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Recursive Locally Minimum-Variance Filtering for
Two-dimensional Systems: When Dynamic

Quantization Effect Meets Random Sensor Failure
Fan Wang, Zidong Wang, Jinling Liang, and Carlos Silvestre∗

Abstract—This article deals with the recursive filtering issue
for an array of two-dimensional systems with random sensor
failures and dynamic quantizations. The phenomenon of sensor
failure is introduced whose occurrence is governed by a random
variable with known statistical properties. In view of the data
transmission over networks of constrained bandwidths, a dy-
namic quantizer is adopted to compress the raw measurements
into the quantized ones. The main objective of this article is to
design a recursive filter so that a locally minimal upper bound is
ensured on the filtering error variance. To facilitate the filter
design, states of the dynamic quantizer and the target plant
are integrated into an augmented system, based on which an
upper bound is first derived on the filtering error variance and
subsequently minimized at each step. The expected filter gain
is parameterized by solving some coupled difference equations.
Moreover, the monotonicity of the resulting minimum upper
bound with regard to the quantization level is discussed andthe
boundedness analysis is further investigated. Finally, effectiveness
of the developed filtering strategy is verified via a simulation
example.

Index Terms—Recursive filter, two-dimensional systems, dy-
namic quantization, sensor failure, monotonicity, boundedness.

I. I NTRODUCTION

Over the past few decades, there has been a tremendous
amount of research looking at the filtering or state estimation
problems in both signal processing and control communities.
According to the types of the system noises and the per-
formance specifications, a number of filtering schemes have
been thoroughly investigated in the literature and applied
in engineering practice, among which the popular ones are
H∞ filtering, set-membership filtering, and minimum-variance
filtering algorithms [6], [7], [23], [28], [32], [37], [41],[44]. In
particular, the renowned Kalman filter, which aims to charac-
terize the estimation performance in the sense of minimum
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error variance for exactly known linear systems, has been
widely utilized in various scenarios ranging from engineering
practice to machine learning. Furthermore, the so-called robust
Kalman filter has been developed to enhance the robustness
against modeling errors and/or parameter uncertainties, where
the main idea is to provide desirable state estimates with
guaranteed error variances at each iteration [10], [40]. For
some recent results on recursive variance-guaranteed filtering
problems, we refer the readers to [4], [19], [25], [26], [42].

In recent years, two-dimensional (2-D) systems have gained
an ever-increasing research interest owing to their distinctive
feature that the states evolve along two independent direc-
tions. Benefiting from the bi-directional signal propagation,
2-D systems are competent in modeling many multi-variable
systems with promising applications in water heating, metal
rolling, sheet forming, and medical imaging [9], [31]. So far,
an abundance of literature has focused on the research topics
of stabilization, control and estimation for 2-D systems [1],
[30], [33], [38], [39], [43], [47]. In particular, much effort
has been made towards the recursive filtering problems for 2-
D systems under robust performance requirements [20], [34],
[46]. For instance, the robust Kalman filter design issue has
been explored in [20] for an array of 2-D stochastic systems
with parameter uncertainties and measurement degradations,
and the recursive distributed filtering problem has been in-
vestigated in [34] for 2-D shift-varying systems over sensor
networks with stochastic communication protocol.

The quick revolution of communication technologies has fa-
cilitated the implementation of remote filtering algorithms over
communication channels. It is noteworthy that the proliferation
of communication networks has resulted in various advantages
including low cost, simple installation, easy operation, and
flexible architecture of networked systems. On the other hand,
the inherent bandwidth and unpredictable network load have
led to undesired network-induced phenomena (NIP) deserving
particular research attention [8], [11]–[14], [45]. One ofsuch
NIP is the random sensor failures (RSFs) due to the suscep-
tibility of sensors toprobabilistic equipment aging/outages
and link failures [3], [24]. The occurrence of the RSFs gives
rise to imperfect measurements which, in turn, would dra-
matically deteriorate the filtering performance. Accordingly,
the analysis/synthesis issues of RSFs have attracted masses of
research attention with many results available in the literature
(e.g. [18], [24], [29], [36]). However, the filtering problem for
2-D systems with RSFs has not been adequately addressed yet,
which gives rise to one motivation of the present research.
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One way to cope with the communication constraints is to
adopt signal quantization for streamlining the data transmis-
sion over digital channels. To date, both static and dynamic
quantization schemes have been widely employed in practice
[16], [21], [22], [27]. More specifically, the quantized signals
obtained from static quantizers (e.g. uniform and logarithmic
quantizers) are determined by certain persistently fixed thresh-
olds, whilst the states of dynamic quantizers are dynamically
adjusted based on a prescribed law [27]. By making use of
some adjustable parameters and available measurements, the
dynamic quantizers would produce a more intricate yet flexible
structure than the static quantizers [2]. On account of the
quantization effects, the quantized signals deviate from the
original ones, and this gives rise to the data distortion and
further affects the dynamical behaviors as well as the filtering
performance.

Recently, the filtering problems with dynamic quantization
have stirred some initial research interest [5], [15], [35], [48].
For example, the dynamic quantization and rate allocation
strategies have been proposed in [15] to estimate the statesof
certain hidden Markov systems. In [48], the moving horizon
estimation scheme has been developed for networked linear
systems subject to unknown inputs and dynamic quantization
effects. Furthermore, the distributed state estimation problem
has been investigated in [35] for discrete time-varying sys-
tems with dynamic quantization and event-based mechanism.
Nonetheless, the relevant filtering results for 2-D systems
with dynamic quantization have been very scattered, not to
mention the case where RSFs also become a concern. As
such, it is of practical significance to establish a 2-D recursive
filter to extract the true states from quantized and degraded
measurements, and this comprises the primary motivation of
the current study.

