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1 . Introduction

Matching boundary data exactly in an elliptic problem avoids one of
Strang's "variational crimes". (Strang and Fix (1973)). Supporting
numerical evidence for this procedure is given by Marshall and
Mitchell (1973), who considered the solution of Laplace's equation
with Dirichlet boundary data by bilinear elements over squares and
measured the errors in the L, norm. Then Marshall and Mitchell (1978)
obtained some surprising results: for certain triangular elements,
matching the boundary data exactly produced worse results than the

usual procedure of interpolating the boundary data.

This paper provides a partial analysis of these unusual results. We
find that the best approximation properties of the Rayleigh-Ritz-

Galerkin approximation in the energy norm are true for both the exact

and discretized schemes. We analyze the interpolation remainders for
certain rectangular and triangular schemes and we find no direct
connection between these and the finite element remainders. A new
triangular element that improves the interpolation remainder theory

is given. Numerical examples are also included.



2. Finite Element and Interpolation

Remainder Theory

We consider Poisson's equation —Au = f on polygonal domain D with

Dirichlet boundary data u = g on 0D. The corresponding weak problem

is to find a function u such that

0
a(u,v) = (()f,v) for al V € Hi1(D) (2.1)
u-—- g e H1 (D)
. . . . 0 .
where a(.,.) is the usual semi-definite energy (H]) inner product
and {.,.) is the L, inner product. The exact boundary data matching
Rayleigh-Ritz-Galerkin (RRG) approximation Ug satisfies
0 0
a(Ug,V) =(f,v) for al v e S=<¢ij> < H1(D) (2.2)

Where Ug =GEg +ZUiEd)i

and Gg = g on 0D.

Here we use local elements, e.g., the functions ®;. can be piecewise
bilinear elements with the corresponding "transfinite" function Gg
(see Sections 3 and 4 for specific examples). The corresponding

discrete boundary data matching RRG approximation Up satisfies

0
a(Up,V) = (f,v) for all v €S (2.3)
Where Up =Gp + ZUi)d)i
and Gp approximates g on 0D.

Let | .| =[a(.,.)]” be the usual energy semi-norm. Then the following



best approximation properties hold:

|u-UE|§|u-ﬁE|

|u - UD| < |u - ﬁD| (24)
where g, = Gg + X a; D;. and

ip =Gp + X b; ©;. for arbitrary {a;} and {b;} .
Boundary laver effect: Since Gg = g on 0D, then Up can be considered

as a RRG approximation to Ug, which implies the best approximation
property
|[Ug - Up| < | Ug- tp| . (2.5)

The possibility ﬁD = G + Ul

1
D £® ; eads to

|Ug - Up| < [Gg - Gp| (2.6)

which is an upper bound on the difference between the exact and discrete
RRG approximations, but of course gives no guide as to which of Ug and
Up is the better approximation to u. For the local schemes considered

in this paper, the right hand side of (2.6) involves an integral over

the "boundary layer" of elements next to the boundary.

Interpolation remainder theory is linked to RRG approximations by the
best approximation property. More specifically, tig and {ip can be
chosen to be the interpolants to u from the appropriate approximating
sets that contain Ug and Up , respectively. For this paper we obtain
bounds on |u - Gg| and |u - {ip | for various local interpolation schemes.
In addition, we give numerical results for [u - Ug | and |u - Up | for

some model problems.



Theoretically, the result
|u—ﬁE|§]u—ﬁD
does not guarantee

|Ll - UEl < |u— UD|

However, our numerical results indicate that (2.7) does imply (2,8).
More surprisingly, even in one case where |u - {ip| < |u - Uig| we find

that (2.8) holds.

The variational crime of not matching the boundary data exactly
provokes a question of norms. The energy semi-norm |.| = [a(.,.)”
is not a norm on H; . By application of the Sobolev Imbedding Theorems,

it can be made into a norm by the definition

1. 12 =a()+ [op |1 ds.

For this norm,

u—UE‘2 ds .

u—UEH2 =a(u -Ug,u~Ug) + IaD

= a(u-Ug, u-Ug)

u - UD‘2 ds .

u—UEH2 =a(u -Up,u~Up) + IaD

2
=a(u -Up,u~U +I - G ‘ ds .
( D D) oD ‘g D

The best approximation properties still hold in this new norm.

