistently close at position 8 and array remained roughly at 1.5mm away from modiolar
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wall. When 8 electrodes were inserted, Ra was higher in the electrodes (1-4) close to the inner
wall and when 12 electrodes were inserted, Ra saw exponential increase in electrode (4-8)
because these electrodes were close to the modiolus. On the other hand, Cp decreased with
the insertion depth and proximity to the modiolus. Total impedance of the system was mostly
governed by Ra. After applying linear regression model, a Pearson correlation of 0.885 is
achieved. Impedance increased (Ra increased, Cp decreased and Rp slightly increased) with
insertion depth in ST and proximity to the modiolar (inner) wall. However, polarization
components contributed a small (2.5%) but significant portion to this correlation.

In 2017, Karunasiri was awarded a patent for developing systems and methods to measure
real time electrodes impedance during surgery [73]. The patient receives a continuous audio
signal of different frequencies through the system during the surgery. Electrodes in the array
are then directed to stimulate the nerves by the application of a current signal representing
the audio signal. The voltage associated with the current is then measured to calculate
the impedance of respective electrode. The real time impedance measuring system as
well as impedance data storage are embedded into the processor. This system also allows
to adjust the stimulation parameters according to the impedance change during/after the
surgery. Stimulation parameters include pulse width, duty cycle, amplitude, waveform type
etc.Stimulation management facility communicate with impedance system to perform the
corrective measure according to the impedance values.

It is critical to save facial nerve from any trauma during the drilling process in cochlear
implantation. Anso et al. conducted a research to find a relationship between impedance and
tissue density during drilling [74]. In vivo experiments were performed on 5 sheep with nine
different trajectories using an image guided robot. Impedance measurements were taken at
5 points around facial nerve. A monotonic decrease in impedance was recorded when the
drill axis was intersecting the facial nerve. These results may be used in future to accurately
approximate the proximity of the drill axis from the facial nerve based on tissue density and
impedance correlation.

2.4 Machine Learning

Machine learning is a sub-field of artificial intelligence where algorithmic models are
trained to learn from data to optimize the performance of a certain task rather than explicitly
code to do so [75]. Machine learning provides new tools and techniques/methods to solve
complex problems where classical statistical techniques fail. In the last decade, the explosion
of large amount of data (due to advances in data collection/generation and data storage
capabilities) and exponential growth in computing power led to unprecedented interest in

37



50 years old field of artificial intelligence. This interest saw innovative growth in machine
learning algorithms during the last 2 decades. This also gives rise to growth of its sub-
field of deep learning which potentially needs more data to learn than classical machine
learning but achieves highly accurate results. Most commonly, machine learning is used
for classification, regression, clustering, dimensionality reduction of large datasets in the
domain of image and speech recognition [76, 77], natural language processing, time series
data analysis and so on. Machine learning can be categorized in to three main domains;
supervised learning, unsupervised learning and reinforcement learning. Our work is mainly
attributed to supervised learning (classification and regression) where algorithms are designed
to predict or classify a desired outcome (discrete/category or continuous/real value).

Fig. 2.27 Machine learning approach

2.4.1 Supervised Learning

Supervised learning extends the notion of standard curve fitting procedure where it tries
to learn the unknown function which connects inputs to desired outputs. This is estimated
by extrapolating the patterns found in the labelled training data [78]. Supervised machine
learning is further categorized in to two groups; classification and regression depending on
the output

2.4.1.1 Classification

The goal of supervised learning is to build a concise model of the distribution of class
labels in terms of predictor features. The resulting classifier is then used to assign class
labels to the testing instances where the values of the predictor features are known, but the
value of the class label is unknown classification problems in which the output of instances
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admits only discrete, unordered values. [79]. Lets we have a training set S = {x(1),x(2)...x(n)}
of feature vectors where xi ∈ X represented in a feature space X . Training set is sampled
according to unknown probability distribution. A unique x ∈ S is uniquely associated with
a target label y ∈ Y . Here X is a real valued vector space and Y = {y1,y2...yL} is a set of L
discrete (different) class labels. The classification learning algorithm C seeks to map X → Y
keeping the loss function P(x, f (x)), that measures the error, to the minimum. In other words,
algorithm tries to find a function f that minimizes the expected error on the unknown data.

2.4.1.2 Regression

In regression, the output targets are continuous values rather than discrete values as
in classification. Let input X be a d-dimensional vector and output Y a q-dimensional
vector, a regression algorithm maps input X to Y , M : X → Y on the basis of an input
sample set X = x(1),x(2)...x(n) and corresponding output target set Y = y(1),y(2)...y(n) where
y(i) = M(x(i)) and y(i) is real continuous value.

Linear Regression: Linear regression plays an important role in statistical learning.
Take into account the regression issue where a continuous response Y is to be regressed on
a number of variables x1,...,xp. It is well known that the simplest model to represent the
regression function as a linear combination of predictors is linear regression. In instance,
linear regression frequently offers a good approximation to the underlying regression function,
especially when the sample size is small or the signal is very faint.

Simple/single-variant linear regression model has one independent variable x and its
estimated regression function is represented as in 2.1

f (x) = b0 +b1x (2.1)

where b0 is the intercept and b1 is the slope. Multiple linear regression model is when
there are two or more independent variables x1,x2, ...xp and its estimated regression function
can be represented as in 2.2

f (x1,x2, ...xp) = b0 +b1x1 +b2x2 + ....bpxp (2.2)

The objective of regression is to find the weights b0, b1, and b2 values that provide the
minimum SSR (the sum of the differences between the predicted value and the mean of
the dependent variable) while bringing this plane as close as possible to the real responses.
Model estimate entails estimating all of the model’s parameters. For linear models, a variety
of estimate techniques are available, such as least squares, maximum likelihood, Bayesian
approach etc.
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2.4.2 Unsupervised Learning

There is absence of the supervisor in this type of learning, therefore it is absolute error
measures. Unsupervised learning methods aim to find relationships and patterns in a data
structure without having a measured outcome (unlabeled data). This is called unsupervised
because it lacks a response variable that can supervise the analysis. The aim of unsupervised
learning is to find underlying dimensions, components, or clusters in an unlabeled data.

2.4.3 Reinforcement Learning

In Reinforcement Learning, the system learns from its interaction with the environment.
The learning system (agent) observes the environment and perform actions, and in return
get either the reward or penalty according to its good/bad actions. Its aim is to maximise the
reward over time and learn the best strategy (policy).

2.4.4 Time Series Classification

Time Series Data: A time-series T is a sequence of measurements of size m taken over
a period at regular intervals where T = (t1, t2, . . . , tm). Since temporal information is present
in a majority of everyday tasks, be it finance, healthcare, or sales – time series analysis is an
active area of research. In machine learning, time series classification refers to the process of
learning meaningful information from temporally ordered data and classify each example
series into a class. This has led to it being studied extensively under various machine learning
algorithms [80–83].

2.4.4.1 Classification Algorithms

Classification algorithms aimed to learn simple functions from the training data and
output a hypothesis that perform the correct classification of the training data. Generalization
is the term used for the ability of hypothesis to correctly classify the unknown data (test data)
not present in the training data.

Support Vector Machines: Support Vector Machines (SVM) were initially designed as
discriminative functions and were mainly used for large margin classification. Simply put,
given a set of training examples, the SVM classifier learns the position of its support vectors
and then subsequently the optimal hyperplane to categorize unseen samples. Owing to their
impressive generalization ability, SVMs have been extensively studied to solve a number of
classification tasks (see e.g. [81, 84, 85]). More recently, their uses cases have expanded
to include function approximation, regression, and time series prediction by introducing an
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appropriate loss function [86]. Fig. 2.28 represents how support vectors (dotted lines) and
decision boundary (solid line) maximally separates different classes in the case of linear
SVMs. In SVMs, a separating decision surface is formed after the data is transformed in to
higher dimensional space. This process is known as kernel function. There are two types of
SVM, linear (for separable data) and non-linear (for non-linearly-separable data).

Lets take an example of linear SVM and its classification mechanism in terms of support
vectors and hyperplane. We have training data {xi,yi} where i= 1...n and x is a d-dimensional
real vector x ∈ Rd . The output y ∈ {−1,1} indicating the class xi belongs to. The aim of the
algorithm is to find a separating hyperplane with the highest margin that separates the input
training samples belonging to each class, -1 and 1. A hyperplane can be defined as a set of
points satisfying:

wT x+b = 0 (2.3)

where w is normal direction of the hyperplace and b is a form of threshold. Let’s margin
between the separating hyperplanes be defined as d++d− where d+ is the shortest distance
between the separating hyperplane to the positive example whereas d− is the shortest distance
to the negative example. Margin can also be defined as 2/||w|| where ||w|| is the euclidean
norm of w. The aim of the algorithm in this case (data is linearly separable) is to find largest
margin between the separating hyperplanes [86]. Since the data is linear separable, we can
have two parallel hyperplanes separating the 2 classes keeping the margin as large as possible
as shown in Fig. 2.28. The maximum margin hyperplane is the one that is halfway between
them and can be described by 2.3. Those xi that lie closest to the max-margin hyperplanes
are called support vectors as shown in Fig. 2.28. Hyperplanes separating the classes can be
described as:

wT x+b = 1 (2.4)

wT x+b =−1 (2.5)

Each training example xi need to hold the following constraint

wT xi +b ≥ 1 f or yi = 1 (2.6)

wT xi +b ≤−1 f or yi =−1 (2.7)

Eqs 2.6 and 2.7 can be combined to one set of inequality
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yi(wT xi +b)−1 ≥ 0 (2.8)

For the training data that is not linearly separable, we use a technique called kernel trick
on max margin hyperplanes (originally proposed by Aizerman et al [87]) to develop non
linear classifiers. It is generalization to the linear classifier technique except the dot product
is replaced by a non linear kernel function.

Standard SVM is only used for binary classification, however, multiclass classification
can be solved by decomposing the problem in to several multiple binary problems where
standard SVM can be used [88]. Having said that, SVM model in python sklearn library
deals with both binary and multiclass classification.

x1

x2
Support Vectors

Hyperplane

x1

x2
Support Vectors

Hyperplane wTx+b=0

wTx+b=-1

wTx+b=1

w

A B

Fig. 2.28 Linear Support Vector machine as multiclass large margin classifier

k-Nearest Neighbours: k-Nearest Neighbor (kNN) classifier is a fairly simple and
straightforward supervised learning algorithm which classifies a data point based on how
its neighbors are classified. kNN algorithm is based on feature similarity, that is, choosing
the right k (number of neighbors) value is important for better accuracy. Another parameter
is the distance measure that induces the relationship between neighbors [89], for example,
Euclidean distance, Dynamic Time Warping (DTW), Manhatten distance etc. [90] found
that a simple 1-NN classifier with DTW distance measure generally produces better results
than more complex classification algorithms on time series data. DTW distance metric helps
when two time series are fundamentally similar but has some degree of distortion or noise.
It uncovers underlying similarities by stretching (warping) the time axis [91]. The DTW
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distance between two points q and x can be defined as

DTW (q,x) = min
π

√
∑

i, j∈π

d(qi,xi)2 (2.9)

Where π = {π1,π2, ...πL} is the optimum mapping with the following properties
r = |q|, s = |x|
π1 = (1,1) and πL = (r,s)
πl+1 −πl = {(1,0),(0,1),(1,1)}
Fig.2.29 presents the concept of knn algorithm where distance from a new data point

will be calculated to the nearest 3 neighbours (k=3), and votes for the most frequent nearest
neighbour class. In this example, new data point belongs to class B.

Fig. 2.29 k-Nearest Neighbour (k=3)

Artificial Neural Network:Artificial Neural Networks (ANN) are complex computa-
tional models that learn to solve a given task by extracting meaningful information from the
training data. ANNs were first introduced in 1943 [92] and the authors presented a simplified
version of computational model based on how neurons in the brain perform complex tasks.
As opposed to SVM, which is a kernel-based algorithm, an ANN is a data-driven algorithm
and typically performs better on large training sets.

An ANN is composed of simple computational nodes, called neurons, typically arranged
in the form of layers as shown in (Fig. 2.30). Each layer performs a simple linear transforma-
tion on the incoming data, followed by a pointwise non-linear function. These seemingly
simple models have proven to be immensely powerful in solving problems that have resisted
the efforts of the scientific community for many years.
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Fig. 2.30 shows an artificial neural network that consists of an input layer (left most)
with N neurons, one hidden layer (center) with M neurons and output layer (right most) with
K neurons. Input neurons are equal to the input dimension and output neurons are equal
to the output dimensions (for example, number of classes in a classification problem). A
neuron is connected to another neuron with a weight value that signify the importance of that
connection. All neurons other than input neurons has a bias attached to it which caters for
unforeseen factors. Hidden and output layer neurons perform a summation function and pass
the result of summation to an activation function. There are different activation functions that
we can use, for example, sigmoid activation, hyperbolic tangent (tanh), and rectified linear
units (ReLU) to name a few. If we take top hidden layer neuron as an example, its output a1

can be calculated as

a1 = f (b+
N

∑
i=1

xiwi) (2.10)

where N is the number of inputs from the incoming layer. Each input is multiplied with
its respective weight and aggregated. A bias term is added to the aggregated value. An
activation function f would be then applied as shown in 2.10. A generalized equation for the
hidden layer in the Fig. 2.30 can be given as

a j = f (b j +
N

∑
i=1

xiwi j) (2.11)

A generalized equation for the output layer can be formed on the same line as

ok = g(bk +
M

∑
j=1

x jw jk) (2.12)

The activation functions can be linear or non-linear, there would be no change if we
choose a linear function, ie., f (z) = z. Non-linear activation functions can be defined as

• Rectified Linear Activation (ReLU): The output of this function would be same as
input if input is positive else 0, ie., f (z) = max(0,z).

• Sigmoid: Its value ranges from 0 to 1. If the input value is positive, it outputs the value
from 0.5 to 1 whereas if the input is negative, it outputs the value between 0 to 0.5. It
has a S shaped curve. It can be defined by the formula in 2.13

f (z) =
1

1+ e−z (2.13)

While training the neural networks, there are multiple iterations when the training
examples are iterated through the network to minimize the loss function (This is called
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forward pass). Loss function is the difference of the predicted value and the actual target value.
There are various loss functions such as maximum likelihood cross entropy, mean squared
error. The weights are randomly initialized in the beginning and adjusted in subsequent
iterations according to the loss. The gradient of the loss function is calculated with respect to
each weight that has been set and multiplied with the learning rate and that specific weight is
updated by that number. The same method is repeated for all weights (This is called back
propagation). When the weights are updating, we say the network is learning.
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Fig. 2.30 Artificial Neural Network [Input-Hidden layer-output]

Random Forest Random Forest (RF) classifier first introduced by Breiman [93]. It is an
ensemble of relatively uncorrelated decision trees where they vote for the most popular class
and the class with most votes becomes prediction of the model for a particular sample.

A decision tree is a set of nodes and leaves that is constructed based on training set
constituted of feature collection. The purpose is to divide the training set in to smaller subsets
by carrying out sequence of tests. When a subset contains only the cases belonging to a
single class, the process terminates. These type of tests are called the nodes and subsets are
known as the leaves. Predicting the class for a new data sample, the process starts at the tree
root and finishing up at one the leaves.

The generalization error of RF depends on the individual trees and their correlation. Each
tree in the forest picks random set of features to split each node, which results in lower
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correlation among tress and the model becomes more robust to noise. RF classifier is also
attributed to handling non linear tasks quite efficiently [94].

2.5 Deep Learning

Classical machine learning techniques are limited in processing data in its raw form.
They need domain expertise to build feature extraction methods that transform the raw data
into a feature vectors. These feature vectors are then used by machine learning algorithms
for classification or regression. Deep learning is a representation learning based method
consisting of multiple layer of representations where raw data is fed into the model that
automatically detects representation for classification or regression [95]. Convolutional and
recurrent neural networks are two widely used deep learning models discussed below.

2.5.1 Convolutional Neural Network

CNNs have been widely used for computer vision application but recently they have been
utilized for other analyses as well such in the domain of natural language processing and time
series analysis [96]. CNN is different from fully connected multilayer perceptron network
in a way that it shares weights. It is a type of feed forward artificial neural network that
detects pattern in the data and make sense of them. This type of network is usually employed
to extract spatial features. This property makes it most favourable for 2 and 3 dimensional
data such as images and video frames. CNNs started off with 2 dimensional architecture,
however, most recently 1 dimensional CNNs are introduced for 1-D data in the biomedical
field for classification and early diagnosis, structural health monitoring and for other sensor
based systems [97]. Convolutional layers in the CNN are what that separates it from the
standard fully connected neural network. There maybe other layers involved in the CNN
depending on the application such as pooling layer, dropout layer and fully connected layer.
The convolutional layer is made up of a stack of filters and these filters are actually backbone
of detecting the patterns or extracting features from the input data. For example in case of
computer vision problem, some filters would detect edges, others may detect different objects
and textures. This property sets CNN apart from traditional machine learning algorithms
where features are extracted manually (also known as hand crafted features). A CNN could
have different convolutional layers with different set of filters, and deeper filters can detect
more sophisticated features/patterns. We have to specify number of convolutional layers,
number of filters in each layer, and size of those filters. In 2D CNN, a filter is relatively a
small matrix where we choose the number of rows and columns and numbers with that matrix
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are initialized as random numbers. The filter slides across the 2D data according to the filter
size until it does so over all blocks of the data. This sliding procedure is called convolving.
It is based on convolution operator rather than general matrix multiplication. Convolving
is the process of taking dot product of the filter values with the data and the resulting value
from this dot product will be stored. This procedure is repeated for whole data matrix and we
get a new matrix to be processed by the next layer. As mentioned earlier, there are different
filters in a layer and these are called kernels. The data matrix is convolved with each kernel
separately.

