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Recursive Locally Minimum-Variance Filtering for
Two-dimensional Systems: When Dynamic
Quantization Effect Meets Random Sensor Failure

Fan Wang, Zidong Wang, Jinling Liang, and Carlos Silvestre

Abstract—This article deals with the recursive filtering issue error variance for exactly known linear systems, has been
for an array of two-dimensional systems with random sensor idely utilized in various scenarios ranging from engiriegr
failures and dynamic quantizations. The phenomenon of seons practice to machine learning. Furthermore, the so-cabiedst

failure is introduced whose occurrence is governed by a ranaim Kal filter has b d | dt h th bust
variable with known statistical properties. In view of the data aiman nfter has been deveioped o enhance the robusiness

transmission over networks of constrained bandwidths, a dy @against modeling errors and/or parameter uncertaintibsrev -
namic quantizer is adopted to compress the raw measurements the main idea is to provide desirable state estimates with

into the quantized ones. The main objective of this articles to  guaranteed error variances at each iteration [10], [40}. Fo
design a recursive filter so that a locally minimal upper bourd is some recent results on recursive variance-guaranteethiijte

ensured on the filtering error variance. To facilitate the filter
design, states of the dynamic quantizer and the target plant problems, we refer the readers to [4], [19], [25], [26], [42]

are integrated into an augmented system, based on which an Inrecentyears, two-dimensional (2-D) systems have gained
upper bound is first derived on the filtering error variance and an ever-increasing research interest owing to their distie

subsequently minimized at each step. The expected filter gai feature that the states evolve along two independent direc-
is parameterized by solving some coupled difference equams.  tjnons Benefiting from the bi-directional signal propagati

Moreover, the monotonicity of the resulting minimum upper 2D t tent i deli i bl
bound with regard to the quantization level is discussed andhe -D Systems are competent in modeling many multi-variable

boundedness analysis is further investigated. Finally, &ctiveness Systems with promising applications in water heating, ineta
of the developed filtering strategy is verified via a simulabn rolling, sheet forming, and medical imaging [9], [31]. Sa,fa

example. an abundance of literature has focused on the researctstopic
Index Terms—Recursive filter, two-dimensional systems, dy- Of stabilization, control and estimation for 2-D system$, [1
namic quantization, sensor failure, monotonicity, boundeness. [30], [33], [38], [39], [43], [47]. In particular, much efft
has been made towards the recursive filtering problems for 2-
D systems under robust performance requirements [20], [34]
. INTRODUCTION [46]. For instance, the robust Kalman filter design issue has

Over the past few decades, there has been a tremend@®@n explored in [20] for an array of 2-D stochastic systems
amount of research looking at the filtering or state estiomati With parameter uncertainties and measurement degradation
problems in both signal processing and control communitiedd the recursive distributed filtering problem has been in-
According to the types of the system noises and the pé&g€stigated in [34] for 2-D shift-varying systems over senso
formance specifications, a number of filtering schemes hay@tworks with stochastic communication protocol.
been thoroughly investigated in the literature and applied The quick revolution of communication technologies has fa-
in engineering practice, among which the popular ones fditated the implementation of remote filtering algorithover
H.. filtering, set-membership filtering, and minimum-variancé@mmunication channels. It is noteworthy that the prodifem
filtering algorithms [6], [7], [23], [28], [32], [37], [41][44]. In ©of communication networks has resulted in various advastag
particular, the renowned Kalman filter, which aims to chara#cluding low cost, simple installation, easy operationda

terize the estimation performance in the sense of minimuffxible architecture of networked systems. On the othedhan
the inherent bandwidth and unpredictable network load have
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One way to cope with the communication constraints is tnreliable data transmission. 2) A novel recursive filtgrin
adopt signal quantization for streamlining the data trassmstrategy is established with guaranteed estimation aayra
sion over digital channels. To date, both static and dynamidere the desired filter and the minimum upper bound are
guantization schemes have been widely employed in practiegursively calculated by solving certain difference elipzs.
[16], [21], [22], [27]. More specifically, the quantized s@ls 3) The monotonicity of the filtering performance is evaldate
obtained from static quantizers (e.g. uniform and logarith regarding the dynamic quantization and sensor failure, and
guantizers) are determined by certain persistently fixeesti the boundedness analysis of the proposed filtering algorith
olds, whilst the states of dynamic quantizers are dynaigicafurther carried out by resorting to some rigorous derivaiso
adjusted based on a prescribed law [27]. By making use of
some adjustable parameters and available measurements, tifhe remainder of this work is arranged as follows. In
dynamic quantizers would produce a more intricate yet flexibSection Il, the filtering problem to be addressed is fornadat
structure than the static quantizers [2]. On account of tifier the considered 2-D system. In Section IlI, the upper lasun
guantization effects, the quantized signals deviate from ton the error variances are derived and minimized under the
original ones, and this gives rise to the data distortion amigsigned filter gain, and then the filtering performance is
further affects the dynamical behaviors as well as the ifiiger further examined. An illustrative example is shown in Satti

performance. IV to confirm the validity of the established filtering strgye
Recently, the filtering problems with dynamic quantizatio@onclusions are lastly drawn in Section V.
have stirred some initial research interest [5], [15], [388]. Notations: The notation used here is normativR™ is

For example, the dynamic quantization and rate allocatidime n-dimensional Euclidean space afidis the integer set.
strategies have been proposed in [15] to estimate the sthteg indicates the identity matrix and denotes the zero one
certain hidden Markov systems. In [48], the moving horizowith appropriate dimensions. Superscripts' and ‘7" stand,
estimation scheme has been developed for networked lineespectively, for the inverse and transpose operationsteed
systems subject to unknown inputs and dynamic quantizatiand symmetric matrice¥ andY, X > Y (X > Y) infers that
effects. Furthermore, the distributed state estimati@mblem X —Y is positive definite (nonnegative definite). The notation
has been investigated in [35] for discrete time-varying-sy$< ] with two integersx and . satisfyingx < ¢ represents
tems with dynamic quantization and event-based mechanisanfinite set{x,x + 1,k + 2,...,¢}. The symbol\,..{-}
Nonetheless, the relevant filtering results for 2-D systen(s,.;,{-}) denotes the maximum (minimum) eigenvalue of
with dynamic quantization have been very scattered, not ¢ertain matrix.E{-} and Var{-} indicate the mathematical
mention the case where RSFs also become a concern. ekpectation and variance operations, respectiigy} is the
such, it is of practical significance to establish a 2-D rei&r probability of certain event.
filter to extract the true states from quantized and degraded
measurements, and this comprises the primary motivation of Il. PROBLEM FORMULATION
the curre_nt study. . . . . . Consider the following 2-D shift-varying system defined on

Following the above discussions, our attention of thischati - . i
: R - a finite horizont, s € [0 NJ:
is on the recursive filtering problem for 2-D systems in the
simultaneous presence of sensor failure and dynamic quanfit, s) =A;(t,s — 1)z(t,s — 1) + Aa(t — 1, s)z(t — 1, 5)
zation.To gddress such a problem, three emerging issues that 4 Bit,s — Dw(t,s — 1) + Ba(t — 1, s)w(t — 1, 5)
we are facing are summarized as follows: 1) how to develop a 1)
proper filtering algorithm for 2-D systems taking into acabu
both the sensor failure and the dynamic quantization? 2) haierez(t,s) € R"= is the system state and(t,s) € R
to design a recursive filter to attain a satisfactory filtgrinis the process noise described by a zero-mean Gaussian white
performance regardless of the imprecise measurements? $@@uence with variana@(t, s). A¢(t, s) andBy(t, s) (£ = 1,2)
3) how to conduct the performance analysis of the devis@ge known shift-varying matrices with appropriate dimensi
filter and quantify the impacts from the sensor failure arel thf he initial states of system (1) are random variables sarigf
dynamic quantization? E{z(t,0)} = x1(t) andE{z(0, s)} = x2(s), wherex, (¢) and