(2.7)

(2.8)

(2.9)

(2.10)



3. Rectangular Elements

We consider piecewise bilinear interpolation over a union of squares.
Let Bu be the usual bilinear interpolant over [0,1] x [0,1] and Ju
be the semi-discretized interpolant over [0,1] x [0,1] with the x-axis

being part of the boundary of the region, that is,

Ju=(1-y)u(x,0) + (1 -x)y u(0,1) + xy u(l,l)

=Bu+ (1 -y)[ux,0)-(1-x)u(0,0)-x u(l,0)] (3.1)

So the identifications with the general Gig and tip are Gig = Ju and

tip = Bu in this Section. From (3.1) we obtain

- P {a[u—Bu] T o (32)
0x 0x '
2 2
O[u — Ju] B O[u — Bu]
{ oy } B { oy } P G

For suitable functions a and B. We show that

1l
jo Io (@ +B) dx dy <0 (3.4)

and hence that
|lu - Ju|] < |u - Bu] (3.5)

Marshall (1975) used a truncated Taylor expansion to estimate the
functions a and B. In order to compute a and B exactly, we first

used a Sard kernal analysis similar to that of Barnhill and Gregory
(1976). However, a simpler analysis can be used in some cases. If

we show that (3.4) is true whenever u(x,y) is a monomial x™ y" , m, n > 0,

then the continuity of the energy norm suffices to prove (3.4) for all



relevant u, from which the desired result (3.5) follows.

Notice that

Bx"™y") - Jx"y") =x"y" for 0 <m, n<1
and

B(x™ y") =J(x™ y") = x"y" form > 1 and n > 0.

Hence B(x™ y") and J(x™ y" ) disagree only for m > 1 and n = 0. Careful
use of the definitions of a and B, (3.2) and (3.3) respectively, applied

to u(x,y) = x™ , eventually yields the following:

NS 2 m-n*

0 Jo 3 2m-1
[ — e
0 Jo 3 (m+2) 2m+1)

so that

1l 2 m-D?@2m? +3m+3)
-[o Io @B == sy em_Dam) (-7

which is negative for m > 2.

As mentioned earlier, numerical verification of this theoretical result
was given by Marshall and Mitchell (1973)and by Marshall (1975). (See
also Mitchell and Wait (1977).) It should be remembered of course that
these authors measured errors in the L, norm and not in the energy

semi-norm used in the proofs in this paper.



4. Triangular Elements

Marshall and Mitchell's (1978) results, that matching the boundary
data exactly in a triangulated region produces worse results than
interpolating the boundary data, were quite surprising. They
considered two C° triangular schemes: the "side vertex" method and
the "Nielson" method. (The side-vertex method is also called the
"radial" method and the Nielson scheme is an instance of a polynomial
blended triangular interpolant. See Barnhill (1977), p. 101 f. for
additional information about such triangular interpolants.) Here

we give an analysis of the Nielson scheme.

Nielson Scheme

Let Nu be the semi-discretized Nielson interpolant on the standard
triangle T with vertices (1,0), (0,1) and (0,0). This interpolant
picks up the function values at (0,1) and along the line segment

y=0,0<x <1, and is given by
Nu = xu(l,0) + yu(0,I) + (1 -y) u(x,0) - xu(l -y,0) .
Its complete discretization is the Courant linear interpolant
Lu = xu(1,0) + yu(0,1) + (1 -x-y) u(0,0) .

(So tig = Nu and Gip = Lu here). By reasoning as in Section 3, we

consider the equation

|u—Nu |2 :|u—Lu |2+II (o +B) dx dy
T

m

for those monomials for which Nu and Lu disagree, namely u = x

, M =2

(4.1)

(4.2)

(4.3)



We eventually obtain

H o (m-1)2 (2m +3)
:  2m+2)2m+2)(m+2)
and
J-J 5o (m-1)% 2m +9m + 6)
T 32m+1)(2m+2)(m+2)
and
2(m —1)2 He2m?2 +3m-12
H (a+P)dx dy = — 2m=D7(m+D(@m= +3m -12) (4.4)
! 32m +1)(2m + 2) (m + 2)(2m — 1)

which is positive for all m > 2.

This seems to indicate that the exact matching technique is worse
in this case, a result confirmed numerically by Marshall and Mitchell
using the L, norm. However, we obtain the surprising numerical
result (Table 4.1) that, in the energy norm,
(4.5)
lu - Ug| < |u - Up|

for the problems computed.

