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Polygonal Patches of High Order Continuity

by John A. Gregory and Jorg M. Hahn

Abstract

A polygonal patch is defined to fill an n-sided hole within a rectangular C*
patch framework. First a reparameterization of the surface around the hole is
constructed, that is defined outside a regular polygon. The polygonal patch is
an interpolant, defined inside the polygon, that matches this parameterization
up to order k along the boundary. Some modifications and handles to control

the shape of the patch are described.

Key words
Polygonal Patches

Geometric Continuity



-1-

Ie Introduction

The parametric representation of surfaces in CAGD (Computer Aided Geometric
Design) is usually based on an assembly of patches with rectangular domains of
definition. However, arbitrary surface topologies cannot be described by a regular
rectangular patch framework. Either an arbitrary number of rectangular patches
meeting at a vertex has to be allowed or a polygonal patch has to be filled in.

There have been several attempts to construct polygonal patches but these can

only achieve C' continuous joins with their rectangular neighbours. For example,
[Charrot and Gregory '84] describe a pentagonal patch defined by a convex combin-
ation of parametric surfaces. As pointed out in [Gregory and Hahn ‘86], this
method cannot be immediately generalized to higher order continuity.

In this paper we consider polygonal patches with an arbitrary order of
continuity. We exhibit an n-sided patch which can be used to fill in a hole within
a rectangular C* patch framework and which is such that the composition is a C*

continuous surface.

The continuity considerations cannot be treated within the given parameter-
izations, since the patches cannot be considered as being defined in a common
parameter plane. The appropriate framework in which to examine continuity is the
setting of geometric continuity (G C*), cf. [Gregory and Hahn “86]. In our case,
however, the C* continuity of the basic patch will be guaranteed by giving an
explicit C* reparameterization of the surface around the hole. Only in the
discussion of modifications to the basic patch will we need the more sophisticated
techniques of geometric continuity.

The paper is organised as follows: Section 2 states the assumptions on the
rectangular patch framework and introduces the notation for the polygonal domain
on which the patch will be defined. Sections 3-6 contain the main part of the
construction.  In these sections we construct a C* parameterization of the surface
around the hole whose domain of definition is a strip around the polygon. This
parameterization is extended into the polygon by interpolation. The final compo-
sition of the polygonal patch interpolant is given in Section 7 and in Section 8

we consider some examples and adaptations of this basic patch.
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2. The polygonal patch problem

Assume that fj, j=0,...,n-1, form a rectangular c* patch framework around
an n-sided hole. We suppose n >5, but most of the paper also applies to the

case n = 3. To make the exposition more concrete, suppose that each patch f;
is  such that f,:8, - IR®, where §,: = [0,1]x [0,2] and where the segment

(0,s), 0 < d <1 is mapped to the j-th boundary segment of the hole, see Figure 1

(In practice f; will usually be composed of two, or more, basic patches, for
example Bernstein/Bezier or Hermite patches defined on [0,1]x[0,2] and

[01] x [0,2].)

Figure 1

That the patches form a C* patch framework means that for two adjacent patches

f; and fj+ (indices mod n), the composed map

f, (u,v) for (u,v) €[0,1] x [0,2]
£ (v—1,—u)for (u,v) € [-2,0] x [1,2]

2.1) (u, v){

j+l

is C* continuous, cf. Figure 2. Since we will apply Boolean sum interpolation
techniques, we require in addition that this composed map is C** continuous, i.e.

that the partial derivatives

(2.2) o, ="
1:72 au118V12

of the composed map exist for i,,i, < K, are continuous and are independent of the

order of differentiation.



Figure 2

To be precise, our construction only requires that each patch fj is Ccrk

continuous, defined on the right hand side of the segment (0,s), 0<s <1, and

that

(2.3) 0,1, £,(0,1) = (D" &, ; £.,(0,0), fori,i, < k.
This latter condition reflects the C** continuity of the composed map at the
corner (0,1).

The hole will be filled in with a patch P defined on a regular polygon and
we adopt the following notation:

Let Q be a closed, regular, n-sided polygon in R* with centre 0 and sides
of unit length. Its vertices are vj, j=0,...,n-1, and its edges are E;, para-

meterized by

(2.4) E (s)=v, + slv,, -v))
Let A be a closed, symmetric strip around Q. The strip is composed of closed

tiles A;, where A; is the part of A which lies outside the edge E; and on the

same side of E;.; as Q , see Figure 3.