To tackle the aforementioned emerging issues, in thislesticx2(s) are known vectors wittx; (0) = x2(0).
we make dedicated efforts to contrive recursive filterinlgpa N @ networked system, the measurement outputs are some-
rithm for the underlying 2-D system. To be more specific, dimes inaccurate due primarily to some unexpected scenario
augmented system is first developed to enable the coexistefiéch as sensor failures and limited channel capacity. Bgari
of the original system state and the dynamic quantizer .statgis fact in mind, the degradation and quantization effects
Then, a sufficient criterion is presented to p|edge the excst the measurements are considered in this work. To begin With,
of an upper bound on the filtering error variance, and the filthe measurement model undergoing RSFs is presented as
gain is then parameterized to accomplish the locally tigthte _
upper bound on the error variancéhe main contributions y(t 8) =yt 5)C( s)z(t, s) + v(t, s) 2)
of this article can be summarized from the following threeherey(t,s) € R is the measured signal(t, s) € R"v is
aspects. 1) The 2-D system under consideration encompasbesmeasurement white noise with zero mean and variance
the dynamic quantization and RSF to reflect the engined(t,s) > 0, and C(t,s) is a known matrix. The random
ing practice suffering from limited channel bandwidth andariabley(¢, s) € R characterizing sensor failures takes values
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on the interval0, 1], and is independently and identically dis- Remark 2: Dynamic quantization effects have been investi-
tributed with respect to the indexésinds, which is governed gated for one-dimensional (1-D) systems in the represeatat
by a certain probabilistic distribution withi{~(¢, s)} = 7(¢,s) works [2] and [48]. Unfortunately, the dynamic quantizer
and Var{vy(t,s)} = 4(t,s), where#¥(t,s) and 4(t,s) are introduced in the literature cannot be directly used in the 2
known scalars. D case where the signal evolution is inherently bidireaion
Remark 1:Sensor failures, which might be induced by serand this demands the development of a new 2-D version of
sor aging, intermittent sensing, and unreliable commuigioca the dynamic quantizer in the present work. As shown in (3),
channels, are one of the frequently encountered phenomémadynamic quantizer (with a feedback structure) is refirr
in reality that often take place in a probabilistic manndo as a generalized 2-D quantizer which is, for the first time,
because of the random/abrupt environmental changes. Spetiposed for 2-D systems. Different from the conventional
a phenomenon ineluctably leads to undesirable obsergtigynamic quantizer for 1-D systems, the 2-D dynamic quantize
subject to stochastic degradations. As such, the randoim vaxploits the measurements from both the current instant and
able~(t, s) (with known statistical information) is introducedthe immediate preceding instants along two directions.
into model (2) which, by means of taking different values, is Remark 3:In comparison with its static counterpart, the
able to describe different levels of deteriorations of ttes®r dynamic quantization generates quantized outputs that are
performances. dependent on both current and historical measurements. Fur
Next, the measurement subject to dynamic quantizationtieermore, the dynamic quantization in (3) consists of the
discussed. The following dynamic quantizer is adopted:  quantizer state (whose evolution is determined by the tiésto
measurements) and a uniform quantization function (which
VYt 8) =Dt s = Dp(t,s = 1) + Dalt = L syt = 1,5) involves the Cl)JI’I’ent measuremgnt information). Obvi(qusly
+E(t s = 1)y(ts = 1) + Ex(t = Ls)y(t = 1,5)  the proposed quantizer can dynamically adjust itself based
+Fi(t,s — Dy(t,s — 1)+ Fa(t — 1,s)y(t — 1,s)  on the input sequences(t, s), y(t,s), and some adjustable
(3a) parameters, thereby exhibiting richer dynamics (than thiics
y(t,s) =Q(D(t,s)Y(t,s) + E(t, s)y(t, s)) (3b) one) which would then help reduce the conservatism in the
system analysis. In addition, the dynamic quantizer (3} wil
degenerate into the conventional uniform one by just chngpsi

to be defined laterD,(t,s), Eo(t,s), Fyi(t,s) ({ = 1,2), Wlt,s) = 0 and B(t,s) = I. To sum up, the proposed

D e hif ; . ¢ bl dynamic quantizer in a feedback form is a fairly general one
.(t’s) an (¢, S). are s fit-varying matrlcgs of compatible, iy remarkable flexibility, which covers the static unifior
dimensions. The initial states of (3) are given@&,0) =

guantizer as a special case.

where ¢ (t,s) € R™ is the state of the quantizeg(t,s) €
R™ is the corresponding output based on the funci@n)

$(0,5) = 0. For notational simplicity, let us denot
For a given vectoe € R"v, the functionQ(z) : R™ — N ?r rotationa’ Simplictty, 1et us cenote
is viewed as a uniform quantizer/mapping expressed as Ey(t,s) £ E(t,s) + Fu(t,s)E(t,s), (=1,2
Q(z) 2 [ nQi(z1/n) nQa(z2/n) .. 1Qn,(2n,/n) ] Dy(t,s) £ D(t,s) + Fu(t, s)D(t, s)
whereX = {r;|7; = in,i € Z} is a discrete subset @&, X"v Ae(t,s) & ‘fmt’ 5) _ 0 ]
is the direct product of the:, subsets;; > 0 denotes the (¢, 5)Ee(t, 5)C(t,5) - Delt, 5)
quantization level of the mappin@(z), z, (v € [1 n,]) is the Aty s) 2 Ag(t, s) 0 ]
«-th element ofz, and Q, (+) is a stochastic function that maps ’

certain scalar to its nearest integer according to a uniform ¢
probabilistic distribution. To be specific, when< z, < 7,1,
the functionQ, (-) obeys the following probability distribution:
]P){QL(ZL/T]) = Z} =1l-m
P{O,(z/n) =i+ 1} =m, B
with 7, = (2, — ;) /n belonging to[0, 1]. Then, the deviation Fy(t,s) 2
between the quantized and the raw signals with respect to the
t~th component is denoted as, £ 1Q,(z,/n) — 2, satisfying Ey(t,s) 2

]P){AL:—WLn}:l—ﬁL E(t,s)é [ E(t,S)C(t,S) 0 ]
P{A, =(1—m)n} =m,. ) _ _
) o It is easy to see thatly(t,s) = E{A¢(t,s)} and& (¢, s) =
Hence, based on the property of the uniform quantizatioh [1@:{51 (t,s)}. By further defining
the quantized output in (3b) can be further formulated by ’
z(t,s) £ [ aT(t,s) ¢T(t,s) |

y(t,s) = D(t,s)(t,s) + E(t, s)y(t,s) + A(t,s)  (4)

T . o(t,s) & [ T (ts) AT(ts) |
where A(t, s) refers to the quantization-induced error having

the following statistics: we have the following augmented system from (1)-(4):

E{A(t,s)} =0, E{A(t,s)AT(t,5)} < (n?/4)I. z(t,s) =Ai(t,s — Dz(t,s — 1) + Azt — 1, )

T

T
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X T(t—1,8) 4+ Bi(t,s — Dw(t,s — 1)

+ Ba(t — 1,s)w(t —1,s) + Fi(t,s — 1)

X 0(t,s — 1)+ Fa(t —1,8)0(t — 1,8)
g(t,s) =E1(t, s)T(t, s) + Ea(t, s)v(t, s).

