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ABSTRACT

An O(h°) method for the interpolation of harmonic functions in rectangular do-
mains is described and analysed. The method is based on an earlier cubic spline tech-
nique [7], and makes use of recent results concerning the a posteriori correction of

interpolatory cubic splines.






I. INTRODUCTION

This paper is concerned with a numerical method for the solution of harmonic

boundary value problems in rectangular domains of the form

R:={x,y):0<x<a, 0<y<b}, abe N.

The method is based on an earlier cubic spline technique which was described, but not
analyzed, by Papamichael and Whiteman [7] and which involves the following:

(a) Determining O(#°) finite-difference approximations to the solution of the
harmonic problem at the grid points of a uniform mesh, of size 4, covering the rectangle
R.

(b) Determining approximations to the solution at any point in R by an in-
terpolation procedure involving the construction of univariate cubic splines along lines
parallel to the sides of R. This procedure of interpolation is characterised by the prop-
erty that the parameters of the splines are given directly in terms of the finite-difference

approximations at the grid points.

The main objectives of the present paper are as follows:

(i) To analyse the method of Papamichael and Whiteman [7] and to show that
it gives O(h’) approximations to the solution of the harmonic boundary value problem
at intermediate (non-nodal) points of R.

(i) To describe a simple technique which can be used to "correct" the cubic
splines of [7], thus providing O(4°) approximations at intermediate points of R.

(ii1)) To show that the above correction technique can also be used to provide

accurate approximations to the derivatives of the harmonic function at any point of R.



We note that interpolation procedures of the type studied in the present paper
have applications in connection with the numerical solution of elliptic boundary value
problems by conformal transformation methods. In fact, the method of [7] was devel-
oped for use in conjunction with a conformal transformation method for the solution of
harmonic boundary value problems defined in general simply- connected domains; see

e.g. [4] and [6].

II. NOTATIONS AND PRELIMINARY RESULTS

The following notation will be used throughout the paper,

(i) R will denote a rectangle of the form
R ={(;y):0<x<a, 0<y<b}

where a, b € IN .
(11) Letn, m € IN be such that a/n = b/m := h. Then, 11, will denote the square

mesh

n,={xy) :x;=ih; i =0(1)n,y; =jh j=0(1)m},

covering R =R U OR.

(i11) Hij} and 1 {yi} will denote respectively the sets of mesh points on the j**

mesh row,j=0(1)m, and i mesh column ,1=0(1)n, of M, .Thatis,

ny = fxy) cx=xii=0(n, y =y},
and

ni = fxy) x =x;,y = ;7 j=0(1)m}.
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av) PC (H ij}) will denote the class of all univariate piecewise cubic polynomials
defined on the j2 mesh row , j = 0(1)m, of (1 and having knots Tl Ul Similarly,

PC (H {yj}) will denote the corresponding class associated with the knots 11 {yj} of the i

column , i=0(1)n, of 1 .

~v) Spl (H ij}) will denote the class of all univariate smooth cubic splines defined

on thejimesh row ,j = 0(1)m, of 11, and having knotsTI ij} . That is ,

spi(n?):=pc(n) |NnC?[0,a].

Similarly,

spi(ni¥)\:=pc [1'¥) Nc?[o,b].

(vl) 6x,0y will denote the usual central difference operators in the x,) directions,

(vii) A will denote the Laplacian operator
A:= 0%/ ox> + &/ ay”.

(viil) Ap will denote the well-known nine-point difference operator for Laplacian

problems, i.e.

Apv(x,y) == v(x - h,y +h) +4v(x,y + h) + v(x + h,y + h)
+4v(x - hy) - 20v(x,y) + 4v(x + h,y)

+ v{x-h,y-h) + 4v(x,y - h) + v(x + h,y - h). @.1)

(ix)

CN (R) will denote the class of all functions v(x,») whose derivatives

vD .= g& " 1y/ox* y' are continuous in R for 0 <k + I < N.
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Lemma 2.1. Let the values v; ; := v(Xi,yi) , (Xi,yj) € 11, , be given and, for any

fixedj,j = 1(1)m -1, let 5; (x) € PC (H ij}) be defined by the following conditions:

ci ({xi) = v, ; 1=0(1)n, (2.2a)

and

@y L2 .
o; (x;) = 2 §Vvi,j =g i= 0(D)n. (2.2b)
Then, o; (x) € Spl(l‘[ ij}), provided that
Apvij=0 ; i=11)n-1, (2.3)

where Ay is the nine-point difference operator (2.1).

