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Abstract—With over 79 million people forcibly displaced,
forced human migration becomes a common issue in the modern
world and a serious challenge for the global community. The
Flee is a validated agent-based social simulation framework for
forecasting the population displacements in the armed conflict
settings. In this paper, we present two schemes to parallelize Flee,
analyze computational complexity of those schemes, and outline
results for benchmarks of our parallel codes with the real-world
and synthetic scenarios on four state-of-the-art systems including
a new European pre-exascale system, Hawk. On all testbeds, we
evidenced high scalability of our codes. It exceeds more than
16,384 cores in our largest benchmark with 100 million agents
on Hawk. Parallelization schemes discussed in this work, can be
extrapolated to a wide range of ABSS applications with frequent
agent movement and lesser impact of direct communications
between agents.

Index Terms—migration, forcibly displaced people, agent-
based social simulation (ABSS), parallel and distributed agent-
based systems (PDABS), high-performance computing (HPC)

I. INTRODUCTION

In today’s world, the issue of human migration is of huge
importance to the global community, with over 79.5 million
people forcible displaced [1] and immigration policies being
one of the major topics in the media. Accurate forecasts for
the movements of forcibly displaced people (FDP) can assist
governments and non-governmental organizations to evaluate
effect of the humanitarian policies such as relocation of
humanitarian resources between the refugee camps or border
closing. One way to provide these forecasts is through agent-
based social simulations (ABSS), which enables exploration of
the societies as complex adaptive non-linear systems, difficult
to study with classical equation-based models.

Flee is an ABSS framework for forecasting FDP move-
ments, validated successfully for a range of geographically
different conflicts [2]. In this paper, we discuss an extension
of the Flee framework to its parallel version, called P-Flee.
P-Flee is a scalable code for simulating complex scenarios
of forced migration with high level of details, which enables
modelers to focus on the complexity of the conceptual model
without worrying about the execution time. We present al-
gorithmic solutions behind P-Flee implementation, as well as
compare performance and scalability of our codes on several
cutting-edge HPC platforms in order to establish guidelines

for choosing the most advantageous architectures for migra-
tion simulations among accessible. P-Flee is available from
GitHub1 under a BSD 3-clause license.

II. RELATED WORK

Most of the existing literature about agent-based human mi-
gration simulations focuses on the social aspects and neglects
discussing implementation details related to the computational
performance and scaling of the applications [2], [3], [4], [5],
[6]. As a rare exception in [7], Blandin et al. propose a parallel
Python implementation for human migration which scales up
to 7 billion agents at a global scale, however the micro-scale
agent behaviors have been largely ignored. In contrast, P-
Flee implements agent-based human migration simulation with
sufficient scalability while keeping an account for the micro-
level agent behavior.

In P-Flee, the spatial environment is represented by a
network of interconnected locations. HPC-compliant agent-
based codes, in which environment is modeled by networks,
are broadly discussed in literature. RepastHPC [8], [9] and
D-MASON [10] constitute two most popular general-purpose
parallel and distributed agent-based systems (PDABS) suit-
able for such ABSS. Besides general-purpose PDABS, HPC
community developed a number of domain-specific HPC-
compliant ABSS codes for applications in epidemiology [11],
[12], [13], [14],social networks modelling [15], economics
and logistics [16], urban planning [17], [9], [18]. Finally, in
many occasions, such ABSS can be efficiently implemented
on top of highly optimized multi-core and distributed graph-
parallel frameworks like PowerGraph, GraphX, GraphChi, and
Ligra or parallel graph processing libraries like PBGL and
SNAP [19].

Nevertheless, majority of these codes uses a spatial decom-
position, with processes calculating sub-parts of the spatial
domain and the agents residing there. In case of human
migration, such an approach is less practical because the
spatial movement patterns of agents are complex, fast and
often directed, giving rise to challenges in terms of load
balancing, which are hardly solvable with the above-mentioned
codes due to their design centered around network partitioning.

1https://github.com/djgroen/flee-release
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Fig. 1. South Sudan conflict location graph (58 locations and 69 routes)

Instead we developed an approach that is both spatially parallel
and agent parallel.

III. THE FLEE ALGORITHM

A. Outline of the Flee Algorithm

Flee requires a range of input parameters, which specify
environment and population of agents along with their prop-
erties. The Flee code calculates the movement of displaced
agents on a daily basis with a total number of simulation
days D. Population is parametrized by the initial number of
refugee agents N := N (0) and the average number of new
agents inserted during the time step Nnew := E[∆N (d)],
where N (d) denotes a total number of agents at day d.
Pace of agents’ movement is governed by a maximum move
speed per day vmax and an awareness level A, which is the
distance (measured in number of link hops) an agent takes into
account when choosing a destination. Environment is modelled
by an attributed weighted graph of routes between locations
GL := (VL, EL), called location graph (cf. Fig. 1). In this
graph, each vertex ` ∈ VL represents location and has a tuple
of attributes including location type (conflict zones, camps,
forwarding hubs and other major settlements) and conflict date.
Each edge e := (u, v) ∈ EL corresponds to a direct route
connecting two locations u and v from VL and has a positive-
valued weight dG(e) ∈ R+ equal to the route distance between
u and v measured in kilometers.

