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Approximate analytical and numerical solutions of a partial

differential equation are obtained which describe the
diffusion of oxygen in an absorbing medium. Essential
mathematical difficulties are associated with the presence
of a moving boundary which marks the furthest penetration
of oxygen into the medium and also with the need to allow

for an initial distribution of oxygen through the medium.



1. Introduction

The classical moving-boundary problem in heat flow which has
been most thoroughly studied is one in which a change of state
occurs on the moving interface. The velocity of the boundary
is determined by the physical requirement that the latent heat
required for the change of phase must be supplied or removed
by conduction. Such problems are often referred to as "Stefan
problems" after J. Stefan who published a paper on the subject
towards the end of the nineteenth century. There is an extensive
literature dating from that time. An excellent survey is given
by Muehlbauer and Sunderland (1965).

The present paper concerns a problem arising from the
diffusion of oxygen in a medium which simultaneously consumes
the oxygen. A moving boundary is an essential feature of this
problem also, but the conditions which determine its movement
are different. Not only is the concentration of oxygen always
zero at the boundary but, in addition, no oxygen diffuses across
the boundary at any time. There is thus no relationship which
contains the velocity of the moving boundary explicitly. A
combination of analytical and numerical methods are applied
to this problem and the results are finally expressed in the
form of an approximate polynomial expression.

The work is of immediate interest in medical research
concerning the uptake of oxygen by tissue and the problem was

suggested to us by Dr. N. T. S. Evans at the Medical Research Council's

Experimental Radiopathology Unit, Hammersmith Hospital.



2. Statement of the Problem.

First, oxygen is allowed to diffuse into a medium, and some of the oxygen

is absorbed by the medium, thereby being removed from the diffusion process.
The concentration of oxygen at the surface of the medium is maintained
constant. This first phase of the problem continues until a steady-state

is reached in which the oxygen does not penetrate any further into the
medium. The supply of oxygen is then cut off and the surface is sealed

so that no further oxygen passes in or out. The medium continues to

absorb the available oxygen already in it and as a consequence the boundary
marking the furthest depth of penetration in the steady-state, recedes
towards the sealed surface. The major problem is that of tracing the
movement of the boundary during this phase and of determining the distribu-
tion of oxygen through the medium as a function of time. A secondary
problem in the application of numerical techniques is associated with the
discontinuity in the derivative boundary condition which results from the
abrupt sealing of the surface.

The diffusion-with-absorption process is represented by the partial

differential equation

2
a_c:Dac - m (2.1)
oT ox?

where C(X,T) denotes the concentration of the oxygen free to diffuse

at a distance X from the outer surface of the medium at time T, D is a
constant diffusion coefficient and m, the rate of consumption of oxygen
per unit volume of the medium, is also assumed constant.

The problem has two parts :-

(a) Steady-state solution

During the initial phase, when the oxygen is entering through the



(b)

surface, the following boundary condition is satisfied,
C=Co, X=0, T=>0, (2.2)

where Cp is a constant.
A steady-state is achieved in which the concentration at every

point in the medium becomes independent of time, 1i.e.

oC . .
—=0 everywhere, when the gradient of concentration becomes

oT
zero at the point, Xo , in the medium where the concentration
itself is zero. No oxygen can then diffuse beyond this point

and we have the conditions,

C=0, X>Xo , (2.3)
8—Czo, X>Xo , (2.4)
oX
for T > 0.

The steady-state is defined by a solution of

0*C
ox?

m = 0 (2.5)

which satisfies the boundary conditions (2.2), (2.3) and (2.4).

This solution is readily seen to be

m 2
C=— (x—-x,), 2.6
o (%)) 2.6)
Where
X, = (ZDCoj. @7)
m
Moving Boundary Problem

After the surface X =0 has been sealed, oxygen which is already

in the medium, in the range, 0 < X < X, continues to be consumed.