Proof. For xe [xi,Xi+1],1=0(1)n — 1,

o .(x)

_1 3.1 3
FO = b T T by ()

1 h
VLT K )

1 h?
+Z{Vi+1+j T Mitl,) §(x=x;)

::Cj{x;xl., v, j "ui,j}' (2.4)

3

Clearly, oj,(xi—) = oj(x;+) and o} (xi—) = o’ x;+) ;i=1(1)n - 1 . Therefore,

oi(x) € SpZ(H {yj}), provided thatc}’ (xi—) =0} (x;+);i=1(1)n — 1, i.e. provided

that

_ 6 2 Ci ,
#i_]’j+4#i’j+ﬂi+llj_h_zaxvi;j ,l—l(l)l’l—l N (25)

see e.g.[l:p.10]. The elimination of the u; ; in (2.5) by means of (2.2b) then gives the

finite-difference equations (2.3). O



Remark 2.1. By reversing the roles of x and y we have the following:

For any fixed i, i=1(1)n— 1, let T i(») e PC(1 ") be defined by the following

conditions :

Ti(yp) = vij 5 J = 0(1)m,

(2) ()= ——5>2<V ;

; J=0(1)m.
h2 b

Then,t ; (y)e-Sp!/ (H ;‘}) provided that

Apv; ;=0 ; j=1(1)m-1.0

Let u(x,y) denote the solution of a harmonic Dirichlet problem of the form

Au(x,y)=0 , 1InR, (2.6a)
u(x,y) =fix,y) , ondR, (2.6b)

and assume that f{x,y) is sufficiently smooth so that u(x,y) € CN (ﬁ) with N > 6.

Also, for any fixed j , j = 1(1)m — 1, let sj(x) be the unique cubic spline satisfying the

following conditions:

S j(x) =u; : i=0(1)n, (2.7a)
and

(2 0 h* L(40) .

5(2)(x )= u! gy

i=0,n. (2.7b)

That is, the cubic spline Sj(x) interpolates the function u(x,y;) at the mesh points of
the jm row of 11, and satisfies the two end-conditions (2.75).
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Lemma 2.2. Let u{x,y) be the solution of (2.6), and let sj(x) Spl(r[ ij}) be

defined by the conditions (2.7). If u(x,y) Cé(ﬁ) then, for any j, j=1(1)m-1,

sup s 0 —uED xy e omd Ry Lo ks, (2.8)
x€0,0 ]
() 1,0)_#* (5.0 5
s =i -2l 30 v o)
) i=0()n, (2.9)
2 20 (40 4
sP =V - ul%0 vom
and
5O ey =ul 0)+h (4.0)  h* NCONEN (2.10)

PR AT RN

where in (2.10) the subscript i ranges from 0 to n—1for x;+, and from 1 to »n for x;—

Proof. This follows from the results of [3] and [5], by observing that the end

conditions (2.76) are of order p = 4 in the sense of Definition 2.1 of [5:p.491]. O

Lemma 2.3. Let u(x,y) and si(x) be asin Lemma 2.2. If u(x,y) € C° (E), then

foranyj,j=1(1)n-1,

(2)(x )_— L5Fu; v0m*) 5 =1 -1, (2.11)
proof. By Taylor’s series expansion,

1 02) h? o 4
h—28u —UIJ +12 i +O(h )

Therefore , form (2.9),

1 h?
@ 2 @) 02) “,0) 0.4) 4
Sj (Xi)+h_26vui,j _(ui,j +ui; )_E(ui,j — Ui )+ O(h ™)

=0M" ; i=1n-1,;=11)m-1,

because Au :=u®? +u®? =0inR. O



Let U, ;,1=1(1)n-1,; = 1(1)m -1, denote the finite-difference approximations
to u; , ; = u(x; ,y;) obtained by applying the nine-point formula (2.3) at the interior
mesh points of 11, That is, the values U;; are obtained by solving the linear system

generated by the finite-difference equations

AU; =0 ; i= 1(1)n -1,j = 1(1) m-1, (2.12a)

with
Uos,i=fo.i » Uni=fu; 3 Jj=0(1)m, (2.12b)
(]l',o:fi,o > um:f;m 5 121(1)1’1—1 (2120)

Then, the following result is well-known.

Lemma 2.4. Ifux,y) € C 8(R) , then
U j-u;, j=0h° ; i=11)n-1,j=1(1)m-1. (2.13)
Proof. See e.g. [8], O

III. CUBIC SPLINE INTERPOLATION ON THE MESH LINES OF 11,

In this and in the following sections we describe and analyse a simple method for
computing O(4°) approximations to the solution u(x,)) of (2.6) at any point (x, ) € R.
The method is based on constructing univariate cubic splines along lines parallel to the
sides of R, and is characterized by the property that the parameters of these splines
are given directly in terms of the finite-difference approximations U, ; corresponding to
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(2.12). In this section we consider only the problem of approximating u(x,y) on the

mesh lines of 11 . The general approximating procedure is described in Section 4.

