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                                                           ABSTRACT 

An O(h6) method for the interpolation of harmonic functions in rectangular do- 

mains is described and analysed. The method is based on an earlier cubic spline tech- 

nique [7], and makes use of recent results concerning the a posteriori correction of 

interpolatory cubic splines. 



 



I.   INTRODUCTION 

This paper is concerned with a numerical method for the solution of harmonic 

boundary value problems in rectangular domains  of  the  form 

                              R := {(x, y) : 0 < x < a  ,   0 < y < b},     a, b ∈ . NI

The method is based on an earlier cubic spline technique which was described, but not 

analyzed,  by  Papamichael and  Whiteman  [7] and which involves the following: 

(a) Determining O(h6) finite-difference approximations to the solution of the 

harmonic problem at the grid points of a uniform mesh, of size h, covering the rectangle 

R. 

(b) Determining approximations to the solution at any point in R by an in- 

terpolation procedure involving the construction of univariate cubic splines along lines 

parallel to the sides of R. This procedure of interpolation is characterised by the prop- 

erty that the parameters of the splines are given directly in terms of the finite-difference 

approximations at the grid points. 

The main objectives of the present paper are as follows: 

(i) To analyse the method of Papamichael and Whiteman [7] and to show that 

it gives O(h4) approximations to the solution of the harmonic boundary value problem 

at intermediate (non-nodal) points of R. 

(ii) To describe a simple technique which can be used to "correct" the cubic 

splines of [7], thus providing O(h6) approximations at intermediate points of R. 

(iii) To show that the above correction technique can also be used to provide 

accurate approximations to the derivatives of the harmonic function at any point of R. 
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We note that interpolation procedures of the type studied in the present paper 

have applications in connection with the numerical solution of elliptic boundary value 

problems by conformal transformation methods. In fact, the method of [7] was devel- 

oped for use in conjunction with a conformal transformation method for the solution of 

harmonic boundary value problems defined in general simply- connected domains; see 

e.g. [4] and [6]. 

I I .   NOTATIONS AND PRELIMINARY RESULTS 

The following notation will be used throughout the paper, 

(i)    R will denote a rectangle of the form 

                                       R  := {(x;,y) : 0 < x < a  ,   0 < y < b} 

where a, b ∈ IN . 

(ii)   Let n, m ∈ IN be such that a/n = b/m := h. Then, will denote the square ∏ h

mesh 

                             = {(x,y) : xi = ih; i = 0(1)n, yj = jh; j = 0(1)m}, ∏ h

covering R  = R  ∂R. U

(iii) will denote respectively the sets of mesh points on the jth
∏ ∏

}i{
yand

}j{
x  

mesh     row , j = 0(1)m,  and ith mesh column , i = 0(1)n, of  .That is, ∏ h

 := {{x,y) : x = xi; i = 0(1)n, y = yi }, ∏ x
}i{

and 

   ∏ : := {{x,y) :x = xi ,y = yj ; j = 0(1)m}. }i{
y
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(iv)    PC  will denote the class of all univariate piecewise cubic polynomials (∏ }j{ )x

 defined on the jth mesh row , j = 0(1)m, of �h and having knots   Similarly, ∏
}j{

x

PC  (  will denote the corresponding class associated with the knots  of the ith)∏
}j{

y ∏
}j{

y  

column , i = 0(1)n, of . ∏ h

(v)    Spl  will denote the class of all univariate smooth cubic splines defined (∏ }j{ )x

on the jth mesh row , j = 0(1)m, of  and having knots . That is , ∏ h x∏
}j{

                                           Spl := PC(∏ }j{
x ) ( )∏

}j{
x  |∩C2[0,a]. 

Similarly, 

                                          Spl  \ :=PC(∏ }j{
y ) ( )∏

}j{
y   ∩C2 [0,b]. 

(vi)  δx,δy will denote the usual central difference operators in the x,y directions, 

(vii)    Δ will denote the Laplacian operator 

                                                  Δ: = ∂2 / ∂x2  + ∂2 / ∂y2. 

(viii)  Δh will denote the well-known nine-point difference operator for Laplacian 

problems, i.e. 

Δhv(x,y) := v(x - h ,y  + h) +4v(x,y + h) + v(x + h,y + h) 

+ 4v(x - h,y) - 20v(x,y) + 4v(x + h,y) 

+ v{x-h,y-h) + 4v(x,y - h) + v(x + h,y - h).  (2.1) 

(ix)     CN (R)  will denote the class of all functions v(x,y)  whose derivatives 

v(k,l) := ∂k + l v/∂xk ∂yl are continuous in R for 0 ≤ k + l ≤ N. 
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Lemma 2.1. Let the values vi , j := v(xi,yi) , (xi,yj) ∈  , be given and, for any ∏ h

fixed j , j = 1(1)m -1, let σj (x) ∈ PC ( )∏
}j{

x  be defined by the following conditions: 

  σi  ({xi)  =  v , j  ;   i=0(1)n, (2.2a) 

and 

                                   .)1(0;,:j,iν
2

2
1)()2( nijiµ

hixj ==−= νδσ   (2.2b)
 

Then, σi (x)  ∈ Spl ( , provided that )∏
}j{

x

Δh  vi , j  = 0    ;    i =  1 (1) n - 1,  (2.3) 

where Δh is the nine-point difference operator (2.1). 