Figure 3
In expressions involving V;, E;, A;, fj, it will be useful to have the index j

running over all the integers. Thus, in such cases the integers will be inter-

preted mod n, for example,
(2.5) f, =1f.
Finally, the Euclidean scalar product in IR*is denoted by <", >, i.e.

(2.6) < (XI’XZ)’(YI’YZ)> CEXY T XY,

3. Reparameterization of the boundary data

Our first goal is to reparameterize the surface around the hole to get a C*
parameterization F, defined on the strip A around the polygon Q . (In
practice only the restriction of F and its derivatives on the boundary of Q
will be needed).

The continuity conditions for the rectangular patches surrounding the hole
mean that the domains of two adjacent patches fj and fj+; can be put together by

rigid motions t; and 7, in the parameter space IR?, such that the map

f; o r}l(x), X€d; = rj(SO)

fj+1 ° TJ'_+11 (X), Xe 8j+1 =T (80)

(.1 £ (X): :{

is C* continuous on the composed domain & i U §,,¢cf. (2.1). The transformations

j+e
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7; will not be required explicitly but, with 1o the identity map and
5, =[0,]]x [0,2] the transformation T; is a rotation of ju/2 about the point

1 . .
(_?%} The domains can thus be rotated and pasted together but §, will then

overlap §,. (In general 6,,, =3, and v,,, =v,, where v, is the "vertex"

v, = rj(vo) with v, =(0,0).) Hence it is not possible to extend the parameteri-
n-1

zation to the union of the domains 8:U8i in IR?, see Figure 4.
i=0

&
1
4
v ' 0
2 ‘2 =5,
s Vi Vo
2 8
3
Figure 4

However, the parameterization can be extended if the domains &, are all considered

as being different (think of a paper model, see Figure 5) and furthermore this
procedure can be continued ad infinitum.

The mathematical object thus constructed is the "universal covering" of the

exterior strip 6 around the square. The universal covering will be denoted by

o and ;j, jez, denotes the displacement into & that corresponds to the rigid
motion 1, in the parameter space IR?. Points, maps, etc., living in the universal

covering will be marked by a tilde.
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The universal covering may be viewed as an infinite spiral staircase,

5= U gj see Figure 6. Its stairs are the (rectangular) domains Sj = T (80 ),

j€z

j €z ,which are all different, where gj andgj+1 are glued together smoothly.

More precisely, 5 is a smooth manifold together with a projection

338
which maps the point T, (x)e 3 (x €3,) to rj(x) € 0, and whose restriction
5, Ud,, »d,Us,,

is a diffeomorphism. This projection maps the vertices V; to v;. Further details

j+l

of covering theory may be found in any book on topology, e.g. [Singer and Thorpe '67]
but no further knowledge of the theory will be needed here.

&
&
=

<

We now proceed as follows, cf. Figure 7:

N

07 E————— O}

The parameterization f : & — R’, given by

(3.2) f(X):f,07'(X) forxes,,
is well defined on the universal covering of the square and C* continuous, since
on gj U ng

(3.3) £(R) =1, (x).

where x € §; U3, isthe image of X under the projection 5 8.
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Figure 7

Now consider the universal covering of the exterior strip A around the polygon:

A=U Zj, where Zj is protected on to Zj.

jez
Then the coverings A and § are diffeomorphic! This is the key that allows us

to go from a rectangular framework to the polygon. Roughly speaking, a diffeo-

morphism ¥ :A — & can be obtained by unwrapping the spirals.

Given a diffeomorphism ¥ A>3 , then

~

(3.4) F:foy

is a parameterization defined on the covering A.. Furthermore, assume that ¥

1s such that

(5) vld,)=5,
and that
(3.6) % (P(X) =7 (V).

for any two points )N(eZi andﬁ?ezj which are projected (underZ—)A)to the
same point XeA. Then the "periodicity" of f implies that F is "periodic",

i.e.
(3.7) F(X) = F(¥)



Hence F : A->IR? given by
(3.8) FX) := F(X)
is well defined and c* continuous.
F is the desired parameterization. To compute it explicitly only ¥
needs to be known. A special diffeomorphism will be constructed explicitly in
Section 5. To simplify calculations, ¥ will be suitably tailored to the

interpolation scheme involved.