For any j,j = 1(1)m- 1, let Si(x) € PC(1Y') be defined by the following

conditions:
Si(x)=U; ;; i=0(1)n, (3.1a)
@yl s2y. o _
Sj (x;)= 2 SVUi,j ;i=1n—1, (3.1b)
(2) _ 0520 _as@ i y_g@
Sj (xg) = 2 SXUl,j 4Sj (x)) Sj (X5)s (3.1¢)
and
(2) _ 642 (2) (2)
Sj (Xn)_h_28XUn—l,j —4Sj (Xn—l)_sj (X, 0)- (3.1d)
Thus 1is,
Sitx) = Ci{x ;% , Ui j. My ;3 ., x € [xiXxia] 5 1=0()n-1, (3.2)
where the parameters M;  ; ; i = 1(1)n — 1, M,,; and M,; are given respectively by

the expressions in the right hand sides of (3.16)-(3.1d); see Eq.(2.4). O

Lemma 3.1. Foranyj,;j=1(1)m — 1,
Six) € Spl(ﬂ ij’l),

1.e. S; (x) 1s a smooth cubic spline interpolating the values U;  ; at the mesh points of
the /% row oh 11 ho-

Proof. We need only show that S{"(xi—) =S (x;+) ,i= 1(1)n- 1. For
i =2(1)n - 2 this follows from Lemma 2.1, and fori =1,n - 1 from (3.1)- (3.1d),
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because these two equations are the consistency relations that establish the continuity

of Sg” at x; and X,.;1. O

Remark 3.1. The equations (3.1) define an approximating procedure
where, at each interior mesh point of 11, , the x-derivative in the Laplace equation is
approximated by the spline derivative ng)( (xi) and the y-derivative by the usual central

difference replacement. O

Lemma 3.2. Let u(x,y) be the solution of (2.6), and let sj(x),S;j(x) €Sp! (H ij})

be defined by the conditions (2.7) and (3.1). If u(x,y) €C%R), then for any j,

j=1(Dm-1,
S(x) -8 (x)=ah’™) ; i=0Dn,0<k <2, (3.3)
and
853)(Xii) - sg3)(xii) - o(1),
(3.4)
where in (3.4) the subscript i ranges from O to n» — 1 for x;+, and from 1 ton for x; —.
Proof. The conditions (3.16) and the results of Lemmas 2.3, 2.4 imply that

s(jz) (xi)—s(jz) (x;) = —hizeﬂ(u.

J l’j—Ui,j)+0(h)4 = 0h%) ;i=11n -1,

and these together with (3.1c)-(3.1d) and the two corresponding consistency relations
for the cubic spline s; (x) give that

2 2 4
s x ) -5 x ) = om),

5 () -5 (xn) = o)



) <@ _ 4
Thus §77(xi)=si7(x;) = Ah ), 1 =0(1)n. The other results follow easily from

standard cubic spline identities. O

Lemma 3.3. Let u{x,y) and Sj(x) be as in Lemma 3.2. If u(x,y) € C°(R) (ﬁ), then

foranyj,j=1(1)m-1,

sip |50 uED kv )= ant Xy, 0<k <3, (3.5)
x€(0,0 J J

S(l)(X)zu(l’O) —ﬁu.(s.ao) +ah5) ,

] 1 L] 181(1)2 1,] . 56
2 2,0 4,0 4

Sg )(Xi)zui(,j ) _Eui(’j ) _l_qh )’

and
2
s (x.4) =GO L B (40 b7 G0 ), (3.7)
) 1 1] 2 L) 12 L]
where in (3.7) the subscript 1 ranges from 0 to n — 1 for x;+, and from 1 ton for x; — .
Proof. At once from (2.8)—(2.10) and (3.3) - (3.4). [
Once the finite-difference approximations U;; are computed, the cubic splines
Si(x) , j — 1(1)m — 1, can be used to approximate u(x, y) at intermediate points

on the mesh rows of 11, ,. Unfortunately, whilst the values U; ; are O(h*) approxima-
tions, the intermediate solutions given by the splines Si(x) are only O(#’) ; see (3.5).
However, because of the asymptotic expansions (3.6)-(3.7), it is possible to ’correct”
the splines Sj(x) and thus obtain O(h®) approximations to u(x,y) at any point on a
mesh row of 11, , This can be done by using the “a posteriori correction technique”
of Lucas [3], in which the corrected approximations are given by the piecewise quintic
polynomial defined by Egs (3.8)-(3.10) below; see also [5].
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Foranyj,j= 1(1)m — 1, let S;(x) € Sp! (H ij}) be defined by the conditions