Algorithm 1 illustrates a sequential version of Flee.
Suleimenova et al. [2] provide a detailed description of this
algorithm including the flowcharts used for agent decision-
making. Lines 11 and 16 constitute the most expensive com-
ponent of Algorithm 1 and the main target for parallelization.

They correspond to the decision-making where each agent
selects further destination and path to move.

Algorithm 1 Pseudocode for the Flee simulation algorithm
Require: D, N , Nnew, vmax, A, GL := (VL, EL)

1: Extract locations and routes information from input files
2: AddInitialRefugees(day = 0 , N)
3: for each day d ∈ [1 . . .D ] do
4: AddNewConflictZones(day = d , GL)
5: new agents ← DailyNewRefugees(day = d , Nnew)
6: for each agent ∈ new agents do
7: addAgentToConflictLocation(agent , `)
8: end for
9: enactBorderClosures(day = d , GL)

10: for each agent ∈ system do
11: `new ← pathSelection(agent , GL, A)
12: moveAgent(agent , `new)
13: updateLocationInfo(`new)
14: end for
15: for each agent ∈ system do
16: finishTravel(agent , GL, A)
17: end for
18: end for

B. Parallelization of Flee

We implement two parallelization schemes: basic agent
parallelization (AP) and agent-space parallelization (ASP).

1) Agent parallelization (AP): In AP scheme, we replicate
location graph and distribute the agents evenly across the
processes. When this is done, propagation of the whole system
by one time step requires to aggregate agent totals twice [20].
MPI version of agent totals aggregation involves a single
MPI_Allgather operation to sync all locations in bulk. On
each process, it additionally requires a packing data before the
collective call and an unpacking after.

2) Agent-space parallelization (ASP): To avoid a commu-
nication bottleneck for large and medium sized graphs, we
developed an algorithm that distributes the responsibility of
location updates across the different processes. It splits the
locations list across all processes, and have each process
update the locations assigned locally. This approach requires
a single MPI_Allgatherv operation to synchronize the
location scores across all processes.

C. Complexity of the Algorithm

The computation of the P-Flee involves two time-consuming
parts: (i) agent decision-making and (ii) updating location
scores. The former dominates in the computational costs, while
the latter defines the communication overhead.

Agent decision-making requires to evaluate up to
min

{
|VL|,∆−(GL)A

}
paths started at agent location `.

Evaluation of each path consumes a constant time. Taking
into account that agents are distributed evenly in both
parallelization schemes, after summing up these contributions
over all agents and D days, we obtain the roof-line
approximation for the computational complexity of P-Flee:

O
(
D

P

(
N +

D + 1

2
Nnew

)
min

{
|VL|,∆−(GL)A

})
,
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Fig. 2. Comparison between the AP and ASP parallelization schemes of P-
Flee, on a scenario with 100 million agents and a synthetic graph having 2500
locations and 4 routes per location, for 100 epochs.

where P is the number of utilized processes.

IV. PERFORMANCE EVALUATION

A. Experimental setup

To evaluate the P-Flee performance, we utilize four different
testbeds and European supercomputers including two petascale
(Eagle and Eagle2) and a new pre-exascale (Hawk) system.
Table I shortly describes their characteristics. On all sys-
tems, we run P-Flee with Python dependencies mpi4py 3.0.3,
NumPy 1.19.0 and SciPy 1.5.0.

TABLE I
EXPERIMENTAL SET UP: HARDWARE AND SOFTWARE

Hawk Vulcan Eagle Eagle2
Nodes 5632 96 1087 1300
CPU model EPYC 7742 Xeon 6248 E5-2697V3 Xeon 8268
Cores/node 2×64 2×20 2×14 2x24
RAM/node 256GB 384GB 256GB 384GB
Interconnect IB HDR200 IB HDR100 IB FDR56 IB EDR
OS CentOS 8.2 CentOS 7.9 CentOS 7.6 CentOS 7.6
File system Lustre 2.12.5 Lustre 2.12.6 Lustre 1.8.0 Lustre 2.12.6
MPI MPT 2.23 OpenMPI 4.0 OpenMPI 4.0 OpenMPI 4.0
Interpreter Python 3.8.3 Python 3.6.6 Python 3.7.3 Python 3.7.3

B. Results

1) Parallel Modes: We first evaluate the agent-parallel (AP)
and agent-space parallel (ASP) modes of P-Flee using a large
simulation scenario with 100 million agents and a medium
synthetic location graph containing 2500 locations and 4 routes
per location, for 100 epochs on 512 up to 16384 cores (4-128
nodes) of Hawk. The results, shown in Fig. 2, indicate that
the ASP mode, due to its parallelized location computations
and its more efficient message packaging, significantly outper-
forms the AP mode. The benefit of ASP is particularly evident
on high numbers of cores, while for up to 512 cores, the two
modes produce similar execution times. Thus, we use the ASP
mode in the consequent experiments.