Consequently, the point of zero-concentration which was initially given



by (2.7) recedes towards X =0. Let the position of this point
at any time, T, be represented by Xo (T). The second phase of the

problem can be expressed by the equation,

2
oC _,oC

=D smm 0 X < Xy(T), (2.8)

with the following conditions,

X _o, x=0, T=20, (2.9)
oX
ac
C=220,X=X,(T),T>0, 2.10
X o(T) (2.10)
C= 2 (x—x,). 0<X<X,, T=0, 2.11)
2D

where T = 0 is the moment when the surface is sealed.

Making the changes of variables,

X D D
X=—, t=—T, c= = ¢

X, X, mX,’ 2,

and denoting by X,(t) the value of x corresponding to X,(T),
the above system is reduced to the following non-dimensional
form,

o _ O

= o~ 0SxEx0, (2.12)

with the corresponding boundary conditions,

oc

—=0, x=0, t>0, (2.13)
[5).4
oc
C=—=0, x=x,0), t=0, (2.14)
15).4
1 2
C:E(l—x), 0<x<l1, t=0 (2.15)

Where X, (0)=1. The subscript t in X, (t) is drooped in

the following discussions



3. Short-time Solution

The condition (2.15) shows that in the steady-state a negative unit
gradient of concentration exists at the surface. When the surface is
sealed a zero surface gradient is instantaneously imposed in accordance
with (2.13). Because of this discontinuity in the surface-gradient
numerical methods based on finite differences are liable to give inaccurate
solutions in the neighbourhood of the surface for short times. There will
be an interval of time, however, before the disturbance at the surface
has an effect on the solution in the neighbourhood of x=1 to any
specified degree of accuracy. Thus an analytical solution can be
obtained which will provide a suitable approximation for small times,
by assuming that the boundary, x, = 1, does not move initially.
The solution of (2.12) subject to the initial condition (2.15) and
the boundary conditions (2.13) and

C=0, X=1,t>0 (3.1)

is found by using Laplace transforms to be

c(x,t) =2 (1-x)* +2 ( jZ( 1)'e Xp{ (2n;—j_ X]}

mx) || &, 2n+2-x
exp{( e ] H;(l) {2n+2—x)erfc(Tj

—(2n+x) erfc[zn”j } 0<x<l, t20. (3.2)

23t

Values of c(x, t) have been computed for x=0 (0.05) 1.0 The

typical curves of figure 1 demonstrate the general shape and
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Fig.1. Concantration distributions for t ¢ 0.05 before the boundary moves within the accuracy of plotting.
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confirm that the concentration has not changed within the accuracy

of plotting near the boundary at x= 1 .

In computing c(x, t) from (3.2), it is seen that the convergence of
the infinite series is very rapid, so that the terms corresponding to
n = 0 are sufficient over an appreciable interval of time, when the

terms less than 10°° are neglected. Furthermore, for 0<t <, 0.020,
the second and the third series can be ignored to obtain an accuracy
nowhere worse than 107°. The concentration for 0 <t < 0.020 can

therefore be represented fairly accurately by the approximate expression,

NN M TES RS

0<x<I. (3.3)
4.  Numerical Method
Once the boundary has started to move we resort to numerical

methods of solution. Several methods have been proposed. Douglas and
Gallie (1955) introduced a method of variable time step, keeping

the size of the space mesh fixed. Murray & Landis (1959) used a
variable space mesh and kept the time step fixed. Ehlrich (1958)
employed implicit formula at the intermediate points and Taylor's
expansions near the moving boundary in both time and space directions.
Lotkin (1960) made use of sub-divided differences while Crank (1957)
suggested a three-point Lagrange interpolation formula near the

moving boundary.

In the present analysis, the concentrations at the intermediate
points between the two boundaries have been calculated by using
simple explicit finite-difference formulae. Near the moving boundary

a Lagrange-type formula has been used, as suggested by Crank (1957)



because of convenience in calculation. The location of the

moving point itself is determined by a Taylor's series. The method
is described below in detail.

