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Abstract 

Underlying mechanisms of plasma metabolite signatures of human ageing and age-related diseases 

are not clear but telomere attrition and dysfunction are central to both. Dyskeratosis Congenita (DC) 

is associated with mutations in the telomerase enzyme complex (TERT, TERC, and DKC1) and 

progressive telomere attrition. We analyzed the effect of telomere attrition on senescence 

associated metabolites in fibroblast conditioned media and DC patient plasma. Samples were 

analyzed by gas chromatography/ mass spectrometry and liquid chromatography/ mass 

spectrometry. We showed extracellular citrate was repressed by canonical telomerase function in 

vitro and associated with DC leukocyte telomere attrition in vivo; leading to the hypothesis that 

altered citrate metabolism detects telomere dysfunction. However, elevated citrate and senescence 

factors only weakly distinguished DC patients from controls, whereas elevated levels of other 

tricarboxylic acid cycle metabolites, lactate and especially pyruvate distinguished them with high 

significance. The DC plasma signature most resembled that of patients with loss of function pyruvate 

dehydrogenase complex mutations and that of older subjects but significantly not those of type 2 

diabetes, lactic acidosis, or elevated mitochondrial reactive oxygen species (1-3). Additionally, our 

data are consistent with further metabolism of citrate and lactate in the liver and kidneys. Citrate 

uptake in certain organs modulates age-related disease in mice and our data has similarities with 

age-related disease signatures in humans. Our results have implications for the role of telomere 

dysfunction in human ageing in addition to its early diagnosis and the monitoring of anti-senescence 

therapeutics, especially those designed to improve telomere function.  

 

Key Words: metabolism; telomeres; human ageing; cellular senescence; citrate. 
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Graphical abstract 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad018/6991261 by Brunel U
niversity London user on 19 January 2023



Acc
ep

ted
 M

an
us

cri
pt

Introduction 

Cellular senescence is a dynamic process induced by a variety of cellular stresses, including 

irreparable DNA double strand breaks (IrrDSBs). IrrDSBs accumulate at telomeres following 

telomerase deficiency following telomere attrition (4) or in non-dividing cells due to inadequate DNA 

repair (5, 6). IrrDSBs are resolved by telomerase in dividing cells (7, 8) but not so readily in non-

dividing cells.  

Telomeres shorten in most human tissues with chronological age (9). Additionally, age-

adjusted leukocyte telomere length (AALTL) is associated with poor health, especially cardiovascular 

disease (10), and is reversible upon positive changes in lifestyle (11) or telomerase activators (12).  

In mice, telomere dysfunction induced by complete Tert or Terc deletion results in IrrDSBs, 

impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and 

increased production of reactive oxygen species (ROS). These phenotypes are countered by 

increased telomerase function (13) and excessively long telomeres (13, 14), to benefit lifespan and 

health span. However, the extent of telomere attrition in dividing human cells with age is less 

dramatic than in tert-/- or terc-/- mice.  

Telomere dysfunction is associated with senescence in human disease (15) but its influence 

on human metabolism and in particular the plasma biomarkers of age-related diseases, is not clear.  

To investigate this, we took advantage of Dyskeratosis Congenita (DC) patient plasma samples. DC 

patients possess heterozygous (TERT/TERC) or hemizygous (DKC1) rather than homozygous loss of 

function mutations, and DC is phenotypically closer to the terc+/- mouse than the tert-/- or terc-/- 

mouse (16).  

 DC patients display premature aging phenotypes and short telomeres in their tissues in vivo 

(17, 18) and premature senescence in vitro (19). DC patients are a useful study group for the 

investigation of the effects of telomere dysfunction and senescence on human metabolism because 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad018/6991261 by Brunel U
niversity London user on 19 January 2023



Acc
ep

ted
 M

an
us

cri
pt

the mechanism of premature senescence is characterised and DC patients do not usually have 

confounding conditions such as type 2 diabetes (T2D) at an early age, which would affect 

metabolism.  