2) Simulating the case of South Sudan: Subsequently, we
evaluate the performance of P-Flee for the real world use case
of South Sudanese Civil War, to assess the execution time and
scalability of our codes on this and similar realistic scenarios.
Fig. 3a demonstrates the execution time of Flee on a number

of CPU cores ranging from 1 to 1024 on the aforementioned
testbeds. Since each system features different cores with
varying per-core performance, the execution time predictably
differs from system to system. Nevertheless, we observe a
similar trend in the scalability of Flee in all testbeds; thus,
we can safely assume that the parallel performance of Flee is
robust and independent of the underlying architecture details.
It is worth annotating that the South Sudan case involves a
small number of agents, starting from 800 thousand and ending
with 2 million agents, therefore there is a limited granularity
per process and limited potential performance gains from scal-
ing this particular scenario on more cores. This results in the
break of linear scalability for all systems after 32 processes.
Additionally, the high variance observed on Vulcan at 768
processes is attributed to interference, since Vulcan is a small
cluster (96 nodes) with a shared interconnect and filesystem,
and the MPI_Allgatherv communication dominates P-Flee
execution time in high core counts. Consequently, for the case
of South Sudan and similar micro-scale scenarios, a moderate
number of powerful cores is sufficient for parallel execution,
which favors HPC systems with strong per-core performance
like Eagle2 and Vulcan.

3) Scalability study: Finally, we evaluate the scalability of
the parallel Flee code for a macro-scale scenario, for instance
an international conflict or emergency situation where multiple
adjacent countries are affected. To emulate a problem with
more locations, we use 100 million agents and a larger syn-
thetic graph having 10000 locations with 8 routes per location.
In this scenario, the number of agents is kept fixed during
the simulation (Nnew = 0). We stopped our experiments
on the benchmarks using 16384 cores due to the limitations
for the job size on all testbeds. In Fig. 3b we present the
results. For this scenario, the ASP version of P-Flee scales
favourably to more than 16384 processes, as (i) the work
per process increases with the number of agents and (ii) the
overhead of setting up the simulation becomes negligible
compared to the iterative phase of the simulation. However,
the cost of setting up the simulation, as well as the costs of
collective communication per time step which increase with
the graph size, start to reduce the scalability of P-Flee on
high process counts. This linear speedup break point varies
for computer systems since it depends on the performance
of the underlying file-system and interconnects. Nevertheless,
the scalability results of the macro-scale simulation scenario
indicate a preference for massively parallel, high bandwidth
systems like Hawk.

V. CONCLUSIONS AND FUTURE WORK

In this work, we described the efforts to speedup a baseline
serial Flee algorithm for simulating human migration by means
of two parallelization schemes: basic agent parallelization
(AP) and agent-space parallelization (ASP). We provided a
roof-line computational complexity analysis of these schemes
and evaluated their performance on four state-of-the-art HPC
platforms. These experiments demonstrated the improvement
derived from the ASP mode with the high scalability of
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Fig. 3. Evaluating the execution time of P-Flee on four machines. The vertical dashed lines show the single-node core count for each machine.

our codes on all target testbeds, and provided some insights
for choosing the HPC system depending on the simulation
scenario.

With the revision of the decision-making rulesets and of
the location and path objects, P-Flee generalizes naturally to
the wider scope of migration questions, including forecasting
the longer-term human migration and the migration of other
species. Moreover, the parallelization schemes of P-Flee can
be re-engineered for some other ABSS applications with
frequent agent movement and much lower impact of direct
communications between agents, such as modelling of trade,
transportation, and movement of goods. In future work, we
intend to study these potential applications of P-Flee.

ACKNOWLEDGEMENTS

This work has been supported by the HiDALGO project and
has been partly funded by the European Commission’s (EC)
ICT activity of the H2020 Programme under grant agreement
number: 824115. This paper expresses the opinions of the
authors and not necessarily of the EC. The EC is not liable
for any use of the information contained in the paper.

REFERENCES

[1] UNHCR, “Figures at a Glance,” Available at: https://www.unhcr.org/
figures-at-a-glance.html, 2019.

[2] D. Suleimenova, D. Bell, and D. Groen, “A generalized simulation
development approach for predicting refugee destinations,” Scientific
reports, vol. 7, no. 1, pp. 1–13, 2017.

[3] S. Edwards, “Computational tools in predicting and assessing forced
migration,” Journal of Refugee Studies, vol. 21, no. 3, pp. 347–359,
2008.
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