The whole region, 0 < x < 1, is subdivided into M intervals each

of width 6x and we take x, = rdx where 0 <r < .M (Mdéx=1).

l
5x- plox—
|
: |
|
|
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|
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3+ |
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§x plttae |
x=0 r=2 r-1 I r x=1
FIG.2

4.1. Concentrations at the Intermediate Points

We assume that the concentrations at each of the grid points,
at the j'" time level are known and the position of the moving
boundary at that time is somewhere in the r'" interval between
X, and X;" given bv Xo = (r-1)0x+ p I §x where pj is positive and
usually less than one, and is also known (figure 2). Then the
concentrations at the (j + 1)'* time level, up to and including
the mesh point r-2 can be calculated using the well known

explicit formulae,
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j+l

¢ — ¢l 2 o
o A A .
S — S - koo —S—j(lx > (e, - 2¢ 4+ ) -1, (4.2)
fork=1,2,...... , (r-2), where 8t is the size of the

j
time-step and k denotes the concentration at point kdx at

time jot.
4.2. Concentration in the Neighbourhood of the Moving Boundary

Let f (a,), f(a;) and f(ay) be any function values corresponding
to the arguments a,, a; and a,. A three-point Lagrangian
interpolation formula can be written as

(x—a) (x—a,) (x—a,) (x—a,) f(a,) + (X_ao)(x_a1)f(a ).

- fa,) +
(a,—a, (a, —a,) (a,—a,)(a,—a,) (a,a, )a,.a,)

f(x)

Differentiating the above twice with respect to x, we get

o°f B 2f(a,) N 2f(a,) N 21(2,)
ox’ - (a, a)(a,—a,) (a,—a,)(a, a,) (a,-a,)(a, _al).

(4.3)

Application of (4.3) at the points (r-2)dx, (r-1)6x and the
moving point, and remembering the boundary condition (2.14),

gives,

c 2 (e, o) .
ox* (X 1+p p ’

and the appropriate finite-difference replacement at the point



(r - 1)0x leads to

o j ]
oG 2 [ G Ca) (4.4)
ot (6ox” \1+p' p’

an explicit expression for cﬂj-

4.3 Position of the Moving Boundary

In order to determine the location of the moving boundary, x, (t),
we first derive some extra conditions there. Differentiation of

(2.14) with respect to t, gives

de _ (ﬁj dx, (@j _o. (4.5)
dt ox ) L dt o) .,

By using (2.12) and (2.14) in (4.5) we obtain

=1, x=x (4.6)

Differentiating (2.12) with respect to x, we get

oc o
oxot  0x’

(4.7)

Assuming that order of differentiation by x and t can be

interchanged we obtain

o2 (B
oxot ot

= p ) = 0, at the moving boundary
X

Since & =0 there. Hence from (4.7)

11



12.

n

Similarly it can be shown that 2 (: =0, n>4.
X

Now, the Taylor's series for ¢,.; obtained by expanding about the

moving point can be written as,

oc o%c
cr1=c(xo)—p6x(&j +%(p8x){ = J : (4.8)
Since
03¢ 3 o'c 3 _0'¢ _ 0
el = oo O

Using (2.14) and (4.6) in (4.8), gives

(e..) 4.9)

When ¢ has been calculated from (4.4), the relation (4.9) gives

the position of the moving point at the (j+1)™" time level.

44. Moving Boundary Crossing a Mesh Line

As c;.; goes on decreasing we look for either of the two

possibilities (i)c!" <0or (ii)c!" >c’,. with regard to the

first condition it is physically impossible for ¢,.; to go negative.
When the second condition as detected, it shows that the numerical
process has become unstable. A stability analysis is presented in
the appendix to this paper. When either of the two conditions arises,
the (r-1)'"" mesh point is given up at the (j - D' time level and
onwards. The Lagrange formula is then applied to recalculate Cry
using a new value of p at the (j -1)'" time which is taken to be

1—1
the old value of P plus one. This process is continued until

there are at least two mesh points including the sealed surface.
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At the end, however, an approximate solution may be useful which

1s discussed in the next section.