4. Coordinates for interpolation along adjoining edges

The polygonal patch will be constructed as a convex combination of certain
Boolean sum Taylor interpolants, The Taylor interpolants are computed using
coordinates obtained by central projections (i.e. the "radial" projections of

[Charrot and Gregory '84]), see Figure 8.

Let Z; be the point of intersection of edge E;.; with E;+; and, for a point

X eQUA, let s;(X) be such that

Ej(sj): =V, +s,; (Vj+1 —Vj)
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is the point of intersection of the edge E; with the ray from Z; through X .

It should be remarked that E;(s;) is not defined for X = Z; but, since n>5,
we can assume that the width of the strip is such that z; ¢ A. To treat the

triangular case the central projections should be replaced by parallel projections,
cf. [Gregory '86]. Let tj(X):l—sj_l(X). Then we define coordinate charts

®, onQUA by
(4.1) ®;(X): = (5,(X).t,(x))
The chart ®; maps V; to (0,0) and the two edges E; E; | onto (s,0) and (0,t)
respectively.
We now transform the parameterization F to the parameterization
(4.2) g, :=F0(Dj_1
defined on CDJ.(A), see Figure 9. Boolean sum Taylor interpolation is then used

in Section 7 to construct an interpolant, defined on CDj(Q), which matches g; up

i R\
N

Figure 9

to its k-th derivatives along (s,0) and (0,t). The polygonal patch is a blend of
such interpolants. However, we still have to construct the diffeomorphism ¥,

and the coordinate charts CDJ. will be used in this construction.
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5. Construction of the diffeomorphism

The coordinate chart @, transforms the angle at the vertex V; to w2 A

similar property is needed of the diffeomorphism ¥, which transforms the
universal covering Z, of the polygon, to the universal covering 3, of the
square. Thus on the region Zj we construct ¥ as a kind of blend of ®; and

@, suitably matched together to yield a global map.

j+o
The diffeomorphism ¥ is defined in terms of a local representation as
follows: Let

(5.1) (5,.t,): =0,(X): =0,(%),

127
where X corresponds to X under the projection A — A. Then ¢; defines a coordinate
chart on Zj_l U Zj , of the universal covering of the polygon, which maps the vertex
\N/'j t0(0,0) and the edges E i andE i to (s,0) and (0, t) respectively. Also,let @ j
be the affine coordinate chartdefinedon &, U 6;, oftheuniversal coveringof
the square, whichmapsthe vertex \N/j to(0,0)andtheedgesbetween \ij , \~7j+1 and
\N/j , \N/H to (s,0) and (0,t) respectively. Then the diffeomorphism W can be expressed

Figure 10
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by its local representation

(5.2) v, 1=, 0p0d;",

with respect to the coordinate charts CT)j and $j , see Figure 10
We now define y; by the blend

(sj,a(s.)t. +B(s.)sj+l), fors; >0,
‘*’j(sj’%*{(( Ok Bl bt L fors, <0,

where a, B are positive real-valued C* functions such that
afs)+B(s)=

(5.4) afs)=1for s <0,
afs)=0 for s>1.

(5.3)

One easily checks that y; is C*. To show that y is well defined and C* we
must show that the local representations y; and y;,, describe the same map on A i

This follows since on &) (ZJ) we have

(5.5) %1055 Loy e @lﬂ(ﬁl, )
=9;,00; ° wj(sj,tj)
=008, (s, als, b +Bls b)
= (als, e, +Bls, y.1o1-s,)

= Wj+l( j+15 tj-*—l)
The diffeomorphism y satisfies the assumptions (3.5) and (3.6), except possibly

that the range of y might be only part of &, but this does not affect our

construction.