Following the above discussions, our attention of this article
is on the recursive filtering problem for 2-D systems in the
simultaneous presence of sensor failure and dynamic quanti-
zation.To address such a problem, three emerging issues that
we are facing are summarized as follows: 1) how to develop a
proper filtering algorithm for 2-D systems taking into account
both the sensor failure and the dynamic quantization? 2) how
to design a recursive filter to attain a satisfactory filtering
performance regardless of the imprecise measurements? and
3) how to conduct the performance analysis of the devised
filter and quantify the impacts from the sensor failure and the
dynamic quantization?

To tackle the aforementioned emerging issues, in this article,
we make dedicated efforts to contrive recursive filterinng algo-
rithm for the underlying 2-D system. To be more specific, an
augmented system is first developed to enable the coexistence
of the original system state and the dynamic quantizer state.
Then, a sufficient criterion is presented to pledge the existence
of an upper bound on the filtering error variance, and the filter
gain is then parameterized to accomplish the locally tightest
upper bound on the error variance.The main contributions
of this article can be summarized from the following three
aspects. 1) The 2-D system under consideration encompasses
the dynamic quantization and RSF to reflect the engineer-
ing practice suffering from limited channel bandwidth and

unreliable data transmission. 2) A novel recursive filtering
strategy is established with guaranteed estimation accuracy,
where the desired filter and the minimum upper bound are
recursively calculated by solving certain difference equations.
3) The monotonicity of the filtering performance is evaluated
regarding the dynamic quantization and sensor failure, and
the boundedness analysis of the proposed filtering algorithm is
further carried out by resorting to some rigorous derivations.

The remainder of this work is arranged as follows. In
Section II, the filtering problem to be addressed is formulated
for the considered 2-D system. In Section III, the upper bounds
on the error variances are derived and minimized under the
designed filter gain, and then the filtering performance is
further examined. An illustrative example is shown in Section
IV to confirm the validity of the established filtering strategy.
Conclusions are lastly drawn in Section V.

Notations: The notation used here is normative.Rn is
the n-dimensional Euclidean space andZ is the integer set.
I indicates the identity matrix and0 denotes the zero one
with appropriate dimensions. Superscripts ‘−1’ and ‘T ’ stand,
respectively, for the inverse and transpose operations. For real
and symmetric matricesX andY ,X > Y (X ≥ Y ) infers that
X−Y is positive definite (nonnegative definite). The notation
[κ ι] with two integersκ and ι satisfyingκ ≤ ι represents
a finite set{κ, κ + 1, κ + 2, . . . , ι}. The symbolλmax{·}
(λmin{·}) denotes the maximum (minimum) eigenvalue of
certain matrix.E{·} and Var{·} indicate the mathematical
expectation and variance operations, respectively.P{·} is the
probability of certain event.

II. PROBLEM FORMULATION

Consider the following 2-D shift-varying system defined on
a finite horizont, s ∈ [0 N ]:

x(t, s) =A1(t, s− 1)x(t, s− 1) +A2(t− 1, s)x(t− 1, s)

+B1(t, s− 1)w(t, s− 1) +B2(t− 1, s)w(t− 1, s)
(1)

wherex(t, s) ∈ R
nx is the system state andw(t, s) ∈ R

nw

is the process noise described by a zero-mean Gaussian white
sequence with varianceQ(t, s).Aℓ(t, s) andBℓ(t, s) (ℓ = 1, 2)
are known shift-varying matrices with appropriate dimensions.
The initial states of system (1) are random variables satisfying
E{x(t, 0)} = x1(t) andE{x(0, s)} = x2(s), wherex1(t) and
x2(s) are known vectors withx1(0) = x2(0).

In a networked system, the measurement outputs are some-
times inaccurate due primarily to some unexpected scenarios
such as sensor failures and limited channel capacity. Bearing
this fact in mind, the degradation and quantization effectson
the measurements are considered in this work. To begin with,
the measurement model undergoing RSFs is presented as

y(t, s) =γ(t, s)C(t, s)x(t, s) + v(t, s) (2)

wherey(t, s) ∈ R
ny is the measured signal,v(t, s) ∈ R

ny is
the measurement white noise with zero mean and variance
R(t, s) > 0, and C(t, s) is a known matrix. The random
variableγ(t, s) ∈ R characterizing sensor failures takes values
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on the interval[0, 1], and is independently and identically dis-
tributed with respect to the indexest ands, which is governed
by a certain probabilistic distribution withE{γ(t, s)} = γ̄(t, s)
and Var{γ(t, s)} = γ̂(t, s), where γ̄(t, s) and γ̂(t, s) are
known scalars.

Remark 1:Sensor failures, which might be induced by sen-
sor aging, intermittent sensing, and unreliable communication
channels, are one of the frequently encountered phenomena
in reality that often take place in a probabilistic manner
because of the random/abrupt environmental changes. Such
a phenomenon ineluctably leads to undesirable observations
subject to stochastic degradations. As such, the random vari-
ableγ(t, s) (with known statistical information) is introduced
into model (2) which, by means of taking different values, is
able to describe different levels of deteriorations of the sensor
performances.