Concentrations have been computed for 6x = 0.10,0.05 and ot = 0.001.
A comparison is given in Table 4.1 to indicate the order of accuracy
of the results. Table 4.2 shows that the values obtained by using
0x = 0.05, are in a very good agreement with those calculated from
the Laplace solution, for small times. It should be noted that the
numerical solutions involve large errors in the beginning, at the
surface due to discontinuity in the gradient there at zero time,
but they very soon become consistent with the Laplace solutions.
At t = 0,050, the difference between the numerical and the Laplace
solutions is not more than 0.0003 anywhere when the boundary x,

has moved a distance of 0.003 from its original position x, =1.



TABLE 4.1

Values of 10° ¢ and the positions of the moving boundary. For each time the

upper entry corresponds to 6x= 0.05 and the lower entry 6x = 0.10.

S 0.0 0.1 0.2 0.3 0.4 0.5 06 | 0.7 0.8 0.9 Moving

t Boundary
387497 | 365668 | 310719 | 243726 | 179927 | 125000 | 80000 | 45000 | 20000 | 5000 |  1.00000

0.010 | 393371 | 369057 | 311105 | 243388 | 179787 | 124980 | 79999 | 45000 25000 5000 | 1.00000
0. 020 340661 | 326222 | 287180 | 233793 | 176960 | 124370 | 79905 | 44991 | 19999 | 5000 |  1.00000
344573 | 329324 | 288631 | 234012 | 176757 | 124193 | 79831 | 44970 | 19996 | 4999 |  0.99999

0. 050 247841 | 240358 | 219089 | 187264 | 149327 | 109945 | 73208 | 42199 | 18955 |4673 | 0.99709
250246 | 242563 | 220778 | 188310 | 149802 | 110039 | 73118 | 42067 | 18852 | 4620 | 0.99612
143287 | 139414 | 128228 | 110966 | 89502 | 66112 | 43228 | 23232 | 8342 | 619 | 0.93518

0-100 144974 | 141031 | 129651 | 112108 | 90330 | 66643 | 43515 | 23345 | 8344 | 546 | 0.93304
109228 | 106125 | 97149 | 83265 | 65963 | 47115 | 28827 | 13324 | 2924 0 0.87885

0120 110768 | 107613 | 98489 | 84387 | 66852 | 47733 |29224 | 13544 | 2987 0 0.87729
77937 | 75442 | 68233 | 57105 | 43322 | 28536 | 14730 | 4249 0 0 0.79756

0-140 79368 | 76833 | 69507 | 58206 | 44216 | 29210 | 15187 | 4489 0 0 0.79476
0,160 48893 | 46912 | 41212 | 32511 | 21996 | 11346| 2890 | 0 0 0 0.68128
50243 | 48230 | 42437 | 33595| 22900 | 12036 | 3271| 0 0 0 0.68089

0,150 21824 | 20328 | 16096 | 9950 | 3506 0 0 0 0 0 0.49607
23119 | 21597 | 17289 | 11010 | 4285 0 0 0 0 0 0.49257

0.190 9039 | 7827 | 4575 750 | 0 0 0 0 0 0 0.33873
10319 | 9082 | 5703 1353 0 0 0 0 0 0 0.35201

2880 1909 0 0 0 0 0 0 0 0 0.16128

0195 4153 3138 0 0 0 0 0 0 0 0 0.17922




Comparison between analytical and numerical (6x= 0.05) solutions for small times.