 Telomere dysfunction culminates in cellular senescence, which is accompanied by the 

accumulation of an array of extracellular proteins and metabolites, known as the senescence-

associated secretory phenotype (SASP (20)) and the extracellular senescence metabolome (ESM 

(21)), respectively. Some metabolites of the ESM are associated with chronological ageing in humans 

(22, 23), but the underlying mechanisms are largely unknown. Several anti-senescence approaches 

are now being considered to ameliorate age-related diseases, including senolytic drugs (24), which 

have shown some promise in clinical trials. However, the non-invasive detection of senescent cells 

and/or telomere attrition in human disease is challenging owing to the small number of senescent 

cells and/or dysfunctional telomeres. SASP proteins are not generally detectable, their detectability 

varies in different disease states  (25, 26) and it is acknowledged that additional plasma biomarkers 

are needed (reviewed in (24)).  

The ESM metabolite citrate is particularly interesting because its uptake has been 

implicated in ageing, caloric restiction, type 2 diabetes, blood pressure, heart rate, memory, 

adipocyte inflammation, epigenetic regulation and cancer (reviewed in (27)) and so we 

initially investigated this metabolite. 

Materials and methods 

Cell characterization, senescence induction by ionizing radiation and collection of conditioned 

medium 

The cell culture methods, the senescence-associated β galactosidase assay and conditioned 

medium collection have been described previously (21). Glucose was measured using the Glucose 

Assay Kit, (Abcam, Cambridge, MA), following the manufacturers instructions. BJ and NHOF-1 cells 
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have been described previously (21) .  BJ cells are normal newborn dermal fibroblasts (28) and 

NHOF-1 cells are normal oral fibroblasts derived from the buccal mucosa (29). Both BJ cells and 

NHOF-1 cells have low levels of p16INK4A (30) and can be immortalized by telomerase (28) see also 

Figure1. BJ and NHOF-1 cell line panels were tested for mycoplasma using a Lonza 

MycoAlertTM Mycoplasma Detection Kit and found to be negative. 

 

Retroviral infection of BJ and NHOF-1 cells 

pBABE retroviral vectors on the puromycin-resistant backbone expressing TERT and TERT-HA 

(31) or the empty vector were obtained from Addgene Europe, Teddington, Middlesex, UK. 

Retroviral particles were produced by transfection of phoenix A cells and used to infect target cells. 

Transduced cells were selected with puromycin. 

 

Patients, normal subjects, plasma collection and ethics 

Ethical approval for the collection of normal and DC plasma samples and the metabolomics 

analysis was granted by the London-City and East Research Ethics Committee (certificate number 

07/Q0603/5). Blood (2-10mL) was collected by venipuncture using a 19-gauge butterfly needle into 

EDTA vacutainers from non-starved healthy volunteers and DC patients. Within 2 hours, blood was 

centrifuged at 1300g for 15 minutes at 4oC to pellet the blood cells. Following this, the plasma 

supernatant was transferred to a 1.5 mL Eppendorf centrifuge tube and centrifuged again at 20,600g 

for 2 minutes at 4oC. Plasma was then transferred to a fresh Eppendorf centrifuge tube and snap 

frozen in a dry ice/ethanol bath for at least 15 minutes before storage at -80oC.  

 Patient symptoms, white blood cell counts, platelet counts, hemoglobin and mean red 

blood cell corpuscular volume were all recorded at the time of diagnosis and in subsequent clinical 

assessment when samples were collected. 
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AALTL measurement  

Whole blood telomere lengths were measured using the monochrome multiplex 

quantitative PCR (qPCR) method (32).  

Telomere length, hTERT transcript and telomerase activity measurement  

For the absolute telomere length analysis, a qPCR method was performed as described in 

(33). Telomerase activity using qPCR was performed using the TRAP protocol (34) and primer 

sequences as described. The quantification of fully spliced hTERT and GAPDH mRNA was described 

previously (35).  RQ data analysis was initially performed using the SDS 2.4 software (Applied 

Biosystems; Thermo Fisher Scientific, Inc.) then plotted as bar charts in Prism. 

Enzyme-Linked Immunosorbent Assay (ELISA) 

To measure the cytokines (IL-1α, and IL-6), a sandwich ELISA method (Quantikine® ELISA 

Immunoassay, R&D Systems, Abingdon, UK) was employed following the manufacturer’s protocol. 

The detection limits were 3.9-250 pg/ml IL-1α and 3.13- 300 pg/ml for IL-6. 

Metabolomic analysis 

(a) Unbiased metabolomic screen 

The details of the unbiased metabolic screen have been published previously (21).  

(b) Targeted measurement of extracellular citrate by gas chromatography/mass spectrometry (GC-

MS). 

The methods for targeted GC-MS analysis have been described previously (30). 