Proof. For x∈ [xi,xi +1] , i = 0(1)n — 1, 

                                      

)4.2(}.,,ji,ν,;{:

)}(,16

2
j1iν{

1

)1}(,6

2
ji,ν{1

3)(,16
13)1(,6

1)(

jiµixxjC

ixxjiµh
h

xixjiµh
h

ixxjiµ
h

xixjiµ
h

xj

=

−+−+++

−+−+

−++−+=σ

 

 
 

Clearly, σj,(xi—) = σj(xi+) and  (xi—) =   xi+) ; i = 1(1)n - 1 .   Therefore, )2(σ j j
)2(σ

σj(x) ∈ Spl ( , provided that   (xi—) =   (xi+) ; i = 1(1)n — 1, i.e. provided )∏
}j{

y
)1(

jσ )1(
jσ

that 

     ;1)1(1;2
64 −==+++− niji,ν

2xδ
hj1,iµji,µj1,iµ

 
                     (2.5)             

see e.g.[l:p.l0]. The elimination of the  µ i , j in (2.5) by means of (2.2b) then gives the 

finite-difference equations (2.3).  □ 
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Remark 2.1. By reversing the roles of x and y we have the following: 

For any fixed i , i = 1(1)n — 1 , let τ i(y) ∈ PC ( )∏
}{ j

y  be defined by the following 

conditions : 

τ i (yj)   =  vi ,j   ;    j  =  0(1) m, 

.m)1(0j;ji,ν2
x2h

1)jy((2)
iτ =δ−=

 

Then,τ i (y)∈-Spl   provided  that (∏ }i{
y )

                                           Δ h  v i , j  =  0    ;    j = 1(1)m - 1.□ 

Let u(x,y) denote the solution of a harmonic Dirichlet problem of the form 

Δu(x,y)=0    ,    in R, (2.6a) 

u(x,y) = f(x,y)    ,    on ∂R, (2.6b) 

and assume that f{x,y) is sufficiently smooth so that u(x,y) ∈ CN )R(  with N ≥ 6. 

Also, for any fixed j , j = 1(1)m — 1, let sj(x) be the unique cubic spline satisfying the 

following conditions: 

s j (xi) = ui , j        ;        i = 0(1)n, (2.7a) 

and 

                            .,0;)0,4(
,12

2)0,2(
,)()2( nijiuh
jiuixjS =−=                                           (2.7b) 

That is, the cubic spline Sj(x) interpolates the function u(x,yi) at the mesh points of 

the jth row of  and satisfies the two end-conditions (2.7b). ∏ h
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Lemma 2.2. Let u{x,y) be the solution of (2.6), and let sj(x) ∈ Spl ( )∏ x
}j{  be 

defined by the conditions (2.7). If u(x,y) ∈ C6 )R(  then, for any j, j=1(1)m-1, 

 
,3k0,)k4h(O|)iy,x()0,k(u)x()k(

js|
|,0|x

sup ≤≤−=−
α∈

             (2.8) 

    ,)1(0

),4()0,4(
,12

2)0,2(
,)()2(

),5()0,5(
.180

4)0,1(
,)()1(

ni

hOjiuh
jiuixjS

hOjiuh
jiuixjS

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

+−=

+−=
                    (2.9) 

 
 and 

                                  ),3()0,5(
,12

2)0,4(
,2

)0,3(
,)()3( hOjiuh

jiuh
jiuixjS ++±=±                     (2.10) 

where in (2.10) the subscript i ranges from 0 to n—1for xi+, and from 1 to n for xi—. 

Proof.        This  follows  from  the  results  of  [3]  and [5], by observing that the end 

conditions (2.76) are of order p = 4 in the sense of Definition 2.1 of [5:p.491].  □ 

Lemma 2.3.           Let u(x,y) and  si(x) be  as in  Lemma 2.2.  If  u(x,y) ∈ C6 )R( , then 

for any j , j = 1(1)n - 1, 

                 .1)1(1;)4(,
2

2
1)()2( −=+−= nihOjiuy

hixjs δ                       (2.11) 

 proof.     By   Taylor’s  series expansion,  

                                            ).O(hu
12
huuδ

h
1 4(0,4)

ji,

2
(0,2)

ji,ji,
2
y2 ++=   

Therefore , form (2.9), 
   

   )O(h)u(u
12
h)u(uuδ

h
1)(xS 4(0,4)

ji,
(4,0)

ji,

2
(0,2)

ji,
(2,0)

ji,ji,
2
v2i

(2)
j +−−+=+  

                                            = O(h4)  ;   i = 1(1)n-1, j = 1(1) m – 1, 

because Δu := u(2,0) + u(0,2) = 0 in R.  □ 
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Let U i , j , i = 1(1)n -1 , j = 1(1)m -1, denote the finite-difference approximations 

to ui , j := u(xi ,yj) obtained by applying the nine-point formula (2.3) at the interior 

mesh points of  That is, the values Ui,j are obtained by solving the linear system ∏ h

generated by the finite-difference equations 

ΔhUi , j=0    ;     i =  1( 1 ) n  - 1  , j  =  1(1) m-1, (2.12a) 

with 

U o , j = fo , j    ,    Un , i = fn , j    ;    j = 0(1)m, (2.12b) 

 
Ui , o = f i , o    ,     Ui,m = fi , m    ;     i = 1(1)n - 1. (2.12c) 

Then, the following result is well-known. 

Lemma 2.4. If u(x,y) ∈ C 8 )(R , then 

Ui , j - ui , j = 0(h6)    ;     i = 1(1)n - 1 , j = 1(1)m - 1. (2.13) 

Proof. See e.g. [8],  □ 

III.   CUBIC SPLINE INTERPOLATION ON THE MESH LINES OF пh 

In this and in the following sections we describe and analyse a simple method for 

computing O(h6) approximations to the solution u(x,y) of (2.6) at any point (x, y) ∈ R. 