(5a)
(Sb)

For the augmented system (5), a recursive filter is propo
as follows:

Bp(t,s) =A1(t, s — 1)y (t, s — 1)

+ Aot —1,8)2,(t — 1,5) (6a)
Zu(t,s) =2p(t,s) + K(t, s) (yj(t, s) — & (t, s)iy(t, s)) (6b)

In this section, we plan to explore a recursive filter design
approach for accomplishing the desired filtering perforogan
for the 2-D system (1). First, some preliminaries are given
to formulate the evolutions of the system state’s second-

M AIN RESULTS

S%réjer moment and the filtering error variance. Afterwards,

an upper bound of the error variance is constructed and the
explicit gain parameter is derived to optimize this bound at
each step. Finally, the filtering accuracy in relation to the
guantization level and the boundedness of the minimum bound
are elaborately discussed.

where @,(t,s) and &,(t,s) are, respectively, the one-steg™ Preliminaries

prediction and the state estimate &, s), andX(¢, s) is the

The following lemmas are presented for subsequent devel-

filter gain to be devised. The initial states of (6) are set as opments.

2a(1,0) = [ xT(t) w7(t,0)]"
#4(0,8) = [ xL(s) T(0,5) |

Denotee, (t,s) £ Z(t,s) — 2, (t, s) ande,(t, s) = #(t,s) —

~Lemma 1:For any positive scalat > 0 and matrices\/,
M with appropriate dimensions, one has

(a2M — o V2 M) (a2 M — o= V2 )T > 0.

Lemma 2:Let M (t,s) and M(t,s) be matrices with ap-

#.(t,s). Subtracting (6) from (5) yields the following errorPropriate dimensions satisfying/(t,s) < M(t,s) for all

dynamics:

ep(t,s) =A1(t, s — Dey(t,s — 1) + Ao (t — 1, 5)
X eu(t —1,8) +7(t,s — 1)Ey(t,s — 1)
X Z(t,s — 1)+ 7(t — 1,8)Ea(t — 1,5)
X T(t —1,8) 4+ Bi(t,s — Dw(t,s — 1)
+ Ba(t — 1, s)w(t —1,s) + Fi(t,s — 1)

X 0(t,s — 1)+ Fa(t —1,8)0(t — 1,8) (7a)
eu(t,s) = (I — K(t, s)E1(t,s)) ep(t, s) — K(t, s)
X [:y(t, $)E(t, 8)Z(t, ) + Ex(t, s)u(t,s)| . (7b)

t,s € [0 N]. Assume thaff(-,-) andg(-, -) are twosymmetric

matrix-form functions satisfying the following relationships:

F(M(t,s —1),M({t—1,8)) < f(M(t,s —1),M(t — 1,5))

F(M(t,s—1),M(t—1,s)) <g(M(t,s —1),M(t —1,s)).

Then, the solutions to the following difference equations

Y(t,s)=f(Y(t,s—1),Y(t—1,s))
Z(t,s)=g(Z(t,s—1),Z(t—1,s))

with initial conditions Y'(¢,0) < Z(¢t,0) and Y (0,s) <
Z(0, s) satisfy

Y(t,s) < Z(t,s), t,se[0N]. (8)

The following assumption is made throughout this article.

Assumption 1:Fort;,s; € [0 N]with j € [1 5], the process
noisew(ty, s1), the measurement nois€t., s2), the sensor
failure coefficienty(¢s, s3), the quantization erroA(ty, s4),
as well as the initial states(ts,0) andz(0, s5) are mutually
uncorrelated with each other.

Now, we are ready to introduce the problem to be addressed

in this article. For the considered 2-D shift-varying systél)

with dynamic quantization effect (3) and sensor failure, (2)

filter (6) such that an upper bound of the filtering errc\><ﬁhlch means that (8) holds fat, s)

varianceE {e,(t, s)el (t,s)} is guaranteed and subsequentl

the objective of the current work is to devise the recursi

minimized by properly selecting the filter paramet&, s) at
each iteration.

1
Remark 4:Notice that the quantization error involved in thegc( )

Proof: This lemma can be proven based on the mathemat-
ical induction method. According to the properties of fuos

f(-,-) andg(-,-), one obtains from the initial conditions that

Y(1,1) = f(Y(1,0),
< f(£(1,0),
<9(2(1,0),
=Z(1,1)

Y (0,1))
Z(0,1))
Z(0,1))

(1,1). Next, suppose

fhat (8) is valid for(t,s) € {(k,)|k,l € [l N]; k+1= 0}
With 6 € [2 2N -—1]. To confirm the statement of this lemma,
the validity of (8) shall be verified fof¢, s) € {(k,1)|k,l €

N]; k41 = 6+ 1}. On account of the properties of
and ¢(-,-) again, together with the above-mentioned

o

error dynamics (7) would ineluctably lead to the Calcu"atiohypothesis one has

of the exact filtering error variance inaccessible, not teasp

of designing the recursive filter. To this end, an altermativ
strategy is to derive a locally minimal upper bound on the
filtering error variance, and the desired filter gain is to be
parameterized for ensuring such a locally minimal upper

bound.

Y(t,s)=f(Y(t,s—1),Y(t—1,s))
<25 — 1), Z(t— 1,5)
<g(Z(t,s—1),Z(t—1,9))

Z(t,s)
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which ends the proof. |
For convenience, we set
X(t,s) 2E{z(t,s)z" (t,5)}
Py(t,s —E{ep (t,s) g(t s)}

Pu(t,s) 2 E{ey(t,s)el(t,s)}.

The following lemma provides a bound constraint for the

second-order moment of the stat¢, s).

Lemma 3:Let ¢ > 0 be a given positive scalar. Assume

that there is a set of matrice$(¢, s) satisfying the following
recursion

X(t,s) =(14+¢)As(t,s — )X (t,s — 1)A] (t,s — 1)

+ (14 HAs(t —1,8)X(t —1,8) ALt —1,5)
+4(t,s — 1) Ey(t,s — )X (t,s — 1)EL (t,5 — 1)
+4(t—1,8)Ey(t —1,8)X(t —1,s)EF (t —1,5)
+Qu(t,s — 1)+ Qa2(t — 1,5) 9)
with initial constraints
X(t,0) = X(t,0), X(0,s) = X(0,s) (10)
where
Qu(t,s) =Bi(t, s)Q(t, s)BY (¢, 8)+Fu(t, s)Ro(t, s)F] (t,5)

Ry (t, s) £diag { R(t,s), (n° /4) I} .

Then, the second-order moment of the state s) is bounded
by X(t,s), that is, X (t,s) < X (¢, s).