With the success of 2D and 3D CNNs, there are also 1D CNNs for time series or 1-
dimensional data. So instead of 2D filters, there are 1D filters to slide over the 1D data
and perform convolution. They produce 1D output for further processing in next layers.
Time series exhibit one dimensional data (time) instead of 2-D (width and height). Filters
provide non-linear transformation of 1D data. The convolution to the time series data can be
presented as

Ct = f (w∗Xt−l/2:t+l/2 +b) (2.14)

where C presents the outcome of convolution process (dot-product) resulting from
application of a function f to a univariate time series X with filter w of length l. There is an
additional bias factor b. f represents the final non-linear function applied on the convolution
result for example a ReLU or sigmoid function. Convolving 1D data with multiple filters
in a layer produces a multivariate output whose size is equal to number of filters. Fig 2.31
shows an example of 1D CNN filter of size 3 sliding over the input of size 6 and producing a
feature map of size 4. Using different filters in a layer provides learning process of finding
several discriminative features. Filter values are initialized randomly and they are learned
automatically as the process goes according to the dataset. Pooling layer can be added after
the convolution layer to reduce the size of the convolutional layer output by aggregating.
Another type of layer called the normalization layer to help network converge faster. The
biggest advantage of the CNN training is its speed compared to the conventional fully
connected networks due to the weight sharing mechanism. Fig 2.31 shows an example of 1D
CNN filter of size 3 sliding over the input of size 6 and producing a feature map of size 4.
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Fig. 2.31 Convolution operation of 1-dimensional CNN

2.5.2 Recurrent Neural Network

The data where temporal information is important, it is often advised to use RNN [95].
RNN processes sequential data better one element at a time and maintains history of the
past elements of the sequence in its state vector. RNN has however one disadvantage during
the training process, that is of vanishing or exploding gradient during back propagation
(gradient value is the value that is needed to update the weights along with learning rate
during packpropagation process). This is due to ever changing (growing or shrinking) of
backpropagated gradients at each time step over a long sequence. This problem is solved
by a different kind of architecture called Long Short Term Memory (LSTM) network that
is a special type of RNN. It solves the problem with memory blocks in its hidden states
along with three other units in its architecture namely input gate, output gate and forget gate.
LSTM network provides short term memory to the network. The internal gates are used for
data flow control in the memory blocks. These gates are intelligent in a way to decide which
information is important to hold and other information to forget. Therefore, the network only
learns from useful information and pass that information on to the long chain of sequences to
make predictions. It works similar to human brain where it remembers the important points
and throw away irrelevant data.
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Fig. 2.32 Long Short Term Memory network block with key operations

Fig. 2.32 shows inner structure of an LSTM block/cell and operations involved in it.
These operations allow LSTM network to keep or let information during the training process.
There are three LSTM blocks in the figure and center one is elaborated. The other two
blocks will help understand the flow of information from previous to next block. Memory
block mentioned above is also called cell state. Cell state is like memory that carries the
information along the sequence of data. Gates decide which information to keep in the cell
state. In fig. 2.32, X is the input sequence, and C is cell state, h is the hidden state. We
have three neurons with sigmoid activation functions in pink (from left to right) first sigmoid
is the forget gate, second sigmoid is the input gate and third sigmoid is output gate. The
sigmoid activation function outputs the value between 0 and 1. Any value close to 0 will be
forgotten and values close to 1 will be kept in the cell. In the forget gate, current input Xt

and previous hidden state ht−1 values are combined to form a vector and multiplied with the
weights before passing on to the sigmoid function, the resulting value will decide whether
to keep or forget it according to rule mentioned earlier. Output of the forget gate for time
sample t can be presented as

ft = δ (w f [ht−1,Xt ]+b f ) (2.15)
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where ft is the output of the forget gate, δ is the sigmoid function, w f and b f are the
weight matrix and bias associated with the forget gate neuron, ht−1 is the hidden state of
the previous cell, and Xt is the input. Before getting in to the input gate, its important to
mention another activation function involved that is tanh in the blue color neurons. These are
input/output activation function. To update the cell state, ht−1 and Xt are combined to form a
vector and multiplied with weight matrix associated with input gate before forwarded to the
input gate sigmoid function and same information is passed on to tanh function. The input
gate output and tanh function are presented as in 2.16 and 2.17

it = δ (wi[ht−1,Xt ]+bi) (2.16)

tit = tanh(wti[ht−1,Xt ]+bti) (2.17)

Tanh function outputs the value between -1 and 1 to regulate the network. Dot product
of the output from tanh and sigmoid function are taken and this product would help decide
which information from tanh function to keep or left out. In order to find the cell state, forget
state output is pointwise multiplied with previous cell’s cell state and added to the input gate
output. This process updates the current cell state value and is presented as in 2.18.

ct = (it · tit)+( ft · ct−1) (2.18)

In the output gate, it calculates the hidden state that keeps the information of the previous
inputs. First, previous cell hidden state and current input are combined to form a vector,
multiplied with the weight matrix associated with the output neuron and is fed in to the
sigmoid function. It can be presented as in 2.19

ot = δ (wo[ht−1,Xt ]+bo) (2.19)

On the other hand, cell state is processed through a tanh function. The dot product of
output from the sigmoid function and the output from tanh output are taken to decide what
information would be carried in the hidden state. In this way both the cell state and hidden
state are carried to the next LSTM cell. The current cell hidden state and output can be
presented as in 2.20 and 2.21

ht = ot · tanh(ct) (2.20)

yt = wyht +by (2.21)
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2.6 Conclusion

Robotic systems and sensing methods for atraumatic insertion of cochlear implant have
been thoroughly researched and presented in this literature review. Sensing methods for
electrode array intra-cochlear localization are divided in to two categories; one category
is sensing methods for existing commercially available electrode arrays and other type is
custom designed electrode arrays with built in sensing capabilities. The former category
includes force and impedance sensing capabilities. Force sensing can primarily judge the
extent an electrode array is touching the intra-cochlear walls, however, it is not suitable for
proximity approximation of electrode array from the walls. Impedance sensing is considered
a tool to characterize scalar position and optimize intra-operative placement of electrode array.
Different impedance measurement techniques such as bipolar and monopolar, give different
set of information of EA locality during insertion and hence can be useful if both types are
utilized together for real time impedance measurements. No such system exists and already
developed impedance measurement systems have certain limitations (e.g., they only measure
impedance magnitude). There is also no system to-date (to the best of my knowledge) that is
using complex impedance measurement for real-time EA localization. It is also important
to state that impedance values do not give any information about array tip, however, force
sensing can be utilized to get tip information. Therefore, for accurate guided placement of
the CI, both impedance measurements and force profiles may be required. Finally, machine
learning algorithms are presented that has the potential to be used as prediction/estimation
modalities for localization of EA during insertion process.
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Chapter 3

Methodology

Interaoperative feedback systems for electrode array localization are limited. Those
which are available in the form of diagnostic imaging come with radiation exposure problem
and they are not well suited for intera-operative imaging capabilities. Works by [15] and
[16] presented in 2.2.3 may provide real time feedback, however, a new technology (inte-
grated sensing) requires plenty of resources to reach clinical acceptability. The experiments
performed by [12] and [14] are for perimodiolar electrode arrays (as discussed in 2.3.2.3),
only uses impedance magnitude as a sensing element and looking at difference of impedance
magnitude difference of electrodes proximal to lateral or modiolar walls.

Recently electrical impedance is used to assess facial nerve proximity during robotic
drilling procedure of cochlear implantation [74]. Electrical impedance measurements can
also be employed to optimize EA position and eventually reduce insertion trauma. The EA
of cochlear implant has number of electrodes which stimulate auditory nerve. Most cochlear
implant (CI) systems have built in impedance measurement system and they may employ
different methods to measure it. These methods are different based on the electrode pairs
across which impedance is measured; monopolar impedance measurements are between
individual electrodes and an extracochlear ground electrode, bipolar measurement is between
two consecutive electrodes (one as a source and other as a sink), and some CI systems have
tripolar measurement which employ varying excitation between three consecutive electrodes
as shown in Figure 2.21.Various non-CI systems also have tetrapolar systems to measure
impedance which employ four consecutive electrodes. This work focuses on mono and
bipolar impedance measurements (both magnitude and phase) of electrodes along with their
real and imaginary parts to develop a data driven model for robotic feeder control.

This chapter presents methods and techniques used in this work. These include hard-
ware/software design, their interface and data analysis/machine learning techniques. The
hardware consists of impedance meter, actuation system with its controllers, force sensor and
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electrode array from Oticon Medicals. Impedance meter and actuation system are interfaced
to MATLAB via USB port and they are controlled with a Graphical User Interface (GUI).
Machine learning pipeline is also integrated in to this system for prediction. The chapter
is organized as follows: electrode array used throughout experiments are introduced first,
followed by the novel impedance sensing mechanism, actuation system is explained in the
third section and machine learning techniques are presented in the fourth section. Preliminary
results of electrode array insertion in the phantom models will be presented in the last section
1.

3.1 Electrode Array

Oticon Medical’s soft straight EVO® electrode array was used. It is a long (Insertion
Length: 25 mm, Active Length: 24 mm), thin (proximal diameter = 0.5 mm; distal diameter =
0.4 mm), flexible array with a smooth silicone surface carrying 20 micro-machined platinum-
iridium electrodes as shown in Fig. 3.1. Each electrode length is 0.47 mm and the gap
between two consecutive electrodes is 0.73 mm. Electrodes are numbered from E1 to E20
where former is the apical and latter is the basal electrode. Surface area of electrode ranges
from 0.46-0.66 mm2, smaller being at the apex and increasing in size towards base. Each
electrode is connected to a wire, and wires from 20 contacts are soldered and glued with dual
row male connector (as shown in Fig. 3.2). Electrode contacts are stimulated and controlled
through these wires. The soft and flexible silicon carrier makes sure that forces imparted on
inner ear are bare minimum. Although the electrode array is straight, however, silicon carrier
has shape memory.

Fig. 3.1 Electrode array with 20 platinum-iridium electrode contacts numbered from E1-E20
from apex to base. (image from www.oticonmedical.com)

A scaled up 2:1 plastic cochlea model is used. The reason for using scaled up model is due
small size of the real human cochlea and is hard to perform laboratory experiments on that
size. The cochlea model is filled with saline solution with 0.9% concentration as a surrogate
to perilymph fluid. According to Suesserman [? ], the conductivity of perilymp fluid in scala
tympani is 1.43 (Ωm)−1 and according to Weast [99] and Wolf [100], 0.9g/100ml NaCl is

1Part of this chapter has appeared in Hafeez et al. [98]
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required to obtain this conductivity at 20 °C. The conductivity was checked before each
experiment with a conductivity meter.

Fig. 3.2 (A) Electrode array with associated wiring (wraped in silicon carrier) soldered
and glued to a female connector, (B) close-up version of 20 electrode contacts, (C) part of
electrode array under microscope (www.oticonmedical.com)

3.2 Impedance Measurement

3.2.1 Impedance

According to Ohm’s law [101], when an electric current (I) flows through a conductive
material, voltage (V ) across two points of that material is equal to product of current and
resistance (R) of that conductor or resistance of the conductor is equal to ratio of voltage and
current.

V = IR ⇒ R =
V
I

(3.1)

This is true when a direct current (DC) is applied between cylindrical shaped conductor
such as a wire. When an alternating current (AC) is applied, a generalization of the Ohm’s
law gives rise to the concept of impedance. Impedance at a given frequency is defined as a
ratio of voltage phasor to the current phasor [102]. Electrical impedance, Z, is a complex
value and comprised of magnitude (which is the ratio of voltage and current) and phase angle
(which is difference of phases of voltage and current) and is often given by 3.2

Z∠θ =
V∠θ1

I∠θ2
(3.2)

Electrical impedance, Z, of an electric circuit is considered to include two components,
resistance R (in Ω) which is the real part and reactance X (in Ω) which is imaginary and
is given by 3.3 where j is unit imaginary number. |Z| is impedance magnitude and θ is the
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phase angle. Geometrically, impedance is a vector composed of resistance and reactance
where phase angle θ suggests position of impedance vector Z and depends on resistance and
reactance values as shown in fig. 3.3.

Z = R+ jX = |Z|e jθ (3.3)

Fig. 3.3 Geometric relationship between impedance (Z), reactance (X), resistance (R) and
phase angle

3.2.2 Impedance meter using DAQ device

Impedance meter was designed using National Instrument (NI) Data AcQuisition (DAQ)
device [103]. A known resistance is placed in series with Design Under Test (DUT), an
unknown system for which impedance measurement is required. An analog output (AO1) of
the DAQ device is connected to one end of DUT alongwith the positive end of a differential
input (AI1). The negative end of the differential input (AI2) is connected with the junction of
DUT and known resistance as well as positive end of another differential input (AI3). Finally,
other end of known resistance is connected to negative end of the second differential input
(AI4) and differential GND. The analog output is required to apply an analog input to the
series circuit, whereas two differential inputs are used for measuring voltage drops across
DUT and known resistance. The current through the circuit is calculated using ohm’s law
with known resistance and current through it. Impedance magnitude across DUT can then
be measured by the current in the circuit and the voltage drop across it. Impedance phase is
measured by taking the difference of voltage and current phases.
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Fig. 3.4 Basic design concept of impedance meter with DAQ device

3.2.3 DAQ Devices Specification

Two DAQ devices have been used in this work; one to develop impedance meter and
other to control the multiplexers. Their specifications are as follows:

3.2.3.1 NI DAQ 6211

There are two types of Input/Output ports; analog and digital.
Analog Input: There are 8 differential or 16 single ended channels (it is upto the user how
to use them) with analog-to-digital conversion (ADC) resolution of 16 bits. Single channel
maximum/multichannel maximum (aggregate) sampling rate is 250 kS/s. Its timing accuracy
is 50 ppm (parts/million) with timing resolution of 50 ns. Input range could be ±0.2V , ±1V ,
±5V , ±10V with maximum working voltage for analog inputs is ±10.4V of AI GND. All
ports marked with AI in Fig. ?? (B) are analog input ports. These ports are used to read
voltage levels.
Analog Output: There are two analog output channels with Digital-to-Analog Conversion
(DAC) resolution of 16 bits. 250 kS/s is maximum update rate for each channel. Time accu-
racy and resolution are 50 ppm of sample rate and 50 ns respectively. There is ±10V output
range with output current drive of ±0.2mA. There are multiple analog output waveform
modes (periodic and non-periodic). All ports marked with AO in Fig. 3.5 (B) are analog
output ports. These ports are used to generate voltage signals.
Digital I/O The device has 4 digital input and output channels each with pull down resistor
of 47 kΩ±1%. They have functionality of static digital input/output and timing input/output.
Digital input channels are marked as PFI<0-3>PO<0-3> whereas digital output channels are
marked as PFI<4-7>P1<0-3> as in Fig. 3.5 (B).
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It also has 2 counters/timers with the resolution of 32 bits. USB signal stream and
programmed I/O are the two ways to transfer data using this device.

Fig. 3.5 (A) NI DAQ 6211 Device function block diagram, (B) Pin configuration

3.2.3.2 NI DAQ 6009

This device has 4 differential or 8 single ended analog input channels and 2 analog output
channels with sampling rate of 48 kS/s. There are 8 digital output channels and 4 digital
input channels as shown in Fig. 3.6(B).
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Fig. 3.6 NI DAQ 6009 Device function block diagram with I/O pin detail

3.2.4 Multiplexer

As there are multiple electrode contacts/channels on electrode array, impedance record-
ings are required to be done sequentially and multiplexers are used for the same purpose.
CD74HC4051 is an analog multiplexer/demultiplexer 3.7. Its a 16-pin integrated circuit
device. It has 8 I/O channels (A0-A7) with 3 select lines (S0, S1, S2). Each combination
of select lines directs a particular I/O data to the output for multiplexer or vice versa for
demultiplexer. There is an active low triggered enable input to activate or deactivate the
device. Vcc is power input level for outgoing channel whereas VEE is power input level for
incoming channel. There is also a GND port as shown in Fig. 3.7.
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Fig. 3.7 Multiplexer CD74HC4051 functional block diagram with pin numbers

3.2.5 Impedance Meter

Impedance meter with measurement switching capabilities was developed using National
Instrument (NI) (Austin, TX USA) data acquisition (DAQ) devices (DAQ6211 and DAQ6009)
and a simple voltage divider circuit. The system’s setup configuration chain is presented in
Fig. 3.8. All analog and digital signals were generated and read by the DAQ devices and
these devices were controlled by custom software written in MATLAB ® (Fig. 3.9). The
voltage divider circuit was constructed with a known resistance (R) of 3.3Ω and electrode
pair (EP) as its series component. A sinusoidal voltage signal Vin of 1V (p-p) with 1 kHz
frequency was applied to the circuit and voltage across known resistance (VR) and EP (VEP)
were measured by the DAQ device. Voltage input signal to the circuit Vin was generated by
DAQ’s voltage output port Ao and measured voltages (VR and VEP) were read by DAQ’s input
ports Ai1 and Ai2 respectively. Current I through the circuit can be calculated with (3.4)

I =
VR

R
(3.4)

Impedance is a complex quantity that possesses both magnitude and phase and can be
given as (3.5). Impedance magnitude is the opposition to the current when an AC voltage is
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applied. Bipolar impedance magnitude |Z| of selected electrode pair is just voltage across
electrode pair divided by the current through it as in (3.6)

Z = |Z|e jθ (3.5)

|Z|= VEP

I
(3.6)

The impedance phase (arg(Z) or θ ) gives information about the type and amount of
reactance in overall impedance. It is calculated by taking the phase difference between
voltage and current as in (3.7)

∠θ = ∠θVEP −∠θI (3.7)

The resistive (R) and capacitive reactance (X) parts of the impedance can be calculated as

R = |Z|cosθ (3.8)

X = |Z|sinθ (3.9)

Two 74HC4051 8x1 multiplexers were used to sequentially switch from one pair to
another and measure bipolar complex impedance between different electrode pairs. Each
multiplexer has 8 data inputs D1-D8, 3 select lines C1-C3, and enable input EN and an
output Q. Electrode contacts were connected to data input pins of multiplexers such that an
electrode contact was selected by each multiplexer to make a pair. Eight electrode contacts
(E1, E3, ...E15) are connected to multiplexer1 inputs and electrode contacts (E2, E4, ...E16)
are connected to multiplexer2 inputs. Electrode pairs are organized as shown in table 3.1.
Electrode pairs are chosen to acquire sensing information as local as possible. The last 4
electrodes of the array are not included as they do not touch the ST curve during the insertion
and have minimal effect on damaging the ST membrane. Multiplexer1 and multiplexer2
were controlled by 3 digital output signals S1-S3 generated by DAQ6009 device digital
output ports (D0 −D2) and S4-S6 generated by DAQ6011 digital output ports (D0 −D2) ,
respectively. These select lines vary from 000-111 as digital signals to select appropriate
contact to form an electrode pair for impedance measurement. When an electrode contact
was selected, a connection was established between the contact and the output Q. The
enable signal EN was connected to +5V Vcc signal from the DAQ6009 device to activate
the multiplexers. When multiplexers were enabled and an EP was selected, signals were
applied and read from series circuit to measure outputs |Z|, θ , R and X according to the above
equations.
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Electrode Pairs Electrode Contacts
EP1 E1-E2
EP2 E3-E4
EP3 E5-E6
EP4 E7-E8
EP5 E9-E10
EP6 E11-E12
EP7 E13-E14
EP8 E15-E16

Table 3.1 Electrode pairs organization

Electrode 
Array

Multiplexer
Voltage 
Divider 
Circuit

DAQ Devices MATLAB

|Z|

ϴ

R

X

Fig. 3.8 Setup configuration chain

NI DAQ 6011

NI DAQ 6009

Vin=1V (p-p)

AoAi2Ai1

VinVEPVR

VEP

VR

D0

D0 MATLAB

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E3

.