The method is based on constructing univariate cubic splines along lines parallel to the 

sides of R, and is characterized by the property that the parameters of these splines 

are given directly in terms of the finite-difference approximations Ui , j corresponding to 
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(2.12).   In this section we consider only the problem of approximating u(x,y) on the 

mesh lines of . The general approximating  procedure  is  described  in  Section  4. ∏ h

For  any  j, j  =  1(1)m - 1,  let  Sj(x) ∈ PC ( )∏
}{ j

x   be  defined  by  the  following 

conditions: 

                                     Si (xi) = U i , j  ;   i = 0(1)n,                                                             (3.1a) 

                                 
,1n)1(1i;j,iU2

v2h

1)ix()2(
jS −=δ−=

                                                     
(3.1b) 

 

                                 
),2x()2(

jS)1x()2(
jS4j,1U2

x2h

6)0x()2(
jS −−δ=

                                        
(3.1c) 

and 

                           
).2nx()2(

jS)1nx()2(
jS4j,1nU2

x2h

6)nx()2(
jS −−−−−δ=

                              
(3.1d) 

Thus is,

       Sj(x) = Cj{x ; xi , Ui , j , M i , j}    ,    x ∈ [xi,xi+1]   ;  i = 0(1)n - 1,   (3.2) 

where the parameters Mi , j ; i = 1(1)n — 1, M0,i and Mn,j are given respectively by 

the expressions in the right hand sides of (3.16)-(3.1d); see Eq.(2.4).  □ 

Lemma 3.1. For any j , j = 1(1)m — 1, 

                                                        S i(x) ∈ Spl ( )∏
}j{

x , 

i.e. Si (x) is a smooth cubic spline interpolating the values Ui , j at the mesh points of 

the jth row oh  . ∏ h

Proof.         We  need  only show that (xi—) =  (xi+) , i =  1(1)n - 1.   For )1(S j j
)1(S

i = 2(1)n - 2 this follows from Lemma 2.1, and for i =1,n - 1 from (3.1)- (3.1d), 
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because these two equations are the consistency relations that establish the continuity 

of  at  xi  and xn -1 .   □ )1(S j

Remark   3.1. The  equations   (3.1)   define  an  approximating procedure 

where, at each interior mesh point of  , the x-derivative in the Laplace equation is ∏ h

approximated by the spline derivativeS ( (xi) and the y-derivative by the usual central )2(
j

difference replacement.  □ 

Lemma 3.2.  Let u(x,y) be the solution of (2.6), and let sj(x),Sj(x) ∈Spl ( )∏
}j{

x  

be defined by the conditions (2.7) and (3.1). If u(x,y) ∈C8(R), then for any j, 

j = 1(1)m - 1, 

                                   (3.3) 
, 2k0,n)1(0i;)h(O)x ( S)x ( S k6

i 
) k( 

j i 
) k( 

j ≤ ≤==− −

and 

),3 h(O)i x ()3 (
js)ix ()3 (

jS =± −±
      (3.4)  

where in (3.4) the subscript i ranges from 0 to n — 1 for xi+, and from 1 ton for xi —. 

Proof. The conditions (3.16) and the results of Lemmas 2.3, 2.4 imply that 

    

1,1(1)ni;)4O(h4O(h))ji,Uji,(U2
yδ 2 h 

1 )i(x(2)
j s)i(x(2)

jS −==+−−=−

and these together with (3.1c)-(3.1d) and the two corresponding consistency relations 

for the cubic spline sj (x) give that 

                                                
),4O(h)0(x(2)

js)0(x(2)
jS =−

                                                 
).4O(h)n(x(2)

js)n(x(2)
jS =−

         9 



 

Thus   ,  i =0(1)n.  The other results follow easily from 

standard cubic spline identities. □ 

Lemma 3.3. Let u{x,y) and Si(x) be as in Lemma 3.2. If u(x,y) ∈ C8(R) )R( , then 

for any j , j = 1(1)m - 1 , 
                          

 
and 

                                                                   

(3.7) 

where in (3.7) the subscript i ranges from 0 to n — 1 for xi+, and from 1 ton for xi — . 

Proof.          At  once  from  (2.8) – (2.10)  and  (3.3) - (3.4). �    

Once the finite-difference approximations Ui,j are computed, the cubic splines 

Sj(x) , j — 1(1)m — 1, can be used to approximate u(x, y) at intermediate points 

on the mesh rows of ∏ ,. Unfortunately, whilst the values Ui , j are O(h4) approxima- h

tions, the intermediate solutions given by the splines Si(x) are only O(h4) ; see (3.5). 

However, because of the asymptotic expansions (3.6)-(3.7), it is possible to ”correct” 

the splines Sj(x) and thus obtain O(h6) approximations to u(x,y) at any point on a 

mesh row of ∏ , This can be done by using the ”a posteriori correction technique” h

of Lucas [3], in which the corrected approximations are given by the piecewise quintic 

polynomial defined by Eqs (3.8)-(3.10) below; see also [5]. 
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)h (O )x(s)x (S 4
i

) 2(
j i

)2( 
j = − 

)6.3(,n)1(0i
),4h(O)0,4(

j,iu
12

2h)0 , 2 (
j, iu )ix ()2 (

jS 

,)5h(O)0,5(
j,iu

180

4h)0 , 1 (
j, iu )ix()1 (

jS

)5.3(,3k0,)k4h(O|)y,x()0,k (u )x ()k (
jjs|

|, 0 |x 
sup 

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

+−= 

+− =

≤≤−=−
α ∈ 

),3  h (O)0,5(
,iu

12

2h)0,4(
,iu

2
h)0,3(

,iu)ix ()3 (
j j j jS ++±=±



For , let Sj(x) ∈ Spl ( )∏ x  be defined by the conditions }j{ any j, j =  1(1)m — 1 

(3.1), and let jŜ (x) denote the piecewise  defined  quintic  polynomial 

                        

)8.3(,1n)1(0i;]1ix,ix[x

,)0,5(
j,iU}h/)ixx{(1P

!5

5h

)0,4(
j,iU}h/)ixx{(0P

4h)x(jS: −+=
!4

)x(jŜ

−+  

 