(c) Metabolite extraction and targeted analysis by liquid chromatography/mass spectrometry 

For the analysis of organic acids from plasma, samples stored at -80oC were thawed at room 

temperature and 100 µl aliquots treated with methanol (400 µl) to deproteinize the samples. The 
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sample order was randomized before extraction. The samples were vortexed briefly, kept on ice for 

at least 60 min, then centrifuged (7378 g) for 10 min at 4°C. Multiple aliquots of the supernatant 

were collected and transferred to new microcentrifuge tubes. For the pooled QC sample, 75 µl of 

each sample supernatant was mixed in a new tube. Supernatants were dried in a centrifugal vacuum 

concentrator (Savant Speedvac, Thermo), and kept at -80°C until analysis.  

 Samples were reconstituted for analysis in 75 µl of a solution containing stable isotope 

labelled (SIL) internal standards, made up in LC-MS grade water at 1 µg/mL. The SIL standards were 

L-malic acid-13C4, succinic acid-13C4, sodium lactate-13C3, citric acid (1,5,6-carboxyl-13C3) and L-phenyl-

d5-alanine (this last used to monitor the consistency of 29 injection volumes, but not otherwise used 

to normalize the data). The reconstituted samples were then centrifuged and transferred to LC-MS 

vials. 

 The samples were analysed by ion-pairing chromatography-mass spectrometry, as described 

fully in (36), with additional transitions added for the SIL standards, as listed in (37), using a XEVO 

TQ-S tandem mass spectrometer coupled to a Acquity UPLC binary solvent manager equipped with a 

CTC autosampler (Waters Ltd, Wilmslow, UK). Briefly, data were acquired with electrospray 

ionization in negative mode, and the chromatography used a Waters HSS T3 column (1.8 µm, 2.1 x 

100 mm) with a binary solvent system of 10mM tributylamine + 15mM acetic acid in water (solvent 

A), and 80% methanol + 20% isopropanol (solvent B) to 100%. The sample run order was 

randomized. Before analysis, injections of double blanks (water) and single blanks (SIL standard mix) 

were performed to ensure system stability, and to identify carryover/contaminant peaks. A pooled 

QC sample was injected at the beginning of the run and then once every 10th injection throughout 

the run, to assess instrument stability across the entire analytical run. The compounds monitored 

were pyruvate, lactate, succinate, oxaloacetate, malate, 2-oxoglutarate, 7-methyl guanosine, urate, 

aconitate, isocitrate, citrate, α-C-mannosyltryptophan, plus the SIL standards as described above. 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad018/6991261 by Brunel U
niversity London user on 19 January 2023



Acc
ep

ted
 M

an
us

cri
pt

 The LC-MS data were processed using Skyline (MacCoss Lab, (38). Blanks and QC samples 

were used to exclude contamination and low quality samples, with acceptance criteria of <0.3 

relative standard deviation (RSD) for QC samples, and <1% peak area (of QC) in blanks. Metabolite 

concentrations were expressed as the ratio relative to the values for the SIL internal standards for 

each metabolite; except for those metabolites without a SIL standard available (pyruvate, isocitrate, 

α-C-mannosyltryptophan, urate, 7-methylguanosine, oxaloacetate, aconitate), for which relative 

count data were used.  

 

Statistical Methods 

(a) Multivariate analysis 

Two-way hierarchical clustering was performed using standardized data and Ward’s method 

of linkages for the control and DC groups separately. The heat map represents the compound 

concentrations. Principal components analysis was carried out using auto-scaled and mean-centered 

data. The first four PCs were inspected for associations with disease status, and the first 10 PCs used 

as input for Fisher’s linear discriminant analysis. 

(b) False discovery rates (FDRs) 

FDRs of 0.05 were determined using an adaptive linear step-up procedure (39).  