.

.

E15

.

.

.

E4

|Z|

ϴ

R

X

D1 D3

S6S4 S5

D1 D2

Multiplexer1

Multiplexer2

S6S4 S5S4 S5

S1 S3S2S1 S3S2
Vcc

Vcc

S1 S3S2S1 S3S2 Vcc

+5V

D1

D8

C1 C2 C3 EN

Q

D1

D8

C1 C2 C3 EN

Q

E16

Fig. 3.9 Impedance meter block diagram with multiplexing
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3.3 Actuation System

Two types of actuators are used in the development of the actuation system. Physik
Instrumente (PI) M-404.4PD is a precise, inexpensive cost-optimized linear stage with
ballscrew and rotary encoder as an integrated sensor. The width of 80 mm and 100 mm travel
range with active drive DC motor. It has an operative voltage of 24 V. and motor power of
26 Watts. Its design resolution and minimum incremental motion is 0.25 µm and maximum
velocity of 50 mm/s. The actuator is shown in Fig. 3.10 (B). There will be 2 such actuators
used in the proposed system.

The other actuator is PI’s M-061.1PD precise rotation stage (as shown in Fig. 3.10) (A)
with unlimited travel range (>360°) with design resolution of 17.5 µrad (°). The maximum
velocity it supports is 90°/s. It has a gear ratio of 90:1. The max torque it can handle is ±6Nm
at any axis. It has an active drive dc motor as in the linear stage. It has similar operative
voltage and motor power as in the linear stage described above.

The controller used to control above mentioned PI actuators is C-863 (as in Fig. 3.10(C)).
Each actuator is connected to this controller in a daisy chain network setting. The function of
the controller is to control the DC motor that drives the actuator either linearly or rotation. It
supports communication interfaces such as USB, RS-232 and D-sub 9 (m). Although it has
user software (PIMikroMove), however, it also provides application programming interfaces
(APIs) in most common languages C/C++, C#, MATLAB, Python and LabView.

The overall actuation is shown in Fig. 3.12 (A). One linear stage M-404.4PD is placed
horizontally and screwed with the flat wooden board. Another similar linear stage is attached
vertically to the horizontal stage. The rotational stage M-061.1PD is attached to the vertical
linear stage. The complete system is connected to the PC via C-863 daisy chain controller
network.
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Fig. 3.10 PI Actuators and controller

3.4 Experiment and Analysis Pipeline

An overall sketch of the experimental and analysis pipeline used in this work is presented
in Fig. 3.11. EA insertion experiments are performed on 2:1 scaled-up ST model filled
with saline solution. EA is inserted using a 3-DoF actuation system connected to the PC
via a controller. Complex impedance measurements of electrode pairs are collected using a
custom impedance meter connected to the PC. A custom GUI developed in MATLAB ® is
running on the PC and controls actuation and impedance meter. The data collected during
the experiments are then used to train and test the machine/deep learning models to predict
insertion path and depth in real time.
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Fig. 3.11 Overall experimental and analysis pipeline

3.4.1 Experimental Setup

The experimental setup for EA insertion is shown in Fig. 3.12. A 2D plastic cochlear
model glued on a support was placed inside a glass filled with saline. The electrode array was
placed on a holder attached to the rotational actuation of the actuation system. Electrodes
of the array are connected to the impedance meter via a connector glued to the EA feeder
support as shown in Fig. 3.12 A. Impedance meter setup is shown in Fig.3.12 B, where we
have a breadboard housing the voltage divider circuit, multiplexers and connections with
the electrodes. There are two DAQ devices for analog/digital I/O signals to the circuit and
multiplexers and are connected to the PC via USB cables. In Fig. 3.12 C and D, we have
a portion of the EA under the microscope and zoomed version of ST model during the EA
insertion process.

Fig. 3.13 shows Graphical User Interface (GUI) to integrate and control the system.
There are three main sections in the GUI, 1) the actuation ,2) impedance meter and 3)
machine learning prediction. On the top left, we have a section where actuation system driver
is loaded and the controller is initialized. This section also reference all the actuators as
well before we intend to use them for EA insertion. In top right section, we have all the
controls where either we can adjust the actuators individually or all at once by choosing the
custom velocity and distance to move. We can also stop moving actuators by Stop buttons.
Actuator position section displays final position of each actuator after the move; mm for linear
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guide and angle for rotation actuator. The DAQ devices are initialized from the impedance
meter section and takes in number of EPs and samples we want to measure. Insertion and
Impedance Measurement section is used for EA insertion at a certain velocity and distance,
and impedance measurements during the insertion process. The graphical section shows plots
of impedance magnitude and phase during the insertion process in log scale due to potentially
very high impedance values. Finally, ML prediction section displays real time predictions of
our insertion path (straight or curved) and prediction trajectory (medial, middle or lateral).

Fig. 3.12 Experimental setup comprising of actuator, impedance meter, electrode array and
plastic ST model.
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Fig. 3.13 Custom Graphical User Interface (GUI) created in MATLAB for system integration

3.4.2 Preliminary Results

The impedance model is based on Tykocinski [72], and consists of three components, 1)
resistance between electrodes due to bulk medium (saline), 2) polarization resistance and 3)
capacitive reactance due to electrode-electrolyte interface. Components (2) and (3) combined
are called polarization impedance and can be modeled as a parallel circuit with (1) in series
with them. According to this model, we not only need to measure impedance magnitude but
also the phase, and impedance resistive and reactive components to fully comprehend the
model and use these features for prediction. Since we are measuring bipolar impedance, the
total impedance includes resistive and reactive components as shown in Fig. 3.14. R3 is the
bulk resistance between the 2 electrodes. On either side of it, we have polarization circuits
for each electrode due to electrochemical reaction.
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Fig. 3.14 Electrode/Electrolyte Impedance equivalent circuit [Electrode array in saline
solution]

Experiments were performed by inserting the electrode array at a speed of 0.05 mm/s
for 25 mm depth and bipolar impedance magnitude and phase measurements of each pair
were recorded sequentially during the insertion. It takes 500 seconds to complete the
insertion. Impedance meter samples a pair in 1.5 sec, so 41 samples of each electrode pair
were taken during the insertion process and analysed offline using Python 3.6. Bipolar
complex impedance of apical 16 electrodes in pairs of 8 were recorded sequentially during
the insertion of the electrode array in a plastic ST model. The reason for using nearest two
electrodes is to acquire small local sensing information. Fig. 3.15 shows four instances
during insertion; A) 4 electrodes inserted, B) 8 electrodes inserted, C) 16 electrodes inserted,
D) 20 electrodes inserted. The arrows show the location of the tip of EA. Fig. 3.16 shows
impedance magnitude (|Z|), phase (θ ), real (R) and imaginary (Xc) parts during insertion. |Z|,
R and Xc have their units in Ω and θ is in degree (°) units. The recordings not only depicts
the changes in values when EA is closely placed to the wall (compared to when it is not)
but also shows changes when a specific electrode is rubbing (exerted pressure/force) along
the wall. It is important to note that when an electrode pair is not in the saline solution (not
entered ST model), it gave a high open-circuit impedance value and these values are ignored
and not included in the graphs.
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A B C D

Fig. 3.15 Electrode array insertion at different instances inside ST phantom

Comparing Fig. 3.15 and Fig. 3.16, EP1 (E1-E2) and EP2 (E3-E3) were inside the
ST model and away from the wall at instance A. At instance B, E1 (most apical electrode)
was starting to touch the lateral wall for the first time and all measurements of EP1 were
starting to change. |Z| from 2.5 kΩ to 3.2 kΩ, θ is getting less negative from -36° to -33°,
impedance real part (resistance R) increased from 2 kΩ to 2.7 kΩ, and impedance imaginary
part (reactance Xc) from 1.5 kΩ to 1.8 kΩ. In the same way, after 4 samples (between instance
B and C) second pair EP2 came in to contact with the wall and its electrical properties starting
to change in the same way. A significant change in measured values were also observed in
subsequent electrode pairs EP3 (E5-E6), EP4 (E7-E8), EP5 (E9-E10) just before instance
C till instance D, however, there is no significant change in complex impedance of EP6
(E11-E12), EP7 (E13-E14) and EP8 (E15-E16) as they did not come in to contact with the
wall during the insertion process. Fig. 3.17 shows percent change of values during whole
insertion (when a particular pair is in saline filled cochlear model) in |Z|, θ , R, and Xc of
EP1 (apical), EP4 (middle) and EP7 (basal) which clearly shows EP1 has more pronounced
change than EP4 due to more contact pressure on it whereas EP7 has no significant change
as this pair did not come in to contact with the outer wall.
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An increase in |Z| due to wall contact suggested that there is more resistance path between
the electrodes. The more negative Phase θ implies that impedance is more resistive than
capacitive and this phenomenon can also be seen in R and Xc graphs where the change in R
is more pronounced than in reactance. Also, an increase in reactance means a decrease in
polarization capacitance according to relation Xc = 1/2π fC.

These results are mainly due to three reasons; 1) disturbance in the chemical reaction
at the electrode-electrolyte interface due to wall contact pressure/force, 2) when array gets
closer to the wall, there would be a decrease in reacting electrolyte with electrodes and
between electrodes, 3) impedance of the plastic material is higher than saline.

3.5 Conclusion

According to current research, there is enough evidence of a relation between EA place-
ment procedure with hearing outcomes and bipolar complex impedance measurements may
be used as a sensing mechanism for localization of EA during cochlear implant surgery.
Impedance change due to electrode proximity to different material and application of pres-
sure/force can have application in other electrode implants. These results may be used as
feedback control for the actuation system for EA insertion in implantation to manoeuvre it
precisely.

71





Chapter 4

Insertion Trajectory Prediction

One of the primary focus of minimally invasive cochlear implantation is trauma-less
electrode array insertion. Therefore, electrode array placement accuracy during cochlear
implant surgery is vital to ensure efficacy, safety and functional outcomes. Although imaging
based trajectory planning has been proposed [104], [105], however, it is an expensive
approach as it requires high resolution CT images, it comes with exposure to harmful
radiations and electrodes may also deflect from the planned trajectory due to electrode design
and tissue properties. Skinner et al. [106] suggested that electrode array insertion in scala
tympani has better hearing outcomes, however, according to [107] nearly 25% fails proper
insertion into scala tympani. Therefore, it is of paramount importance to insert the array
in to tympanic duct properly and without damage to the internal structure. This process
posses several challenges;the size of cochlea/ST, position of facial nerve with respect to
cochlea opening, the insertion axis and associated trajectory and inconsistency of mental
representation of insertion axis among surgeons. To overcome some of the issues and
optimize the insertion process, automated systems along with a sensing system will help
reduce variability.

The final placement of electrode array into ST mainly depends on the insertion angle
or trajectory, however, there is limited intra-operated information regarding the optimum
trajectory. This chapter proposes data driven approach to the trajectory prediction of electrode
array during insertion. Bipolar impedance data of multiple electrode pairs were recorded, fea-
tures are extracted from pre-processed data, train and tested on machine learning algorithms
for trajectory prediction (medial, middle or lateral).

The chapter is organized as follows: 1) The acquisition process of complex impedance of
electrodes during the EA insertion is presented 2) Then offline prediction workflow using
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machine learning algorithms is presentation, including data presentation and visualisation,
preprocessing and model evaluation, 4) finally the results, discussion and conclusion1.

4.1 Data Collection

The electrode array is inserted from three different angles (medial, middle, and lateral)
where the middle position was the center of the plastic model and medial and right at 0.5◦ to
either side from the center as shown in (Fig. 4.1). Initially electrode array was out of saline
(and out of ST model) except first pair EP1 (E1-E2). A high impedance measurement was
recorded if a pair was out of saline as an open circuit value because there is no conductive
material (saline) around electrodes. The electrode array is inserted into the ST model for 25
mm at a speed of 0.08 mm/s by moving the vertical linear actuator (EA is placed on it with a
holder). Recordings of 8 electrode pairs (EP1:E1-E2, EP2:E3-E4, . . . EP8:E15-E16) were
taken with a sampling time of 1.5s. Therefore, each pair has 25 samples during complete
insertion (1 sample/pair/mm).

Electrode array was inserted for 25mm in ST model 137 times from three different
directions; 41 times each from medial and lateral directions and 55 times from the mid-
dle of ST model. For each insertion, two features (|Z|, θ ) of an electrode pair were
recorded sequentially during insertion and impedance real and imaginary parts were calcu-
lated from its magnitude and phase later after the experiments. The reason for including
impedance’s real and imaginary parts in the analysis due to their non-linear relation with
the impedance magnitude and phase. During one complete insertion, each electrode pair
records a vector P(i) = [Z(i),Θ(i),R(i),X(i)] containing m samples of impedence magnitude
Z(i) = [|Z|(i)1 , |Z|(i)2 , . . . , |Z|(i)m ], phase Θ(i) = [θ

(i)
1 ,θ

(i)
2 , . . . ,θ

(i)
m ], and both real and imaginary

parts of the impedence given by R(i) = [R(i)
1 ,R(i)

2 , . . . ,R(i)
m ] and X(i) = [X (i)

1 ,X (i)
2 , . . . ,X (i)

m ]

respectively. Here m = 25− 2(i− 1) for all i ∈ {1,2 . . . ,8}. The reason for decrease in
samples in subsequent pairs was due to discarding of high impedance measurements when a
pair was out of saline solution during the insertion process.

1Part of this chapter has appeared in Hafeez et al. [108]
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Fig. 4.1 Experimental Setup., (A) Insertion from three different directions (medial, middle
and lateral) of ST model, (B) Impedance meter using 2 DAQ devices (6011 and 6009) and
breadboard to house circuit, multiplexers and their interconnections with electrode contacts
via wires from EA,(C) Actuation system with electrode array feeder, ST plastic model and
connectivity circuit board of EA, (D) Laptop with MATLAB GUI to control both impedance
meter and actuation system.

4.2 Offline Prediction Workflow

The workflow for this experimental study is given in Fig. (4.2). Starting off with the
problem definition i.e., classification of three different classes of insertion trajectory using
machine learning algorithms. Dataset assembling and visualization is the next step to set up
data in a certain manner and visualize it for analysis. The dataset compromises of electrical
features of 8 electrode pairs collected during insertion experiments in the lab. Preprocessing
is one of the important steps [109] which includes dumping any high impedance value or
averaging out any high impedance/short circuit value for our specific problem. It also involves
the normalization/standardization of the data with different techniques. There are two options
before dividing the dataset for training and testing a machine learning model; either using
the normalized raw data or extract the features from the normalized time series data and
select the most discriminant features. In this chapter we are using most common method
by extracting the time/frequence domain features from the normalized raw time series data.
In model selection and training, we choose machine learning algorithms that best suit for
a specific problem and trained on the dataset. We can either split the dataset into different
ratio train and test sets, or train the model with k-fold cross validation to avoid overfitting.
In our case we choose 5-fold cross validation and we choose kNN/SVM/ANN machine
learning models to be trained and tested for offline trajectory classification. While doing
the model validation, model’s hyperparameters are tuned to get the best performance. Once
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hyperparamaters are tuned for all models, their accuracies are compared, and an optimal
model is selected for further validation and utilization as an online predictor.

Problem Definition

Dataset assembly 
and Visualization

Data Pre-
processing

Feature Extraction 
and Selection

Model Selection 
and Training

Model Evaluation

Hyperparameter 
Tuning

Fig. 4.2 Supervised learning (Classification) workflow

4.2.1 Dataset Assembly and Visualization

Figure (4.3) shows line plots of 8 electrode pairs covering 4 features (|Z|,θ ,R,X) and
three insertions directions (left, middle, right). These plots are average of the respective class
samples with their standard deviation. Each time step corresponds to 1 mm of insertion into
the plastic ST model. As can be seen in the Fig. 4.3, the features are represented as the
rows and trajectories are represented as the columns. Electrode pairs (1-8) are represented as
different markers where 1 is the most apical and 8 the basal as shown on the right side of Fig.
4.3.

When EA is inserted from the middle of the ST model’s diameter, it does not touch any
wall and remains in the middle of the structure until it touches the lateral wall after 8-10 mm
insertion. At that time only the electrode tip touches the lateral wall and it bounces on and
off until it rests along the lateral wall and first electrode pair starts sliding along it. After
that, it slides along the lateral wall for the rest of the insertion. It can be seen an increase
in impedance magnitude as the respect electrode pair touches the lateral wall and slides
along with it due to force exerted on EA and proximity of electrodes to the plastic which is a
high impedance material. The impedance phase is becoming less negative during this period
which exhibits less capacitive behavior. It may be due to disturbance in the electrochemical
reaction between electrode and saline solution when it hits the lateral wall and slides along
with it. For the left direction, EA slides along the modiolar wall and touches the lateral wall
when the wall starts to curve. On the other hand, EA slides along the lateral wall during the
right direction insertion and gets an impact when curving along the wall. Data visualization
was carried out using Python’s seaborn library [110] after converting the dataset in to a
pandas’ dataframe.
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Fig. 4.3 Complex impedance of eight electrode pairs. Rows in the overall figure represent
features (From top to bottom: Impedance magnitude (Z(Ω)), phase (Θ(◦)), resistance (R(Ω)),
reactance (X(Ω)).Columns represent insertion trajectory (From left to right: Medial-Middle-
Lateral). High Impedance values are ignored in respective electrode pair’s plot.
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4.2.2 Preprocessing

This chapter is focused on supervised classification problem and it is understood that
preprocessing step do tend to effect the classifier’s predictive behaviour [111]. Therefore,
preprocessing stage is of paramount importance in the machine learning pipeline. The pre-
processing stage may consists of removing NaN/infinite/null values from dataset, handling
missing values, dataset balancing in terms of number of classes, normalization/scaling/stan-
dardization of input data before feature extraction etc. For our dataset, there was a need to
look into high impedance values due to open circuit and very low impedance values due
to short circuit between measuring electrodes. There was no short circuit values, however,
open circuit (high impedance) values were removed from the EP2-EP8 recordings. These
high impedance recordings were due to their presence outside of saline solution during the
insertion process. If there is no conductive material around electrodes, high impedance value
is recorded. We have not noticed any other data that needs to be removed or imputed. The
dataset is almost balanced with 3 classes (medial, middle and lateral) representing 41,55 and
41 classes. Therefore, no dataset balancing was required. We, however, did standardized our
input data such that the mean of the values is 0 and standard deviation is 1 (as in 4.1 ) of each
training/testing example.

z =
xi −µ

σ
(4.1)

4.2.3 Feature Extraction

TSFRESH (Time Series FeatuRe Extraction on the basis of Scalable Hypothesis test)
[112] has been used for large scale feature extraction and important features are selected
for training the model. The reason for using this technique is to avoid hand-crafted feature
extraction. This technique has the ability to provide vast array of features for further selection.
TSFRESH extracts 794 time series features that belong to time domain, frequency domain
and statistical features. Limited list of extracted features are given in table 4.1. Full list of
features can be found at [113]. With 63 time series characterization methods (stated in [113]),
it computes a total of 794 time series features and they are selected on basis of automatically
configured hypothesis tests. However, we have not used its selection method for feature
selection as there was no way to select fixed number of features. It will be discussed in next
section.