−=+∈

where P0, P1, are the polynomials 

                         ,
3
23

3
55:)(1P2324:)(0P ξ+ξ−ξ=ξξ+ξ−ξ=ξ     (3.9)

 

   and j,i
)0,5()0,4(U   and  approximations  to  the  derivatives   )0,5(  of   u(x,y) j,iU, j,iU,and)0,4(

j,iU

These approximations are given by linear combinations of the spline derivatives (2)S  (xi) j
as follows: 

 and         

)c10.3(

()2()2()2()2(
j

1)0,4(

h

)a10.3(,2n)1(2i

;)}1ix(jS)ix(jS2)1ix(jS{2h
:j,iU

−=
+−

 

  

)},1nxjS2)2xn(jS5)3nx(jS4)4nX(S{2h
:j,1nU

)b10.3(,1,0i

)};3ix()2(
jS)2ix()2(

jS4)1ix()2(
jS5)ix()2(

jS2{2
1:)0,4(

j,iU

−+−−−+−−=−

=
+−+++−=

             

)2()2()2(1)0,4( +−=

,2n)1(0i;})0,4()0,4(1)0,5(
                                                

            

j,iUj1iU{
h

:j,iU −=−++= (3.10d) 

  
.})0,4(

j,2nj,1nhj,1n −−−                                                                      
U)0,4(U{1:)0,5(U −= (3.10e)

Lemma 3.4 below concerns the quality of the derivative approximations (3.10). 
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Lem )0,4(ma  3.4.             Let  u(x,y)  and  Sj(x)  be as in Lemma 3.2, and  let j,ij,i U.U   be )0,5(

8 )R(given  by  (3.10). If   u(x,y) ∈ C  then  for  any  j , j  =  1(1)m - 1, 

                                            j,ij,i =
⎪⎭

⎪
⎬

+=

+=
                                   (3.11) 

                                                                     

     Proof .         Since    

                        

.n)1(0i
),h(OUu

),h(OUu
)0,5(

j,i
)0,5(

j,i

2)0,4()0,4( ⎫

)},x(S)x(S2)x(S{
h
1)x(S)x(S 1i

)2(
ji

)2(
j1i

)2(
ji

)3(
ji

)3(
j +− +−=−−+  

      (3.7) implies that 

                                           2.2(1)ni;)2O(h(5,0)
ji,U(4,0)

ji,u −=+=  

The other results in (3.11) then follow by elementary finite-difference arguments; see 

e.g. [2], [3] and [5]. □ 

We can now state the main result of this section as follows. 

( )∏
}j{

x  Theorem 3.1. Let u(x,y) be the solution of (2.6), let Sj(x) ∈ Spl be 

defined by the conditions (3.1), and let ˆ (x) denote the piecewise defined quintic poly- jS

nomial (3.8)-(3.10). If 8 ),R(u(x,y) ∈ C , then for any j ,j = 1(1)m - 1, 

                                     (3.12) .3k0,)h(O|)y,x(u)x(Ŝ|sup k6
i

)o,k()k(
j

|a,0|x
≤≤=− −

∈

Proof. Let x = xt + µh, 0  ≤  µ, ≤  1, and in the Taylor series expansion of 

u(k,0) (xi + µh, yj) -  (xi + µh)  use (3.6)  and  (3.7)  to express the derivatives )k(
jS

 ; r = 1,2,3,  in  terms of   )0,5(
j,i

)0,4(
j,i uandu    The result   then  follows 

from (3 j,i  by  the  approximations   )0,4(
j,iU  .11),by replacing the derivatives  )0,4(

j,i uandu )0,5(

and i,U                                       (5,0)
j .�                                                          

    
 

)ix ()r(
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jS )0 , r(
j, iu −



Remark 3.2. By   reversing  the roles of x and y we have the following: 

For any i , i = 1(1)m — 1, let Ti(y) denote the y-counterpart of Si(x). That is, 

Ti (y) := Ci {y ; yi , Ui,j , Ni , j } , 

y ∈ [yi,yi + 1] ; j = 0(1)m - 1, (3.13) 

where the parameters Ni , j := (yj) are given by )2(
iT

                                    ,1m)1(1j;U
h
1:N j,i

2
x2j,i −=δ=                                      (3.14a) 

,NN4U                                   
h

2,i1,i1,iy20,i
6:N 2 −−δ=                                              (3.14b) 

and  

;NN4U
h
6:N 2m,i1m,i1m,i

2
y2m,i −−− −−δ=                                 (3,14c)

 

( )∏
}i{

y and for u[x,y) ∈C8 )R(  see Eqs (2.4), (3.1)and(3.2). Then,Ti(y) ∈ Spl

                           .30,)(|),()(|sup 14)1,0()( ≤≤=− − lhOyuyT i
l

i               (3.15) 
|,0|∈

x
by

Also, let  (y) denote the y-counterpart of (x). That is, iT̂ jŜ  

)5,0(
j,ij1 U}h/)yy{(P

!5
h

−+ (3.16)
5

)4,0(
4

U}h/)yy{(Ph)y(T:)y(T̂ −+=

 

j,ii0ii !4
                                  

where P0, P1 are the polynomials (3.9), and 

                             )};y(2)y(T{
h

:U 1i1ii2j,i +− −=  T)y(T1 )2(
ii

)2(
i

)2()4,0( +

  j=2(1)m-2, (3.17) 

8 )R(  e.t.c. ; see Eqs (3.8)-(3.10). Then, for u(x,y) ∈C  

                        �                     (3.18) .3l0,)h(O|)y,x(u)y(T̂|sup 16
i

)1,0()l(
i

|b,0|y
≤≤=− −

∈
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We end this section by observing that the corrected approximations given by  (x) jŜ

)y(T̂i   satisfy the nine-point formula (2.3).  The  precise result is as follows:  and 