Next, the measurement subject to dynamic quantization is
discussed. The following dynamic quantizer is adopted:

ψ(t, s) =D1(t, s− 1)ψ(t, s− 1) +D2(t− 1, s)ψ(t− 1, s)

+E1(t, s− 1)y(t, s− 1) + E2(t− 1, s)y(t− 1, s)

+F1(t, s− 1)ȳ(t, s− 1) + F2(t− 1, s)ȳ(t− 1, s)
(3a)

ȳ(t, s) =Q(D(t, s)ψ(t, s) + E(t, s)y(t, s)) (3b)

whereψ(t, s) ∈ R
nψ is the state of the quantizer,̄y(t, s) ∈

R
ny is the corresponding output based on the functionQ(·)

to be defined later,Dℓ(t, s), Eℓ(t, s), Fℓ(t, s) (ℓ = 1, 2),
D(t, s) andE(t, s) are shift-varying matrices of compatible
dimensions. The initial states of (3) are given asψ(t, 0) ≡
ψ(0, s) ≡ 0.

For a given vectorz ∈ R
ny , the functionQ(z) : Rny → ℵny

is viewed as a uniform quantizer/mapping expressed as

Q(z) ,
[

ηQ1(z1/η) ηQ2(z2/η) . . . ηQny (zny/η)
]

whereℵ = {τi|τi = iη, i ∈ Z} is a discrete subset ofR, ℵny

is the direct product of theny subsets,η > 0 denotes the
quantization level of the mappingQ(z), zι (ι ∈ [1 ny]) is the
ι-th element ofz, andQι(·) is a stochastic function that maps
certain scalar to its nearest integer according to a uniformly
probabilistic distribution. To be specific, whenτi ≤ zι ≤ τi+1,
the functionQι(·) obeys the following probability distribution:

P{Qι(zι/η) = i} = 1− πι

P{Qι(zι/η) = i+ 1} = πι

with πι = (zι − τi)/η belonging to[0, 1]. Then, the deviation
between the quantized and the raw signals with respect to the
ι-th component is denoted as∆ι , ηQι(zι/η)− zι satisfying

P{∆ι = −πιη} = 1− πι

P{∆ι = (1− πι)η} = πι.

Hence, based on the property of the uniform quantization [17],
the quantized output in (3b) can be further formulated by

ȳ(t, s) = D(t, s)ψ(t, s) + E(t, s)y(t, s) + ∆(t, s) (4)

where∆(t, s) refers to the quantization-induced error having
the following statistics:

E{∆(t, s)} = 0, E{∆(t, s)∆T (t, s)} ≤ (η2/4)I.

Remark 2:Dynamic quantization effects have been investi-
gated for one-dimensional (1-D) systems in the representative
works [2] and [48]. Unfortunately, the dynamic quantizer
introduced in the literature cannot be directly used in the 2-
D case where the signal evolution is inherently bidirectional,
and this demands the development of a new 2-D version of
the dynamic quantizer in the present work. As shown in (3),
the dynamic quantizer (with a feedback structure) is referred
to as a generalized 2-D quantizer which is, for the first time,
proposed for 2-D systems. Different from the conventional
dynamic quantizer for 1-D systems, the 2-D dynamic quantizer
exploits the measurements from both the current instant and
the immediate preceding instants along two directions.

Remark 3: In comparison with its static counterpart, the
dynamic quantization generates quantized outputs that are
dependent on both current and historical measurements. Fur-
thermore, the dynamic quantization in (3) consists of the
quantizer state (whose evolution is determined by the historical
measurements) and a uniform quantization function (which
involves the current measurement information). Obviously,
the proposed quantizer can dynamically adjust itself based
on the input sequencesψ(t, s), y(t, s), and some adjustable
parameters, thereby exhibiting richer dynamics (than the static
one) which would then help reduce the conservatism in the
system analysis. In addition, the dynamic quantizer (3) will
degenerate into the conventional uniform one by just choosing
ψ(t, s) ≡ 0 and E(t, s) ≡ I. To sum up, the proposed
dynamic quantizer in a feedback form is a fairly general one
with remarkable flexibility, which covers the static uniform
quantizer as a special case.

For notational simplicity, let us denote

Ēℓ(t, s) , Eℓ(t, s) + Fℓ(t, s)E(t, s), ℓ = 1, 2

D̄ℓ(t, s) , Dℓ(t, s) + Fℓ(t, s)D(t, s)

Aℓ(t, s) ,

[

Aℓ(t, s) 0
γ(t, s)Ēℓ(t, s)C(t, s) D̄ℓ(t, s)

]

Āℓ(t, s) ,

[

Aℓ(t, s) 0
γ̄(t, s)Ēℓ(t, s)C(t, s) D̄ℓ(t, s)

]

E1(t, s) ,
[

γ(t, s)E(t, s)C(t, s) D(t, s)
]

Ē1(t, s) ,
[

γ̄(t, s)E(t, s)C(t, s) D(t, s)
]

E2(t, s) ,
[

E(t, s) I
]

, γ̃(t, s) , γ(t, s)− γ̄(t, s)

Bℓ(t, s) ,

[

Bℓ(t, s)
0

]

, Fℓ(t, s) ,

[

0

F̂ℓ(t, s)

]

,

F̂ℓ(t, s) ,
[

Ēℓ(t, s) Fℓ(t, s)
]

Êℓ(t, s) ,

[

0 0
Ēℓ(t, s)C(t, s) 0

]

Ê(t, s) ,
[

E(t, s)C(t, s) 0
]

.