This method was opted to compare the results with normalized raw data results. It was
also used to see which electrical measure (|Z|, θ , R, Xc) has more importance in the prediction.
Standardized data was converted in to a Pandas dataframe as required by the TSFRESH
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Table 4.1 Limited List of Extracted Features using TSFRESH python package

Time Domain Frequency Domain
Mean Power Spectral Density

Standard Deviation Fast Fourier Transform (FFT) Coefficients
Skewness and Kurtosis Continuous Wavelet Transform (CWT) coefficients

Autocorrelation FFT aggregated
Autoregressor Coefficient Number of CWT peaks

package. Four columns of the dataframe are time series data (|Z|, θ , R, Xc), other columns
include class labels, timestamps of time series data, sample number and respective electrode
pair. Classification is performed with either uni-variate (single EA data) or multivariate
(more than one EA data) time series data. After the features are extracted, we have to impute
the features dataframe for any non-finite values(i.e. NaN/inf) and then apply the feature
selection method to select most relevant features. The imputation is carried out by the mean
strategy i.e., replacing the non-infinite value with the mean of the rest of the vector values.

4.2.4 Feature Selection

Feature selection or dimensionality reduction is mainly carried out to reduce the compu-
tational complexity but it also improves the performance of the machine learning algorithms
[114]. There are four types of feature selection methods, 1) filter model, 2) wrapper model,
3) hybrid model and 4) embedded model. Filter based method has been chosen for this study
due to lower complexity as its an unsupervised method and relatively fast. It’s a ranked based
technique where features are ranked according to information theoretic measures (Pearson
correlation and Chi-squared) and top ranked features are selected for training. SelectKBest
method from python sklearn library with f − classi f parameter has been used in this work
that uses Analysis of Variance (ANOVA) f-value (f-value is calculated by dividing two mean
squares) to rank the features. 25 features have been selected for each example out of 794
features extracted by TSFRESH and used for training and testing the model.

4.2.5 Evaluation Criteria

There are number of classification performance metrics such as accuracy, sensitivity,
specificity, receiver operating characteristics (ROC) curve. In this work, accuracy will be
used as our performance metric as the dataset at hand is balanced. Simply put, accuracy
reflects how frequently the classifier predicts correctly. Accuracy is determined by dividing
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the total number of correct predictions by the proportion of true predictions as in 4.2. In the
present study, there are three classes presented as {medial,middle, lateral} ≡ {1,2,3}.

Accuracy =
Total number o f correct predictions

Total number o f predictions
(4.2)

4.3 Results

Our machine learning pipeline was trained and tested on features extracted and selected
from different time series (|Z|, θ , R, X) recorded during experimentation and their different
combinations. For each case, different electrode pair(s) are used. This way, it was possible to
see impact of different time series and electrode pair on the performance of machine learning
algorithms.

First look at the case of univarite time series when only one time series is involved in
analysis. For the data preparation, we have to take certain steps. The dataset was formulated
taking a single time series. Our dataset input is defined as D = {x(1),x(2), ...x(i)} where
i ∈ {1,2, ...137}. For instance, for the case of impedance magnitude |Z| time series, the input
vector x(i) = {Z(i,1),Z(i,2), ...Z(i, j)} would only contain impedance magnitude recordings
where Z(i, j) = {|Z|(i, j)1 , |Z|(i, j)2 ....|Z|(i, j)m } and m = 25−2( j−1) for j ∈ {1,2, ...8}. Now the
dataset is prepared for feature extraction procedure. The same procedure for impedance phase,
resistance and reactance recordings. The input datasets are prepared to include different
number of electrode pairs. There are 3 classes/labels for our dataset so Y ∈ {0,1,2} for
{medial,middle, lateral}. The output labels remain the same for any input dataset.

Once the input dataset was prepared, it is standardized and converted in to pandas
dataframe so that features are extracted from it using TSFRESH. Now for every input
vector of a specific electrode pair in an input dataset, there are 794 features extracted i.e.,
Z(i, j) = { f (i, j)1 , f (i, j)2 , ... f (i, j)794 }. For example, if we take univarite time series as an example
with 3 electrode pairs, then we will have 137x3=411 input vectors for which features are
extracted. Before the feature selection, there maybe a need for cleaning the feature set by
removing any NAN/infinite values. Once we have cleaned feature set of the dataset, top
ranked 25 features were selected for each input vector using SelectKBest feature selection
method such that Z(i, j) = { f (i, j)1 , f (i, j)2 , ... f (i, j)25 }. Now the features of all electrode pairs of a
specific input example would be flattened as a single vector. For example, for the above case
of univariate time series with 3 electrodes, there would be 137x75 (rowsxcolumns) feature
set to be trained and tested.

k-fold cross validation method is employed for training and testing the datasets to avoid
any over-fitting and k=5 is choosen. The model was trained and tested 5 times in our case
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and produced the accuracy of the model in each iteration. During each iteration, the dataset
was divided in to 5 folds (portions); 4 folds are assigned as training set and one fold as a test
set so that training and test sets are different in each iteration as shown in Fig. 4.4. The final
accuracy was the average of accuracies of all iterations.

There are three models (SVM, SNN, kNN) that are cross validated on specific and
optmized hyperparameters. For SNN, we used a multilevel perceptron (MLP) with two
hidden layers of size layer1=100 neurons and layer2=10 neurons, and finally a classification
layer with 3 neurons. The hidden layers had an associated non-linearity of rectified linear
units (ReLU). A softmax layer was used to convert the output of the MLP into probabilities
of the respective classes. The network was trained for 1000 epochs using an Adam optimizer
at a learning rate of 0.001. For SVM, Radial Basis Function(RBF) kernel function was used
to train the data and Dynamic Time Warping (DTW) was used as a distance metric and 5
number of neighbors for the kNN classifier model. We have not used any weight class metric
as our dataset is balanced.

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Dataset

Training Testing

Fig. 4.4 5-fold cross validation mechanism for model evaluation

Fig. 4.5 presents accuracies when features extracted from univarite time series (|Z|, θ ,
R, and X) are cross validated using three machine learning models. The models were cross
validated with different number of EPs, for instance, 3 on the x-axis means three apical EPs
were used and so on with other numbers. The plot on the upper left of Fig. 4.5 shows the
cross validated accuracies of features extracted from impedance magnitude recordings only.
We can see, even with just one EP accuracies from SVM and SNN models are high i.e. >90%.
SNN gave the highest accuracy with just one EP, however, SVM accuracy was highest when
3 EPs were included which is closer to using one EP in that case. SNN gave reasonably
closer accuracy when 7 EPs were used compared to when one EP was utilized. In case of
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kNN, there is an increasing trajectory with regards to the EPs included in the validation
except when all 8 EPs were used. The minimum accuracy started from 75% reaching the
peak when 7 EPs were included in the analysis at 86%. Overall, SNN gave the best accuracy
at 92.5%, then SVM at 92%.

The top right plot (Fig. 4.5) gives the cross validated accuracies when features from
impedance phase θ was used for training and testing the models. As seen, SNN and SVM
have almost identical accuracy line plots with respect to the number of EPs used in the cross
validation. There is also upward trend in accuracy percentage when using more EPs. SNN
has however better accuracy at 94% when using 6 EPs whereas SVM generated highest
accuracy (93%) when features from 6 EPs were included. Again in case of kNN, accuracy
was much worse compared to other two models highest being at 88% with 4 EPs data.

If we analyse lower two plots (Fig. 4.5) i.e., accuracies generated with features extracted
from impedance resistive (R) and reactive (Xc) components, SNN model again outsmarted
the other two models. SVM and SNN models in case of feature extracted from R time series
gave highest accuracy (92% and 94% respectively) when only one EP’s data was used. They
also have reasonably decent accuracy when 4 EPs and 6 EPs were used respectively. For
kNN model, the accuracy is relatively low compared to other two models except when 6 EPs
data were used that is at 90%. On the other hand, when features extracted from X time series
with different EP combinations, the only difference is SVM accuracy relatively lower than
SNN compared to other time series. This is also noticeable that better accuracy is achieved
when more than 1 EPs are used. SNN and SVM generated highest accuracy when 6 EPs
were used, however, SNN accuracy 10% higher than SVM at 94%. In this case, SVM and
kNN accuracies are relatively comparable where kNN giving highest accuracy when 4 EPs
were used at 81%. Comparing the performance of different models against the time series
and different number of EPs used, features extracted from impedance phase θ and reactance
X gave the highest accuracy of 94%. Both of these highest accuracies came when 6 EPs
were used that gave us the intuition that using high number of electrodes give high accuracy,
however, the relation is not linear. There is also noticeable point that even though highest
accuracy was achieved when using 6 EPs but we can still get reasonable accuracy even with
one EP.
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Fig. 4.5 Model (SVM, SNN, kNN) prediction test accuracies when models are trained with
features extracted from: [Upper left] impedance magnitude (|Z|) time series only, [upper
right] impedance phase (θ ) time series only, [lower left] resistance (R) time series only,
[lower right] capacitive reactance (Xc) time series only
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Now we will look in to the performance of the models if we combine the features extracted
from different time series. Three different combinations were cross validated (|Z| & θ , |Z|
& X, θ & R) their accuracies using different combination of EPs are presented in Fig. 4.6.
Now input vector to the TSFRESH would be 2 time series as multivariate inputs and separate
feature vector was extracted from each time series and combined as an input example. After
that, 25 features are selected from combined features extracted from 2 time series. This
features set was then cross validated on three models and accuracies were evaluated.

The top plot in the Fig. 4.6 shows the accuracies when features extracted and selected
from multivaite time series of |Z| and θ . We achieved highest accuracy of 96% with SNN
model that is 2% higher than when only θ time series was used and 3.5% higher when |Z|
time series was used alone. This accuracy was achieved when 6 EPS were included in the
analysis. There were also improvements in the performance of other two models especially
the kNN. The highest accuracy with SVM and kNN were found to be 96% and 95% when 6
and 7 EPs are used respectively. Again, accuracy with just one EP was reasonable, however,
a bit lower than the highest accuracy for SVM and SNN models. Looking in to middle plot
when models were trained and tested with features from multivariate time series (|Z| and
X), there is not much difference in accuracies compared to when impedance magnitude was
alone used for analysis. Likewise, there are comparable performance of SVM and SNN
models, however, kNN performed badly in this case. The lower most plot shows model
performances in terms of accuracy when the features were extracted from impedance phase
θ and impedance real part R. We have achieved the highest accuracy in our analysis so far at
97.5% and for the first time SVM outsmarted the neural network model by 0.5%. This high
performance is achieved when features are extracted from 6 EPs data. kNN again performed
poorly and achieved highest accuracy of 92% with the same number of EPs. From this
analysis, we can say that we have sufficient evidence of better model performance with more
one time series and high number of EPs.
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Fig. 4.6 Model (SVM, SNN, kNN) prediction test accuracies when model is trained with
features extracted from: [Upper] |Z| and θ , [Middle] |Z| and Xc, [Lower] θ and R
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Further to the analysis, all 4 time series data were used to extract the features and models
were trained and tested. Separate feature set was extracted from individual time series for a
specific data example and then 25 features were selected from all those features combined for
each example. All three models were cross validated on these selected features and models’
performance were evaluated. Fig. 4.7 shows model accuracies for different number of EPs
used in the analysis. As we can see, SNN achieved the highest accuracy of 97.5% when 6
EPs were used. The same model, however, achieved reasonable accuracy of 95% when only
one EP was used. The same percent accuracy was achieve with SVM when 6 EPs were used
and 92.5% was when one EP was used for that model analysis. kNN again, achieved the
lowest performance of all with highest accuracy of 92% when 7 EPs were included in the
analysis.
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Fig. 4.7 Model (SVM, SNN, kNN) prediction test accuracies when model is trained with
features extracted from all available time series data (|Z|, θ , R and Xc)

4.4 Discussion

The insertion angle of the cochlear approach or EA insertion trajectory has gained
attention recently in the research community as it has been observed that certain trajectories
are optimal for atraumatic insertion of electrode array [115, 116]. Array insertion from certain
angles effectively has different force profiles both on cochlea walls and basilar membrane
which eventually leads to intra-cochlear trauma [117]. Insertion trajectory also influence
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insertion depth (number of electrodes inserted successfully in the ST) of the electrode array.
A bad trajectory could also lead to array translocation into scala vestibuli [118]. The ideal
axis for the insertion is the centerline of the ST, however, it is not possible to insert from ideal
axis due to facial canal position. For this, optimal axis has to be defined before the surgery to
avoid facial canal. The mental representation of the optimal axis depends on the surgeon’s
experience in the manual surgery [119]. Wimmer et al. [104] proposed a method to find
this optimal trajectory using two planes (inplane and outplane angle) for robotic surgeries.
However, this is a pre-operative method and there is no information of EA direction when its
inside the ST. This is the first step in our work that is vital to give information about the EA
insertion direction inside ST and it could be further extended to adjust the direction during
the insertion process with the robotic feed system in case it gets away from optimal path
(next chapter).

4.5 Conclusion

A machine learning pipeline has been developed for offline analysis and prediction of
electrode array insertion trajectories. In-vitro experiments were performed where electrode
array was inserted from different angles (medial, middle, lateral) 137 times in total and
bipolar complex impedance data were recorded scanning 8 electrode pairs during the insertion
process. Three machine learning models were cross validated on different set of features
extracted from uni-variate and multivariate time series complex impedance data. Also,
inclusion of different set of EPs were also evaluated in terms of models’ performance. We
can conclude that model performance increased when we used features from multiple time
series data and also there is enough evidence that higher accuracy is associated with higher
number of electrode pairs used in the feature extraction process. However, there is no linear
relationship between the model performance and number of EPs involved in the analysis.
In terms of three models evaluated, shallow neural network achieved better accuracy than
support vector machines and k-nearest neighbours which is inline with usually neural network
better performance credentials with non-linear data.
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Chapter 5

Online Prediction and Correction

Recently, advancements in machine learning techniques, sensing technologies and com-
putation capabilities in the control systems, have led to increased interest in data-driven and
learning-based control strategies [120]. The vast generation of data by complex systems
carry important information about the structure and operation of these systems, for example,
data collected from brain, autonomous cars, unmanned aerial vehicles and satellite navigation
to name a few. When first principle model is difficult to obtain and complex, these data
recordings can help scientists to understand, predict, classify and ultimately control the
behaviour of the system [121]. Neural networks have been employed in modern control
theory to approximate unknown functions for both system identification and control design.
Reinforcement learning is another domain that is used to design the control systems where
the agent tries to tune the policy to maximise the rewards to accomplish a target. However,
reinforcement learning (RL) requires a large number of samples to train and tune the policy
and its training in real time on actual hardware instead on a simulator sometimes may not be
feasible.

Real time tracking of the electrode array trajectories during insertion procedure and
avoidance of deviation from centre line path can help minimize the placement errors. An
automated system can apply the necessary corrections to reach the target position if deviations
from the planned path are quantified and available at all times. Previously, analytical methods
and kinematics models were used for path planning of the insertion process and there has not
been a lot of work done for real time trajectory prediction and correction for electrode array
insertion without adding an additional sensor on the array. Data-driven models represent an
alternative approach to estimate the electrode array position in scala tympani.

Under actuated dynamical systems can be found in a number of domains, for example,
in engineering and biology. There are several advances made for controlling such system
especially in robotics and healthcare. For instance, in healthcare such control systems provide
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treatment solutions to number of diseases such as Parkinson’s, autism spectrum disorder, and
cardiac arrhythmias. These techniques are mostly based on traditional mathematical models
from control and optimal theory. Such control methods work well when system dynamics
are known and it is possible to model the dynamics accurately. However, it gets difficult for
complicated dynamical systems such as neural activity networks. It may be possible to model
the systems using traditional methods but designing control strategies of such under-actuated
systems is challenging. Artificial intelligence (AI) models can be used to control dynamical
systems using deep neural networks. However, such AI models are always dependent on
large set of data and their black box nature makes analysis difficult.

The main focus of this chapter is to present application of an ensemble of machine
learning algorithms for real time closed loop feedback control of in vitro insertion process
of electrode array in cochlear implantation. It is the first step in this domain to develop
intelligent controllers for robotic surgical procedure that can learn from its past experience
and acquire the relationship between operating conditions and optimum actions.

For feedback control, one of the approaches utilizing sensor measurement data is to
classify it into one of the finite set of classes (situation) and each class corresponds to a
known control action [122]. In one of such research project, image data was used to design a
controller using this technique to control a quadrotor to navigate a forest trail [123]. Images
were captured from three sides (left, center and right) of real world hiking trails and multi
class (3) deep neural network classifier was trained and tested on these images. Real time
feedback controller was designed according to the 3 classes, for example, when an image is
classified as right side of trail, the quadrotor will turn left and so on. Based on this work, we
have implemented our system using time series data acquired from impedance sensing unit
for EA optimized steering during cochlear implantation. A plastic ST perception technique
based on machine learning algorithms has been developed that bypasses the problem of
determining the underlying characteristics of ST.