The Barnhill, Birkhoff, Gordon (BBG) triangular element was also

considered. The interpolation remainder theory produced no definite
conclusions. The numerical results in Table 4.1 indicate that exact

matching is usually better for this scheme.



0
Table 4.1 RRG Errors in (Hy) Semi-Norm

Au=0 on [0,1] x[0,1]=R

u=g on OR
Problem 1: u = sin 2x ¢ %Y Problem 2: u=1Inr -2
where 1’ = (x-0.437)> + (y + 0.3)?
h Courant Nielson BBG Courant Nielson BBG
Linear Linear
1
E 0.4544 0.3965 0.4070 0.53861 0.51558 0.51962
% 0.2364 0.2098 0.2124 0.30157 0.27193 0.27575
é 0. 1195 0.1115 0. 1121 0.15732 0. 14858 0.14956
1
E 0.05989 0.05776 0.05791 0.07 966 0.07737 0.07761
Problem 3: u = ex cCOS y PrOblem 4: u = Sin 4X (] -4y
h Courant Nielson BBG Courant Nielson BBG
Linear Linear
1
5 0.4055 0.3324 0.3427 1.2088 1.1938 1.2149
1
1 0.1815 0.1567 0.1595 0.6649 0.6337 0.6416
é 0.0714 0.0625 0.0634 0.3053 0.2873 0.2897
% 0.0266 0.0235 0.0237 0.1244 0.1175 0.1182
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Improved Nielson

We now create an "improved" Nielson element
N*u=P,u+Pr,u-P;Psru (4.6)

where

Py u = yu(x,l -x) + xu(l -y,y)

P, u = u(x,0) + u(0,y) - u(0,0)
+4xy{u(L, 1) -u(Ll,0)-u(0, L)+ u(0,0)}
2 2 2 2

P, Pru=y{u(x,0)+u(0,1-x)-u(0,0)
+ 4x (1 -x)Cu(%,%)-u(%,O)-u(O, 1)+ u(0,0)]}
2

+ x{u(l -y,0) + u(0,y) - u(0,0)

+ 4y(1-y)[U(%,%)-u(%,0) - u(0, %) +u(0,0)]}

N is exact for the function xy and N is not

We discretize N*u linearly along x = 0 and quadratically along
y =1 - x to obtain
J¥*u = (1 -y) u(x,0) - xu(l -y,0) + 2xy(x + y- 1) u(0,0)

y(1-2x) u(0,1) + x{y(2x- 1) + (1 - 2y) (1 -y) } u(l,0)
4xy (1 -x-y) u(L,0) + 4xyu(l, 1) (4,7)
2 2 2

+

+

The fully discretized N* is

B* u = (1 -x-y) u(0,0) + y(l - 2x) u(0,1)

+ x(1 -2y) u(1,0) + 4xyu(Ll,1) (4.8)
2 2
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Figure 4. 1 Stencils for J* u and B* u

The monomials for which J* u and B* u disagree are x ™ , m > 2.

In the case m = 2, we obtain“- (a0 +p ) dx dy < 0, which agrees

with the results obtained from the truncated Taylor expansion

analysis. Supporting numerical evidence is given in Table 4.2,
However, for large m, II 0w 0(1) and J.I B =0(m) so that

the analysis becomes inconclusive.



Table 4,2

J*uis the exact bilinear corresponding to (4.7) and B*uits discretization

0
RRG Errors inHjSemi-Norm

in (4.8). The same four model problems are used.

Problem 1

h B*u
l 0.31372
> .

1

4 0.15616
1

3 0.078001
1

— 0.038991
16

Problem 3

h B*u
l 0.31187
) .

1

4 0.15566
1

3 0.07780

— 0.03889

J*u

0.20391

0.12665

0.070180

0.036953

J*¥u

0.21452

0.13115

0.07146

0.03726

Problem 2

B*u

0.36198

0.19811

0.09938

0.04972

Problem 4

B*u

0.73338

0.38091

0.19098

0.09552

J*u

0.27907

0.16065

0.08793

0.04649

J* u

.50324

.28547

.16192

.08752
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5. Conclusions

(1) Exact matching usually produces better numerical results
in the energy semi-norm. If this semi-norm is made into

a norm, the exact matching technique would be even better.

(i1) Exact matching need not be better, in the L, norm.

(ii1) Interpolation remainder theory analysis in the energy

semi—norm is suggestive but not conclusive.
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