 Theorem 3.2. Let   (x) and te ined quintic polyno- jŜ )y(   deno  the piecewise defT̂i

mials (3.8) and (3.16), and for 0 ≤ µ ,v ≤ 1 let: 

Ui+µ ,j  := (3.19a)  jŜ  (xi + µh)   ;   i = 0 ( 1 ) n - 1 , j  = 1(1)m-1, 

and 

Ui ,j+v :=  (yi +vh)    ;    i = 1 ( 1 ) n - 1 , j = 0 ( 1 ) m - 1 .  (3.19b) iT̂  

Then, 

Δ  U = 0     ;    i = 1 ( 1 ) n - 2 ,  j (1)m - 2, (3.20a) h i+µ,v   = 2

and 

Δh Ui ,j+v  =0    ;    i = 2 ( 1 ) n - 2 , j  = 1(1)m - 2. (3.20b) 

Proof. This follows easily from the formulae giving   (x) and (y), by recalling jŜ iT̂   

(2.12a) and observing that 

,1n)1(1i;0}U{                       
h
1)x(S j,i

2
y2i

)2(
jh −==δ−=Δ  

                                                                                          j  =  2(1) m-2, 

and  

                      ,2n)1(2i;0U{
h
1)y(T ,i

2
xh2i

)2(
ih δΔ−=Δ }j −==                   

                                                                           j=1(1)m-1.�
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IV.   CUBIC SPLINE INTERPOLATION IN R 

  0 ≤ µ ,v ≤ 1, and let ∏ = }vj{
x  and ∏ + }µi{

y denote respectively the un Let iform 

partitions  of the lines y = yi + vh and x = xi + µh , corresponding to the partitions 

∏
}j{

x   and∏
}j{

y .  That  is,  for  any j , j = )m — 1,  0(1

∏
+ }vj{

x : =  {{x,y) : x  =  x i ;    i = 0(1)n, y = yi + vh},   (4.1a) 

and for any i , i = 0(1)n — 1, 

∏
+ }µi{

y : =  {(x,y) :  x  =  xi + µh , y = yj ; j = 0(1) m}.   (4.16) 

Also, as in Theorem 3.2, let 

Ui+µ ,j  := (xi + µh)    ;    i = 0 ( 1 ) n - l , y  = 1(1) m - 1,   (4.2.a) jŜ

U i ,j+v := (yi + vh)    ;     i = 1 (1 )n - 1 , j = 0(1)m - 1,  (4.2b) iT̂

and for any j , j = ned by the co   1(1)m — 1, let Sj +v (x)  ∈ PC ∏
+ }vj{

x : be defi nditions

(3.1) with the subscript j replaced by j + v. That is, 

                                        Sj+v(x) := Cj+v {x : xi, Ui, j + v  ,Mi,j+v}, 

 x ∈[ xi, xi+1 ] ; i = 0 ( l )n - 1, (4.3) 

meters Mi , j+v  are given by the right hand sides of (3.16)-(3.1d) with where the para

the subscript j replaced by j + v. Similarly, for any i , i = 1(1)n — 1, let T i+µ(y)∈  

PC + }µi{  be  defined by ∏ y :

                                     Ti+µ (y) : =  Ci +µ {y ; yi,  Ui + j , N i +µ , j }, 

y ∈ [yi, yi+1] ; y = 0(1)m -1,  (4.4) 

                                                                    15 



where the parameters Ni+µ, j are given by (3.14) with the subscript t replaced by i + µ. 

Then ivial m catio, because of Theorem 3.2, a tr odifi n of the proof of Lemma 3.1 shows 

that 

                   =  1 ( 1 ) m - 2 ,                                                 Si + v {x) ∈ Spl ∏ + }vj{
x : ;    j  

and 

                                         Ti +µ(y) ∈ Spl y :   ;   i  =  1 ( 1 ) n  - 2 .  ∏
+ }µi{

In other words, for any j, j = 1(1)m — 2, Si+v(x) is a smooth cubic spline defined 

on the line y = yi + vh and interpolating the corrected approximations Ui,j+v at the 

knots (4.1a). Similarly, for any i, i = 1(1)n — 2, Ti+µ(y) is a smooth cubic spline 

defined on x — xi +µh and interpolating the values U i +µ , j at the knots (4.16). Since, 

8for u(x,y) ∈C ),R(  

                    Ui = +µ ,j   -ui+µ ,j O(h6)    ;    i = 0 ( 1 )  n - 1 ,  j  =  1(1) m - 1, 

and 

                   Ui ,j+v - ui ,j + v = O(h )   ;    i  =  1 ( 1 )  n - 1 ,  j =  0(1)m - 1, 6

the theorem below can be established easily, by modifying in an  obvious manner the 

analysis of Section 2. 

Theorem 4.1.           Let u(x,y) be the solution of (2.6) and, for 0 ≤ µ ,v ≤ 1,let 

Si+v{x) ∈  Spl ( )∏
+ }vj{

x   and Ti+µ(y) ∈ Spl  ∏ + }µi{
y  be given, as described above, by 

(4.3  (4.4). Also, let) and j+v(x) and i+µ(y) denote the corrected piecewise quintic  Ŝ T̂

polynomials corresponding to Si+v(x) Ti+µ(y) . (That is, j+v(x) and i+µ(y) are and Ŝ T̂

given respectively by (3.8)-(3.10) with the subscript j replaced by j + v, and by (3.16), 

3(3.17) with  the  subscript  i  replaced  by i + µ.) If  u (x,y) ∈ C , then: )R(
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(i) For 0 ≤ k ≤ 3 and any j, j = 1(1)m-2,  
    