We are considering supervised learning to design a closed loop feedback control for
EA insertion. For this purpose, we showed how to train an ensemble of machine learning
algorithms for classification of trajectories based on performance related to learning from
data. Supervised learning in essence entails solution to an optimization problem where
objective function is actually a cost function that we want to minimize. Classifiers adopted
in this scenario make decisions on sequence of features that are dependent. Therefore,
classifier’s performance is evaluated on the basis of generated closed-loop behaviour.

This chapter deals with the online prediction and correction of the electrode array insertion
angles/direction and trajectory using complex impedance data and data driven closed loop
control system. It starts off with the preliminaries of the problem at hand followed by the
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problem formulation. Since we are using raw complex impedance data recorded during
experiments, the next section presents machine learning algorithms’ performance in an offline
setting. This section is divided in to full insertion data as well as subsequence data evaluation
for insertion direction and path classification. The chapter then moves on to presenting an
online closed loop system for insertion correction using ensemble learning approach. Lastly,
online prediction and correction results are presented followed by the conclusion 1.

5.1 Preliminaries

Lets consider a dynamical system shown in Fig. 5.1 where the dynamics of the system
can be expressed as

x′ = f (x,u) (5.1)

In Eq 5.1, state is represented as x ∈ X and control input is u ∈U . x′ represents change in
the state x. f is the function that defines the drift (shift/relocation). From the Fig. 5.1, the
sensor generates the feature s ∈ S and is dependent on the state x and their relationship is
unknown. The classifier maps the feature s to a unique label b ∈ B. The aim of the classifier
is to learn the weights w ∈ Rn to minimize the error between the predicted label and the
actual label associated with a certain feature vector. The set of labels B = {bL,bM,bR}
corresponding to the position of electrode array on the left, middle or right of the ST model’s
horizontal plane. The three labels are associated with three different control actions that
carrier has to implement for electrode array to stay in the middle of the ST (away from walls).
These are:

1. Move Left, if the array is touching the right wall
2. Move Right, if the array is touching the left wall
3. Go Straight, if the array is in the middle

The data set consists of the features and the labels (x j,s j,b j) where j represents index of
an example in the data set. The classifier tries to find the relationship between the features
and the labels. The feature vector s depends on the state x, so we can say that the classifier
indirectly learns the mapping from state to the control. This way, classifier generates the
control input u to the system and results in a closed loop feedback system as shown in Fig.5.1.

1Part of this chapter has appeared in Hafeez et al. [108]
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Fig. 5.1 A classifier in a loop feedback control system

5.2 Problem Formulation

The insertion of the electrode array is configured such that it is presented as (x,y,θ )
in the plane where (x,y) points are considered as the location of array tip and θ angle
represent heading of the array with respect to centre line of the ST model towards either of
the modular/lateral walls (as depicted in Fig. 5.2 (A)). Let d⃗ be the center line trajectory of
the electrode array and v⃗ is defined as direction of array insertion away from the center line
direction. The goal of the insertion is to keep the electrode array in the center of straight path
of ST model until it touches the curved path from where it slides along the curved path. The
motivation of keeping electrode array on the center line trajectory is two fold; (1) it would
not damage the delicate structure of the ST walls, (2) the center line insertion imposes less
overall force when the array touches the curved path and slides along it.

For this problem, we are considering ST model as two paths; one is the straight path
and other the curved path as shown in Fig.5.2(B). One of the classification models would
predict whether the position of the electrode array is located in straight path or curved path at
a certain time. In this work, we will be generating the control signals for only straight path
as we were unable to find any mechanism to control array in the curved path.
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Fig. 5.2 (A) Electrode array insertion configuration (B) Division of insertion path in to
straight and curved sections

5.3 Offline learning with raw signals

We have demonstrated classification on full and partial insertion data using standard
machine learning pipeline that includes major feature extraction and selection process in
section 4.2.3. This process takes a lot of resources and time (for example, 4 EPs data take
5.4 seconds to extract and select features) and is not fit for our application. There is another
method to train the models with raw data or normalized raw data. This method fits better for
our application to skip time consuming feature extraction/selection as time delay is critical for
real-time control application. We will first look into the generalization of machine learning
algorithms on full insertion data to classify different trajectory insertion. Further to that
different evaluation metrics will be used to test those algorithms on partial insertion data
to make sure the data is reliable enough to train a model to be used as an online predictor.
There would, however, be limitation on the generalization of the model due to different
environmental conditions (e.g., room/saline solution temperature) between two sets of data
(data collected for training and testing and the data collected during online/real-time testing).

5.3.1 Full Insertion Data Evaluation

Electrode array is inserted from three different angles and takes three different trajectories
during the insertion process. In this analysis, generalization of three classification algorithms
(SNN, KNN, SVM) are looked into using the full insertion data of 4 electrical features
(|Z|, θ , R and X) of electrode pairs. Moreover, combination of different electrode pairs
data are analysed to see their impact on the classification accuracy. This analysis would
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help in establishing whether its possible to detect which trajectory electrode array took
during the insertion using the complex impedance data. Also, this analysis is carried out
on standardized raw data. After the data is organized for each combination of electrode
pairs, machine learning models are trained and tested using 5-fold cross validation procedure.
Hyperparameters of algorithms and evaluation criteria remained the same as in the analysis
presented in Chapter 4. This will help to make comparisons of algorithms generalization
ability with and without feature extraction/selection process.

Classification accuracy achieved by each learning model on different combination of
electrode pairs data is presented in Table 5.1 where EP1 is the most apical pair. For example,
row 4 represents a dataset comprising of four feature time series of the first four electrode
pairs (EP-1,2,3 and 4) and test accuracies of three machine learning (ML) models are
presented when trained and tested on the said dataset. The last row presents the test set
accuracies when all 8 electrode pairs are considered in the modeling.

It is evident from the test accuracies of the three classifiers, higher test accuracy was
achieved when we used four electrode pairs. It is potentially due to the fact that first 4
electrode pairs observe most of the force from the lateral wall after EA touches the wall and
rub against it. Most of the time, these 4 electrode pairs are only touching the lateral wall after
the full insertion. Also, high impedance change is observed after EA touches the lateral wall
when it is curving to slide along the wall. It is also observed that a single electrode could
also have high predictive information, for example, the first-row accuracy results where only
the first pair was used. Relatively high accuracy of 94.2% is achieved using SNN. Two ML
models (SNN and SVM) gave higher than 90% accuracy to predict three classes (medial,
middle, and lateral direction insertions) except on four occasions (kNN when 1, 5 and 7 EPs
are used, SVM when 6 EPs are used) considering all selection of pairs. SNN and SVM
performed better than KNN for most of the EP data combinations. Overall SVM model
gave the highest accuracy of 97.1% when we used four electrode pairs. With the same EP
combination, SNN gave a test accuracy of 92.3%.

5.3.2 Partial Insertion Data Evaluation

Although high accuracy results are achieved to predict different insertion trajectories
using complete insertion measurement data, it is important to know how well the selected
models predict on different subsequence datasets. There are two ways the models are tested
to classify the subsequence data in this analysis. First, the classification of trajectories on
small window of data from the insertion depth. Secondly, classification of insertion path
whether the electrode array is in the straight path or on the curved path at a particular instance
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Table 5.1 Test accuracies of full insertion data with 4 raw features to classify insertion
direction/trajectory

EP
Accuracy (%)

SNN SVM KNN

|Z
|,θ

,R
,X

1 94.2 90.9 88.0
1−2 92.3 94.7 92.8
1−3 90.4 91.9 92.8
1−4 92.3 97.1 92.8
1−5 93.3 94.7 85.7
1−6 94.2 89.5 90.4
1−7 92.8 93.3 88.0
1−8 93.3 90.9 90.4

as shown in Fig. 5.2(B) where blue part is considered as straight path and orange as curved
path according to the ST model structure.

Fig. 5.3 subsequences (window) selection from the insertion data for the short-term trajectory
prediction
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Classification accuracy for trajectory (medial, middle, lateral) is tested by two subse-
quence selection methods. First, subsequences are extracted from the complete time series
data as shown in the Fig. 5.3. The crossed boxes are high impedance values (when a certain
EP is out of saline solution during insertion) that are excluded from the analysis. In this
method, subsequences are selected with respect to the time samples and include multiple
electrode pairs in the analysis. For example, timesamples 1-3 in the first row of the Table 5.2
includes EP1 and EP2 data (3 samples of EP1 and 1 sample of EP2 from begining of inser-
tion) as shown in Fig. 5.3 red dotted box. The samples from both pairs are then combined to
form a vector for training and testing of the algorithms. In the same way timesamples 3-6
contains samples from EP1-3 starting from sample 3 as in Fig. 5.3 green dotted box and they
formed a vector for further analysis.

The first column of Table 5.2 presents different time samples combination to form
subsequences and the other three columns depict test accuracies at three ML models. With
these subsequences, SNN overall gave the highest accuracy and SVM came in second. The
highest accuracy was achieved (93.8%) when time samples 2-8 of each feature and relevant
electrode pairs (which are inside the saline-filled model) were trained and tested. However, it
takes time to wait for eight-time samples before we know the insertion direction. The sweet
spot is when 1-4 time samples were used and 86.1% accuracy is achieved. This could work
well for online prediction of EA insertion direction and the actuation system could be utilized
to correct the direction during run time based on the prediction.
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Table 5.2 Classification test accuracy achieved with three machine learning algorithms on |Z|,θ , R,
and X values using different sub-sequences (different EP data combined)

timesamples
Accuracy (%)

SNN SVM KNN

1−3 85.2 78.5 80.0
1−4 86.1 82.3 80.9
1−5 82.8 78.0 71.9
1−6 87.1 83.8 83.3
1−7 86.1 81.4 76.6
1−8 86.6 89.5 74.7

2−4 86.1 79.5 81.9
2−5 87.6 79.0 76.6
2−6 86.6 82.8 86.1
2−7 87.6 79.0 80.0
2−8 93.8 81.9 78.5

3−5 84.2 76.6 73.8
3−6 92.3 78.0 80.4
3−7 92.8 81.9 80.0
3−8 91.9 85.2 84.2

4−6 82.8 75.7 73.8
4−7 90.9 76.6 72.3
4−8 91.4 80.9 72.8

5−7 87.6 77.1 77.6
5−8 85.7 79.0 79.0

For the online prediction of trajectory, data from the most apical electrode pair (EP1) is
used to train and test the algorithms first and then use the trained model for online prediction
with the new collected data during the insertion process. Different length subsequences of EP1
data are used, that is, subsequence data collected during 4 mm, 3mm, 2mm and 1mm insertion.
For these subsequences different set of data is assembled for analysis and only straight path
is considered for prediction and further correction. For example, for 4 mm insertion depth, 2
subsequences of 4 time samples each are extracted from each insertion example. These 2
subsequences will make 2 separate examples in the new dataset. That means now there would
be 137x2 (274) examples in this dataset with respective targets (medial, middle, lateral).
In the same way, for 3mm subsequence, there will be 3 subsequences of 3 time samples
each and each subsequence will make an example in the new dataset (137x3=411 examples)
with respective target label. Moreover, new dataset for 2mm and 1mm subsequences have
137x4=548 and 137x8=1096 examples according to the split of the straight path data. It is
important to mention that we are using all 4 features (|Z|, θ , R and X) in this analysis.

Table 5.4 shows the machine learning algorithms performance in terms of their cross-
validated accuracies. It is noteworthy to mention that due to low accuracy of SVM algorithm,
random forest algorithm is trained and tested and included in the analysis due to their
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ensemble learning approach. As can be seen in the table, high accuracy is achieved when
4mm subsequences are used and second-high accuracy is achieved when 2mm subsequences
are used. 1mm subsequences achieved the lowest accuracy. This behaviour is attributed
to SNN and KNN algorithms whereas the accuracy decreases as the subsequence length
is decreased from 4mm-1mm. In terms of best performing algorithms, SNN gave the best
accuracy among the four algorithms cross validated while the SVM algorithm performs the
worst.

Table 5.3 Cross validated multi-class accuracies for trajectory prediction using EP specific
sub-sequences during straight path insertion

Sub-Seq
Accuracy (%)

SNN SVM KNN RF

E
P1

4mm-2 86.8 69 79.1 82.5

3mm-3 78.8 64.2 72.0 73.5

2mm-4 80.3 65.3 77.0 72.8

1mm-8 75.2 66.7 76.3 71.2

For trajectory prediction, two methods of subsequencing have been used and tested.
Further analysis is carried out to predict whether the electrode array is in the straight path or
the curved path during the insertion. For this, we are using the full insertion data and splitting
them in to straight path and curved path data and labelling them accordingly. Since now we
only have 2 classes (straight or curved), we termed such problem as binary classification.
Different data sets are formed according to the subsequence length, labelled accordingly
and cross validated on four machine learning models. For example, for 4mm subsequence
there will be 2 subsequence examples of straight path and 3 subsequence examples of curved
path. That is, there will be 5 examples in the new dataset out of one example from the
original dataset. The examples in new dataset will be given target labels according to the
path (straight or curved). 4mm-2C/3S dataset will have 137x5=685 examples to trained and
tested using the algorithms. In the same way, new datasets namely 3mm-3S/3C, 2mm-4S/5C,
1mm-8S/10C have 137x6=822, 137x9=1233, 137x18=2466 , examples respectively.

Table 5.4 presents the accuracy results for the path prediction during the insertion process
using different subsequence length datasets. These results show that as the subsequence
length is decreasing, the accuracy of all algorithms also decreases. This is obvious because
of the shorted length vector, we have less information available for prediction. However, the
decrease is not linear due to increased number of examples on which the model is trained
and test that makes generalization easier. As show in Table 5.4, again the highest accuracy
of 87.4% is achieve by SNN on 4mm subsequences. Overall, SNN also outperformed other
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machine learning models in terms of accuracy. The lowest performer was random forest
model with accuracy of 65.9% when 1mm subsequences are used.

Table 5.4 Cross validated binary class accuracies for straight/curved path prediction using EP
specific sub-sequences

Sub-Seq
Accuracy (%)

SNN SVM KNN RF
E

P1

4mm-2S/3C 87.4 81.3 83.7 83.2

3mm-3S/3C 82.4 76.4 76.9 78.3

2mm-4S/5C 78.7 73.2 76.6 74.4

1mm-8S/10C 64.2 67.1 68.2 65.9

5.4 Real-time classifier in the loop system

Now there is enough evidence from our offline predictive analysis that machine learning
algorithms can be used as an online/real-time classifier for electrode array steering during
insertion. By this we can achieve low force profiles during EA array insertion that could
lead less traumatic intraoperative behaviour. This online method is used for correction of
the trajectory of the electrode array during the insertion based on the prediction of machine
learning models. For online prediction, we have used two classifiers; 1) Classifier A for
trajectory prediction, 2) Classifier B for path prediction. Both classifiers would be trained on
4mm subsequence data of the most apical electrode pair because this is where most of the
information about insertion is.

Although a reasonable accuracy has been achieved by our individual model, however,
ensemble approach (applying the voting algorithm on three selected models) has been used
to increase the classification accuracy for both our classifiers. According to [124], ensemble
learning is the method in which multiple classifiers are combined to take their weighted vote
to make predictions on new data. Each classifier makes its prediction and then votes for
the final prediction as shown in Fig. 5.4. This figure explains one of the ensemble learning
process that is called majority voting ensemble. In this kind of scheme, final predictor would
be predictor that gets the majority vote from the multiple classifiers. In our setup, we have
three classifiers (RF, SNN and KNN) that achieved the maximum accuracy. Although it is
possible to give uneven weights to the individual classifier vote, however, equal weight is
given to each classifier in our system.

All the offline classification is carried out using Python 3.6 but in order to keep a
homogeneous system along with actuation and sensing, machine learning system is developed
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again in MATLAB. All the hyper-parameters of learning models remain the same and
individual models are trained and tested again to make sure performance are kept the same
as offline models developed in Python. The ensemble majority voting algorithm is also
developed in MATLAB.

Once we have ensemble based trained models for both classifier A and B, we can setup
the system for online prediction and correction. Fig. 5.5 shows the control flow graph for
online prediction and correction of insertion trajectory. As mentioned above, this control
strategy is for straight path only to keep electrode array at the centerline of the ST model.
For this, there is need to first predict whether the electrode array is in the straight path or the
curved path.

Dataset

Test Dataset

Training 
Dataset

Random Forest

Shallow Neural 
Network

K-nearest 
neighbour

Majority Voting Final predictor

Fig. 5.4 Ensemble of classifier for real time classification

According to Fig. 5.5, online prediction and correction starts with electrode array
insertion and complex impedance data recording. First, the electrode array is inserted for
4mm and complex impedance (|Z|, θ ) are recorded during insertion and impedance resistive
(R) and capacitive reatance (X) are calculated with |Z| and θ . As earlier mentioned, our
system record 1 sample/mm/feature, therefore, a vector is formed of size 1x16 (4 samples
for each |Z|, θ , R and X). This vector is first fed as a test input example to the classifier A
that would predict the path of the electrode array during 4 mm insertion. The path could be
straight or the curved path as shown in Fig. 5.2. That means, there are two options and if
the model predicts EA to be in the straight path (label represented as bi), the recorded data
vector should be fed into the classifier B. This classifier predicts the trajectory of the EA
whether it’s sledded along the lateral or medial wall or it’s in the middle of the ST model.
Classifier B is an ensemble classifier that is trained with 4mm subsequence data for trajectory
classification. Once the recorded data is fed, this classifier makes prediction and decides
whether the correction of trajectory is needed or not. If the trajectory is towards medial or
lateral wall, the correction is done by moving the EA towards the middle of the ST model.
For example, when the trajectory is predicted to be medial, controller moves the rotational
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axis 0.5° towards the right. When the trajectory is predicted as lateral, the controller moves
the rotational axis towards the left to the factor of 0.5°. If the trajectory is in the middle,
no action is taken. To confirm the correction, complex impedance data is recorded again
but this without any further insertion. The flow is moved back to the data measurement
block and similar vector is generated with new collected data as EA is still in the ST model.
Classifier A and B would again predict the path and trajectory. The controller will again
make the correction according to the classifier B prediction. On the third iteration, EA is
inserted further for 4mm and the same procedure is repeated again and controller makes the
prediction according to the prediction. We can set the number of iterations n that we want to
make during the insertion process.
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Fig. 5.5 Flow chart of real time prediction and correction

Figure 5.6 presents the pictorial representation of one of the online experiments. In Fig.
5.6 (A), the experimental setup is shown as the EA is inserted for 4mm and data is collected,
EA trajectory is towards medial wall as EA can be seen inside saline filled ST model. Close
up of this trjectory is shown in (C). Once the recorded data vector is passed on to classifier A
and classifier B, controller makes the correction by moving the rotational stage of actuator
towards right by 0.5° as shown in Fig. 5.6 (B) and close up in (D). The trajectory could be
towards lateral wall as shown in (E) and is corrected as shown in (F).
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Fig. 5.6 online correction of insertion trajectory. (A) experimental setup with medial trajectory
insertion, (B) experimental setup with corrected to middle trajectory, (C) closeup of medial
trajectory insertion, (D) correction of medial trajectory, (E) lateral trajectory, (F) correction
of lateral trajectory

Table 5.5 shows the ensemble learning classification results for both offline and online
predictions. Ensemble learning models (classifier A and classifier B) are trained and tested
first using three machine learning algorithms. Classifier A ensemble model achieved accuracy
of 89.05% that is an increase from 87.4% when the highest performing individual model is
used for path prediction. For classifier B, cross validated accuracy of 86.86% is achieved
using ensemble learning that is slightly higher than the highest performing individual SNN
model. For online prediction, 30 iterations are performed to test both classifier ensemble
models. Classifier A achieved 83.33% accuracy whereas classifier B achieved slightly less
accuracy of 80% when tested for online prediction and correction.
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Table 5.5 Ensemble classification results.