(3.1), and let §S;(x) denote the piecewise defined quintic polynomial

4
. h
$,00):= 80+ Ry {(x —xi)/h}Ui(j.’O)

5
+h5—P {(x—x. )/h}U(5 0).

xe[xi,xi+1] ;1=0)n—1, (3.8)

where Py, P, are the polynomials

Py =g —22% 422 PE=8 367+ 3¢, (3.9)

and U(j 0) U(SJ 0) and approximations to the derivatives U-(4-’O) and, U(5 0)

3

of u(x.y)

These approximations are given by linear combinations of the spline derivatives S(.z) (xi)

as follows:
4,0)

( ) (2) (2)
ul’ _hz{s (i) =287 () + 837 (x5
o 2(1)n ) (3.10a)
U(jo). n? 5P -sP g P ) -8P g
i=0,, (3.10b)
Uf?)J hz{ 3(2)(Xn 4)+4S( )(Xn )= SS( ) (xn - 2)+2S( )(X b
(3.10c)
and
050 = ol oo 2 o
U;S_’?,)J {U§14 ?)J ;4 g?J} (3.10e)

Lemma 3.4 below concerns the quality of the derivative approximations (3.10).
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Lemma 3.4. Let u(x,y) and Sj(x) be as in Lemma 3.2, and let Ui(A}’O).Ui(Sj’O) be
given by (3.10). If u(x,y) € C*(R) then for any j,; = 1(I)m- 1,

(4,0) _ 11(4,0) 2
ul*? = Uty om?),

(5.0) _171(5,0)
ul>? = U +0(h),

i =0(1)n. (3.11)

Proof . Since

3 3 1 < 2 2
S§ (xi0) =857 (x =) = 4877 (xi-0) = 2817 (x) + 817 (i)
(3.7) implies that
ui(‘g’o) =Ui(5j’0) +0M?2) ;i=2(1)n -2.
The other results in (3.11) then follow by elementary finite-difference arguments; see

e.g. [2], [3] and [5]. O

We can now state the main result of this section as follows.

Theorem 3.1. Let u(x,y) be the solution of (2.6), let S;(x) Spl(l‘[ ij}) be
defined by the conditions (3.1), and let S i (x) denote the piecewise defined quintic poly-
nomial (3.8)-(3.10). If u(x,y) € C*(R),, then for any j,j = 1(1)m - 1,

sup [S19(x)—u(x,y)) =00 "), 0<k<3. (3.12)
x€l0,a]
Proof. Letx =x;, + ph, 0 < p, < 1, and in the Taylor series expansion of

u®” (xi + ph, yj) —Sgk) (x; + nh) use (3.6) and (3.7) to express the derivatives

w00 gDy
L] ) "+ r=1,2,3, in terms of ui(‘g’o)andui(sj’o) The result then follows

gi’o)andufj’O) by the approximations uf}"

from (3.11),by replacing the derivatives u
and Ui(Sj,O) .0

12



Remark 3.2. By reversing the roles of x and y we have the following:

Foranyi,i= 1(1)m — 1, let Tij(y) denote the y-counterpart of Sj(x). That is,

Ti(y) =Ci{y;yi,Uij,Ni j},

y € [yibyi+1];7=01)m- 1, (3.13)

where the parameters N; ; := Ti(z) (yj) are given by

Ny j= hLZS)chi,j ; J=10m -1, (3.14a)
6
Nio= h—2532/Ui,1 —4N; | —Nj,, (3.14b)
and
_ 6 .
Ni,m = h_QSin,m—l _4Ni,m—1 _Ni,m—Z s (3,14¢)

see Eqgs (2.4), (3.1)and(3.2). Then,Ti(y) e sz(n _E;})and for u/x,y) € C*(R)

sup |77 (1) —u®V (x| =0t 0<1<3. (3.15)
y€l0,5]
Also, let Ti (y) denote the y-counterpart of S j (x). That is,

. h*
i) =T+ Potly - yi) /MU

5

h 0
+§P1{(y—yj)/h}Ui(,j’5) (3.16)

where Py, P, are the polynomials (3.9), and

UG = 12050217 )+ T i)
j=2(1)m-2, (3.17)
e.t.c. ; see Eqgs (3.8)-(3.10). Then, for u(x,y) eC* (ﬁ)
sup | TV (y)—u®D(x;,y) =00 ,0<1<3. 0 (3.18)

y€/0,b]
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We end this section by observing that the corrected approximations given byé i )

and Ti(y) satisfy the nine-point formula (2.3). The precise result is as follows:

Theorem 3.2. Let éj (x) and Ti (y) denote the piecewise defined quintic polyno-

mials (3.8) and (3.16), and for 0 < p ,v <1 let:

Uivyy = éj (x;+uh) ; 1=0(1)n-1,j =1(1)m-1, (3.19a)
and
Uiy =T, (vi+vh) - i=1(1)n-1,j=0(1)m-1. (3.19b)
Then,
Ay Uiy =0 ; 1i=1(1)n-2,j=2(1)m-2, (3.20a)
and
Ay Uijw =0 ; 1=2(1)n-2,j =1(1)m- 2. (3.20b)
Proof. This follows easily from the formulae giving S j (x) and Ti (v), by recalling

(2.12a) and observing that
2 1 2 .
ARS (P (x;) = - UL = 0 s i =1Mn -1,

j = 2(1) m-2,

and

1 :
AT (y) = —h—zAh{5§Ui,j} =0;i=2()n -2,

j=1(1)m-1.0]
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IV. CUBIC SPLINE INTERPOLATION IN R

Let 0 <p,v<1,andlet 1" and H{y””} denote respectively the uniform

partitions of the lines y = y; + vk and x = x; + ph , corresponding to the partitions
ny' andn!’ . That is, for any;,;j=0(1)m—1,

ni™: = {({x,y):x = xi; i=0(1)n, y=y;+vh}, (4.1a)
and foranyi,1=0(1)n—1,

1‘[3“‘}:2 {(xy): x = x;+ph,y=yj;j=0(1) mj. (4.16)

Also, as in Theorem 3.2, let

Ui = Sjxi+puh) 5 i=0(1)n-1,y = 1()m- 1, (4.2.2)
Uijwi=T(yi+vh) ; i=1()n-1,j=0(m- 1, (4.2b)

and foranyj,j=1(1)m — 1, letS; +, (x) € PCI ij”} : be defined by the conditions

(3.1) with the subscript j replaced by j + v. That is,
Sj+V(X) = Cj+v {x:x5, Ui, j+v ,Mijtv},

X €[ Xi, Xi+1];1=0(1)n-1, (4.3)

where the parameters M;  ;+, are given by the right hand sides of (3.16)-(3.1d) with
the subscript j replaced by j + v. Similarly, for any i , 1 = 1(1)n — 1, let T i+, (y)e

PC 1 _f/”“} : be defined by

TiﬂL(Y) L= Ci+u {y 5 Yis Ui+j >Ni+p,j },

y € [yi, yi+1] 5 y =0(1)m -1, 4.4)

15



where the parameters N;+,; are given by (3.14) with the subscript t replaced by i + p.

Then, because of Theorem 3.2, a trivial modification of the proof of Lemma 3.1 shows

that
S+vix)yeSpln™:; j = 1(1)m-2,
and
Tion() € Splni™: 5 i=1(1)n -2.
In other words, for any j, j = 1(1)m — 2, Si+.(x) 1s a smooth cubic spline defined

on the line y = y; + vh and interpolating the corrected approximations U,;+, at the
knots (4.1a). Similarly, for any 1, 1 = 1(1)n — 2, Ti+.(y) 1s a smooth cubic spline
defined on x — x; +ph and interpolating the values U ; 4+,  ; at the knots (4.16). Since,
for u(x,y) eC*(R),

Uity Ui =OM% 5 i=0(1) n-1,j = 1(1)m- 1,
and

Uijiv-uij+v=0((M% ; i=1(1) n-1,j= 0()m - 1,

the theorem below can be established easily, by modifying in an obvious manner the

analysis of Section 2.

Theorem 4.1. Let u(x,y) be the solution of (2.6) and, for 0 < u ,v < 1,let
Sivi{x) € Spl (H ij”}) and Ti+,(y) € Sp! H{yi+“} be given, as described above, by
(4.3) and (4.4). Also, let S,+V(x) and Tiw(y) denote the corrected piecewise quintic
polynomials corresponding to S;+.(x) and 7;+,(y) . (That is, §j+v(x) and Ti+ﬂ()/) are
given respectively by (3.8)-(3.10) with the subscript j replaced by j + v, and by (3.16),
(3.17) with the subscript i replaced by i+ p.) If u(x,y) € C*(R), then:

16



(1) For0<k <3 andanyj,j= 1(1)m-2,

k . —
sup |8, (x)—u™(x, yj+vh) |= O * ), (4.52)
x€(0,0
and
~ k _
sup 8%, ()~ u 0 (x, v, vy ) I= O(M ) (4.5b)
x€|0,0]