                                                         (4.5a)           ),h(O|)hyj,x(u)x(S|sup k4)0,k()k(

vj
|,0|x

−
+

α∈
=ν+−

and 

                                                       (4.5b) )h(O|)y,x(u)x(Ŝ|sup k6
hi

)0,k()k(
j

|,0|x

−
ν+ν+

α∈
=−

(ii) For 0 ≤ 1 ≤ 3  and any i , i  =1(1)n-2, 

                                 −=+−                           (4.6a) ).h(O|)y,µhxi(u)y(T̂|sup l4)1,0()l(
µi

|b,0|y
+

∈

and 
                       )l6O(h|y)µh,i(x(0,1)u(y)(k)

µjT̂|sup −=+−+    �                        (4.6b) 
|α0,|x∈

Assume that the finite-difference approximations U j = 1(1)m—1, i , j , i = 1(1)n—1, 

have been computed by solving the linear system (2.12). Then, because of (4.5b) and 

(4.66), the corrected piecewise quintic polynomials i+v(x) and i+µ(y) can be used Ŝ T̂

to compute O(h6) approximations Ui +µ , j+ v to ui+µ ,j + v := u(xi + µh , yi + vh) at any 

point 

(x,y) := (xi + µh ,yi + vh)    ,    (xi ,yi) ∈    ,    0 ≤m ,v ≤ 1,  ∏ h

in R. This can be done as follows: 

(I)  If i ∈ {0,1,..., n-1} and j ∈ {1,2,... ,m-2}, then Ui+µ,j+v can be computed 

from Ŝ  j + v(x), i.e. by taking 

Ui+ µ,j + v :=  Ŝ  j i +µh). (4.7)  + v(x

(II)   If i ∈ {1,2,..., n  2} and j ∈ {0, m — l}, then Ui+µ ,j + v can be computed -  

from T̂ i + µ{y), i.e. by taking 

Ui+ µ ,j + v :=  i +µ( yi +vh). (4.8)  T̂
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(Mo ,..., n - 2} and j ∈  {0,1,..., m - 1}.) re g erally, (4.8) can be used for i ∈  {l, 2en

(III)   If i ∈ {0,n- 1} and and q := j + v. Then, by j ∈  {0,m - 1}, let p :-i + µ 

using  the  nine-point formula, Up,q := Ui+� , j + v , can be computed from 

         q   := 20Up+α , q+β  — (Up+2α, q + UP,q+2β  +                           Up, Up+2α q+2β ) 

-4(Up+α , q + Up,q+β   + Up+2α , q+β  + Up+α ,q+2β ),     (4.9) 

whe , α = — 1 when i = n — 1 , β = 1 w n re α = 1 when i = 0 hen j = 0, β = - 1 whe

j = m- 1, and where the approximations in the right hand side are given by (4.7) and 

(4.8); see Remark 4.1 below. 

Remark 4.1.             With  reference  to (III), it is easy to see that Up,q — uP , q = O(h6). 

This follows because ΔhUp+α , q+β = 0(h ), and the values Up q+βUp+2α ,q e.t.c. in6
+α ,  

the right hand side of (4.9) are 0(h ) approximations to up+α , q+β,up+2α, q ,e.t.c.    □ 6

Remark 4.2.            The interpolation procedures (I)-(III) provide approximations to 

the solution of (2.6) at intermediate points in R directly in terms of the finite-difference 

approximations Ui , j. That is, once the linear system (2.12) is solved, the procedure 

does not require the solution of any other linear system. □ 

Remark 4.3.  The in r rote polation p cedures used in [7], differ from those de- 

scrib n ed above mainly because the cubic splines of [7] are not corrected. That is, i

[7] the approximations at intermediate points are computed by means of cubic splines 

S~  T~j+v{x)  and i+µ(y)   which interpolate the values 

                        U~ i+µ , j := Sj(xi + µh)    ;    i = 0(1)n - 1 , j = 1(1)m - 1, 
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and 

U~ i , j +v :=  Ti (yi + vh)    ;     I  = 1(1)n - 1 , j = 0(1) m - 1, 

rather than the corrected values (4.2).  Thus, the procedures of [7] can only produce 

O(h4) approximations  at  intermediate  ponts  of R; see (3.5), (3.15), (4.5a) and (4.6a).  □ 

S~Remark 4.4.               Let j + v  (x) be  the  cubic spline of [7], referred to in Remark 4.3. 

Then, by writing y = yj + vh, we can identify Sj+ v(x) as a piecewise bicubic polynomial 

Q~ i (x, y) defined in 

1R   :=  { x,  y) :  0  ≤  x ≤  a , h ≤ y  ≤ b – h }. 

 More precisely, with 

To (y) := f ( 0,y )        ,        Tn ( y ): = f ( a, y ), 

,1n)1(1i;)hy(T)y(T2)hy(T(
h 2
1:)y(M iiii −=++−−=  

               ),y(M)y(M4))y(TL)y(T2)y(T(
h

:)y(M 211o2o −−+−=  
6

and 

),y(M)y(M4))y(T)y(T2)y(T(
h
6
2:)y(M 2n1nn1n2nn −−−− −−+−=                 

we have  that 

.yyy,xxx;)y,x(Q~

)xx(
6

h
h

)xx(
6

h
h6h6

1i

2

1i

2

++
−

−
 

:

,
h

)y(M)y(T(

))y(M)y(T(

)y(M)y(M:)x(S

1ij1ii1

i

1i
ii

1iivj

++

+

++

≤≤≤≤=

−+

−+

+=
)xx()xx(~ 3

i
3

1i+ −−
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Furthermore, as was observed in [7], 1Q~ (x, y) ∈ C(2,2) (R1 )1 , i.e. the bicubic polynomial 