(c) Other statistical methods 

Cell culture and unbiased metabolomics screen data were analyzed by Student’s unpaired T 

test. Raw and normalized plasma metabolomics data were analyzed by the Wilcoxon-Mann-Whitney 

and Mann-Whitney U tests and corrected in the latter case for false discovery rate. Linear regression 

analysis was conducted by using the Excel data analysis package and the graphs prepared in Excel.  
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Results 

 

Citrate is regulated by telomere function and the canonical function of telomerase, independently 

from inflammatory cytokines in vitro 

 Extracellular citrate (EC) and interleukin 6 (IL-6) both increased in senescent fibroblasts. The 

catalytic subunit of telomerase, TERT, reduced levels of EC (Figure 1A, 1B) in parallel with the 

frequency of senescence-associated beta galactosidase (Figure 1C, 1D) in both BJ fibroblasts and 

NHOF-1 cells, but the empty vector and TERT-HA (extrachromosomal telomerase functions only) did 

not (see also Figure 1E). The TERT-HA construct was made by Meyerson and colleagues (40) and 

turned out to be very useful because it does not lengthen telomeres or immortalize cells (31) even 

when ectopically expressed making it a useful control for TERT over expression and 

extrachromosomal (non-canonical) TERT functions (41).  

Only the TERT transgene was able to increase telomere length (Figures 1F, 1G) despite the 

fact that TERT-HA was expressed (Figure 1H, 1I) and induced telomerase activity in BJ cells (Figure 

1J). These data demonstrate that EC is regulated by the canonical function of telomerase and links 

telomere function to EC accumulation in senescent fibroblasts. Neither TERT nor TERT-HA reduced 

IL-6 levels in BJ cells (Figure 1K) under the in vitro conditions described here indicating that EC is 

regulated independently from the inflammatory cytokines. These in vitro results gave rise to the 

hypothesis that plasma citrate is upregulated in vivo by telomere attrition. 
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Citrate, malate and lactate are upregulated in senescent cells induced by IrrDSBs 

 EC is upregulated following replicative senescence of oral fibroblasts (21). However, IrrDSB-

induced senescence (IrrDSBsen), also induces telomere dysfunction along with EC, malate and 

lactate and a depletion of pyruvate (all extracellular; see eFigure 1 in the supplement) consistent 

with a shift of senescent cell metabolism towards glycolysis. 

 

DC patients 

 The clinical and genetic characteristics of the DC patients are described in (eTable 1 in the 

supplement), and the age and gender of all DC and control subjects in eTable 2 in the supplement.  

 

Upregulation of plasma citrate in DC patients detected by gas chromatography/mass spectrometry 

(GC-MS) 

  First, we analysed the citrate levels DC samples (n = 28) and controls (n = 12) using the GC-

MS platform (Figure 2 top left). There was no significant difference in citrate levels when non-

starved plasma and starved serum samples were compared, suggesting that nutritional status did 

not affect plasma citrate levels. (eFigure 2A in the supplement; P=0.60). Plasma citrate levels were 

resistant to haemolysis (eFigure 2B in the supplement) and stable at room temperature for 24h so 

citrate is a highly stable plasma metabolite in healthy controls. Citrate showed a strong trend for 

upregulation in DC patients when compared to controls (Figure 2 top left) but the effect was of only 

borderline significance (P=0.06) except when only patients with more severe aplastic anaemia 

symptoms were considered (P=0.008). Asymptomatic DC patients in this study set were not 

significantly different from controls (P=0.74).  
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DC patients show specific changes in energy metabolism 

 As plasma citrate is tightly regulated in vivo, we considered the possibility that citrate might 

be further metabolised in vivo to other energy metabolites. We used targeted liquid 

chromatography/mass spectrometry (LC-MS) on an overlapping but distinct sample set to measure 

energy metabolites and a subset of ESM metabolites (21) in DC patient (n=29) and control (n =30) 

plasma (Figure 2; eFigure 3 in the supplement). The metabolites were selected because they are 

altered in age-related diseases in vivo (23, 42-46). 

  The TCA cycle metabolites isocitrate (P=0.0007), malate (P=0.0005), succinate (P=0.008) and 

to a lesser extent oxaloacetic acid (P=0.06) aconitate (P=0.03) and citrate (P=0.08) were elevated in 

DC samples, but other TCA cycle metabolites such as alpha ketoglutarate (AKG: P=0.39) were not 

significantly altered. Lactate (P=0.0003) and pyruvate (P=0.0000007) levels were consistently 

elevated in DC patients relative to controls (Figure 2; supplementary eFigure 3; supplementary 

eTable 3A) and were significant after correction for false discovery rate (eFigure 3B in the 

supplement). Significantly, glucose levels were within the normal range in DC plasma and the 

lactate:pyruvate ratio (LPR) was lower than normal (P=0.005) arguing against lactic acidosis and T2D.  