6. Computation of the boundary data for interpolation

The function gj can be computed on CI)J,(AJ_l UAj) as follows:

~

(61)) gszo(Dj_I:IN:o(DTl:fo\ljo(T)._l

{ oo g oy, on (Dj(Aj—l)

.or o<|) oy; on (Dj(Aj)
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Therefore

fj_l(—()t(l—tj)tj_l—B(l—tj j,l—tj) for S <0,
(6:2) gls; t))= £ (Cals, ) —Bls. b,.p.s,) fors =0
i\=als; Jt; =Bls; 5,.,8;) fors;=>0.
To compute derivatives of g; we must calculate the coordinate change s;,, o<l)j"1

(and tj_loCDj_l). This requires some computations within the polygon Q :
The coordinate chart ij(X) = (sj(X),tj(X)) can be computed as

d. d.
(6.3) (sj,tj)z(d ! ) j

9
td d,+d;

Where
(6.4) d,(X):=<V,-X,Z, >/ Z,|

]

is the perpendicular distance of X € QUA from the side E;, see Figure 11.

Figure 11

.1» we obtain the relations

By considering the area of the triangle V; Z; V,

(6.5) d;,+d;, —2d; cos 6 =sinb,j=0,..,n—1,

where

(6.6) 0 =2nn/n
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Thus
6.7) @DJ-(X)Z(sj(X),tj(X))Z(2d,(>?)j;1(§1s,ine’ 2d.1()?)j§)(s)6+sin9J
and
d;(X)
©0 R

" 2(2d,(X)cos0+sind—d, (X)) +sin0

Eliminating d; , and d; using (6.7) yields the following explicit formula for

the coordinate change:

- t(1+2cs)
6.9 . o(I).1 t)=
(69) 52 @51 (5,1) 4¢t(1-2s)+1+2¢(1-5)
where
(6.10) ¢ = cosf = cos(2m/n).

Its derivatives can be computed quite easily. For example, the first and second
partial derivatives with respect to t at t=0 are

0 4 1+2cs
6.11 s o )s,0)= —>
(611 at(SJ” ' k50) 1+2¢(1-5)
and
2 2
(6.12) 0 (Sj+1°q)j_l s,O):_SC (1-2s)1+2cs)

ot> (1+2c(1-s))

Due to symmetry, the formula for t; | is obtained from (6,9) by permuting s and t

Thus

q)TI(S ) s(1+20t)

6.13 t. .o t)=
(©6.13) e 4czs(1—2t)+1+20(1—t)

7.  The basic polygonal patch

We now combine our results to exhibit the polygonal patch explicitly.

Define Boolean sum Taylor interpolants p; on the unit square, that match the
functions g; up to its k-th derivatives along the edges s =0 and t = 0, by
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K i

(7.1) Z /(5,0 +Z ﬁlog (0,1)

:0
K K i) 41
s't?

> 20, 8,00)

=0 i,= 011 12

In fact, gjis a C** function and its partial derivatives can be computed from

(6.2), (6.9) and (6.13). For example, the data needed for a second order continuous

patch are
(7.2) g,(s,0)=1,(0,s),
1+2cs ’

O o0 -ue)-Be I 0,5 00)

B 1+2cs ’
(7.4) 02 gj(sao)— (a(s)+B(S)l+?_c(l—s)J 050 f, (O,s)

3 \02(1—25)(1+2cs)a £ (0

+ B(S/ (1+2C(1—S))2 1,0 _]( ’S)’
(7.5) g.(0,t)=1,,(0,1-t),

I TR b S _
(7.6) 81 gj(o,t)—[ ol t)1+20(l—t) B(l t)j@w f,(0,1-1)

1+2ct ’
O o000 R p-0) 0,801
Qall — \CZ(I_Zt)(l+2Ct)8 £ (01—

+ (X( t/ (1+2C(1—t))2 1,0 _]—2( > t) ’
(7.8) 11g1(0a ) o _](00)
(7.9) 8,,2,(0,0)=2,,,(0,0),
(7.10) 0,,8;(0.0)=-0,,,(0,0),
(7.11) 0,,8;(0,0)=0,, £,(0,0).
Here, o and P are ¢” functions such that
(7.12) a(s).p(s)>0,
(7.13) als)+B(s)=1,
(7.14) a(0)=1,a(0)=a(0)=0,

(7.15) B(1)=1.p(1)=p1)=0,
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and ¢ = cos(2n/n) (see (6,10)).
Interpolants P; on the polygon, which match the function F along the
two edges meeting at the vertex V;, are defined by
(7.16) P(X):=Ps,.t;),
where s;,t; are computed by (6,3) using the parameters d; from (6.4). The

final polygonal patch is a convex combination of these, namely

(7.17) P(X): = " w (X)P,(x),

=0

=1

—.