1Q~  (x, y) is a bicu perties of the bic spline. This follows easily from the continuity pro

splines T (y) and the fact that the values α  :=T  (y) and β := T  (y) satisfy i  i , j +v i i , j+v i
)1( )2(

the nine-point formula (2.3). In exactly the same manner it can be shown that 

2Q~  (x, y) := T~                                         i+µ (y)  ; x := xi + µh, 

is a bicubic spline in 

                                  2R  = {(x, y) : h ≤ x ≤ a — h , 0 ≤ y ≤ b}. □ 

Remark 4.5. We  can  of  course  also identify the functions j + v(x) and i+µ (y), Ŝ T̂  

that give the corrected approximations, as piecewise biquintic polynomials {x, y):= 1Q̂  

Ŝ j+v (x) ; x = xi+µh, and (x, y) := i+µ  (y) ; y = yi +vh, in the rectangles 2Q̂  T̂ 1R 2R   and 

respectively. (x, y) ∈ C Regarding continuity, we now only have that pQ̂ )R( p  , p = 1,2. It 

is however easy to show that the derivative jump discontinuities of (x, y) are “ small” pQ̂  

in the sense that 

                                     
);l)(k6O(hy),i(xl)(k,

2Q̂y),i(xl)(k,
2Q̂

),l)(k6O(h)jy(x,l)(k,
1Q̂)jy(x,l)(k,

1Q̂
+−=−−+

+−=−+
 

0 ≤  k, l ≤ 3.� 

Remark 4.6. 1R ,              From Theorem 4.1 we know that for any (x,y) ∈  

    3,k0;)k6O(h|y)(x,(k,0)uy)(x,(k,0)
1Q̂| ≤≤−=−  

,R 2  and, for any (x, y) ∈

1  C(p,q)(R) denotes the set of all functions defined on R for which the derivatives 

∂k+l /∂kx∂ly,0≤ k≤p, 0 ≤ l ≤ q,  exist and are continuous. 
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                              2 ≤≤=−  ,3l0;)h(O|)y,x(u)y,x(Q̂| 16)1,0()1,0( −

More  generally , it is easy to show that for (x,y) ∈ 1R , 

,3l,k0;)h(O|)y,x(u)y,x(Q̂| )lk(6)l,k()l,k(
1 ≤≤=− +−

 

and for (x, y) ∈ ,R 2  

                         |
)lk(6)l,k(

2 ≤≤=− +−      

   n  be  used   to provide 

.3l,k0;)h(O|)y,x(u)y,x(Q̂ )l,k(

That  is,    ;)y,x(Q̂),y,(Q̂ )l,k(
2

)l,k(
1    0 ≤ k,l   ≤  3 cax

O(h6-(k+l)) approximations to u(k,l)(x,y) at any point (x,y) ∈ 21 RR U  

For points (x }RR{\ 21 U i.e. , for points x :— xi + µh , y := yi + vh, R∈   ,y) 

i ∈ {0,n- 1} , j ∈ {0,m- 1}, O(h6-(k +l))  approximations to u(k,1)(x,y can be ) 

btained  by  modifying in an obvious manner the interpolation procedure  (III) , 

  mp Q̂ )l,k(
1

� 

 above

i,e.   by   applying   the  nine –point   formula    to  values  co uted  from )y,x(  and    

2

 

 ).y,x(Q̂ )l,k(

V. MIXED BOUNDARY VALUE PROBLEMS 

In this section we illustrate the application of the interpolation technique of Sec- 

tion 4 to the solution of mixed boundary value problems and, more sp cife ically, to the 

solution of boundary value problems satisfying a Dirichlet boundary condition on at 

least one side of the t rec angle R and Neumann conditions on the remaining sides. We 

do this by considering a harmonic problem of the form 
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Δu(x,y) = 0, in R, (5.1a) 

 
u(1,0)(x,y) = g(y), on L := {(0,y) : 0 < y < b}, (5.1b) 

 
u(x,y) = f(x,y),         on  ∂R \ L, (5.1c) 

where g(y) and f(x,y) are sufficiently smooth functions defined on L and ∂R\L, respec- 

tively. Then, as gsug ested by Rosser [8], it is possible to obtain 0(h6) approximations 

Ui, j  to ui , j by solving the linear system generated by the finite-difference equations 

Δh Ui ,j  = 0  ;   I = 1 ( 1 ) n - 1 , j  =  1(1) m - 1, (5.2a) 

and 

                     );jh(hgU
5

U
4

U
3

U5U5U
60 j,5j,4j,3j,2j,1j,0 =+−+−+

 

1510137−

j = 1(1)m - 1, (5.2b) 

with 

Un , j  =  f n , j   ;     j =  1 (1) m  - 1, (5.2c) 

 
Ui ,0 =  fi ,o    ;   Ui , n = fi ,n    ;    i = 0(1)n. (5.2d) 

Once the finite-difference approximations Ui , j , i = 0(1)m - 1, j = 1(1)m - 1, are 

computed, the three procedures of Section 4 can be applied directly to provide O(h6) 

approximations U(x,y) to u(x,y) at any point (x,y) ∈ R, except at points lying in 

the rectangle τh := {(x,y) : 0 < x < h , 0 < y < b}. For such points and, more 

generally, for points (x, y) ∈ rh ∪ L the  procedures  must be modified, because the values 
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U(0, y) , 0 < y < b, are not available when y ∉  . However, these values can be ∏
}0{

y

found as follows: 

Let 1  (x, y) denote the biquintic polynomial Q̂ of Remark 4.5, and approximate the 

Neumann condition (5.1b) by 

 )y(g)y,O()0,1(
1Q̂ =                                                         (5.3)

The equation (5.3) in full is 

)4.5(),y(g)y(1T̂
h
1)y,0(U

h
1

)}y(M)y(M5)y(M9)y(M23)y(M62{h
−+−−− 43210180

=+−

 

where 

                          ,4)1(1i));hy(iT̂)y(iT̂2)hy(iT̂(2h

1)y(iM =++−−=                        (5.5a) 

and 

).y(2M)y(1M4))y(2T̂)y(1T̂2)y,0(U(2h

6)y(oM −−+−=                        (5.5b) 