(i1) For0<1<3 andanyi,i =1(1)n-2,

sup | T}, (v)—u® (xi+ph,y) = O(h*™). (4.62)
yel0,b]
and
sup | TM ) -0 @D x; +un, yyleom o o (4.6b)

x€|0,a] JtH

Assume that the finite-difference approximations U, ;,1i= 1(1)n—1,; = 1(1)m—1,
have been computed by solving the linear system (2.12). Then, because of (4.5b) and
(4.66), the corrected piecewise quintic polynomials S i+v(x) and T,«w(y) can be used
to compute O(h°) approximations U, v, j+ v YO Uity j o+ v = u(x; + uh, y; + vh) at any
point

xy) =& +tuh,yi+vh) , xy)en, , 0=m,v=<I1,

in R. This can be done as follows:
O 1fi e {0,1,.,n-1} and j € {1,2,... ,.m-2}, then U,;+u;+, can be computed
from Sj + v(x), 1.e. by taking
Ure pry+vi= S+ o(xi +ph). 4.7)
a Ifie {1,2,..,n-2} and j € {0, m — 1}, then U;+, ; + ,» can be computed

from "I“,» + u{y), i.e. by taking

Ue v := T iaul yi +vh). (4.8)
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(More generally, (4.8) can be used fori € {l,2,...,.n-2} andj € {0,1,....,m-1}.)
I Ifie {On-1} andj € {Om - 1}, letp :-i + u and g :=j + v. Then, by

using the nine-point formula, U, , := Ui+ j++ , can be computed from

Upq =20Up+ia, g+p — (Upr2a, g T Uprgr2p T Upi2ag+2p)

‘4(Up+a, g T Up,q+l3 + Up+2a, g+p T Up+a,q+2B ), (4-9)

where o = 1 wheni=0,a = — 1 wheni=n—1,3 =1 when j=0, 3 =-1 when
j = m- 1, and where the approximations in the right hand side are given by (4.7) and

(4.8); see Remark 4.1 below.

Remark 4.1. With reference to (IIl), it is easy to see that U, , — up ¢ = O(h®).
This follows because AnUpiq . q+p = O(h®), and the values Upiq . qipUpiza 4 €.t.C. in

the right hand side of (4.9) are 0(h°) approximations to Up+q , q+p-Up+2a, q -€.t.C. O

Remark 4.2. The interpolation procedures (I)-(III) provide approximations to
the solution of (2.6) at intermediate points in R directly in terms of the finite-difference
approximations U; | j. That is, once the linear system (2.12) is solved, the procedure

does not require the solution of any other linear system. O

Remark 4.3. The interpolation procedures used in [7], differ from those de-
scribed above mainly because the cubic splines of [7] are not corrected. That is, in
[7] the approximations at intermediate points are computed by means of cubic splines

S j+vix) and T i+u(y) which interpolate the values

Uiy :=Six;+ph) ; i=01)n-1,j=1(1)m-1,
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and
Uijwvi=Ti(yi+vh) ; 1 =11)n-1,j=0(1)m-1,

rather than the corrected values (4.2). Thus, the procedures of [7] can only produce

O(h*) approximations at intermediate ponts of R; see (3.5), (3.15), (4.5a) and (4.6a). O

Remark 4.4. Let gj + v(x) be the cubic spline of [7], referred to in Remark 4.3.

Then, by writing y = y; + vh, we can identify S;+ ,(x) as a piecewise bicubic polynomial

(NQ; (X, y) defined in

Ri = {x,y): 0 <x<a,h<y <b-h}.

More precisely, with

To(y):==1£(0,y) , Tu(y):=f(a,y),

M;(y) :=h%(Ti<y—h)—2Ti<y>+Ti(y+h> Li=1Dn -1,

M, (y) = h%(To ()~ 2T, () + TL(y))— 4M, (y) ~ M5 (y),

and

M, (y) :=h%(Tn_z(y)—2Tn_1(y)+Tn(y))—4Mn_1<y>—Mn_2(y),

we have that

3 3
§j+v(X) = Mi(y)M_,_ Mi+1(Y)M

gh 6h
)= D ey i = X)
+(Ti (y) 61;/[1(Y)) -
+(Ti+1(Y)—h?Mi+1(Y)(X_h—Xi),

=Q(X,y); X SXS<XjuL,Y;SYSYi.
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Furthermore, as was observed in [7], 61 (x,y) € C®? (R;)', i.e. the bicubic polynomial
61 (%, y) is a bicubic spline. This follows easily from the continuity properties of the
splines 7;(y) and the fact that the values o j +v :=Ti(1) (y) and Bi | j+v = Ti(z) (y) satisfy