 The DKC1 gene is X-linked and the DC patient set had a preponderance of males. However, 

all changes remained when only males were considered (Figure 2; eTable 3 in the supplement), in 

patient subsets with TERC or TERT mutations/variants and in the case of pyruvate, DKC1 as well 

(eTable 3 in the supplement), arguing against a role for non-canonical functions of TERC and TERT. 

With the exception of succinate, all changes were significant in weakly symptomatic patients (eTable 

3 in the supplement). 
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A subset of TCA metabolites, lactate and pyruvate clearly distinguish DC patients from control 

subjects with high specificity and selectivity  

 Receiver operator characteristic (ROC) curves are shown in Figure 3 and clearly show the 

TCA cycle metabolites isocitrate (area under the curve (AUC) = 0.76), malate (AUC = 0.77), succinate 

(AUC = 0.75), lactate (AUC = 0.77) gave acceptable discrimination between controls and DC; pyruvate 

(AUC = 0.88) gave a value that was excellent bordering on outstanding. Thus, high plasma pyruvate 

alone could indicate systemic telomere attrition. 

 

Relationship of DC profile to leukocyte age-associated telomere loss (LAATL)  

 Linear regression analysis (Figure 4A; eTable 4 in the supplement) showed that only citrate 

(P=0.01) and malate (P=0.03) levels correlated with LAATL. In the smaller GC-MS data set only citrate 

correlated with LAATL in the DC subgroup with TERC mutations by linear regression analysis 

(P=0.006).  

  In addition, as with telomerase-deficient mice (16), LAATL decreases with each generation 

(47). We therefore examined the DC profile in individual family members from four DC families 

harbouring the same TERT or TERC mutation/ variant (Figure 4B). Although the numbers were small, 

in three families, the offspring had higher levels of citrate and malate than their parents/ aunts. In 

two families, lower LAATLs were also associated with higher IL-6.  These data support the inverse 

relationship between these metabolites and LAATL. 

DC patients show a shift in energy metabolism indicative of increased citrate catabolism 

 Unsupervised multivariate analyses also showed clear differences between the control and 

DC groups. The two groups were largely separated by principal component analysis within the first 

two components (eFigure 4 in the supplement). There was no association with patient age for the 
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first four principal components (P > 0.05 for all). The between-metabolite correlations were also 

different in the two groups, as showed by both clustered heat-maps of the Pearson correlations 

(Figure 5A), and two-way hierarchical clustering of the two groups (Figure 5B). Unsurprisingly, 

plasma TCA metabolites citrate, isocitrate and aconitate clustered together in normal subjects whilst 

lactate, pyruvate and malate formed a separate cluster. However, in DC plasma, citrate, aconitate 

and isocitrate became much more strongly associated with malate and succinate indicating a shift in 

systemic metabolism in DC patients. In addition, isocitrate and malate became more strongly 

associated with lactate in DC patient plasma. Linear regression analysis (eTable 5 in the supplement) 

and scatter plot matrices (eFigures 5A and 5B in the supplement) further supported these 

conclusions. Furthermore, supervised linear discriminant analysis (LDA) correctly classified 24 out of 

30 control and 24 out of 28 DC patient samples; however as the AUC (0.90) was not significantly 

different from the best single metabolite AUC values (95% confidence intervals 0.87-0.99, 5000 

bootstraps), we did not explore the use of LDA further. 

DC patients show elevated levels of energy metabolites in the absence of high levels of SASP and 

other ESM factors 

 We did not have access to tissue biopsies of DC patients so to estimate the amount of 

cellular senescence we measured several SASP and ESM factors. Interleukin 1 alpha (IL-1α) and IL-6 

levels were measured in some of the samples. IL-6 levels were generally undetectable in control 

subjects, as expected, but were also very low in most of the DC samples and not significantly 

different from controls (P=0.09). IL-1α levels were below detection limits in all but one of the DC 

patients (Figure 2; supplementary eFigure 2; supplementary eTable 3A).  

 In addition, we tested ESM metabolites, previously associated with ageing (23), mortality 

(43, 44) and age-related disease (43, 44). The plasma concentrations of the ESM metabolites urate, 

7-methyl guanine (7-MG) and C-mannosyl tryptophan were not significantly different from controls 
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(Figure 2; supplementary eFigure 2; supplementary eTable 3). The data indicate a low level of 

cellular senescence in DC patients.  