Therefore, by substituting the expression for M0 (y) in (5.4) and rearranging , we find 

that 

)6.5()}y(hg180)y(2T372)y(1T924

)y(4M2h)y(3M2h5)y(2M2h53)y(1M2h225{1)y,0(U

−−+

−++=

 

ˆˆ
552

As might be expected, the value U(0,y) given by (5.6) is an O(h6) approximation to 

u(0, y). This can be verified by expanding the right hand side of (5.6) about the point 

(x, y) and recalling that Δu = 0 in R.    □ 
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VI. NUMERICAL RESULTS 

In this section we present the results of two numerical examples illustrating the 

theory of previous sections.   These results were computed on an ECLIPSE MV/15000 , 

using programs written in double-precision Fortran, i.e. a precision of between 16 and 

17 significant figures. 

As before, let (x)νjŜ + and denote respectively the corrected piecewise (x)νjŜ +   

quintic polynomial of Theorem 4.1, and the cubic spline of [7] referred to in Remarks 

4.3 and 4.4. Then, the numerical results listed are estimates of 

                

  

                                          

|)hνiy,x((k,0)u-ν(x)jŜ|
|,0|x

sup ++
α∈

 

and 

|,)hν,iy,x((k,0)u-(x)νjŜ|
|,0|x

sup ++α∈
 

obtained by fixing j and v and sampling the errors at a set of 200 equally spaced points 
on [0, a]. We denote the error estimates corresponding to a mesh of size h by (h)νjE~ +  

(h)νjE~ +  and and  in  the  tables  we  also  list  the computed values 

)}2/h()k(
jE~/)h()k(

jE~{2log:)h(νjr
~

ν+ν+=+                                         

and 

)}2/h(νjÊ/)h((k)
jÊlog{:ν(h)jr̂ +ν+=+                                        

 

which give the observed rates of convergence.  

Example 6.1. 

Δu(x,y) = 0,        in R, (6.1a) 

 
u(x, y) = y/{(2 + x)  + y },    on ∂R, 2 2 (6.1b) 

24 



where R is the unit square R = {(x, y) : 0 < x < 1 , 0 < y < 1}. 

Exact solution : u(x,y) = y/{(2 + x)2 + y2}. 

Numerical results : The numerical results, obtained by using a mesh of size 

h = 0.05 and taking j = 6  and v = 2/3 are given in Table 6.1.  □ 

Example 6.2. 

Δu(x,y) = 0, in R, (6.2a) 

u( 1 , 0 )(0,y) =coshy,    on L := {(0,y) : 0 < y < b} ( 6.2 b )  

u(x , y)  =  sin xcosh y,    on ∂R \ L,                                                  (6.2c) 

where, as in Example 6.1, R is the unit square. 

Exac on :t soluti  u(x,y) = sin xcosh y. 

Numerical results : The numerical results, obtained by using a mesh of size 

h = 0.05, and taking j = 6  and v = 2/3 are given in Table 6.2.  □ 
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                                 TABLE 6.1. 

            h = 0.05,      j = 6,      v = 2          /3 

 
k = 0 k = 1 k = 2 k = 3 

)k(
jE~ ν+  1.30E-8 7.03E-7 9.03E-5 1.18E-2 

)k(
jr

~
ν+    4.0   3.0 1.9    1.0 

)k(
j ν+  Ê 1.26E-10 8.77E-9 1.75E-6 2.06E-4 

)k(
jr̂ ν+     5.8    4.8    3.9    2.8 

Theoretical  rates : .k6)k()
jr̂;k4k(~

jr −=ν+−=ν+  

                            TABLE 6.2. 

                 h = 0.05,     j = 6,      v = 2/3  

 
k = 0 k = 1  k = 2 k = 3 

)k(
jE~ ν+  2.48E-8 1.31E-6 1.79E-4 2.22E-2 

)k(
jr~ ν+    4.0   3.0    2.0    1.0 

)k(
jÊ ν+  2.02E-9 1.99E-8 1.93E-6 1.84E-4 

)k(
jr̂ ν+    5.9    4.9    3.9     2.9 

.k6)k(
jr̂;k4)k(

jr
~ −=ν+−=ν+Theoretical rates 
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VII. DISCUSSION 

We mak  the applicability of the method: e the following general comments regarding

(i) The numerical results of Section 6 confirm the theory and illustrate the high 

accuracy that can be achiev the in ation que o on 4. We note,  ed by terpol techni f Secti

however, that the th ory eth res ,y) e of the m od requi  that u(x ∈ C8( R ) and that the 

solutions of our numerical examples were chosen to satisfy this requirement. 

(ii) In a practical application it is unlikely that the solution of the harmonic 

boundary value problem will satisfy the high continuity required by the theory. It is 

however well-known that if does not have serious boundary singularities (e.g. u(x, y) 

low derivatives becoming unbounded at some point or points on the boundary ∂R), 

then the nine-point formula will give accurate approximations to u(x,y). We note, 

in particular, that if the problem involves only jump discontinuities in the boundary 

conditions, then the damaging effect of these discontinuities can be removed easily by 

using the technique of Rosser [8]. (See e.g. [6], where the cubic spline technique of [7] 

has been appl volving such discontinuities.) ied successfully to harmonic problems in

(iii) The application of the method requires that the aspect ratio b/a of the rectan- 

gle R is a rational number. However, the method can also be used in conjunction with 

a special finite-difference method due to Rosser [8], even when the aspect ratio of R is 

irrational. (The technique of [8] involves the solution of two simple harmonic problems 

defined  respectively in two overlapping sub rectangles with rational  aspect  ratios.) 
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