Ensemble Classification Model Offline Accuracy (%) Real-time accuracy (%)

Classifier A 89.05 83.33
Classifier B 86.86 80.00

5.5 Conclusion

This chapter presents an important aspect and procedure for robotic system aimed to be
used for electrode array insertion in cochlear implantation to avoid trauma. A novel system
is developed for online prediction and correction of trajectory of electrode array during
electrode array insertion. This system is open to further development and can be beneficial
for automatic steering of EA during insertion. The system is tested using the most apical EP
and in the straight path only. It can be extended to other EPs and to the curved path as well
given a novel actuation scheme is developed alongside to steer the EA in curved path. The
system presented can also find application in other electrode insertion application and also in
needle steering.
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Chapter 6

Electrode Array Insertion Depth
Estimation

Electrode array insertion depth can be assessed by medical imaging modalities e.g., CT,
either at the end of the procedure or sometimes during the surgery if imaging device is
available in the operating room [9]. However, those imaging techniques come with the risk
of radiation exposure and mostly avoided especially during the insertion process [125]. It
also increases the time and cost of the surgical procedure.

Several studies have used different methods to predict EA insertion depth prior to the
implantation as part of the surgical planning process [126]. In one of the studies, basal turn
diameter and width were used to predict the angular insertion depth using a planning software
[127]. The results were compared with the routine prediction method using 2D CT images.
[128], [129] also presented methods to predict insertion depth.

In other biomedical applications, an ultrasound based percutaneous needle insertion
guidance robotic system has been developed which is used for real time monitoring of
positioning and orientation [130], [131]. Real-time monitoring of insertion depth of a optical
fiber based needle array was carried out for cancer treatment [132].

We have seen complex impedance measurements vary with respect to the EA position in
the cochlear model during insertion. Giardina et al. [13] briefly touched upon the relationship
of response magnitude with insertion depth in their research with evidence from the in-vitro
experiments. It was concluded that magnitude response (in mV ) increases with the insertion
depth, however, there was no further comment on if it’s possible to estimate insertion depth
with impedance measurements. Magnitude response of most apical electrode was compared
at different insertion depths as well as magnitude response of most deep and shallowest
electrodes were also compared after the full insertion. Electrocochleography (ECochG)
has also been used intraoperatively for monitoring of EA insertion and there is a strong
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correlation between response to ECochG and EA scalar position during implantation [133],
[134], [135]. Therefore, ECochG has the potential to estimate insertion depth.

Aebischer et al. [136] recently found out strong correlation of intra-operative impedances
and insertion depth, however, insertion depths were only estimated after the full insertion.
Tissue resistances were extrapolated from transimpedance recordings and their relationship
with insertion depth were statistically validated. Final electrode positions were acquired
from CT images of 20 implanted subjects. All subjects were inserted the same lateral wall
electrode array. The proposed model can estimated the linear insertion depths by a margin of
0.76±0.53 mm (mean and variance). However, the shortcoming of this approach is that it
only estimates insertion depth after the full insertion.

Post surgery hearing outcomes dependency on EA insertion depth is very much debatable
among researchers. For example, according to [137], it is concluded that deep electrode
array insertion gives better speech perception whereas in another study it is the opposite
due to potential effects of trauma because of deeper insertion[138]. However, CI surgery
needs objective measures to improve insertion process and assess surgical outcomes. These
measures could also be used for real time monitoring for EA insertion process.

Our focus in this chapter is to introduce a method where it’s possible to estimate insertion
depth during the insertion process using complex impedance data. Analysis is divided into
two sections as a classification and regression problems for estimation of linear insertion
depths of electrode array. The classification part deals with estimating final insertion depth
and regression part corresponds to depth estimation at each time step during insertion. For
classification problem, four algorithms (SVM, KNN, SNN, and RF) are used to train and
test the dataset. Moreover, a hybrid learning model of one dimensional convolution neural
network (CNN) and long short term memory (LSTM) networks is employed to estimate
linear insertion depth at every time-step.

6.1 Classification of Insertion Depths

6.1.1 Dataset Formation and Visualization

Apart from using the same dataset as in Chapters 4 and 5, we are going to introduce an-
other dataset with complex impedance measurements at different insertion depths. Electrode
array was inserted 10 times for each insertion depth. Insertion depths we tried were 5 mm,
10 mm, 15 mm, 20 mm, 25 mm as shown in Fig. 6.4. Therefore, we have 50 examples in
this dataset. Each example has 4 time series features (Z, θ , R, X) as the other dataset for
insertion trajectory. However, we collected 25 samples for a time series each even if the EA
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is inserted for less than 25 mm. For example, the system would measure 5 samples each for
a time series for 5 mm and then the rest of 20 samples would be measured when EA is static
at 5 mm depth. This is to ensure, we have equal length time series for training and testing.
Electrode array is inserted from the middle of ST model in all experiments of this dataset.
For regression analysis, dataset with examples of insertions from different directions will be
used for maximum coverage of the ST model.

5 mm
10 mm

15 mm
20 mm

25 mm

(a) (b) (c) (d) (e)

Fig. 6.1 Electrode array insertion at different insertion depths. (a)5 mm, (b)10 mm, (c)15
mm, (d)20 mm, (e)25 mm

Fig. 6.2 shows graphical representation of the complex impedance measurements taken
during the experiments. The graph shows impedance magnitude, phase, resistive and reactive
parts of first electrode pair EP1 at different insertion depths. We have electrical measurements
row-wise and different insertion depths column-wise. Graphs are plotted for 25 samples,
however, measurements are taken both while electrode array is continuously inserted and
at rest for depths lower than 25mm. Each time sample corresponds to 1mm insertion depth
for 25mm depth. For other insertion depths, partial measurements are taken when the array
is static after inserted to the corresponding depth. The graphs shown in the figure are mean
and standard deviation of the respective insertion depth experimental data. Looking at the
first column, when EA is inserted for 5 mm, impedance magnitude decreases even though
EA remains at the center of the ST model. However, the decrease is small and decrease is
continuous during both instances when EA is moving (inserted) for 5mm and then static
for rest of 20 time samples. On the other hand impedance phase is getting less negative but
the most change is observed when the electrode array is moving and not static. The change
is also small in the region of less than 0.5°. In the same way decrease in resistance and
reactance can also be seen. In the second column, more change in all electrical properties are
observed when the EA has touched the lateral wall and rests there. This is due to proximity
of EP1 to the plastic material that is high impedance material than the saline solution. We
can see there is 100Ω increase in |Z| and 1° change in phase θ . Similarly, for insertion
depths of 15mm, 20mm and 25mm, there are more pronounced changes in electrode pair
complex impedance after it touches the lateral and slides along it or rests there.
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Fig. 6.2 Electrical impedance visualization of EP1 at different insertion depths. Columns[left-
right]: 5 mm, 10 mm, 15 mm, 20 mm, 25 mm. Rows[top-bottom]: Impedance magnitude,
phase, resistance and reactance

6.1.2 Classification Results

This dataset is defined as D = {(x(1),y(1)),(x(2),y(2))...(x(i),y(i))} where i = 50, x is the
input vector and y is the target label. The input x is presented as x = {Z,Θ,R,X} where
Z = {|Z|1, |Z|2, ...|Z|m}, Θ = {θ1,θ2, ...θm}, R = {R1,R2, ...Rm}, and X = {X1,X2, ...Xm}
where m = 25. The target label y ∈ {1,2,3,4,5} representing 5 classes for different insertions
depths (5mm, 10mm, 15mm, 20mm, and 25mm respectively). The data is first standardized
by subtracting the mean and dividing by the standard deviation. Then the machine learning
models are trained and tested using 5 fold cross validation scheme. The four machine learning
models are cross validated with certain hyper-parameters that are similar to the ones used in
previous analysis.

Cross validated accuracies of four machine learning algorithms are given in Table 6.1
with their standard deviation. Support vector machine gave the highest accuracy with 98%
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Table 6.1 Test accuracies of five class insertion depth dataset

EP
Accuracy % (SD)

SNN SVM KNN RF

1 96.0(4.9) 98.0(4.0) 96.0(4.9) 92.0(9.8)

with SD of 4%, whereas Shallow neural network and k-nearest neighbours were equally
good at giving the same accuracy of 96% with SD of 4.9%. Random forest algorithm not
only gave the lowest accuracy of 92% but also having the highest SD of 9.8%. It is important
to mention that insertion depths are estimated/classified using the most apical EP data. The
same procedure can be repeated with other EPs data or can also use combination of EPs data.

Further analysis is carried out by looking in to the confusion matrix that gives us summary
of the predictions of a classification problem. It gives information about the true positive,
true negative, false positive and false negative predictions with count values and broken down
by each class. Fig. 6.3 shows confusion matrix of all 4 learning models. In each matrix,
x-labels and y-labels are representing the five classes. Confusion matrix for SVM is at top
left corner, where we have only 2 incorrect predictions of insertion depth 15mm as 10mm
insertion depth. All other insertion depth classes have 100% true positive rate. With SNN
case on right top corner, only one incorrect prediction of 10mm insertion depth class is seen
as 5mm insertion depth. All other classes have all true positive predictions. Confusion matrix
of kNN (left down) is similar to the matrix of SVM. For random forest machine learning
model, we can see three incorrect precitions; 10mm insertion depth is incorrectly predicted
as 5mm and 15mm insertion is once incorrectly prediction as 10mm and once as 5mm. All
other 3 classes have 100% true positive rate.

With confusion matrix analysis, it is evident that the insertion depths of 10mm and 15mm
have incorrect predictions whereas the rest of classes have no incorrect predictions in all
trained models. The reason may be explained that these insertion depths are at the crossroads
of straight and curved insertion paths especially 10mm depth. Having said that, with such a
small dataset, the models are trained well and predictions accuracies are above 95%.
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Fig. 6.3 Confusion matrix of classification

6.2 Insertion Depth Estimation using Regression

In the regression problem, the input X is mapped to the output Y by the algorithm
M : X → Y where X is an input sample set X = {x(1),x(2), ...x(m)} and corresponding output
target set Y = {y(1),y(2), ...y(m)} where m in our dataset is 3425. One of the examples of input
x corresponds to {|Z|,θ ,R,X} having time sample each for impedance magnitude, phase,
resistance and reactance. The output target set Y values range from 1-25 mm as shown in Fig.
6.4. In this, we have used our insertion trajectory dataset to cover dynamics of the ST model
and different insertion paths. Linear regression algorithm is used to fit the data, however,
after getting unsatisfactory results advanced convolution and recurrent neural networks are
applied for this regression problem.
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Fig. 6.4 Insertion depth blueprint of ST model

6.2.1 Performance Metrics

To access the performance of regression, there are different performance metrics than
classification such as mean absolute error (MAE), mean squared error (MSE), root mean
squared error (RMSE), and r-squared value (R2).

MAE is expressed as in (6.1) where yi is the ith ground truth numeric value and ŷi is
the ith predicted numeric value. MAE is calculated by taking the average of the absolute
prediction errors. Absolute is the mathematical function that converts any negative value
to the positive value. Any negative errors will be forced to positive value while calculating
MAE. Unlike MSE, MAE gives equal weightage to any error and does not penalize large
errors, that is, it increases linearly.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (6.1)

MSE is the most popular performance metric for regression and it is also used as a loss
function in learning algorithms for regression as its been used in our model fitting/optimizing.
MSE is calculated as the average of the squared differences of the ground truth target values
and the predicted targets. The square operation removes any negative sign from difference
value. The squared error value also contributes to penalizing the larger errors. It is expressed
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as in (6.2)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (6.2)

RMSE is just the square root of the MSE but it has significant in terms of the unit it has.
MSE will have the squared units whereas RMSE has the same unit as the target/predicted
value. Therefore, MSE is normally used as an optimization parameter for model training
whereas RMSE gives better indication of the performance of regression model. It is given as
in (6.3)

RMSE =
√

MSE (6.3)

R-Squared(R2) is also known as coefficient of determination and gives the indication of
how close the predictive values are to the fitted regression line. Higher R2 value indicates
how good a model is to explain the variability of data around its mean. It is defined as the
ratio of explained variance to the total variance and is represented mathematically as in (6.4)

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳi)2 (6.4)

where ȳi is given by

ȳi =
1
n

n

∑
i=1

yi (6.5)

6.2.2 Linear Regression Results

Insertion depth estimation is first estimated with a basic multivariate regression model
i.e., Linear Regression. There are four independent variables |Z|, θ , R and X and a dependent
variable depth d. The estimated linear regression function can be represented as in 6.6

d = b0 +b1|Z|+b2θ +b3R+b4X (6.6)

Linear regression model tries to determine the weights (b0, b1, b2, b3, b4) such that the
prediction d is as close as to its actual value. The linear regression model from Python’s
sklearn library is trained and test. The estimation function used by the linear regression
models is ordinary least squares which minimizes the distance from the observed response to
the predicted values. The data is split into 85/15 train test split. After fitting the model with
the train data, model is used to predict insertion depth from the test data set. The performance
metrics MAE, MSE, RMSE, and R2 are calculated using the predicted and true values of
insertion depth.
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The performance metrics of the linear regression model is given in 6.2. The model
predicted the test data set with mean absolute error of 4.54 mm, mean squared error and root
mean squared value of 33.76 mm2 and 5.81 mm respectively. The R2 metric turned out to be
0.35. It is evident that errors are substantially high when total linear insertion depth is 25
mm. The model also happen to have very low R2 value that shows the model was unable to
fit the data. The reason could be that there is no linear relation between independent variable
and dependent variable. The solution to improve the performance metrics is to use non-linear
deep learning model as discussed in next section.

Table 6.2 Regression performance metrics using Linear Regression Model

EP
Model: Linear Regression

MAE MSE RMSE R2

1 4.54 33.76 5.81 0.35

Fig. 6.5 Linear Regression with actual/predicted values distribution in the test set

6.2.3 CNN-LSTM Hybrid Model Results

A hybrid model of 1-dimensional convolutional neural network (CNN or Conv nets) and
a variety of recurrent neural network (RNN) known as long short term memory (LSTM)
network is used as a regression model. As shown in Fig. 6.6, a learning network is developed
to train and test our insertion data to predict linear insertion depth using complex bipolar
impedance features. There are five layers in this model; input layer, convolutional layer,
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LSTM layer, dense or full connected layer and finally the output layer. The convolution layer
is responsible for spatial feature extraction whereas the LSTM layer is useful for temporal
fearures. The input layer has all the data arranged according to the requirement of the
subsequent convolutional layer. Since we are doing regression, each time sample in the
dataset will have a target label according to the depth of the most apical electrode. EP1 data
has been used in this analysis, however, the same process can be applied to other electrode
pairs. At each time step, there are four recorded values |Z|,θ , R and X, and a vector is formed
with these values as shown in input layer. The value of k is 3425 that represent the number of
examples we have in the data set that has been created. The target values are set from 1-25
mm according to the depth to most apical electrode during the insertion process.

Once we have the input layer setup, there is 1-D convolutional layer. The reason for using
1-D CNN layer is its low conputational complexity compared to 2-D CNN and also 1-D CNN
even with shallow architectures can learn from complex 1-D signals [97]. There are 12 1D
filters of size 1x4. The selection of number of filters is carried out as hyperparamter tuning
start from 4 filters. Each filter learns different features from the input 1-D signal. Size of the
filter has been kept as the size of the input signal. The convolution layer produces the output
(feature map) of the size 4x12 for each input training example. The convolution process for
each kernel is carried out according to the Fig. 2.31. The feature map is fed in to the LSTM
layer with 12 cells. The number of LSTM cells are selected according to the size of its input
from the CNN layer. Each cell works as explained in Fig.2.32 and carry the information to
the next LSTM cell. The LSTM layer produces an output of the size 1x12 that is fed into
the fully connected layer with 25 neurons and onto a single neuron output layer. The output
layer finally gives the insertion depth prediction. There are total 1281 trainable parameters in
the model.
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Fig. 6.6 Hybrid CNN-LSTM model for insertion depth prediction

6.2.3.1 Model Training

Learning model is developed in Python 3.6 using Keras library with tensorflow on the
backend. The dataset is divided in to 70/15 ratio for training and validating the regression
model. The rest of 15% dataset is set aside to be used as test set and will be unseen to the
model during the training. The activation function for convolutional layer and dense layer is
Rectified Linear Unit (ReLU) that supresses all negative values and its a linear function for
values above 0. The activation function for LSTM layer is tanh and recurrent activation is
sigmoid function.