It is easy to see that̄Aℓ(t, s) = E{Aℓ(t, s)} and Ē1(t, s) =
E{E1(t, s)}. By further defining

x̄(t, s) ,
[

xT (t, s) ψT (t, s)
]T

v̄(t, s) ,
[

vT (t, s) ∆T (t, s)
]T

we have the following augmented system from (1)-(4):

x̄(t, s) =A1(t, s− 1)x̄(t, s− 1) +A2(t− 1, s)
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× x̄(t− 1, s) + B1(t, s− 1)w(t, s− 1)

+ B2(t− 1, s)w(t− 1, s) + F1(t, s− 1)

× v̄(t, s− 1) + F2(t− 1, s)v̄(t− 1, s) (5a)

ȳ(t, s) =E1(t, s)x̄(t, s) + E2(t, s)v̄(t, s). (5b)

For the augmented system (5), a recursive filter is proposed
as follows:

x̂p(t, s) =Ā1(t, s− 1)x̂u(t, s− 1)

+ Ā2(t− 1, s)x̂u(t− 1, s) (6a)

x̂u(t, s) =x̂p(t, s) +K(t, s)
(

ȳ(t, s)− Ē1(t, s)x̂p(t, s)
)

(6b)

where x̂p(t, s) and x̂u(t, s) are, respectively, the one-step
prediction and the state estimate ofx̄(t, s), andK(t, s) is the
filter gain to be devised. The initial states of (6) are set as

x̂u(t, 0) =
[

x
T
1 (t) ψT (t, 0)

]T

x̂u(0, s) =
[

x
T
2 (s) ψT (0, s)

]T
.

Denoteep(t, s) , x̄(t, s)− x̂p(t, s) andeu(t, s) , x̄(t, s)−
x̂u(t, s). Subtracting (6) from (5) yields the following error
dynamics:

ep(t, s) =Ā1(t, s− 1)eu(t, s− 1) + Ā2(t− 1, s)

× eu(t− 1, s) + γ̃(t, s− 1)Ê1(t, s− 1)

× x̄(t, s− 1) + γ̃(t− 1, s)Ê2(t− 1, s)

× x̄(t− 1, s) + B1(t, s− 1)w(t, s− 1)

+ B2(t− 1, s)w(t− 1, s) + F1(t, s− 1)

× v̄(t, s− 1) + F2(t− 1, s)v̄(t− 1, s) (7a)

eu(t, s) =
(

I −K(t, s)Ē1(t, s)
)

ep(t, s)−K(t, s)

×
[

γ̃(t, s)Ê(t, s)x̄(t, s) + E2(t, s)v̄(t, s)
]

. (7b)

The following assumption is made throughout this article.
Assumption 1:For tj , sj ∈ [0 N ] with j ∈ [1 5], the process

noisew(t1, s1), the measurement noisev(t2, s2), the sensor
failure coefficientγ(t3, s3), the quantization error∆(t4, s4),
as well as the initial statesx(t5, 0) andx(0, s5) are mutually
uncorrelated with each other.

Now, we are ready to introduce the problem to be addressed
in this article. For the considered 2-D shift-varying system (1)
with dynamic quantization effect (3) and sensor failure (2),
the objective of the current work is to devise the recursive
filter (6) such that an upper bound of the filtering error
varianceE

{

eu(t, s)e
T
u (t, s)

}

is guaranteed and subsequently
minimized by properly selecting the filter parameterK(t, s) at
each iteration.

Remark 4:Notice that the quantization error involved in the
error dynamics (7) would ineluctably lead to the calculation
of the exact filtering error variance inaccessible, not to speak
of designing the recursive filter. To this end, an alternative
strategy is to derive a locally minimal upper bound on the
filtering error variance, and the desired filter gain is to be
parameterized for ensuring such a locally minimal upper
bound.

III. M AIN RESULTS

In this section, we plan to explore a recursive filter design
approach for accomplishing the desired filtering performance
for the 2-D system (1). First, some preliminaries are given
to formulate the evolutions of the system state’s second-
order moment and the filtering error variance. Afterwards,
an upper bound of the error variance is constructed and the
explicit gain parameter is derived to optimize this bound at
each step. Finally, the filtering accuracy in relation to the
quantization level and the boundedness of the minimum bound
are elaborately discussed.

A. Preliminaries

The following lemmas are presented for subsequent devel-
opments.

Lemma 1:For any positive scalarα > 0 and matricesM ,
M̄ with appropriate dimensions, one has

(α1/2M − α−1/2M̄)(α1/2M − α−1/2M̄)T ≥ 0.

Lemma 2:Let M(t, s) and M̄(t, s) be matrices with ap-
propriate dimensions satisfyingM(t, s) ≤ M̄(t, s) for all
t, s ∈ [0 N ]. Assume thatf(·, ·) andg(·, ·) are twosymmetric
matrix-form functions satisfying the following relationships:

f(M(t, s− 1),M(t− 1, s)) ≤ f(M̄(t, s− 1), M̄(t− 1, s))

f(M̄(t, s− 1), M̄(t− 1, s)) ≤ g(M̄(t, s− 1), M̄(t− 1, s)).

Then, the solutions to the following difference equations

Y (t, s) = f(Y (t, s− 1), Y (t− 1, s))

Z(t, s) = g(Z(t, s− 1), Z(t− 1, s))

with initial conditions Y (t, 0) ≤ Z(t, 0) and Y (0, s) ≤
Z(0, s) satisfy

Y (t, s) ≤ Z(t, s), t, s ∈ [0 N ]. (8)

Proof: This lemma can be proven based on the mathemat-
ical induction method. According to the properties of functions
f(·, ·) andg(·, ·), one obtains from the initial conditions that

Y (1, 1) = f(Y (1, 0), Y (0, 1))

≤ f(Z(1, 0), Z(0, 1))

≤ g(Z(1, 0), Z(0, 1))