the nine-point formula (2.3). In exactly the same manner it can be shown that

62 (x,y) = Tiw (y) ; x:=x;+ ph,

is a bicubic spline in

Ry ={(x,y):h<x<a—h,0<y<b}. o

Remark 4.5. We can of course also identify the functions S, +v(x) and T ivu (V),
that give the corrected approximations, as piecewise biquintic polynomials Ql ix, y):=
éj+v (x) ; x = x;+uh, and Qz (x, ) = TH# (v) ; y = yi +vh, in the rectangles Ri and R»
respectively. Regarding continuity, we now only have that Qp x,y) € C(Ep) ,p=12. 1t

is however easy to show that the derivative jump discontinuities of Qp (x, y) are “ small”

in the sense that

Ny - 0P ey =om KDy,
Q%D iy - QY (xj -y = o 6~ HD),
0 < k,1<3.01
Remark 4.6. From Theorem 4.1 we know that for any (x,y) € R1,

1RO (3 ~u®0 5y om 67K) s o<k<s,

and, for any (x, y) € Ez,

T P9 (R) denotes the set of all functions defined on R for which the derivatives
" /o*xd'y,0< k<p, 0 <1 <gq, exist and are continuous.

20



QP y)—u P,y =0 ;0<1<3,
More generally , it is easy to show that for (x,y) € §1 .

QY y) —u V(e y) =0T ED) s 0<k1<3,
and for (x,y) € Ez,
Q%D (x,y)—ulD (x,y) = 0m ) o<k 1<3.
That is, Q l(k’l)(x, y), Q gk’l)(x, y) ; 0<k,] < 3can be used to provide
O(h®** ™M) approximations to u™’(x,y) at any point (x,y) € Ri Uﬁz
For points (x,y) eR\{E1UE2}i.e. , for points x .— x; + ph , y = y; + vh,
i € {On- 1}y , j € {Om- 1}, O(h®-& ™y approximations to u(k’”(x,y) can be

btained by modifying in an obvious manner the interpolation procedure (III) above,

i,e. by applying the nine —point formula to values computed from ng’l)(x,y) and

QY (x,y).11

V. MIXED BOUNDARY VALUE PROBLEMS

In this section we illustrate the application of the interpolation technique of Sec-
tion 4 to the solution of mixed boundary value problems and, more specifically, to the
solution of boundary value problems satisfying a Dirichlet boundary condition on at
least one side of the rectangle R and Neumann conditions on the remaining sides. We

do this by considering a harmonic problem of the form
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Au(x,y) =0, in R, (5.1a)
u(l’o)(x,y) = g(y), onL = {(0,y): 0 <y <b}, (5.1b)

u(x,y) = f(x,y), on OR\L, (5.1¢)

where g(y) and f(x,y) are sufficiently smooth functions defined on L and OR\L, respec-
tively. Then, as suggested by Rosser [8], it is possible to obtain 0(4°) approximations

U, ,; to u; ; by solving the linear system generated by the finite-difference equations

ApUij=0; I=1(1)n-1,j=11)m-1, (5.2a)
and
—137 10 5 1 .
UOJ +5Ul,j _SUz,j +_U3,j __U4,j +_U5,j = hg(jh);
3 4 5
j=1()m-1, (5.2b)
with
Un,j=/fni 5 J=11)m -1, (5.2¢)
Uwo=fio 5 U, n=fin ; 1=0()n. (5.2d)

Once the finite-difference approximations U; ; , i = 0(1)m - 1, j = 1(1)m - 1, are
computed, the three procedures of Section 4 can be applied directly to provide O(%°)
approximations U(x,y) to u(x,y) at any point (X,y) € R, except at points lying in
the rectangle t;, = {(x,y) : 0 < x < h , 0 <y < b}. For such points and, more
generally, for points (x, ¥) € r, u L the procedures must be modified, because the values
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U0, y) , 0 <y < b, are not available when y ¢ 1I ;0} . However, these values can be
found as follows:
Let Ql (%, y) denote the biquintic polynomial of Remark 4.5, and approximate the

Neumann condition (5.1b) by
~ (1,0
M0,y =g (5.3)

The equation (5.3) in full is

— D (62M ()~ 23M | (¥) = OM, (¥) + SM 5 ()~ M, ()}

180 . .
~—UO.y)+ T (v) =gy, (54)
where
M. (y) = hiz(fi(y —h) - 2T, (y) + T, (y +h)); i=1(1)4, (5.52)
and
Mo (y) = h%(U(o, )= 2T, () + T, (v) = 4M, (y) - M, (). (5.5b)

Therefore, by substituting the expression for M, (y) in (5.4) and rearranging , we find

that

1
v.y) ZE{ZZShZMl(Y) +53h M, () +5h My (1) ~h "M, ()
+924T, (y) - 372T, (v) ~ 180hg(y)} (5.6)

As might be expected, the value U(0,y) given by (5.6) is an O(h®) approximation to
u(0, y). This can be verified by expanding the right hand side of (5.6) about the point
(%, y) and recalling that Au=01in R. O
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VI. NUMERICAL RESULTS

In this section we present the results of two numerical examples illustrating the
theory of previous sections. These results were computed on an ECLIPSE MV/15000 ,
using programs written in double-precision Fortran, i.e. a precision of between 16 and

17 significant figures.