 

DC profile and SASP factors 

 Only citrate (P=0.01 when analysed by GC-MS), isocitrate (P=0.02), and 7-MG (P=0.008) 

correlated with plasma IL-6 levels (eTable 6 in the supplement), indicating that the energy 

metabolite changes were largely independent of IL-6.  

 

DC profile and clinical parameters, age and gender 

 In both the GC-MS and LC-MS data sets there was no significant relationship 

between any of the above changes with any clinical indicators of aplastic anaemia, gender, 

donor age or different control batches and with the exception of oxaloacetic acid and urate 

repeat samples where available varied by less than 25% (1-22%). (eTables 7-10 in the 

supplement). Low dose Danazol treatment in a small patient subset, had no effect on the 

results, succinate excepted (eTable 11 in the supplement). 

 

Discussion 

 The ESM metabolites citrate and malate correlated with LAATL but other metabolites were 

better at separating DC patients from controls, indicating further, or tissue specific effects of 

telomere attrition on metabolism. DC plasma metabolites were not associated with any particular 

disease phenotype, and so are unlikely to be a consequence of disease. Trivial explanations such as 

cell lysis and exosome release are inconsistent with the normal levels of the cytoplasmic metabolites 

urate and AKG in DC plasma.  
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 Significantly, virtually all aspects of the DC profile increase with chronological age and age-

related disease (22, 23, 27, 42, 48). High isocitrate, aconitate and malate are associated with frailty, 

cardiovascular disease and mortality in humans (42, 45, 46). Therefore, the plasma energy 

alterations are not limited to DC. AKG, which extends lifespan and protects against frailty and 

inflammaging in mice (49), was not significantly altered, consistent with recent studies of aged or 

frail humans (22, 42, 45, 48). However, plasma AKG increases in centenarians (48) and although this 

may reflect further telomere attrition or age-related disease, it could reflect an adaptive mechanism 

in long-lived individuals.  

 Although it is difficult to speculate on mechanistic details from plasma metabolite levels the 

low LPR and normal levels of urate, distinguish DC from T2D, most respiratory chain disorders and all 

forms of acidosis (1-3). The high levels of isocitrate and aconitate in DC are opposite to those in 

humans deficient in the ROS-sensitive (50) mitochondrial aconitase (ACO2) (51), arguing against an 

increase in mitochondrial ROS in DC. The DC profile most closely resembles pyruvate dehydrogenase 

complex (PDHC) deficiency (3)  and a shift towards glycolysis.  

 Only citrate and malate levels correlated with LAATL yet isocitrate, succinate, lactate and 

pyruvate were consistently elevated in DC plasma. Telomere attrition may have different direct 

consequences on metabolism in other cell types such as the liver.  

An alternative hypothesis is that elevated plasma citrate in DC patients enters the liver and 

kidneys to drive the TCA cycle to cause altered metabolism. A recent study conducted in pigs offers 

some support for this hypothesis. Sampling of arterial and venous blood in pigs showed that citrate 

taken up by the kidneys contributes to the TCA cycle to produce malate and succinate (52), which 

accumulate in kidney tissue (52). This could explain the higher plasma levels of these and other TCA 

metabolites in DC plasma and with chronological age.  
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 Lactate and pyruvate levels are also associated with chronological ageing in humans (22, 23, 

48) as well as DC. Lactate is oxidised predominantly in the liver and kidneys to pyruvate (52) to 

regulate its levels and could produce the low lactate:pyruvate ratio and high pyruvate observed in 

the DC patient plasma. 

 Tert -/- and Terc -/- mice telomeres often lack detectable telomere DNA and form end-to-

end chromosomal fusions reminiscent of crisis and cancer. However, a recent study of a large cohort 

of DC leukocytes employing Single Telomere Length Analysis (STELA) showed no evidence of 

telomere fusions such as those found in cellular crisis or cancer despite the fact that some telomere 

lengths are very short (53).  This suggests that the observed phenotypes in DC are mediated 

independently of telomere fusions, perhaps by unpaired DNA double strand breaks, which are 

known to occur following telomere attrition and replicative senescence (4).  

Regardless of the underlying mechanism, the systemic accumulation of energy metabolites 

in DC and ageing subjects would likely accelerate ageing and cellular senescence as caloric restriction 

does the reverse (54).  

  The most important aspect of the data described here is that a subset of plasma 

metabolites (isocitrate, malate, succinate, lactate and pyruvate) outperformed SASP factors in 

distinguishing DC patients from controls. Such metabolites may be valuable indicators of telomere 

dysfunction in humans and consequently therapies designed to reverse it (12, 55). 