where w; are weight functions that sum to unity and vanish up to order k along

the edges Ei, i#j, j-1. An appropriate definition of the weight functions
for a C* patch is

11 4"
(7.18) wi(X) =

n—1

Z H d%ﬁ—l

= il

8.  Examples and modifications of the basic patch

The basic polygonal patch defined in Section 7 allows for a wide variety of
modifications:
The union of P and F is an explicit C* parameterization defined on QU A. This
means that P and the rectangular patches fj, j=0,...,n-1, join with geometric continuity
of order k (GCk), see [Gregory and Hahn '86]. However, parametric continuity
between P and F is not necessary for a C* surface. It sufficies that they
join with GC* continuity and this permits some interesting simplifications
described in subsections 8.1 and 8.2. In subsection 8.3 we consider an alternative
to the Boolean sum Taylor interpolant (7.1). Finally, in subsections 8.4 and 8.5
we describe some handles for shape control.

8.1 The Charrot-Gregory Gt patch

GC' continuity of P and F is preserved if the cross boundary derivatives

of g; are replaced with a positive multiple. Thus replacing (7.3) and (7.6) with
(8.1) 0o, gj(s’o) =—0,, fj (0, S)a
(8.2) a1,0 gj(oat):_al,o fj—l(o’l_t)’

and with k = 1 in (7.1) and (7.18), gives the original Charrot-Gregory GC' patch.
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8.2 A simplified GC* patch
GC* continuity (k>2) is not affected if the k-th derivative of P across

the boundary is modified by adding a tangent term. This was proved in [Gregory
and Hahn '86] for the case k = 2 but, in fact, the proof also applies to the
general case. This observation can be used to cancel the first derivative terms

of fj (and fj.1) in the expression for J,, g,(s,0) (and 0, g;(0,t)).For second

order continuity, this means that (7.4) and (7.7) can be replaced by

1+2cs ’
(8.3) 05 gj(sao) = (a(s)+ B(S)l N 20(1 ~ S)) 010 fj (O,S)
1+2ct ’
(8.4) a2,0 g (O: t) = (a(l - t)m + B(l - t)) 82,0 fj—l (0,1 - t)

and the resulting patch is still GC.

8.3 An alternative interpolation scheme

The Boolean sum interpolation technique in (7.1) cannot be applied if the
surrounding patch framework is just C* (not Ck’k). However, in this case any ck
interpolant which matches the function gj up to its k-th derivatives along the
edges s =0 and t = 0 would be appropriate. For example, if the individual patches
f; are ¢** but the composed map is only C* at the corners (i.e. (2.3) holds only

for 1; + 1, <k), then an interpolant can be defined by

Sk+1 K t]

(8.5) Pi(s,t): = e el ;;5 0, 8;(5,0)
tk+l K S

+ GRH | gkl Z;ax,o gj(O,t)

N
f=}

Although the weights are singular at (0,0), it can be shown that p; is C* continuous
on the unit square and can therefore replace (7.1).

8.4 Prescribing the shape across a boundary

The effect of the adjoining rectangular patches can be varied individually by
changing the diffeomorphism y . The conditions (5.4) can be weakened. The
blending functions a and B need not sum to unity everywhere, and moreover, they can
depend on the index j in (5.3). For a second order continuous patch this means

that (7.13), (7.14), (7.15) can be replaced by
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8.6) «;(0)=;(1)=1,

®.7) «1)=p;0)=0,

8.8) ,(0)=ii;(0)=¢,(1)=d,{1)=0,

8.9) B,(0)=5,(0)=p,(1)=5,01)=0.

Then o, have to be substituted by o,,B, in (7.3), (7.4) and by a_,B,, in

—

(7.6), (7.7).

A further generalization is possible in that the blending functions a(s),
B(s) in (5.3) might be replaced by bivariate functions a j(s,t),B i (s,t).

8.5 Prescribing the shape in the interior

A function may be added to the right hand side of the patch definition (7.17)
which vanishes up to its k-th derivatives along the boundary of Q . Such a

function is given by

(8.10) Q(X):hold (X))

The function Q might be chosen to prescribe the position of the centre point P(0),

to adjust the tangent plane at P(0), etc. It can thus be used to control the

interior shape of the patch.
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