TABLE 4.2

For each time the upper entry corresponds to the analytical solution and the lower entry

to numerical solutions. Tabulated values are 10° ¢

) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
464318 | 404606 | 320000 | 245000 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000

ot 460000 | 405000 | 320000 | 245000 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000
449538 | 401927 | 319973 | 245000 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000

o 452000 | 405000 | 320000 | 245000 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000
438197 | 397811 | 319760 | 244998 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000

o 437600 | 398000 | 320000 | 245000 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000
428636 | 393157 | 319212 | 244981 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000

o 429600 | 394760 | 320000 | 245000 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000
420213 | 388338 | 318302 | 244924 | 179999 | 125000 | 80000 | 45000 | 20000 | 5000

o 420320 | 389128 | 318976 | 245000 | 180000 | 125000 | 80000 | 45000 | 20000 | 5000
387164 | 365073 | 309950 | 243276 | 179804 | 124986 | 79999 | 45000 | 20000 | 5000

Hom0 387497 | 365668 | 310719 | 243726 | 179927 | 125000 | 80000 | 45000 | 20000 | 5000
247691 | 240179 | 218845 | 186955 | 148992 | 109636 | 72962 | 42030 | 18856 | 4628

0 247841 | 240358 | 219089 | 186264 | 149327 | 109945 | 73208 | 42199 | 18955 | 4673
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5. Integral Method

In this section we look for simple analytical expressions for the
concentration-distribution as well as for the location of the moving
boundary at any given time. We shall make use of an approximate method
that was introduced by Goodman (1958) and is usually referred to as the
'Integral Method'. Areviewofintegral methods and their applications
to a variety of transient-heat-transfer problems is to be found in

Irvine & Hartnett (1964).

5.1.  Description of Integral Method

In applying the Integral Method to the present problem we choose a profile
which satisfies all the known conditions. This profile involves the
position of the moving point as a parameter to be determined. In order to
find a moving point versus time relationship we integrate both sides of
the differential equation (2.12) with respect to x over the range for

which 1t 1s valid, i.e. 0<x<X,. This means that the differential

equation is to be satisfied on average only and not at each point.

Thus we obtain

Xo Xo X,

O%dx= O%‘jdx—!dx (5.1)
Substituting the concentration profile in (5.1) and after a certain
amount of manipulation we get an ordinary differential equation for the
position of the moving boundary, X,, with t as the independent variable.
Once the position of the moving point, Xo, is determined at any time,

substitution of this value for the parameter X, in the profile gives the

concentration distribution at that time.

5.2 Determination of Surface Concentration.

Integral methods are not very amenable in oases of non-uniform initial
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distributions. In the present problem the discontinuity in the surface
gradient is an additional difficulty. In order to apply an integral method
we first get an expression for the surface concentration and use it as an
additional condition to obtain the profile. We refer to the analytical
solution (3.2) which has been obtained assuming the boundary,xy, fixed
at x = 1. As described in Section 3, this solution is true everywhere
for small times i.e. until the boundary has not moved within the range
of working accuracy. However, it is observed that the concentrations
near the sealed surface have a close agreement with those obtained

from the numerical solutions for 6x = 0.05 for all times. Therefore,
an expression for surface concentration can be obtained by putting x = 0
in (3.2). A closer examination of that expression reveals that the
concentration varies linearly with the square-root of the time to an

accuracy of 5 x 107, as compared with the numerical solutions, and is

c(o,t)Z% - 2\/z . (5.2)
T

Comparative figures are given in the following table for

given by

(i) Analytical solution (3, 2) (ii) Numerical solution for dx = 0.05 and
(i11) Approximate solution given by5(2).

TABLE 5.1

Comparisons of 10° ¢ at the sealed surface.

Solutions™~Time 0.04 0.08 0.12 0.16 0.18 0.19
Analytical 274328 180852 109134 | 48771 | 21546 8546
Numerical 274496 180969 109228 | 48893 | 21834 9039

Approximate 274324 180846 109118 | 48648 | 21269 8151
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It may be mentioned here that the total time, t;, for the concentration

everywhere to become zero is given by c(o,t;) = 0 and is equal to

s
— from (5.2).
e (5.2)

5.3.  Choosing a Polynomial Profile

A polynomial profile of fourth degree is now chosen containing five
unknown parameters which might be functions of time and which are
determined using (2.13), (2.14), (4.6) and (5.2). On writing c, for

c(o,t) the equation for the polynomial becomes
c(X,X,) = (l—x/xo)z{%x2 +4c,(1-x/x,)—3c,(1- X/XO)Z}. (5.3)

This contains the position of the moving points, Xy, which still

has to be determined.