Proof: Based on the definition af(¢, s), we obtain

E {o(t,s)v" (t,s)} = [ 0 ) ]E{A(t,sg)AT(taS)} }
< [ R(S’S) (772?4)1 ]

= Ry(t, s). (11)

Recalling the statistical properties of random variables

~(t,s), w(t, s), andv(t, s), we have
E{Vt s T(to,so)}:(), E{'yt s (to,so)}:()
E {w(t,s)v" (to,s0)} =0

for all ¢, s, t9, so € [0 N] and
E{z(t,s)w" (t1,s1)} =0, E{z(t,s)v" (t1,51)} =0

for (t1,s1) € {(k,0)|k >t or | > s} U (¢, s). Combining the
above facts with (5a), we can derive that
X(t,s) =Ai(t,s — )X (t,s — 1) AT (t,s — 1)

+ Ap(t—1,8)X(t—1,5)AL(t - 1,5)

+ Ai(t,s — DE{z(t,s — 1)z" (t — 1,5)}
x A3 (t —1,8) + Aa(t — 1, 5)
x E{z(t—1,s)z" (t,s — 1)} A] (t,s — 1)

+4(t,s —1)Er(t,s — 1) X (t,s — 1) EF (t,s — 1)
+4(t—1,8)Ey(t —1,8)X(t—1,8)EX(t —1,5)
+Bi(t,s —1)Q(t,s — )BT (t,s — 1)

+ Bo(t —1,8)Q(t — 1,5)BI (¢
+ Fi(t,s —DE {o(t, s — 1)o"
x Ff(t,s — 1)+ Fa(t — 1,8)
x E{o(t —1,s)0"(t —1,s)}F5 (t — 1,s)
<A+ Ay (t, s — D)X (t,s —1) AT (t, s — 1)
+ (1 4+ HA(t —1,8)X(t—1,5)AT(t —1,5)
+ A4t s — 1) Ey(t,s — 1) X (t,s — 1)ET (t,s — 1)
+4(t = 1,8)Ea(t —1,8) X (t — 1,8)EL(t — 1, 5)
+Q1(t,s — 1)+ Qa(t — 1,5).
On grounds of the given initial conditions of (¢,
Lemma 2, it is not difficult to confirm from Lemma 1 that
X(t,s) < X(t,s), which completes the proof. [ |
The recursions of the error variances are given as follows.

Lemma 4:The one-step prediction error varianég(t, s)
and the filtering error variancg, (¢, s) are computed as:

—1,s)
(t,s—1)}

s) and

Py(t,s) =Ay(t,s — 1)Py(t,s — 1) A (t,5 — 1)
+ Ayt —1,8)P,(t —1,8) AT (t —1,5)
+ Ay (t,s — DE{ey(t,s — el (t—1,5)}
x AF(t -1, s)+fl2(t—1 s)
x E{eu(t -1, s)el D}AT(t,s—1)
+ Qi (¢ ,5—1)+Q{( ,S—l)-i-Qg(t—l, s)
+ Tt —1,8)+Q1(t,s — 1)+ Qa(t — 1,5)
(12)
Pu(t,s) = (I-K(t,9)& (t,s})Pp(t,s)(I—]C(t, )& (t,5))"
+ K(t, S)[’A}/( s)E (t,s)X(t,s)ET(t,s)
+ & (t, s)E {v(t, s)v" (t,8)} &7 (¢, 5)| KT (¢, )
(13)
where, for{ =1, 2,
Qult,s) 2 {M s)ealt, sm(t $)Eu(t,)a(t, s)
+ Folt,s)olt,s) "} (14)
Qult,s) 24(t, )Ee( ) (t, ) E7 (¢, 8) +Be(t s)Q(t, s)

i
x BE(t,s)+Fu(t,s)E {o(t T(t,s) }]—}T(t,s).

(15)
Proof: It follows from the statistical properties af(t, s)
andey(t, s) that

E{ept s) (tl,sl)}:()

for (t1,s1) € {(k, )|k > t or I > s} U (t,s). The proof
is readily concluded from (7) and the detailed derivation is
omitted here for space saving purposes. [ |

In this subsection, some preliminary results have beemgive
to be used in the subsequent developments. In particular,
Lemma 1 shows a fundamental inequality to cope with some
cross-terms, Lemma 2 presents a general comparison gancip
in the 2-D setting to obtain certain upper bounds, Lemma 3
derives a matrix sequenc# (¢,s) as an upper bound on
the second-order moment of the state at each iteration, and
Lemma 4 provides the recursions of the prediction and the
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filtering error variances. It is worth noting that, in consegce  According to the formulation of2,(¢, s) in (14), we obtain
of the existence of the quantization-induced errors, ttayan easily from Lemmas 1 and 3 as well as (11) that
ical solution of the error varianc®,(t, s) in (13) cannot be T
- ; Qo(t,s) +Q; (t,s)
obtained. As such, we resort to find an upper boung,dt, s)

and then optimize it by properly designing the filter gain. = —A(t, ) Au(t, s)K(t, s)E(t, )X (t, s)ET (L, 5)
—A(t, S)Ee(t 8) ( s)ET(t, ) ( 5)A7 (t, )
B. The filter design — A, (t, s)K( t,5)E {o(t, $)o" (t,8)} FL (L, )

{o

On the basis of the previous discussions, an upper bound — Fut, s ]E{v (t, )7 (¢, )} (t, KT (t, s) AL (¢, s)
is first calculated on the filtering error variance and, subse . T T
quently, the filter is devised to minimize such a bound in this = o”gt’ 8)As(t, 5)K ( )E(A $)X(t,5)E" (t,5)KT (¢, 5)
subsection. x AT(t,s) + o Y4(t, s)Eo(t, s)X (t, s)EF (t, 5)

Theorem 1:Let ¢, 4, o, and 3 be given positive scalars. + BAL(t, )K(t, 5)E(t, )Ry (t, $)ET (t, 5)KT (L, 5)
Assume that there is a set of nonnegative definite matrices T 1 T
X (t,s) and two sets of positive definite matric8$t, s) and X Ag (t5) + B Folt ) Ro(t, ) Fi (L ). (3)

E(t, s) satisfying (9) and the following two recursions In the light of Lemma 3, inequality (11), and expression
S(t,s) =(1+ w) A (t,s — DE(t s — 1)AT (1,5 — 1) (15), we also have
F (L4 YAt —1,9)E( - L) AT(t—1,5)  Qult.s) <A(t 8)Ee(t, s)X(t,5)E] (t,5) + Ba(t, s)Q(t, 5)
+Q1(t,s — 1)+ Qat — 1,5) x BE(t,s) + Fo(t,s)Ry(t, s)FL (t,s). (24)
+ Ri(t,s — 1)+ Ro(t — 1,5) (16)  substituting (23) and (24) into (12), one obtains
E(t,s) = (I-K(t, )& (t,5)) S(t,5) (I—-K(t, )& (t, )" P(t,5)
+K(t,8) [3(t,5) B (t, )X (¢, 5) ET (2, 5) <1+ WALt s — D)Pu(t,s — VAT (1,5 — 1)
+ E(t, ) Ro(t, 9)ET (1, 9)] KT (1, 5) A7) (14 YAl — 1 s)Pu(t— 1) ATt — 1.5)
with initial constraints (10) and + (1 +a HA(t, s — 1)E1(t, s—1)X(t,s — 1)
2(,0) = Py(t,0), E(0,s) = P,(0,s) (18) X E(t,s = 1)+ (1+a )yt —1,8)Ea(t —1,9)
where X X(t—1,8)ET(t —1,8) + Ai(t,s — 1)K(t, s — 1)
Qults) 2(1+ a~VY(t, s)Bult, )X (t, ) ET (¢, 5) x [ad(t, s — 1) E(t,s — 1) X (t,s — DET(t,s — 1)
+ B(t, $)Q(t, ) f(t s) 4 BEs(t, s — 1) Ro(t,s — DET (¢, 5 — 1)}&%, s—1)
Ry(t,s) SA(t, 9)K(t, 5) [0F t,s)X(t,s)E" (t,5) ><Af(t,s—l)—i—flg(t—l,s)lC(t—l,s)[ofy(t—l,s)