As before, let S.

j +V(x) and S. (x) denote respectively the corrected piecewise

v

quintic polynomial of Theorem 4.1, and the cubic spline of [7] referred to in Remarks

4.3 and 4.4. Then, the numerical results listed are estimates of

sup | Sj + V(x) -u(k’o) (x,yi + vh) |
x€l0,0|

and

sup |§

k,0
) -u® (x,y avh) |,
x€(0,0

Jj+v

obtained by fixing j and v and sampling the errors at a set of 200 equally spaced points
on [0, a]. We denote the error estimates corresponding to a mesh of size h by E. (h)

JHv
and Ej v (h) and in the tables we also list the computed values
= . = (k) 5 (k)
rj+v(h) = log Z{Ej+v (h)/Ej+v (h/2)}
and
favh) =logf EX) (m)y/E. (h/2)
’ Jtv Jtv
which give the observed rates of convergence.
Example 6.1.
Au(x,y) =0, in R, (6.1a)
ux, y) =y/{(2+x)> +y’}, ondR, (6.1b)
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where R is the unit square R= {(X,y) : 0<x<1,0<y<1}.

Exact solution : u(x,y) = y/{(2 + x)* + y*}.

Numerical results : The numerical results, obtained by using a mesh of size

h = 0.05 and taking j = 6 and v = 2/3 are given in Table 6.1. O

Example 6.2.

Au(x,y) =0, in R, (6.2a)
u9(0,y) =coshy, onL := {(0,y):0<y<b} (62b)
u**Y) = gin xcoshy, ondR\L, (6.20)

where, as in Example 6.1, R is the unit square.

Exact solution : u(x,y) = sin xcosh y.

Numerical results : The numerical results, obtained by using a mesh of size

h =0.05, and taking j = 6 and v = 2/3 are given in Table 6.2. O
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TABLE 6.1.

h=005 ;=6 v=2/3

k=0 k=1 k=2 k=3
EY) 1.30E-8 7.03E-7 9.03E-5 1.18E-2
T 4.0 3.0 1.9 1.0
ES) 1.26E-10 8.77E-9 1.75E-6 2.06E-4
* 5.8 4.8 3.9 2.8
Theoretical rates :?.(k) =4-k ; f.(k) =6 — k.

Jt+v Jjt+v
TABLE 6.2.

h=0.05 j=6 v=2/3

k=0 k=1 k=2 k=3
EY 2.48E-8 | 1.31E-6 | 1.79E-4 | 222E-2
T 4.0 3.0 2.0 1.0
EY 2.02E-9 | 1.99E-8 | 1.93E-6 | 1.84E-4
£ 5.9 4.9 3.9 2.9

Theoretical rates F(k) =4-k; f.(k) =6—k.
J+v j+v
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VII. DISCUSSION

We make the following general comments regarding the applicability of the method:

(i) The numerical results of Section 6 confirm the theory and illustrate the high
accuracy that can be achieved by the interpolation technique of Section 4. We note,
however, that the theory of the method requires that u(x,y) & CS(E) and that the
solutions of our numerical examples were chosen to satisfy this requirement.

(i) In a practical application it is unlikely that the solution of the harmonic
boundary value problem will satisfy the high continuity required by the theory. It is
however well-known that if u(x, y) does not have serious boundary singularities (e.g.
low derivatives becoming unbounded at some point or points on the boundary OR),
then the nine-point formula will give accurate approximations to u(x,y). We note,
in particular, that if the problem involves only jump discontinuities in the boundary
conditions, then the damaging effect of these discontinuities can be removed easily by
using the technique of Rosser [8]. (See e.g. [6], where the cubic spline technique of [7]
has been applied successfully to harmonic problems involving such discontinuities.)

(ii1) The application of the method requires that the aspect ratio b/a of the rectan-
gle R is a rational number. However, the method can also be used in conjunction with
a special finite-difference method due to Rosser [8], even when the aspect ratio of R is
irrational. (The technique of [8] involves the solution of two simple harmonic problems

defined respectively in two overlapping sub rectangles with rational aspect ratios.)
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