5.4 Determination of the Moving Boundary

To obtain x(y as a function of time we refer back to the equation

(5.1) which gives

“oc, 0}
jo adx—al‘c dx = —x, (5.4)

. oc
since —=0 atx=0,xq.
Ox

Writing c(x,x0) from (5.3) in (5.4) and using (5.2) we get, after

some manipulation

dx, _ 20-8/ @) X (5.5)

dt X2 +4-164/ (t/ )
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d . .. ) .
We know that %SO. This condition will not be true until,

8

Tt

20— >0, (5.6)

since the term in the denominator of (5.5) is positive for 0<x, <1
and t<t,where t;, is obtained from(5.2).

The inequality (5.6) gives the minimum time t, for the condition

%SO to hold as Si It should be noted that as the moving
p/a

. . dx e
point xo approaches the sealed surface, its speed d_to tends to infinity

as t tends to tj.
We have found that the numerical solution of (5.5) obtained by using a

Runge-Kutta algorithm can be approximated by the expression,
1

X, =1—exps—2 bt ’
0= p (5.7)
t—t,

Table 5.2 below provides a comparison for the position of the moving
boundary as obtained from (i) numerical evaluation of (5.5) using
Runge-Kutta method (ii) approximation (5.7) and (iii) numerical method
of section 4.

TABLES.2

Comparison for 10*x0 at different times.

Time 0.051 | 0.060 | 0.080 | 0.100 | 0.120 | 0.140 | 0.160 | 0.180 | 0.190 | 0.195
Numerical

Solution 10000 | 9974 | 9750 | 9321 | 8686 | 7817 | 6634 | 4892 | 3505 | 2331
of (5.5)

Approximate

10000 | 9996 | 9817 | 9393 | 8779 | 7962 | 6848 | 5092 | 3478 | 1760
Solution on (5.7)

Numerical
Method of 9967 | 9922 | 9719 | 9352 | 8788 | 7975 | 6812 | 4959 | 3381 1618

section 4.




20.

It is seen from the above table that the numerical solution of
(5.5) agrees with the exponential profile for the moving
boundary (5.7) very well except for very large times. But the
profile (5.7) has a very good agreement with the values obtained
from the numerical method for all times. Therefore, (5.2) and
(5.3) together with (5.7) constitute an approximate solution.

It should be noted that this solution is applicable for the time

interval iStsi only. For tﬁi, Laplace solutions
25n 16 25n

(3.2) and (3.3) give analytical solutions when it has been assumed
that the boundary has not moved from its original position xo= 1.
Thus we have got now an analytical solution of the problem for all

times.

6. Results and discussion

The concentrations in the medium at various times together
with the positionofthe moving boundary have been compared in
Table 6.1 for numerical and the approximate solutions. A very
close agreement is seen between the two solutions. The approximate
method would specially be useful (a) to calculate the concentration
and the position of the moving boundary at an arbitrary time and
(b) at the end when the numerical method would not work because
too few mesh points remain. Graphs have been drawn to show the
concentration-distributions at various times (figure 3) and the

progress of the moving boundary with respect to time (figure 4).



TABLE 6.1

Comparison of concentrations 10° ¢ and the distances of the moving boundary from the

sealed surface. For each time the upper entry shows values obtained from the

approximate solution and the lower entry values from the numerical solution (6x=0.05)

{ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Moving
t Boundary
245176 | 236403 | 213648 | 181831 | 145308 | 107868 | 72736 | 42571 | 19469 | 4957 | 1.00000
0051 245329 | 237966 | 217026 | 185652 | 148186 | 109216 | 72788 | 41981 | 18854 | 4635 | 0.99673
223605 | 215950 | 195945 | 167714 | 137974 | 101028 | 68767 | 40671 | 18809 | 4837 | 0.99957
0-060 223746 | 217330 | 198992 | 171251 | 137684 | 102227 | 68548 | 39645 | 17705 | 4186 | 0.99220
0.100 143175 | 138758 | 126795 | 109243 | 88096 | 65385 | 43176 | 23569 | 8703 | 751 0.93934
143287 | 139414 | 128338 | 110996 | 89502 | 66112 | 43228 | 23232 | 8342 | 619 0.93518
62981 | 61083 | 55236 | 45725 | 33529 | 20315 | 8443 962 0 0 0.74538
0130 63157 | 60928 | 54494 | 44602 | 32453 | 19668 | 8298 | 1007 0 0 0.74487
21269 | 20771 | 17750 | 11681 4387 42 0 0 0 0 0.50925
0180 21824 | 20328 | 16096 9950 3506 0 0 0 0 0 0.49607
8151 8028 | 5315 925 0 0 0 0 0 0 0.34776
0190 9039 7827 | 4575 750 0 0 0 0 0 0 0.33873
1721 1307 0 0 0 0 0 0 0 0 0 17598
0195 2880 1909 0 0 0 0 0 0 0 0 016128

Note- Fort < 0.050 see Table 4.2.
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APPENDIX

STABILITY ANALYSTS

The set of difference equations connecting values of ¢ at two consecutive

time levels can be written in the following matrix form (r=5t/(8x)* ) ,

(i ] [1-2r  2r IR
Cf+1 r 1-2r r Cf 1
0
= _ B I (1)
» 0 roo1-2r r o | |1
ONn-2 2r 2r
j+l p 1-— j 1
[ CN-2 i 1+p’ p'| LSl b
or ¢ =A, ¢ - Ut (2)

where Aj is a square matrix of order N which varies with N and U is a

column vector each element of which is a unity. We see that elements

in the last row of Aj are dependent on j and therefore in order to make

analysis possible we first replace p’ by a constant value p. Later on
conditions are imposed on p in order to make the scheme stable.

Equation (2) is then written as

M= A el —ust. (3)

(o]



We denote the computed values by y so that we have actually solved

the equations

p = Ay -U “)

The computational error is then given by subtracting (4) from (3).
If the error introduced at the k'™ step is denoted by the vector e*
Then
-y =A-y)
i.e
¢ =Ae )
The recurrence relation (5) gives
el =(A)"e! (6)
where €° is an error vector for the starting values.
Let us express e° as the linear combination of the eigenvectors of A,

such that

N
o _
e = zas‘_/s'
S=1

where vy 1s an eigenvector of A corresponding to the eigenvalue A and
a’s are constants. It is easy to show that
N
e = Zaskg Vs.
S=1 T

For ¢" to tend to zero, as n increases, it follows that the largest

of ]\,

)\'2

N9 , XN| must be less than unity. If Qg is the

sum of the moduli of the terms along the s™ row excluding the

diagonal term ass in matrix A then by Brauer's theorem every

26.
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eigenvalue of A lies inside or on the boundary of at least one of
the circles |A — ass | = Qs .

As we are interested in the "bounds of p, applying Brauer’s theorem to
the last row of A that contains p, we have

2r 2r
Qy=—, ag=l-—,
I+p p
so that
‘x—(l—g) <2
p| 1+p

The bounds for A are given by

poolo_ g alep) )

p(1+p) p(l+p)

For stability we require |7»1|£1,|7»2|£1, and hence

-1<1- <1 giving <1
p(1+p) p(1+p)
and
C1<20E2D) y iing U 2P)
p(1+p) p(1+p)

Since p is always positive, the condition for stability is given by
the second inequality because the first one is then satisfied automatically.

Therefore, for overall stability

P’ +(1-2r)p-r>0.

Since r 2% for the stability of the simple explicit scheme used at the

intermediate points, it can be shown that

PZr—l+ (l+r2j (7N
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For we get the stability condition p 0.11

and for , we have p , 0.54. This suggests that
an instability may arise when the moving point is nearer than 0.011
to the neighbouring mesh point in the first case and 0.027 in the

second case ( x = 0.05). This confirms the need for the stability

check described in Section 4.4.