The model is trained for 1000 epochs with the batch size of 30. Adaptive moment
estimation (ADAM) optimizer is used with learning rate of 0.001 and mean squared error
(MSE) as the loss function. To avoid overfitting, earlystopping has been used with patience
value of 200. This helps to stop the training process if the model is overfitting. Fig. 6.7
shows the progress of model training where x-axis is number of epochs and y-axis is MSE
value. It is evident that model is not overfitting as MSE of validation set is a little higher than
the MSE of train set and there is not a big difference between those RMSE values.
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Fig. 6.7 CNN-LSTM hybrid model training for insertion depth regression

6.2.3.2 Performance Scores

Linear insertion depth estimation was carried out by a hybrid learning model. The model
is trained and tested on a dataset collected in-vitro in a plastic ST model. Out of 3425 data
examples, 2397 are used for training the model while the rest of 1028 are equally divided into
validate and test set. The performance measures of our model is depicted in Table 6.3. The
table shows performance metrics for both validate and test sets. The test set remained unseen
to the model during the training process. Mean absolute error for the validate and test sets
are 2.66 mm and 2.57 mm ( 10% variation) which indicates good model performance. Mean
squared error is 11.93 mm2 for the validation set and 11.32 mm2 when depth is predicted on
the test set. MSE is a bit high with respect to our data range of 1-25 mm. The reason for this
high value is the inherit property of MSE to penalize large errors compared to small errors.
Better performance measures of regression models are RMSE and R2 value that turned out
to be 3.45 mm and 0.76 (76%) respectively for the validation set. The same performance
metrics are almost similar when insertion depth is predicted using the unseen test set.

Table 6.3 Regression performance metrics for validation dataset using CNN-LSTM Model

EP Dataset
Model: CNN+LSTM

MAE MSE RMSE R2

1 Validate 2.66 11.93 3.45 0.76
1 Test 2.57 11.32 3.36 0.76

To get clearer visual representation of the predictive performance of the model, Fig. 6.8
presents fitted linear regression line. Actual targets are along x-axis and model predicted
values are along y-axis. This graph also shows distribution of the actual and predicted
insertion depths on the top and right side of it in green color. It can be seen, there is even
distribution of our test set in terms of linear insertion depth 1-25mm data samples. If we see
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the distribution of the predicted depths, the performance is good in the beginning when the
EA is inserted for 6-10 mm whereas prediction performance deteriorates in the middle of
insertion depth, for example, from 12-20 mm depths. The reason for this bad performance
could be the fact that it is the region when when EA is touching the lateral wall and sliding
along with it. The insertion depth estimation is also not up to the mark at 1 mm. The reason
for this maybe stabilization of impedance values in the beginning of the insertion.

Fig. 6.8 Regression line with actual/predicted values distribution in the test set

In Fig. 6.9, randomly selected 25 examples of test set are taken and bar graph are plotted
for their ground truth target values and estimated targets by the model. This graph better
portray the difference in the estimation performance in terms of insertion depths. There are
very few instances in this subset of data where real insertion depth has substantial difference
with respect to the estimated or predicted insertion depth. For example, data example 3 has
big difference between the two values i.e., 8 mm. Most of the data examples have nominal
difference and few of them have very small difference, for example, data example number 5,
6, 11, 19 and 20.
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Fig. 6.9 Randomly selected 25 sample comparison of actual and predicted values of test set

6.3 Conclusion

It has been shown in this chapter that there is correlation between the complex impedance
measurements and the linear insertion depth during electrode array insertion. For partial
insertion depth estimation, multi-class (5) classification achieved results of above 95%
accuracy when using SNN, SVM and KNN machine learning models. Whereas, for each
mm time-step insertion depth estimation, a meager 0.35 R2 value is achieved using linear
regression model. For that reason an advances CNN-LSTM deep learning model is used
to increase the prediction of mm-linear insertion depth. A relatively better 0.76 R2 value is
achieved partially due to the reason of non-linearity properties of the data at hand. It may not
be possble to use such model in clinical practice, however, there is a room for improving the
model performance by collecting more data and use data augmentation to generate synthetic
data. With the results at hand, it is clear that complex impedance is not only beneficial
for trajectory/path classification but also for insertion depth estimation. In the same way,
this method can also be used for postoperative array management and intraoperative EA
translocation. Although, angular insertion depth is mostly mentioned in the hearing research
community, however, linear insertion depth is easily converted to angular insertion depth
according to the ST size as mentioned in [136]. The analysis in this chapter is carried out on
the insertion data of the most apical electrode pair but it can be replicated to other electrode
pairs. Complex impedance data of multiple electrode pairs can also be used in a single
analysis.

118



Chapter 7

Conclusion

7.1 Summary

The objective of this work was to develop a system for automated and atraumatic electrode
array insertion in cochlear implantation. For that system, a complex impedance measurement
system was developed and an actuation system with 3 degree of freedom was developed. To
achieve the pursuit of atraumatic electrode array insertion, a data driven model was chosen to
detect the trajectory and insertion depth of array during the insertion.

First of all, an impedance meter was developed that could not only measure bipolar
impedance magnitude but also its phase, resistive and reactive parts. The reason going for
complex impedance was the impedance equivalent circuit that defines the interaction of
electrodes with the conductive solution and tissues in the cochlea. This impedance meter was
designed for sequentially recording eight electrode pairs in bipolar stimulation setting during
the insertion. Initial experiments showed that complex impedance components change when
electrode is touching the ST walls.

Insertion trajectory is crucial for trauma-less insertion of the electrode array into the
cochlea. It is also of vital importance that surgeons know of the EA directions once it’s in the
ST. This research focused on classifying EA insertion from three different angles/positions
of the ST using machine learning algorithms. It’s been successfully show-cased that it is
possible to make trajectory prediction using complex impedance. It has been shown that high
classification accuracy is achieved when all components of complex impedance are used and
higher number of EPs are taken in to account. Learning models are developed with/without
feature extraction and selection algorithm from the time series data. The models were trained
and tested on both full insertion data and windowed/partial subsequence data.

Data driven machine learning models are trained and tested for trajectory (medial, lateral
and middle) and path (straight or curved) predictions during the insertion process. Overall

119



shallow neural network achieved the highest performance in terms of accuracy. However, in
order to improve performance, an ensemble learning approach was adopted with majority
voting scheme. Ensemble learning model was developed with three machine learning
algorithms namely shallow neural network, k-nearest neighbours and random forest.

Ensemble model trained on subsequence data was employed to develop data driven
feedback control loop. A complete robotic system was developed by integrating complex
impedance sensing, 3 DoF actuation, machine learning algorithms and feedback control loop.
This system was able to reasonably correctly predict the electrode array insertion trajectory
(above 80% classification accuracy) and path (above 95% classification accuracy in partial
insertion experiments and 0.85 R2 value for mm time-step estimation) in online setting. This
system has the potential to reduce the trauma induced during the implantation procedure.

Last but not least, an advance learning scheme was developed to estimate the insertion
depth of electrode array during insertion. A hybrid model consisting of convolutional and
recurrent neural network has been trained and tested on complex impedance data to estimate
insertion depth both in classification (partial insertion depth estimation) and regression (mm
time-step estimation) models.

This thesis offers a new methodology to measure and use complex impedance of elec-
trodes in cochlear implant; for the localization of electrode array during the insertion process.
It provides evidence of using machine learning algorithms for efficient prediction of different
electrode array trajectories during the insertion. It also shows that a deep learning model can
be used for linear insertion depth estimation that can be used on run-time. Overall, this thesis
provides a framework for better electrode array insertion that may cause less trauma than the
manual insertion process.

7.2 Research Limitations

The experiments are performed on scaled up 2D scala tympani model. However, tympanic
membrane is a 3D structure, therefore further experiments need to be performed on 3D ST
model. Having said that, only the first turn of the ST where EA experiences the most
impact was considered. That turn is almost identical in 2D and 3D models. A 3D model
was designed, however, failed to 3D print the model using the clear material due to non-
availability of material in house and ordering to a non-professional manufacturer. The 2D
used model was also scaled up 2:1 and I believe it is important to test the system for original
size ST model.

As mentioned earlier, plastic model is used which is different from real cochlea in terms
of internal structure. The plastic does not incorporate non-linearity introduced by the tissues
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in real animal or human cochlea. However, we believe that our system may perform similarly
or better in real cochlea as medial wall has tissue structure and lateral wall has bony structure
that may help better to discriminate the trajectory. This needs to be further investigated by
first testing the system on animal cadaver and then on human cadaver to introduce the system
to real environment of actual size and internal structure.

An important step to optimize the EA insertion process is the design of an automatic
feeder system with an option of variable insertion speed adjustment. Such a system reduces
the variability caused by the manual procedure in speed, tremor, and insertion duration.
The proposed sensing system works best with such a robotic tool. The limitation of the
feeder system we used is bulkiness and it might be difficult to attach to a robotic arm for
easy maneuvering in the operating theatre. The second limitation is EA insertion duration
due to the limitation of impedance meter sampling time. It is important to record at least
1 sample/EP/mm of insertion. However, lower insertion speed was associated with lower
insertion trauma and better post-surgery hearing outcomes [11, 47].

It is understandable that all cochlear implants measure impedance differently (current
stimulation first and then voltage measurement) than the proposed method and only measure
impedance magnitude. Due to this reason, the system is not directly translational, however,
we consider our system as a standalone robotic insertion platform with a novel sensing
mechanism that requires access to the electrode contacts of CI to measure the proposed
feature set during insertion to make a prediction.

One of the limitations of the proposed study is the dependence of bipolar impedance mea-
surement on conductive fluid. Any measurement outside saline solution is a high impedance
value and barely useful. There needs to be a mechanism for the automatic exclusion of such
measurements from the feature set. There is another limitation in terms of variability in
discriminative measurements due to different electrode arrays or measurement conditions
which may limit the generalization of the machine learning algorithms. This limitation can
be addressed by characterization and calibration of the implant prior to use. Lastly, the
proposed work has used 3 trajectories which may not be representative of several other
insertion possibilities. Further investigation needs to be done by incorporating additional
trajectory variants, for example, similar to the work by Martins et al. [139] where they are
accessing trauma when EA is inserted from different round window quadrants. Nonetheless,
the proposed work is a step forward towards more accurate predicted implantation which
may also have application in other electrode implants.
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7.3 Future Directions

It has been demonstrated successfully in this work that complex impedance has merit as
a sensing modality for atraumatic steering of electrode array. However, other sensing mecha-
nism introduced in this domain such as force sensing and electrocochleography (EcochG)
can be integrated in to a single unit along with complex impedance. Data generated by
these sensing systems would carry more information about the EA insertion in real time
than a single sensing system. This is what termed as data fusion where data from different
sources (sensors) are combined to reduce uncertainties, improve reliability and increase the
performance of the machine learning models [140]. It would also be interesting to correlate
complex impedance with the insertion forces and train the ML models to stop the insertion
when a certain threshold exceeds to avoid intraoperative damage.

As we have used classical machine learning algorithms for our trajectory prediction, there
is need to collect more data and test deep learning models that are believed to have more
generalization ability and high performance. However, these deep learning models are data
hungry and they tend to overfit with few data examples. To record large datasets, we have
to look at the reliability of the electrode array as well since it is not made for the purpose
of insertion hundred and thousands of times to collect large amount of data. This problem
could be overcome if a number of electrode arrays are available from the same manufacturer.

The impedance meter designed in this study has a very slow sampling rate due to
limitations of the DAQ device used. Its sampling rate could be increased by using high
sampling rate DAQ device to collect more data per unit time. NI DAQ 6211 has been used
in our work that has sampling rate of 250 kS/s, NI DAQ 6341 or 6366 could be used with
sample rate of 500 kS/s and 2 MS/s respectively to increase data collection per unit time. It
is also possible to increase data collection rate by designing impedance meter using AD5933
integrated circuit interfaced with a microcontroller that has high sampling rate. More data
recorded per unit time will help machine learning algorithms have higher performance.

This system is only tested on the electrode array supplied by Oticon Medical that is
one of electrode types that they produce. Our proposed system should be further tested on
different electrode types from different manufacturers such as from Cochlear Ltd, Med-el
and advanced bionics.

We have proposed solution for the trajectory, path and insertion depth prediction of
electrode array using bipolar complex impedance measurements. This system may be helpful
in predicting insertion failures such as tip foldover (this problem is more pronounced in
perimodiolar EAs), EA bucking, and EA translocation. Further experiments need to be
performed to demonstrate its applicability to overcome such failures that not only degrade CI
postoperative performance but could also lead to internal infections.
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Appendix A

MATLAB Code

Actuation System

1. Load Driver function

1 function Controller= DriverObject()

2 disp('******************Driver Object is ...

Loading*********************');

3 addpath ( 'C:\Users\Public\PI\PI_MATLAB_Driver_GCS2' );

4 if ( ¬exist ( 'Controller', 'var' ) || ¬isa ( Controller, ...

'PI_GCS_Controller' ) )

5 Controller = PI_GCS_Controller ();

6 end;

7 end

2. Controller Object function

1 function [Controller1,Controller2,Controller3, ...

PIdevice]=ControllerObject(Controller)

2

3 disp('**********************Controller Objects are ...

initialising*****************');

4

5 boolPIdeviceConnected = false; if ( exist ( 'PIdevice', 'var' ...

) ), if ( PIdevice.IsConnected ), boolPIdeviceConnected = ...

true; end; end;
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6 if ( ¬(boolPIdeviceConnected ) )

7

8

9 controllerSerialNumber = '0135500161';

10 PIdevice=Controller.OpenUSBDaisyChain(controllerSerialNumber);

11 controller1_HardwareAddress=1;

12 controller2_HardwareAddress=2;

13 controller3_HardwareAddress=3;

14 Controller1=...

15 PIdevice.ConnectDaisyChainDevice(controller1_HardwareAddress);

16 Controller2=...

17 PIdevice.ConnectDaisyChainDevice(controller2_HardwareAddress);

18 Controller3=...

19 PIdevice.ConnectDaisyChainDevice(controller3_HardwareAddress);

20

21 end

22

23 % Query controller identification string

24 connectedControllerName1 = Controller1.qIDN();

25 connectedControllerName2 = Controller2.qIDN();

26 connectedControllerName3 = Controller3.qIDN();

27

28 % initialize PIdevice object for use in MATLAB

29 Controller1 = Controller1.InitializeController ();

30 Controller2 = Controller2.InitializeController ();

31 Controller3 = Controller3.InitializeController ();

32

33 %% Show connected stages

34 disp('******************Connected ...

Stages*************************');

35 % query names of all controller axes

36 availableAxes1 = Controller1.qSAI_ALL

37 availableAxes2 = Controller2.qSAI_ALL

38 availableAxes3 = Controller3.qSAI_ALL

39 % get Name of the stage connected to axis 1

40 stage1=Controller1.qCST ( '1' )

41 stage2=Controller2.qCST ( '1' )

42 stage3=Controller3.qCST ( '1' )

43 % Show for all axes: which stage is connected to which ...

axis−Controller1

44 for idx1 = 1 : length ( availableAxes1 )

45 % qCST gets the name of the

46 stageName1 = Controller1.qCST ( availableAxes1 { idx1 } );
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47 disp ( [ 'Axis ', availableAxes1{idx1}, ': ', stageName1 ...

] );

48 end

49

50 % Show for all axes: which stage is connected to which ...

axis−Controller2

51 for idx2 = 1 : length ( availableAxes2 )

52 % qCST gets the name of the

53 stageName2 = Controller2.qCST ( availableAxes2 { idx2 } );

54 disp ( [ 'Axis ', availableAxes2{idx2}, ': ', stageName2 ...

] );

55 end

56

57 % Show for all axes: which stage is connected to which ...

axis−Controller3

58 for idx3 = 1 : length ( availableAxes3 )

59 % qCST gets the name of the

60 stageName3 = Controller3.qCST ( availableAxes3 { idx3 } );

61 disp ( [ 'Axis ', availableAxes3{idx3}, ': ', stageName3 ...

] );

62 end

63 end

3. Stages Referencing function

1

2 function [axis1, axis2, ...

axis3,positionReached1,positionReached2,positionReached3]...

3 =Referencing(Controller1, Controller2, Controller3)

4 disp('*********************Referencing of ...

Stages*************************');

5 axis1 = '1';

6 axis2= '1';

7 axis3= '1';

8 % switch servo on for axis

9 switchOn = 1;

10 Controller1.SVO ( axis1, switchOn );

11 Controller2.SVO ( axis2, switchOn );

12 Controller3.SVO ( axis3, switchOn );

13 % reference axis

14 Controller1.FRF ( axis1 ); % find reference
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15 disp ( 'Stage−1 is referencing')

16 % wait for referencing to finish

17 while(0 ̸= Controller1.qFRF ( axis1 ) == 0 )

18 pause(0.1);

19 fprintf('.');

20 end

21 fprintf('\n');

22 Controller2.FRF( axis2);

23 disp ( 'Stage−2 is referencing')

24 while(0 ̸= Controller2.qFRF ( axis2 ) == 0 )

25 pause(0.1);

26 fprintf('.');

27 end

28 fprintf('\n');

29 Controller3.FRF( axis2);

30 disp ( 'Stage−3 is referencing')

31 while(0 ̸= Controller3.qFRF ( axis3 ) == 0 )

32 pause(0.1);

33 fprintf('.');

34 end

35 fprintf('\n');

36 positionReached1 = Controller1.qPOS(axis1);

37 positionReached2 = Controller2.qPOS(axis2);

38 positionReached3 = Controller3.qPOS(axis3);

39 end

4. Move X function

1 function [positionReached1]=moveX(Controller1,axis1,xaxis,vel)

2 %% Move Stage

3 disp('**********************Stage ...

Moving***********************');

4 %SET Velocity

5 Controller1.VEL(axis1, vel);

6 positionReached1 = Controller1.qPOS(axis1);

7 commandedPosition1=positionReached1+xaxis;

8 Controller1.MOV ( axis1, commandedPosition1 );

9 disp ( 'Stage−1 is moving | x−axis')

10

11 while(0 ̸= Controller1.IsMoving ( axis1 ) )

12 pause ( 0.1 );
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13 fprintf('.');

14 end

15 positionReached1 = Controller1.qPOS(axis1);

16 end

17 % similar functions for y−axis and rotational axis by ...

changing the controller and axis objects

5. DAQ Initialization

1 function [s s1 s2 s3]=DAQ_Init(duration)

2 daqreset

3 % measurement settings

4 fsout = 250000;

5 fsin = 125000;

6 % time vector

7 xlen = round(duration*fsout);

8 t = (0:xlen−1)/fsout;

9 s=daq.createSession('ni');

10 s1 = daq.createSession('ni');

11 s2 = daq.createSession('ni');

12 s3 = daq.createSession('ni');

13 outCh=addAnalogOutputChannel(s,'Dev2',0, 'voltage'); % DAQ6011

14 s.Rate=fsout;

15 inCh=addAnalogInputChannel(s,'Dev2',0:1, 'voltage'); % DAQ6211

16 addDigitalChannel(s1,'Dev2','port1/line0:2','OutputOnly');

17 addDigitalChannel(s2,'Dev1','port0/line0:2','OutputOnly');

18 outCh=addAnalogOutputChannel(s3,'Dev2',1, 'voltage'); % DAQ6011

19 inCh(1).TerminalConfig = 'Differential';

20 inCh(1).Range = [−10 10];

21 vee=−5;

22 outputSingleScan(s3,vee);

23 end

6. Insertion alongwith complex impedance measurement and live plotting

1

2 function [positionReached2,Mag_Z1,Phase_Z1,RZ,XZ]=...