= Z(1, 1)

which means that (8) holds for(t, s) = (1, 1). Next, suppose
that (8) is valid for(t, s) ∈ {(k, l)|k, l ∈ [1 N ]; k + l = θ}
with θ ∈ [2 2N−1]. To confirm the statement of this lemma,
the validity of (8) shall be verified for(t, s) ∈ {(k, l)|k, l ∈
[1 N ]; k + l = θ + 1}. On account of the properties of
f(·, ·) and g(·, ·) again, together with the above-mentioned
hypothesis, one has

Y (t, s) = f(Y (t, s− 1), Y (t− 1, s))

≤f(Z(t, s− 1), Z(t− 1, s))

≤g(Z(t, s− 1), Z(t− 1, s))

= Z(t, s)
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which ends the proof.
For convenience, we set

X(t, s) , E
{

x̄(t, s)x̄T (t, s)
}

Pp(t, s) , E
{

ep(t, s)e
T
p (t, s)

}

Pu(t, s) , E
{

eu(t, s)e
T
u (t, s)

}

.

The following lemma provides a bound constraint for the
second-order moment of the statex̄(t, s).

Lemma 3:Let ς > 0 be a given positive scalar. Assume
that there is a set of matrices̄X(t, s) satisfying the following
recursion

X̄(t, s) =(1 + ς)Ā1(t, s− 1)X̄(t, s− 1)ĀT
1 (t, s− 1)

+ (1 + ς−1)Ā2(t− 1, s)X̄(t− 1, s)ĀT
2 (t− 1, s)

+ γ̂(t, s− 1)Ê1(t, s− 1)X̄(t, s− 1)ÊT
1 (t, s− 1)

+ γ̂(t− 1, s)Ê2(t− 1, s)X̄(t− 1, s)ÊT
2 (t− 1, s)

+Q1(t, s− 1) +Q2(t− 1, s) (9)

with initial constraints

X̄(t, 0) = X(t, 0), X̄(0, s) = X(0, s) (10)

where

Qℓ(t, s) ,Bℓ(t, s)Q(t, s)BT
ℓ (t, s)+Fℓ(t, s)Rv̄(t, s)F

T
ℓ (t, s)

Rv̄(t, s) ,diag
{

R(t, s), (η2/4)I
}

.

Then, the second-order moment of the statex̄(t, s) is bounded
by X̄(t, s), that is,X(t, s) ≤ X̄(t, s).

Proof: Based on the definition of̄v(t, s), we obtain

E
{

v̄(t, s)v̄T (t, s)
}

=

[

R(t, s) 0
0 E

{

∆(t, s)∆T (t, s)
}

]

≤

[

R(t, s) 0
0 (η2/4)I

]

= Rv̄(t, s). (11)

Recalling the statistical properties of random variables
γ(t, s), w(t, s), and v̄(t, s), we have

E
{

γ(t, s)wT (t0, s0)
}

= 0, E
{

γ(t, s)v̄T (t0, s0)
}

= 0

E
{

w(t, s)v̄T (t0, s0)
}

= 0

for all t, s, t0, s0 ∈ [0 N ] and

E
{

x̄(t, s)wT (t1, s1)
}

= 0, E
{

x̄(t, s)v̄T (t1, s1)
}

= 0

for (t1, s1) ∈ {(k, l)|k > t or l > s} ∪ (t, s). Combining the
above facts with (5a), we can derive that

X(t, s) =Ā1(t, s− 1)X(t, s− 1)ĀT
1 (t, s− 1)

+ Ā2(t− 1, s)X(t− 1, s)ĀT
2 (t− 1, s)

+ Ā1(t, s− 1)E
{

x̄(t, s− 1)x̄T (t− 1, s)
}

× ĀT
2 (t− 1, s) + Ā2(t− 1, s)

× E
{

x̄(t− 1, s)x̄T (t, s− 1)
}

ĀT
1 (t, s− 1)

+ γ̂(t, s− 1)Ê1(t, s− 1)X(t, s− 1)ÊT
1 (t, s− 1)

+ γ̂(t− 1, s)Ê2(t− 1, s)X(t− 1, s)ÊT
2 (t− 1, s)

+ B1(t, s− 1)Q(t, s− 1)BT
1 (t, s− 1)

+ B2(t− 1, s)Q(t− 1, s)BT
2 (t− 1, s)

+ F1(t, s− 1)E
{

v̄(t, s− 1)v̄T (t, s− 1)
}

×FT
1 (t, s− 1) + F2(t− 1, s)

× E
{

v̄(t− 1, s)v̄T (t− 1, s)
}

FT
2 (t− 1, s)

≤(1 + ς)Ā1(t, s− 1)X(t, s− 1)ĀT
1 (t, s− 1)

+ (1 + ς−1)Ā2(t− 1, s)X(t− 1, s)ĀT
2 (t− 1, s)

+ γ̂(t, s− 1)Ê1(t, s− 1)X(t, s− 1)ÊT
1 (t, s− 1)

+ γ̂(t− 1, s)Ê2(t− 1, s)X(t− 1, s)ÊT
2 (t− 1, s)

+Q1(t, s− 1) +Q2(t− 1, s).

On grounds of the given initial conditions of̄X(t, s) and
Lemma 2, it is not difficult to confirm from Lemma 1 that
X(t, s) ≤ X̄(t, s), which completes the proof.