Conclusions 

 In summary, although mechanistic details are still to be elucidated, plasma 

metabolomics may have considerable utility in the monitoring of telomere dysfunction in 

human disease, in regenerative medicine and anti-ageing therapies. In addition, combining 

metabolomics with defined human mutations may shed light on the underlying mechanisms 

of ageing and contribute to the early diagnosis of age-related diseases.  
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Figure 1 Ectopic TERT but not TERT-HA expression suppresses extracellular citrate 

levels in parallel with senescence bypass. 

A. and B. The effect of ectopic TERT expression on citrate levels in BJ cells (A.) and NHOF-

1 oral fibroblasts (B.) (n=3). Data are means +/- standard deviation. * p < 0.05; *** p < 

0.001; **** p < 0.0001. C. and D. The percentage of senescent cells in A. and B. as assesed 

by SA-βGal C. n =3 and D. is derived from one experiment. Symbols are the same as for A. 

and B.  E. Typical images of late passage SA-βGal-stained BJ cells transduced with the 

empty PURO vector, the TERT-HA construct (extrachromosomal TERT functions only) and 

TERT; black scale bar = 100μm. F. and G. The telomere lengths of the cells analysed in A. 

and B. at the point of senescence showing a clear increase in telomere length in NHOF-1 

cells expressing TERT. Data is from two replicate runs of the same samples. H. and I. TERT 

mRNA levels in the cells from A. and B. at the point of senescence. Showing high levels of 

TERT and TERT-HA mRNA in both BJ and NHOF-1 cells. PC3 mRNA  is the postive 

control.  J. Telomerase activity in the BJ cells from A. The data are derived from one 

experiment in A. PC3 is the postive control and heat-treated PC3 extract is the negative 

control. K. IL-6 levels in the BJ cells from A. (n=3). Data are means +/- standard deviation. * 

p < 0.05; ** p < 0.01.   
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Figure 2 Citrate, glucose, IL-6 and normalised metabolite levels in DC patient and 

control subject plasma. 

The far left hand panel in the top row shows citrate levels in DC (n= 28) and normal 

control (n=12) subjects as assessed by GC-MS. DC patients with mild aplastic anaemia 

(0-1 abnormal clinical indicators n=10), severe (3-4 clinical indicators n=12) or a 

combination of severe and moderate (2-4 clinical indiators n=18) are also shown to assess 

the effect of aplastic anaemia on disease severity. Each point represents the average of 

between one and three determinations all performed at the same time. Glucose levels are 

in mM in a subset of the DC patients (n=26) and control subjects (n=20). IL-6 levels are 

in pg/mL in a subset of the DC patients (n =15) and control subjects (n= 21). All 

remaining panels show the LC-MS metabolite levels normalised to the average of the 

control subject levels in DC (n=29) and control (n=30). All P values were determined by 

the Wilcoxon-Mann Whitney Rank Test and/or Welch’s Test and both methods gave 

similar P values. 

 

Figure 3 ROC curves of TCA metabolites, lactate and pyruvate in DC patient and 

control subject plasma. 

The data show ROC curves of the normalised LC-MS metabolite levels shown in Figure 

2 but identical data was obtained from non-normalised values. The area under the curve 

(AUC) and the P values are given on each graph. An AUC of more than 0.70 is 

considered good and a value of more than 0.80 is considered excellent. 
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Figure 4 Citrate is associated with DC leukocyte telomere loss and a shift in systemic 

energy metabolism. 

A. Linear regression analysis showing a statistically significant association between age-

adjusted telomere reduction (LAATL) and plasma citrate (left panel) and malate (right 

panel) in DC patients ( n=19).  B. Non-normalised data from four DC familes showing 

that DC patients with shorter telomeres than their older relatives carrying the same 

mutation show a trend for increased plasma citrate (left panel) and malate (right panel). 

The values over the bars indicate the level of age-adjusted telomere reduction.  

 

Figure 5 Citrate becomes more associated with malate and succinate in DC 

A. Clustered heat map of correlations derived from normalised metabolite levels in 

normal subjects (left panel) and DC plasma (right panel) showing the relationship of each 

metabolite to citrate and showing an increased association of citrate with isocitrate, 

aconitate and especially malate and succinate.  B. Cluster analysis of the data in A. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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