+ BEa(t, 5) R (t, )52 (f 8)]’CT(f s)AL (t.5) - . e
+ (14 B OFo(t, ) Ro(t ) FT (L, 5). X Et—1,)X({t—1,s)E" (t—1,8)+ pBE(t —1,s)

Ry(t —1,8)EX(t —1,8) | KT (t — 1,8)AT(t — 1
Then, matricesS(t,s) and Z(¢, s) are always upper bounds X Rolt = 1,5)6s ( ’S)} ( A ( '5)
for P,(t,s) and P,(t, s), respectively, that is, + (14 B YHYFI(t,s — 1)Ry(t,s — 1) Fi(t,s —1)
—1 T

Bylt;s) < S(t,s), Pultis) <E(ts).  @9)  FUFIIRELORE=L 05 (= 1,9)
+ Bi(t,s — 1)Q(t,s — 1)BY (t,5s — 1)
B R B +Ba(t —1,8)Q(t — 1,8)B3 (t — 1,5)
E(t,s) = S(t,s) — S(t,8)E (t, )R (t,5)&1(t, 5)S(¢, 20) < (1+p)As(t,s — 1)Pu(t,s — 1) AT (1,5 — 1)

+ (1 +p DAt —1,8)Pu(t —1,8) AL (t — 1,5)

+ Ql(ta S — 1) + Q2(t - 17 S)

K(t,s) = S(t, )& (t,5)R7(t,5) (21) + Ri(t,s —1) + Ryt — 1,5). (25)
where Moreover, it follows from equality (13) and Lemma 3 that
R(t,s) 2&1(t,5)S(t, )E (t,8) + A(t, ) E(t, )X (1, 5) Py(t,s) <(I—K(t,s)E1(t, s)) Py(t, s) (I—K(t, s)E (L, s))T
x ET(t,5) + E(t, s)Ro(t, 5)E; (L, ). (22) +K(t,8) [3(t, 8)B(t, )X (¢, 5)ET (¢, 5)

Proof: It follows from (7b) and the statistical properties + E(t, s)Ry(t, 5)E5 (t,8)] KT (¢, 5). (26)
of 3(¢,s), v(t, s), T(t,s), ande,(t, s) that
E{5(t,s eu(t s) (t,s)} = —4(t,5)K(t, s)E(t,s)X (t,s)  follows from (16), (25), and the initial conditions that
E{eu(t, s)v" (t,s)} = —K(t, s)E(t, s)E {v(t, s)v” (¢, 5)} . Py(1,1) — S(1,1)

Moreover, the upper bouri(¢, s) is minimized as

with the gain parameter

Now, let us prove (19) by using the inductive method. It
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< (14 p)A1(1,0)(Py(1,0) — Z(1,0)).A7(1,0) the system state(t, s) can be computed d$,,, 0., |7, (%, s).

(14 Y Ax(0,1)(Py(0,1) — E(0,1))AT(0,1) < 0 Accordingly, the estimation error ign, On,leu(t,s), and the
upper bound on the error variandg,, 0,,]Py(t, s)[In, On,]"

which, together with (17) and (26), infers is minimized under the determined filter gain.
Pu(la 1) - E(lv 1)
< (I = K(1,1)&E(1,1)) (Py(1,1) — S(1,1)) C. Performance analysis

In this subsection, the influences from the quantization
accuracy and the sensor failure on the filtering performance
namely, (19) holds foft, s) € {(k,1)|k,l € [l N]; k+1 =2}. are to be discussed. Furthermore, boundedness of the nhinima

Next, assume that (19) is true fdt,s) € {(k,l)|k,I € upper bound will be analyzed with rigorous derivation.

x (I - K(1, D& (1,1))" <o,

[1 N|; k+1 =0} with a certain integef. Then, for(¢, s) € First, we will establish the relationship between the guant
{(k,l)|k,l € 1 N]; k+1=6+1}, one obtains zation leveln and the filtering performance. It is noted from
(11) that the parametey is involved in matrix Rz (¢, s) and
Py(t, s) _S_(t’s) is thus contained inR,(¢,s) (¢ = 1,2). Accordingly, the
< (L+p)Ai(t,s = 1)(Pu(t, s — 1) = E(t,s — 1)) following operators are introduced:
x AT (t,s — 1)+ (14 p~ 1) Az(t — 1,5) G Y (ts— 1), Y(t—1,5)

X (Pult =1,5) = B(t = 1,8)) Ay (t = 1,5) <0 2 (14 A (ts — DY (s — 1)AT(ts— 1)

which further indicates S YAt —1,8)Y(E—1,8) ATt — 1,5)
Py.(t,s) — Z(t, s) +Q1(t,s — 1)+ Qa(t — 1,5)
< (I =K(t,8)&1(t,s)) (Py(t,s) — S(t,s)) + Ri(t,s —1) + Rao(t — 1,5)
x (I-K(t,s)&(t,5)" <0, H(n, Z,K(t,5)) ]
o - B _
Therefore, it is confirmed that (19) holds for alls € [1 N]. £ (I =Kt 9)& (t’f)) z (_I K(f’TS)gl(t’ s))
It remains to determine the filter gain that minimizes the + K(t,s)[3(t, 5)E(t, 5) X (t, ) ET (¢, 5)
upper bouncE(t, s). By means of the completing-the-square + Ea(t, 8)Ro(t, 5)EF (L, 8)| KT (L, s).

method, the recursive equation (17) is calculated as ) - )
It is not difficult to see thaf(n, Y (t,s—1),Y (¢t —1,s)) is

2(t,s) =S(t,s) — K(t, s)E1(t,5)S(t,5) — S(t,)E] (t,s)  nondecreasing with the increase of the parametermatrices
x KT (t,s) + K(t, s)[E1(t, 5)S(t, $)E] (¢, 5) Y(t,s —1) andY (¢t — 1, s). Moreover, either a larger matrix
. ~ o AT Z or a greater value af (generating a lageR; (¢, s)) will be
+3(t ) Bt S)X(tT’S)E (t’TS) liable for the growth ofH(n, Z, K(t, s)).
+ &ty 5)Ro(t, 5)E; (t,8)] KT (8, 5) For convenience, let us define the desirable filter gain with
=S(t,8) + (IC(t, s) — S(t, $)ET (¢, s)R‘l(us)) respect to the quantization levglas Kj (¢, s), under which
- the minimum bounds on the error variances are sei;ds s)
> R(t, s) (IC(t, s) — S(t,s)EL (¢, s)Rfl(t, S)) andZ; (¢, s). According to (16), (17), and (21), the minimum
bounds and the designed filter gain under the prescribed

— 5t $)EL (t, 5) R (L, 8)Ex(t, 5)S(t, 5). quantization leveh can be calculated as:

It is obvious that the upper bourit, s) attains its mini- i, s) = S*(t, s)ET(t, )R (¢, 5)
mization i T 7 e

_ - A g _ Sn(tvs) :g(na‘:n(tvs_l)v:‘n(t_lvs))

‘:‘(ta S) :S(t78) - S(ta 8)51 (ta S)R (t78)51(t, S)S(ta S) Ef](t,s) = H(’I],S:;(t, S),’C;(t,s))
by setting the gain ak(t, s) = S(t, s)&{ (t, s)R™1(t,s). The  Theorem 2:For given positive scalang andis, if 171 < 72,
proof is now complete. B then the following relationship holds

Remark 5:For the augmented system (5), with the aid of . .
the intensive stochastic analysis and mathematical inmuct = (ts) <25, (L s) (27)

sufficient criterion has been given in Theorem 1 for develgpi forall ¢, s € [0 N] with initial conditions=* (¢,0) = =* (¢, 0)
an upper bound(t,s) on the matrix P, (t,s) in terms of 4. (0,5) = =% (0, 5) " "
two coupled difference equations. The gain matrix has also ~ pro ¢ The p7r7(2)of’of this theorem is conducted by the in-

been designed to fulfill the minimization of the upper bound &, tjye approach. It follows directly from the initial caitidns
each iteration. It follows from Theorem 1 that the deterstini that (27) is true for(t, s) € {(k,1)|k,1 € [0 N]; k+1 = 1}.

upper boundsS(¢,s) and =(t,s) as well as the filter gain Suppose that (27) holds fot, s) € {(k, )|k, 1 € [1 N]; k+
K(t,s) can be recursively computed by solving the recursions 6}. Then, for (¢, s) € {(k l)’|k lei ’N]- 7k—|—l _ 9_"_1}
(9), (16), and (17). . it is easy to check that

Remark 6:Note that [I,,, 0,,]P.(t,8)[In, 0,,]" <
U, 0n,]2(t, $)[In, 0,,]". For system (1), the estimate of Sy (t,s) =G(m, =5, (t,s —1),2) (t—1,5))

»=m
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<G, =, s —1),5,(t—1,5)) and noise variances. This assumption is justified from thialus
= S* (t,5) (28) energy-bounded constraints in literally all practical lagp
_ _ _"2 tions. On the other hand, recalling th&i(t,s)E1 (t,s) =
and this further indicates E(t,s)ET(t,s) + I, there must be a positive scalas,
T -
Hm, S5, (), K5, (£, 5)) (1, S5, (£, 5), K5, (£, ) such thate,I < &(t, s)&; (t,s). Moreover, the conditions

(2. S (1 ). Kr(£.5)) byl < Be(t,s)B (t,s) and f I < Ey(t,s)F}(t,s) indicate
12, O, by 8), Ry (L ('29) that matricesBy(t,s) and Fy(t,s) are of full row rank,
respectively. These conditions are fairly flexible yet gahe
In addition, noting thatC; (¢, s) ensures the minimal boundRoughly speaking, ib,/ < By(t,s)B{ (t,s) is not satisfied,
Zy, (t,s), one has a full row rank matrix can be reset. Specifically, it follows
=2 (1) = Hm, 52, (1 ), K3, (£ ) from the full rank decomposition thaBy(t,s)w(t,s) =

—m " 7 Bi(t, s)Bag(t, s)w(t, s), whereBy,(t, s) is a redefined matrix

< Hm, Sy, (8, 8), K5, (8, 5)). (30)  of full row rank andBay(t, s)w(t, s) could be regarded as a
It follows from (28)-(30) that New process noise.
(t,5) = Hlm, S5, (5), K5 (1,5)) Jenete
= (t,s) =H(m, S, (t,8),K; (t,s
m m 1 N 2 = A — 92

< Mo, 52, (L, ), KL, (1, 9)) Iy = mlHA{Ln /4}, T TmaX{hn /4}
= 5:72 (t’ 5) Qé(ta S) = Bé(tv S)Q(t7 S)BZ (t7 S)

-1 T

for (¢t,s) € {(k,0)|k,l € [1 N]; k+1= 6+ 1}. The proof of + (L4 B7)Fult ) Bat ) Fe (F ).
this theorem is now complete. u Based on Assumption 2 anfl, (¢, s) defined in Lemma 3,

Remark 7:The monotonicity of the minimal bound regardgone has
ing the quantization accuracy has been investigated in -Theo
rem 2, where the decrease ®fenables the tightening of the rol < Ry(t,s) <7l (31)
bound. In addition to the signal quantization, the sensarria
also plays an important role in guaranteeing a satisfactdlny
filtering performance. Intuitively, the filter performs batwith QN’ s) = diag {Bg(t, $)Q(t, s)BT (t, s),
the increase of the coefficient(¢, s) accounting for more

addition, the expression @, (¢, s) infers

available information. Owing to the complexity of the artaly (1+ B71)Fu(t, s)Ro(t, )/ (¢, S)}
expression of the minimal bound caused by the dynamical b I 0
o L . a9,
guantization, the monotonicity issue cannot be directtates > [ 0 (L+B Y f I ]
sty

lished for the sensor failure. To better characterize tfil@-in
ence of the sensor failure, a simplified case is considere he > min {gl_u, (1+ ﬂ_l)igig} 19,1 (32)
Setting D(t,s) = 0 yields §(t,s) = E(t,s)y(t,s) + A(t, s) o o )

from (4), namely, the quantizer becomes static rather thanSimilarly, it is straightforward to see that

dynamical. In this case, taking the first variation ¢, ) . GbeI 0

with regard to¥(t, s), the monotonicity of=(¢, s) regarding Qu(t,s) < [ 0 (148 Yl ]

~(t, s) (specifically,Z(¢, s) is nondecreasing with the decline = . Flra T

of 5(t, s)) can be proved by some routine computations. The < max {gbe, (14 87 )ra fe} I = el (33)
detailed proof is skipped here for the sake of brevity. The following theorems demonstrate the boundedness prop-

Next, the uniform boundedness of the minimum UPPity of the minimal bouncE(t, s).
bound on the error variance will be analyzed. For this pLpos thaorem 3:Under Assump;tion 2, for all, s € [0 N], the

the following assumption is given. minimum matrix=(t, s) obeys the following inequality
Assumption 2:For t,s € [0 N] and ¢ = 1,2, there are

positive scalarsis, A, by, be, f,, fe, €, €0, ¢, G, 1, 7, &, and - o |
c that satisfy the following iﬁzequalities: E(t,s) 2 (91 +92) te g el I (34)
Ag(t, )AL (t,s) < ael, X(t,s) <Al Proof: It is calculated from (16) and (32) that
< r <b < <gq y y
[_UI—-BAK(t?S)'BAé (t,S)_bf[, gI—Q(t7S)—qI S(t,S) ZQl(t75_1)+Q2(t_1aS)2¢II+¢21
f < Eolt,s)F](ts) < fol, 11 < R(t,s) <7l T

el <E(t9E (ts) < @l i infers 1

eyl < E(t,s)EX(t,s) < Eal St 5) < (91 + 92) I. (35)
Ey(t,s)C(t,s)CT(t,8)EF (t,8) < &l

By resorting to Assumption 2 and (31), one has
E(t,s)C(t,s)CT(t,s)ET(t,s) < cI.