The recursions of the error variances are given as follows.
Lemma 4:The one-step prediction error variancePp(t, s)

and the filtering error variancePu(t, s) are computed as:

Pp(t, s) =Ā1(t, s− 1)Pu(t, s− 1)ĀT
1 (t, s− 1)

+ Ā2(t− 1, s)Pu(t− 1, s)ĀT
2 (t− 1, s)

+ Ā1(t, s− 1)E
{

eu(t, s− 1)eTu (t− 1, s)
}

× ĀT
2 (t− 1, s) + Ā2(t− 1, s)

× E
{

eu(t− 1, s)eTu (t, s− 1)
}

ĀT
1 (t, s− 1)

+ Ω1(t, s− 1) + ΩT
1 (t, s− 1) + Ω2(t− 1, s)

+ ΩT
2 (t− 1, s) + Q̂1(t, s− 1) + Q̂2(t− 1, s)

(12)

Pu(t, s) =
(

I−K(t, s)Ē1(t, s)
)

Pp(t, s)
(

I−K(t, s)Ē1(t, s)
)T

+K(t, s)
[

γ̂(t, s)Ê(t, s)X(t, s)ÊT (t, s)

+ E2(t, s)E
{

v̄(t, s)v̄T (t, s)
}

ET
2 (t, s)

]

KT (t, s)
(13)

where, forℓ = 1, 2,

Ωℓ(t, s) ,E

{

Āℓ(t, s)eu(t, s)
(

γ̃(t, s)Êℓ(t, s)x̄(t, s)

+ Fℓ(t, s)v̄(t, s)
)T

}

(14)

Q̂ℓ(t, s) ,γ̂(t, s)Êℓ(t, s)X(t, s)ÊT
ℓ (t, s) + Bℓ(t, s)Q(t, s)

× BT
ℓ (t, s)+Fℓ(t, s)E

{

v̄(t, s)v̄T (t, s)
}

FT
ℓ (t, s).

(15)

Proof: It follows from the statistical properties of̄v(t, s)
andep(t, s) that

E
{

ep(t, s)v̄
T (t1, s1)

}

= 0

for (t1, s1) ∈ {(k, l)|k > t or l > s} ∪ (t, s). The proof
is readily concluded from (7) and the detailed derivation is
omitted here for space saving purposes.

In this subsection, some preliminary results have been given
to be used in the subsequent developments. In particular,
Lemma 1 shows a fundamental inequality to cope with some
cross-terms, Lemma 2 presents a general comparison principle
in the 2-D setting to obtain certain upper bounds, Lemma 3
derives a matrix sequencēX(t, s) as an upper bound on
the second-order moment of the state at each iteration, and
Lemma 4 provides the recursions of the prediction and the
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filtering error variances. It is worth noting that, in consequence
of the existence of the quantization-induced errors, the analyt-
ical solution of the error variancePu(t, s) in (13) cannot be
obtained. As such, we resort to find an upper bound ofPu(t, s)
and then optimize it by properly designing the filter gain.

B. The filter design

On the basis of the previous discussions, an upper bound
is first calculated on the filtering error variance and, subse-
quently, the filter is devised to minimize such a bound in this
subsection.

Theorem 1:Let ς , µ, α, and β be given positive scalars.
Assume that there is a set of nonnegative definite matrices
X̄(t, s) and two sets of positive definite matricesS(t, s) and
Ξ(t, s) satisfying (9) and the following two recursions

S(t, s) =(1 + µ)Ā1(t, s− 1)Ξ(t, s− 1)ĀT
1 (t, s− 1)

+ (1 + µ−1)Ā2(t− 1, s)Ξ(t− 1, s)ĀT
2 (t− 1, s)

+ Q̄1(t, s− 1) + Q̄2(t− 1, s)

+ R̄1(t, s− 1) + R̄2(t− 1, s) (16)

Ξ(t, s) =
(

I−K(t, s)Ē1(t, s)
)

S(t, s)
(

I−K(t, s)Ē1(t, s)
)T

+K(t, s)
[

γ̂(t, s)Ê(t, s)X̄(t, s)ÊT (t, s)

+ E2(t, s)Rv̄(t, s)E
T
2 (t, s)

]

KT (t, s) (17)

with initial constraints (10) and

Ξ(t, 0) = Pu(t, 0), Ξ(0, s) = Pu(0, s) (18)

where

Q̄ℓ(t, s) ,(1 + α−1)γ̂(t, s)Êℓ(t, s)X̄(t, s)ÊT
ℓ (t, s)

+ Bℓ(t, s)Q(t, s)BT
ℓ (t, s)

R̄ℓ(t, s) ,Āℓ(t, s)K(t, s)
[

αγ̂(t, s)Ê(t, s)X̄(t, s)ÊT (t, s)

+ βE2(t, s)Rv̄(t, s)E
T
2 (t, s)

]

KT (t, s)ĀT
ℓ (t, s)

+ (1 + β−1)Fℓ(t, s)Rv̄(t, s)F
T
ℓ (t, s).

Then, matricesS(t, s) and Ξ(t, s) are always upper bounds
for Pp(t, s) andPu(t, s), respectively, that is,

Pp(t, s) ≤ S(t, s), Pu(t, s) ≤ Ξ(t, s). (19)

Moreover, the upper boundΞ(t, s) is minimized as

Ξ(t, s) = S(t, s)− S(t, s)ĒT
1 (t, s)R̂

−1(t, s)Ē1(t, s)S(t, s)
(20)

with the gain parameter

K(t, s) = S(t, s)ĒT
1 (t, s)R̂−1(t, s) (21)

where

R̂(t, s) ,Ē1(t, s)S(t, s)Ē
T
1 (t, s) + γ̂(t, s)Ê(t, s)X̄(t, s)

× ÊT (t, s) + E2(t, s)Rv̄(t, s)E
T
2 (t, s). (22)

Proof: It follows from (7b) and the statistical properties
of γ̃(t, s), v̄(t, s), x̄(t, s), andeu(t, s) that

E
{

γ̃(t, s)eu(t, s)x̄
T (t, s)

}

= −γ̂(t, s)K(t, s)Ê(t, s)X(t, s)

E
{

eu(t, s)v̄
T (t, s)

}

= −K(t, s)E2(t, s)E
{

v̄(t, s)v̄T (t, s)
}

.