3 moveY_MeasureImp(Controller2,axis2,dist,vel,sample,EP,s,s1,s2,s3...

4 ,Zgraph_3,Pgraph_2)

5

6 %% Move Stage
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7 disp('**********************Stage ...

Moving***********************');

8 Controller2.VEL(axis2,vel);

9 positionReached2 = Controller2.qPOS(axis2);

10

11 commandedPosition2=positionReached2+dist;

12 fs_out = 250000;

13 dur = 0.5;

14 cal_out = 1;

15 cal_ch1 = 1;

16 cal_ch2 = 3.3;

17 x_length = round(dur*fs_out);

18 t = (0:x_length−1)/fs_out;

19 channel_skew=4e−6;

20 % Multiplexing

21 pair1 = [0 0 0];pair2 = [0 0 1];pair3 = [0 1 0];

22 pair4 = [0 1 1];pair5 = [1 0 0];pair6 = [1 0 1];

23 pair7 = [1 1 0];pair8 = [1 1 1];

24

25 Samples1=1:1:sample;

26 %% Y axis Controller MOve

27 Controller2.MOV ( axis2, commandedPosition2 );

28 positionReached2 = Controller2.qPOS(axis2);

29 %% Impedance measurement

30 for samples=1:sample

31 for cc=1:EP

32 if (Controller2.IsMoving ( axis2 )==1 )

33 disp ( 'Stage−2 is moving | y−axis')

34 end

35 if cc==1

36 outputSingleScan(s1,pair1); %6211

37 outputSingleScan(s2,pair1); %6009

38 elseif (cc==2)

39 outputSingleScan(s1,pair2);

40 outputSingleScan(s2,pair2);

41 elseif (cc==3)

42 outputSingleScan(s1,pair3);

43 outputSingleScan(s2,pair3);

44 elseif (cc==4)

45 outputSingleScan(s1,pair4);

46 outputSingleScan(s2,pair4);

47 elseif (cc==5)

48 outputSingleScan(s1,pair5);

49 outputSingleScan(s2,pair5);
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50 elseif (cc==6)

51 outputSingleScan(s1,pair6);

52 outputSingleScan(s2,pair6);

53 elseif (cc==7)

54 outputSingleScan(s1,pair7);

55 outputSingleScan(s2,pair7);

56 else

57 outputSingleScan(s1,pair8);

58 outputSingleScan(s2,pair8);

59 end

60

61 f = 1000;

62 out_data = 1*sin(2*pi*f*t)'*cal_out;

63 queueOutputData(s,out_data);

64 wait(s, 1.1*dur+0.5);

65 [input_data,¬] = startForeground(s);

66 input_data = detrend(inpit_data);

67 input_ch2=input_data(:, 1)*cal_ch2;

68 input_ch1 = input_data(:,2)*cal_ch1;

69 [Mag_Z, Phase_Z] = ...

frequency_response(input_ch1, input_ch2);

70 phi = 2*pi*f*chskew;

71 Phase_Z = Phase_Z + phi;

72 Phase_Z=unwrap(Phase_Z);

73 Phase_Z=rad2deg(Phase_Z);

74 % save the data into frequency response vectors

75 if (cc==1)

76 Mag_Zvec(cc,samples) = Mag_Z;

77 Phase_Zvec (cc,samples)= Phase_Z;

78 R(cc,samples)= abs(Mag_Z*cosd(Phase_Z));

79 X(cc,samples)=abs(Mag_Z*sind(Phase_Z));

80 elseif (cc==2)

81 Mag_Zvec(cc,samples) = Mag_Z;

82 Phase_Zvec (cc,samples)= Phase_Z;

83 R(cc,samples)= abs(Mag_Z*cosd(Phase_Z));

84 X(cc,samples)=abs(Mag_Z*sind(Phase_Z));

85 elseif (cc==3)

86 Mag_Zvec(cc,samples) = Mag_Z;

87 Phase_Zvec (cc,samples)= Phase_Z;

88 R(cc,samples)= abs(Mag_Z*cosd(Phase_Z));

89 X(cc,samples)=abs(Mag_Z*sind(Phase_Z));

90 elseif (cc==4)

91 Mag_Zvec(cc,samples) = Mag_Z;

92 Phase_Zvec(cc,samples)= Phase_Z;
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93 R(cc,samples)= abs(Mag_Z*cosd(Phase_Z));

94 X(cc,samples)=abs(Mag_Z*sind(Phase_Z));

95 elseif (cc==5)

96 Mag_Zvec(cc,samples) = Mag_Z;

97 Phase_Zvec (cc,samples)= Phase_Z;

98 R(cc,samples)= abs(Mag_Z*cosd(Phase_Z));

99 X(cc,samples)=abs(Mag_Z*sind(Phase_Z));

100 elseif (cc==6)

101 Mag_Zvec(cc,samples) = Mag_Z;

102 Phase_Zvec (cc,samples)= Phase_Z;

103 R(cc,samples)= abs(Mag_Z*cosd(Phase_Z));

104 X(cc,samples)=abs(Mag_Z*sind(Phase_Z));

105 elseif (cc==7)

106 Mag_Zvec(cc,samples) = Mag_Z;

107 Phase_Zvec (cc,samples)= Phase_Z;

108 R(cc,samples)= abs(Mag_Z*cosd(Phase_Z));

109 X(cc,samples)=abs(Mag_Z*sind(Phase_Z));

110 else

111 Mag_Zvec(cc,samples) = Mag_Z;

112 Phase_Zvec (cc,samples)= Phase_Z;

113 R(cc,samples)= abs(Mag_Z*cosd(Phase_Z));

114 X(cc,samples)=abs(Mag_Z*sind(Phase_Z));

115

116 end

117 % Live graphs in GUI

118 if (cc==1)

119 semilogy (Pgraph_2,Samples1(1:samples),...

120 abs(Phase_Zvec(1,1:samples)),'−r')

121 drawnow limitrate;

122 semilogy (Zgraph_3,Samples1(1:samples),...

123 Mag_Zvec(1,1:samples),'−r')

124 drawnow limitrate;

125 elseif (cc==2)

126 semilogy (Pgraph_2,Samples1(1:samples),...

127 abs(Phase_Zvec(1,1:samples)),'−r',...

128 Samples1(1:samples),abs(Phase_Zvec(2,1:samples))...

129 ,'−b');

130 drawnow limitrate;

131 semilogy (Zgraph_3,Samples1(1:samples),...

132 Mag_Zvec(1,1:samples),'−r',Samples1(1:samples),...

133 Mag_Zvec(2,1:samples),'−b');

134 drawnow limitrate;

135 else

136 semilogy(Pgraph_2,Samples1(1:samples),...
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137 abs(Phase_Zvec(1,1:samples)),'−r',...

138 Samples1(1:samples),abs(Phase_Zvec(2,1:samples)),...

139 '−b',Samples1(1:samples),abs(Phase_Zvec(3,1:samples))...

140 ,'−g');

141 drawnow limitrate;

142 semilogy(Zgraph_3,Samples1(1:samples),...

143 Mag_Zvec(1,1:samples),'−r',Samples1(1:samples),...

144 Mag_Zvec(2,1:samples),'−b',Samples1(1:samples),...

145 Mag_Zvec(3,1:samples),'−g');

146 drawnow limitrate;

147 end

148 end;

149 Mag_Z1=Mag_Zvec;

150 Phase_Z1=Phase_Zvec;

151 RZ=R;

152 XZ=X;

153 end

7. Machine learning algorithms

1 % k−nearest neighbour

2 knn_SC =fitcknn(x,y,'NumNeighbors',5);

3 save('knn_SC','knn_SC')

4

5 % Random Forest

6 RF_SC =TreeBagger(5,x,y);

7 save('RF_SC','RF_SC')

8

9 % Shallow Neural Network

10 trainFcn = 'trainscg';

11 hiddenLayerSize = [100,10];

12 net1 = patternnet(hiddenLayerSize, trainFcn);

13 % Train the net1work

14 [net1,tr] = train(net1,x,y);

15 save('net1','net1');

16

17 % Ensemble classifier Function

18 function [y]=ensemble_classifier(x)

19 load knn_SC.mat

20 load net1.mat

21 load RF_SC.mat

22 yknn=predict(knn_SC,x);

23 yqdisc=predict(RF_SC,x);
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24 ynn = net1(x');

25 ynn = vec2ind(ynn);

26 predictions=[yqdisc yknn ynn];

27 [count,values]=hist(predictions,unique(predictions));

28 [Vmax,argmax]=max(count);

29 y=values(argmax);

30 end

8. Online prediction and correction - GUI code

1 app.MLPrediction_impact.Value=('');

2 app.MLPrediction_trajectory.Value=('');

3 [app.positionReached2,app.ModZ,app.PhZ,app.RZ,app.XZ]=...

4 MoveY_MeasureImp(app.Controller2,app.axis2,app.dist,app.vel,...

5 app.sample,app.EP,app.s,app.s1,app.s2,app.s3,app.Zgraph_3,...

6 app.Pgraph_2);

7 app.ModZ_PhZ=[app.ModZ(1:1,:) app.PhZ(1:1 ,:) app.RZ(1:1 ,:) ...

app.XZ(1:1 ,:) ]

8 assignin('base','ModZ_PhZ1', app.ModZ_PhZ);

9 %Path Prediction

10 yfit_SC= ensemble_classifier_SC(app.ModZ_PhZ);

11 if (yfit_SC==1)

12 app.MLPrediction_impact.Value=('before curved impact');

13 else

14 app.MLPrediction_impact.Value=('after curved impact');

15 end

16 %direction prediction

17 yfit=ensemble_classifier(app.ModZ_PhZ);

18 if (yfit==1)

19 app.MLPrediction_trajectory.Value=('Left');

20 elseif (yfit==3)

21 app.MLPrediction_trajectory.Value=('Right');

22 else

23 app.MLPrediction_trajectory.Value=('Middle');

24 end

25

26 % Actuator Correction according to prediction

27 if (yfit==1)

28 app.positionReached3=rotation(app.Controller3,app.axis3,0.5,1)

29 app.Rpos.Value=num2str(app.positionReached3);

30 elseif (yfit==3)

31 app.positionReached3=rotation(app.Controller3,app.axis3,−0.5,1)

32 app.Rpos.Value=num2str(app.positionReached3);
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33 else

34 app.positionReached2 = app.Controller2.qPOS(app.axis2);

35 app.Ypos.Value=num2str(app.positionReached2);

36 end

37 app.positionReached1 = app.Controller1.qPOS(app.axis1);

38 app.positionReached2 = app.Controller2.qPOS(app.axis2);

39 app.positionReached3 = app.Controller3.qPOS(app.axis3);

40 app.Xpos.Value=num2str(app.positionReached1);

41 app.Ypos.Value=num2str(app.positionReached2);

42 app.Rpos.Value=num2str(app.positionReached3);

or

Python code

1. Classification

def Classification_(xdata,labels):
cv = KFold(n_splits=5, random_state=1, shuffle=True)
#Classifiers
clf_KNN = KNeighborsTimeSeriesClassifier(n_neighbors=5)
clf_SNN = MLPClassifier(hidden_layer_sizes=(100,10)
,max_iter=1000,activation = ’relu’,solver=’adam’,random_state=3)
clf_SVM = svm.SVC(kernel="rbf")
clf_RF = RandomForestClassifier(n_estimators=5) #Random Forest
#scaling
scaler = StandardScaler()
scaled_data = scaler.fit_transform(xdata)
Z=scaled_data

#model fitting
scores_SVM= cross_val_score(clf_SVM, Z, labels, scoring=’accuracy’,
cv=cv, n_jobs=-1)
scores_SNN = cross_val_score(clf_SNN, Z, labels, scoring=’accuracy’,
cv=cv, n_jobs=-1)
scores_KNN = cross_val_score(clf_KNN, Z, labels, scoring=’accuracy’,
cv=cv, n_jobs=-1)

145



scores_RF = cross_val_score(clf_RF, Z, labels, scoring=’accuracy’,
cv=cv, n_jobs=-1)

scores= [mean(scores_SVM),std(scores_SVM),mean(scores_SNN),std(scores_SNN),
mean(scores_KNN), std(scores_KNN),
mean(scores_RF), std(scores_RF),
mean(scores_QD), std(scores_QD)]

return scores

2. Feature Extraction and Selection

#Feature extraction using TSFRESH
from tsfresh.feature_extraction import extract_features,
MinimalFCParameters, EfficientFCParameters
def feat_extract(df):

eff_feat=extract_features(df,column_id="Insertion",
column_sort="timeStamps", default_fc_parameters=EfficientFCParameters())
return eff_feat

#Feature selection
def select_feat(feat_set,labels,k):

from sklearn.feature_selection import f_classif
min_max_scaler = preprocessing.MinMaxScaler()
minimal_features1 = min_max_scaler.fit_transform(feat_set.values)
Efficient_features_df=pd.DataFrame(data=minimal_features1,
index=np.arange(1,138), columns=feat_set.columns)
selector = SelectKBest(f_classif, k)
selector.fit(Efficient_features_df, labels)
cols = selector.get_support(indices=True)
features_df_new = Efficient_features_df.iloc[:,cols]
return features_df_new

3. Convolution and LSTM Hybrid Regression Model

from keras.models import Sequential
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from keras.layers import Dense, Conv1D, Flatten,
BatchNormalization,MaxPooling1D
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
from keras.layers.recurrent import LSTM
from keras.callbacks import EarlyStopping
from keras.optimizers import SGD
from keras.optimizers import Adam

data=ds1[:,:4]
depth=ds1[:,-1]
x = data.reshape(data.shape[0], data.shape[1], 1)
y=depth
xtrain, xtest, ytrain, ytest = train_test_split(x, y,

test_size=0.15, shuffle = False, random_state = 8)
xtrain, xval, ytrain, yval = train_test_split(xtrain, ytrain,

test_size=0.176, random_state= 8) # 0.176 x 0.85 = 0.15

model = Sequential()
model.add(Conv1D(12, 4, activation=’relu’,
padding=’same’, input_shape=(4,1)))
model.add(LSTM(12))
model.add(Dense(25, activation="relu"))
model.add(Dense(1))

opt = Adam(lr=0.001)
model.compile(loss="mse", optimizer=opt)
model.summary()
es = EarlyStopping(monitor=’val_loss’, mode=’min’, verbose=1, patience=200)
history = model.fit(xtrain, ytrain, epochs=1000, batch_size=30,

validation_data=(xval, yval), verbose=2,
shuffle=False,callbacks=[es])

plt.plot(history.history[’loss’], label=’train’)
plt.plot(history.history[’val_loss’], label=’validate’)

147



plt.legend()
plt.show()
ypred = model.predict(xval)
print(model.evaluate(xtrain, ytrain))
print("MSE: %.2f" % mean_squared_error(yval, ypred))
x_ax = range(len(ypred))
plt.scatter(x_ax, yval, s=5, color="blue", label="original")
plt.scatter(x_ax, ypred, lw=0.8, color="red", label="predicted")
plt.legend()
plt.show()

148


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Aims and Objectives
	1.3 Contribution
	1.4 Thesis Outline

	2 Literature Review
	2.1 Cochlear Implantation
	2.1.1 Electrode Array Designs
	2.1.2 Surgical Techniques
	2.1.3 Insertion Trauma
	2.1.4 Insertion Failure

	2.2 Robotic Cochlear Implantation
	2.2.1 Robotic Drilling Systems
	2.2.2 Robotic Electrode Array Insertion
	2.2.3 Integrated Steering Mechanism

	2.3 Sensing Methods
	2.3.1 Insertion Forces
	2.3.2 Impedance Measurements
	2.3.2.1 Stimulation Strategies
	2.3.2.2 Equivalent Circuit
	2.3.2.3 Impedance for Insertion Guidance


	2.4 Machine Learning
	2.4.1 Supervised Learning
	2.4.1.1 Classification
	2.4.1.2 Regression

	2.4.2 Unsupervised Learning
	2.4.3 Reinforcement Learning
	2.4.4 Time Series Classification
	2.4.4.1 Classification Algorithms


	2.5 Deep Learning
	2.5.1 Convolutional Neural Network
	2.5.2 Recurrent Neural Network

	2.6 Conclusion

	3 Methodology
	3.1 Electrode Array
	3.2 Impedance Measurement
	3.2.1 Impedance
	3.2.2 Impedance meter using DAQ device
	3.2.3 DAQ Devices Specification
	3.2.3.1 NI DAQ 6211
	3.2.3.2 NI DAQ 6009

	3.2.4 Multiplexer
	3.2.5 Impedance Meter

	3.3 Actuation System
	3.4 Experiment and Analysis Pipeline
	3.4.1 Experimental Setup
	3.4.2 Preliminary Results

	3.5 Conclusion

	4 Insertion Trajectory Prediction
	4.1 Data Collection
	4.2 Offline Prediction Workflow
	4.2.1 Dataset Assembly and Visualization
	4.2.2 Preprocessing
	4.2.3 Feature Extraction
	4.2.4 Feature Selection
	4.2.5 Evaluation Criteria

	4.3 Results
	4.4 Discussion
	4.5 Conclusion

	5 Online Prediction and Correction
	5.1 Preliminaries
	5.2 Problem Formulation
	5.3 Offline learning with raw signals
	5.3.1 Full Insertion Data Evaluation
	5.3.2 Partial Insertion Data Evaluation

	5.4 Real-time classifier in the loop system
	5.5 Conclusion

	6 Electrode Array Insertion Depth Estimation
	6.1 Classification of Insertion Depths
	6.1.1 Dataset Formation and Visualization
	6.1.2 Classification Results

	6.2 Insertion Depth Estimation using Regression
	6.2.1 Performance Metrics
	6.2.2 Linear Regression Results
	6.2.3 CNN-LSTM Hybrid Model Results
	6.2.3.1 Model Training
	6.2.3.2 Performance Scores


	6.3 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Research Limitations
	7.3 Future Directions

	References
	Appendix A 