_ _ o _ S(t, s)E(t, $)X (t, s)ET (¢, & (t, 8)Ry(t, s)EX (1,
Remark 8:Notice that Assumption 2 implies certain con- V(B 5)X (8 )BT (¢ 5) + Ealt, ) Rolt, )65 (1 5)

T
straints for suppressing the amplitudes of system paramete = Ex(t, s)Ro(t, 8)E; (¢, 8) > eorpl.
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In the light of the matrix inversion lemma, expressions (20) = Q¢(t,s) + (1 4+ a~ " )A(t, s)Ee(t, s) X (t, s)EéT(t s)
and (22), and inequality (35), the following relationship i - N
and (22) quality (35) 9 PL A [0d(t ) B $)X (¢ 5) BT (1, 5)
=71(t,5) =S~ 1(t, s) + ET(t, ) [ﬁ(t,S)E(t,S)X(t,S) + BEs(t, s) R (t, 5)&5 (t, 8)] T(t,5) A7 (t,5)
. 1_ < gl + (14 a " HAeA(t, $)T + (aley(t, s) + Brge
x ET(t,s) + &Ea(t, s)Ry(t, s)EX (t, s)} Ei(t, s) el + ) E’YEQ 1+ (ared (e, ) 2
- o xaier” (6,4 6,)  Anax(SE 9} (41)
<(0,+8,) I+’ & (L)L) . o
for t,s > 1, where Assumption 2 and inequalities (31), (33),
< [(¢ +é )’1 +e—17a1€1} I and (38)-(40) have been utilized in the above derivation. In
A = addition, in the case of = 0 or s = 0, the gain matrix can
which completes the proof. m be setasC(t,s) = 0, which results in

Theorem 4:Under Assumption 2, for alt,s € [0 N], the Qult, s) + Re(t, s)
minimum matrix=(¢, s) obeys the following inequality Ot s) + (1 U4t ) Byt ) X (6 ) BT (1, 5)
= +a )y, s) et s 2 8) g (L, 8

2(ts) < &(t8)] (36) <Gl + (1 +a YAcA(t, 8)] (42)
with initial constraints=(¢t,0) < &(¢,0)I and Z(0,s) <
£(0,s)I, where

§t.5) =3 nplt — ks — EK,0)
+ 3 et 1,5 = DEO,D)

which means the validity of),(t, s) + Re(t, s) < Be(t, s)I for
t =0 ors=0.Thus, it is concluded from (41) and (42) that,
if S(t,s) <&(t,8)I, then

Ql(tv S) + Rl(tv S) < ﬂl(tv S)I (43)
holds for allt,s € [0 N].

+Zk:0 Zl:O pt —k—1,5—1-1) Since =(t,s) < S(t,s) is valid from (20), the inequality
x (Br(k+1,1) + Ba(k, 1+ 1)) (37) (36) can be confirmed if the assertisitt, s) < £(t, s)! holds.
In the following, this assertion is to be proven by the indiect
with method. For the initial step, setting, s) = (1,1), we have
= (14 p)ay, e 2 (1 + /fl) az, p(0,0) 21 from (16), (42), Assumption 2, and the initial constraints o
p(0,5) 2 ip(0,5— 1), p(t,0) 2 pap(t —1,0) =(t, 5) that
(t S) éulp(t,s— 1)+M2p(t— 1,8) S(lvl) (1+/L)'A (1 O)E(LO)A{(LO)'Fﬂl(LO)I
Be(t,s) 2 ¢+ (1 +a~HAeH(t, s) + &lt,s), £=1,2 + (14 p7 1) A2(0,1)E(0,1)A45 (0, 1) + Ba2(0, 1)1
_ N o a -2 < (L4 p)ai€(1,0) + (14 p Ha€(0, 1)1
((:5) 2 (AcH(t,5) + Braca)asere 2 (L) (4, +9,) L0 a0 1) T
Proof: Based on the expressions Bf(t, s) and E(t, s), = £(1,1)1.

it is obtained from Assumption 2 that . . .
II I Hmpt Assume that inequalityS(t,s) < &(t,s)I is true when

Eo(t,s)E] (t,s) = diag {0, Eg(t, s)C(t, s)CT (t,8)E} (t,5)} () € {(k,1)|k,l € [L N]; k+1 = 6} for a given integer

< diag {0, &I} < &I (38) ?ég;his gs(s;gp;ticzn i?me?i(ztell)y(kgt;ara[r;ti\eqs tr]le ccl)rrecet;fess 0
. . an or(t,s) € {(k,l)|k,l € ; k+1 =0}
E(t,S)ET(t7S) — E(t, S)C(t,S)OT(t’ S)ET(t7S) S CI. Then, When(t, S) c {(k,l)|l€,l c [1 N], k _|_ l _ 9 _|_ 1}’
(39) the following result is obtained from the following algelora
Furthermore, we know from (22) and (35) that manipulations:
R(t,s) = &(t)S(t,5)EL (1,5) 2 e, (0, +0,) 1. S(t,s)

— 1 a —
Then, recalling the explicit formulation of the gain matrix — < (U mad(t,s = I+ (14 p=)azd(t = 1, s)]

K(t,s), we have following inequality + (Balt atS — 1)+ Ba(t —1,8)) 1
KT (8, $)K (L, 5) = [ >, mplt = ks = 2)&(0k,0)
== Ril(t, S)gl (t, S)ST(t, S)S(t, S)ng(t, S)Ril(t, S) + lez_ll /Lgp(t _ 1’ s—1— 1)5(07 l)

<e 2, {S(t, s)}R—l(t, SYR7(t, s)

+ZZ;:Z:/)(t—k—1,s—z—2)

<ee;? (o, + M\ {S(t,s)}. 40
((b ¢) 18 “o X(ﬁl(k+1,l)+ﬁ2(kal+1))}f
Moreover, considering the definitions @ (¢, s) and R,(t, s) t—1
in Theorem 1, we have T pe {Zk pap(t =k — 1.5 = 1)E(k, 0)

Qu(t, s) + Ry(t, s) + Z pap(t — 2,5 — 1)E(0,1)
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S k251 1)
x (B1(k +1,1) + Ba(k,1 + 1)) }I
+ (Bi(t,s — 1) + Balt — 1, 8)I
=M1{Z;1(Mlp(t—k 5—2)
+ paplt = k= 1,5 = 1)E(R,0) + p1p(0, s = 2€(1,0)] 1
o (p2p(t — 2,5 —1)

e

+ pap(t — 1,5 — 1 —1))€(0,1) + pap(t — 2,0)£(0, S)}I
" [MlzZ;LZ;;jp(t_k_ 175_1—2)
+/LQZ;;ZZZS;01P(t—k—2,s_Z_1):|

x (B1(k + 1,1) + Ba(k, 1+ 1)) T
+ (Ba(t, s — 1)+ Ba(t — 1,9))]

- “1{2:1 p(t =k, s —1)E(k,0) + p(0, s — 1)5(1&,0)}1
T2 [Z:ll p(t —1,s = 1)€(0,1) + p(t — 1,0)¢(0, s)}f
+Z;j()zljp(t—k—1,s—l—1)

x (Bi(k +1,0) + Pa(k, 1+ 1)) I

+ZZ_Z (t—k—1,0)(Bi(k+1,5—1)+ Ba(k,s)) I

+Z p(0,s =1 —1) (Bi(t,1) + fa(t — LI+ 1)) 1
(ﬂl(t,8—1)+62(t—1,s))1

= ZZ p(t — ks = 1DE(R,0)
+Z pap(t — 1,5 — DEO0, 1)1

+Zk:02l:0pt— —1,s—1—-1)

X (B1(k+1,1)+ Ba(k, 1+ 1)) I =&(t, s)1.
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the sensor failure with guaranteed filtering performancet a
3) the filtering performance is evaluated with respect to the
boundedness and monotonicity issues of the minimum bound.