According to the formulation ofΩℓ(t, s) in (14), we obtain
easily from Lemmas 1 and 3 as well as (11) that

Ωℓ(t, s) + ΩT
ℓ (t, s)

= −γ̂(t, s)Āℓ(t, s)K(t, s)Ê(t, s)X(t, s)ÊT
ℓ (t, s)

− γ̂(t, s)Êℓ(t, s)X(t, s)ÊT (t, s)KT (t, s)ĀT
ℓ (t, s)

− Āℓ(t, s)K(t, s)E2(t, s)E
{

v̄(t, s)v̄T (t, s)
}

FT
ℓ (t, s)

−Fℓ(t, s)E
{

v̄(t, s)v̄T (t, s)
}

ET
2 (t, s)K

T (t, s)ĀT
ℓ (t, s)

≤ αγ̂(t, s)Āℓ(t, s)K(t, s)Ê(t, s)X̄(t, s)ÊT (t, s)KT (t, s)

× ĀT
ℓ (t, s) + α−1γ̂(t, s)Êℓ(t, s)X̄(t, s)ÊT

ℓ (t, s)

+ βĀℓ(t, s)K(t, s)E2(t, s)Rv̄(t, s)E
T
2 (t, s)KT (t, s)

× ĀT
ℓ (t, s) + β−1Fℓ(t, s)Rv̄(t, s)F

T
ℓ (t, s). (23)

In the light of Lemma 3, inequality (11), and expression
(15), we also have

Q̂ℓ(t, s) ≤γ̂(t, s)Êℓ(t, s)X̄(t, s)ÊT
ℓ (t, s) + Bℓ(t, s)Q(t, s)

× BT
ℓ (t, s) + Fℓ(t, s)Rv̄(t, s)F

T
ℓ (t, s). (24)

Substituting (23) and (24) into (12), one obtains

Pp(t, s)

≤ (1 + µ)Ā1(t, s− 1)Pu(t, s− 1)ĀT
1 (t, s− 1)

+ (1 + µ−1)Ā2(t− 1, s)Pu(t− 1, s)ĀT
2 (t− 1, s)

+ (1 + α−1)γ̂(t, s− 1)Ê1(t, s− 1)X̄(t, s− 1)

× ÊT
1 (t, s− 1) + (1 + α−1)γ̂(t− 1, s)Ê2(t− 1, s)

× X̄(t− 1, s)ÊT
2 (t− 1, s) + Ā1(t, s− 1)K(t, s− 1)

×
[

αγ̂(t, s− 1)Ê(t, s− 1)X̄(t, s− 1)ÊT (t, s− 1)

+ βE2(t, s− 1)Rv̄(t, s− 1)ET
2 (t, s− 1)

]

KT (t, s− 1)

× ĀT
1 (t, s− 1) + Ā2(t− 1, s)K(t− 1, s)

[

αγ̂(t− 1, s)

× Ê(t− 1, s)X̄(t− 1, s)ÊT (t− 1, s) + βE2(t− 1, s)

×Rv̄(t− 1, s)ET
2 (t− 1, s)

]

KT (t− 1, s)ĀT
2 (t− 1, s)

+ (1 + β−1)F1(t, s− 1)Rv̄(t, s− 1)FT
1 (t, s− 1)

+ (1 + β−1)F2(t− 1, s)Rv̄(t− 1, s)FT
2 (t− 1, s)

+ B1(t, s− 1)Q(t, s− 1)BT
1 (t, s− 1)

+ B2(t− 1, s)Q(t− 1, s)BT
2 (t− 1, s)

≤ (1 + µ)Ā1(t, s− 1)Pu(t, s− 1)ĀT
1 (t, s− 1)

+ (1 + µ−1)Ā2(t− 1, s)Pu(t− 1, s)ĀT
2 (t− 1, s)

+ Q̄1(t, s− 1) + Q̄2(t− 1, s)

+ R̄1(t, s− 1) + R̄2(t− 1, s). (25)

Moreover, it follows from equality (13) and Lemma 3 that

Pu(t, s)≤
(

I−K(t, s)Ē1(t, s)
)

Pp(t, s)
(

I−K(t, s)Ē1(t, s)
)T

+K(t, s)
[

γ̂(t, s)Ê(t, s)X̄(t, s)ÊT (t, s)

+ E2(t, s)Rv̄(t, s)E
T
2 (t, s)

]

KT (t, s). (26)

Now, let us prove (19) by using the inductive method. It
follows from (16), (25), and the initial conditions that

Pp(1, 1)− S(1, 1)
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≤ (1 + µ)Ā1(1, 0)(Pu(1, 0)− Ξ(1, 0))ĀT
1 (1, 0)

+ (1 + µ−1)Ā2(0, 1)(Pu(0, 1)− Ξ(0, 1))ĀT
2 (0, 1) ≤ 0

which, together with (17) and (26), infers

Pu(1, 1)− Ξ(1, 1)

≤
(

I −K(1, 1)Ē1(1, 1)
)

(Pp(1, 1)− S(1, 1))

×
(

I −K(1, 1)Ē1(1, 1)
)T

≤ 0,

namely, (19) holds for(t, s) ∈ {(k, l)|k, l ∈ [1 N ]; k+l = 2}.
Next, assume that (19) is true for(t, s) ∈ {(k, l)|k, l ∈