IV. NUMERICAL EXAMPLE

In this section, validity of the proposed filtering scheme is
examined via a simulation example.

Consider the 2-D system (1) defined over a finite horizon
t,s € [0 60] with the following parameters:

[ 075 0.1 cos(t)

A3 =1 01 034 0.1sin(s) ]
[ 0.3 0

A2 =107 0.4 0.1sin(s) }

~ [ 0.2—0.1cos(2t) - 0.1
Bl(ta S) - ] 0.15¢~* :| ) BQ(ta S) - |: 0.1e—2t :|
Ct,s)=[ =1 1+0.3sin(5(t+s)) |
Dy (t,s) = 0.4—0.15sin(t), Da(t,s) =0.25+ 0.1 cos(2s)
Ei(t,s) =05, BEa(t,s)=—05, Fyt,s)=0.1
Fi(t,s) = 0.2sin(t) cos(s), D(t,s) = E(t,s) = 1.

The noisesw(t, s) andwv(t, s) are Gaussian white sequences
with respective variance®(t, s) = 0.16 and R(t, s) = 0.25.
The random variable(t, s) is chosen to satisfy the Bernoulli
distribution with (¢, s) = 0.9 and4(t, s) = 0.09. The quan-
tization level is given ag = 0.1, and the scaling parameters
are taken as = p = 0.5 anda = = 1. In this simulation,
we assume that the initial states of system (1) are random
vectors whose components obey the uniform distributionr ove
the interval—0.3, 0.3], and thus the expectations and variances
of the initial states are calculated &s(t) = xa(s) = [0 0]7
and P, (t,0) = P,(0,s) = 0.031.

The estimate error is of interest. Fér= 1,2, the ¢-th
component ok, (¢, s) is denoted ag,(t, ). Further define

En(t,s) 2 tr{[Ln, 0,,]2(t, 8)[Ln, 0,,]"}

Therefore, one ha§(t,s) < &(t, s)I for all t,s € [1 N] and -
thus the validity of (36) is ensured, and this ends the proafoder a given quantization levgl As such,=, (¢, s) indicates
m the trace of the minimum upper bound on the error variance

Remark 9:The evaluation of the filtering performance ha$l,,, 0

JPu(t,$)[In, 0n,]", which is regarded as an index

Ty

been presented in this subsection. To be exact, TheorenofZhe filtering performance.

looks into the monotonicity of the optimal bound concerning According to the theoretical results, the filtering algiomit

the quantization accuracy, which is in conformity with thean be recursively carried out to solve the addressed prob-
engineering practice. Theorems 3-4 show the boundednkss, and the corresponding simulation results are predente
of the matrix=(t, s) at each iteration under Assumption 2in Figs. 1-3. Specifically, Figs. 1-2 plot the filtering error
The obtained bounds rely on all the factors including thigajectories ofe;(¢,s) and ex(t, s), and Fig. 3 depicts the
initial constraints, the noise information, the amplitaad the evolution of =, (¢, s). It is concluded from Figs. 1-3 that the
system parameters, the statistics of the sensor failutetren estimation states draw close to their real ones, namely, the

guantization level.

Remark 10:Till now, the recursive filtering problem has

proposed filter performs quite well.
In the sequel, we consider different cases to quantitativel

been systematically studied for 2-D systems with dynaméemonstrate effects of the quantization accuracy, the RSF,
guantization and sensor failure. An augmented state has b#ee process noise.

constructed, which embraces and jointly estimates thesstat Case 1:

In this case, the influence of the quantization

of the quantizer and the original systein. contrast to the accuracy is presented. Let us reset the quantization level a
existing literature, this article exhibits the followingstinctive 7, = 0.5 andn, = 1, while remaining all the other parame-
features: 1) a novel dynamic quantization with impressivers. The corresponding performance indexes are denoted by
flexibility is developed for 2-D systems; 2) a new filteringg,, (¢, s) and=,, (¢, s), respectively. By applying Theorem 1,
scheme is proposed to withstand the quantization error ath@ relating local minimum upper bounds and the filter gains
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t=0,1,... 60 O

Fig. 1. Trajectory of the filtering erro¢; (¢, s).

s=0,1,...
t=01,... 0 50 o

Fig. 2. Trajectory of the filtering errogz (¢, s).

o ’ "’ VII(‘
7 u/»"l M’\‘\' ‘\’ \‘\
nﬁﬁm

Fig. 3. Trajectory of=,(t, s) with n = 0.1 and5(t, s) = 0.9.
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can also be obtained. The simulation results are shown in
Figs. 4-5, where differences of the performance indexes are
displayed between different quantization levels. It isyetas
see that the increase of the quantization level amplifies the
minimum upper bound, which is in accord with the theoretical
result.

t=0,1,... 60 O

Fig. 4. Trajectory of=,, (t, s) — Eq(t, 5).

Fig. 5. Trajectory ofE,, (¢, s) — En, (t, s).

Case 2: This case discusses the effect of the RSF on the
filtering performance. The value of the RSF coefficig(t, s)
is selected a®.9 and 0.5 in two different scenarios. The
simulation results are given in Figs. 3 and 6, which plot the
trajectories of the performance ind&,(t, s) under different
3(t, s). Obviously, it is withessed from Figs. 3 and 6 that the
increase in the occurrence probability of the sensor failur
degrades the filtering performance.

Case 3: The impact of the noise intensity is examined in
this case. The noise variance is resettis, s) = 0.36, and
the corresponding simulation result is depicted in Fig. 7. A
comparison of Figs. 3 and 7 implies that a larger noise vagan
leads to a worse filtering performance.
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12

systems with other communication constraints such as coded
measurements or cyber-attacks, and 2) the state estinfation
more complicated systems including 2-D systems over sensor
networks.

f'h,«l/"’\"/’l”\ﬂ/’"’
i
e
il
bt
"m‘\‘ )
il

A7 wi/}.
'lh"/l'l':;’ i

N

i
(1]

s
i 'li’l’
' ‘l I

llllh’,,'in’,’,’,'

(2]
(3]

(4]

t=0,1,... 0w o

(5]
Fig. 6. Trajectory of=,(t, s) with ¥(¢,s) = 0.5.
[6]

(7]

R
vi./l"‘ 2l I
y 'f'ﬂ"'l’.‘ [8]

i ');’;‘i'z({\‘\'{lli‘ v
it ’ KLl L
iyl o

60

[10]

(11]

- 50
t=0,1,... 60 O

[12]

Fig. 7. Trajectory of=,(t, s) with Q(¢, s) = 0.36.
[13]

V. CONCLUSIONS [14]

In this article, a recursive filtering strategy has been Heve
oped for the 2-D system with inaccurate measurements. The
measured outputs are subject to the sensor failure modgled1s]
independent and identically distributed random variakhlih
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