[1 N ]; k + l = θ} with a certain integerθ. Then, for(t, s) ∈
{(k, l)|k, l ∈ [1 N ]; k + l = θ + 1}, one obtains

Pp(t, s)− S(t, s)

≤ (1 + µ)Ā1(t, s− 1)(Pu(t, s− 1)− Ξ(t, s− 1))

× ĀT
1 (t, s− 1) + (1 + µ−1)Ā2(t− 1, s)

× (Pu(t− 1, s)− Ξ(t− 1, s))ĀT
2 (t− 1, s) ≤ 0

which further indicates

Pu(t, s)− Ξ(t, s)

≤
(

I −K(t, s)Ē1(t, s)
)

(Pp(t, s)− S(t, s))

×
(

I −K(t, s)Ē1(t, s)
)T

≤ 0.

Therefore, it is confirmed that (19) holds for allt, s ∈ [1 N ].
It remains to determine the filter gain that minimizes the

upper boundΞ(t, s). By means of the completing-the-square
method, the recursive equation (17) is calculated as

Ξ(t, s) =S(t, s)−K(t, s)Ē1(t, s)S(t, s)− S(t, s)ĒT
1 (t, s)

×KT (t, s) +K(t, s)
[

Ē1(t, s)S(t, s)Ē
T
1 (t, s)

+ γ̂(t, s)Ê(t, s)X̄(t, s)ÊT (t, s)

+ E2(t, s)Rv̄(t, s)E
T
2 (t, s)

]

KT (t, s)

=S(t, s) +
(

K(t, s)− S(t, s)ĒT
1 (t, s)R̂−1(t, s)

)

× R̂(t, s)
(

K(t, s)− S(t, s)ĒT
1 (t, s)R̂

−1(t, s)
)T

− S(t, s)ĒT
1 (t, s)R̂−1(t, s)Ē1(t, s)S(t, s).

It is obvious that the upper boundΞ(t, s) attains its mini-
mization

Ξ(t, s) =S(t, s)− S(t, s)ĒT
1 (t, s)R̂−1(t, s)Ē1(t, s)S(t, s)

by setting the gain asK(t, s) = S(t, s)ĒT
1 (t, s)R̂−1(t, s). The

proof is now complete.
Remark 5:For the augmented system (5), with the aid of

the intensive stochastic analysis and mathematical induction, a
sufficient criterion has been given in Theorem 1 for developing
an upper boundΞ(t, s) on the matrixPu(t, s) in terms of
two coupled difference equations. The gain matrix has also
been designed to fulfill the minimization of the upper bound at
each iteration. It follows from Theorem 1 that the deterministic
upper boundsS(t, s) and Ξ(t, s) as well as the filter gain
K(t, s) can be recursively computed by solving the recursions
(9), (16), and (17).

Remark 6:Note that [Inx 0nψ ]Pu(t, s)[Inx 0nψ ]
T ≤

[Inx 0nψ ]Ξ(t, s)[Inx 0nψ ]
T . For system (1), the estimate of

the system statex(t, s) can be computed as[Inx 0nψ ]x̂u(t, s).
Accordingly, the estimation error is[Inx 0nψ ]eu(t, s), and the
upper bound on the error variance[Inx 0nψ ]Pu(t, s)[Inx 0nψ ]

T

is minimized under the determined filter gain.

C. Performance analysis

In this subsection, the influences from the quantization
accuracy and the sensor failure on the filtering performance
are to be discussed. Furthermore, boundedness of the minimal
upper bound will be analyzed with rigorous derivation.

First, we will establish the relationship between the quanti-
zation levelη and the filtering performance. It is noted from
(11) that the parameterη is involved in matrixRv̄(t, s) and
is thus contained inR̄ℓ(t, s) (ℓ = 1, 2). Accordingly, the
following operators are introduced:

G(η, Y (t, s− 1), Y (t− 1, s))

, (1 + µ)Ā1(t, s− 1)Y (t, s− 1)ĀT
1 (t, s− 1)

+ (1 + µ−1)Ā2(t− 1, s)Y (t− 1, s)ĀT
2 (t− 1, s)

+ Q̄1(t, s− 1) + Q̄2(t− 1, s)

+ R̄1(t, s− 1) + R̄2(t− 1, s)

H(η, Z,K(t, s))

,
(

I −K(t, s)Ē1(t, s)
)

Z
(

I −K(t, s)Ē1(t, s)
)T

+K(t, s)
[

γ̂(t, s)Ê(t, s)X̄(t, s)ÊT (t, s)

+ E2(t, s)Rv̄(t, s)E
T
2 (t, s)

]

KT (t, s).

It is not difficult to see thatG(η, Y (t, s− 1), Y (t− 1, s)) is
nondecreasing with the increase of the parameterη or matrices
Y (t, s − 1) andY (t − 1, s). Moreover, either a larger matrix
Z or a greater value ofη (generating a lagerRv̄(t, s)) will be
liable for the growth ofH(η, Z,K(t, s)).

For convenience, let us define the desirable filter gain with
respect to the quantization levelη as K∗

η(t, s), under which
the minimum bounds on the error variances are set asS∗

η(t, s)
andΞ∗

η(t, s). According to (16), (17), and (21), the minimum
bounds and the designed filter gain under the prescribed
quantization levelη can be calculated as:

K∗

η(t, s) = S∗

η(t, s)Ē
T
1 (t, s)R̂−1(t, s)

S∗

η(t, s) = G(η,Ξ∗

η(t, s− 1),Ξ∗

η(t− 1, s))

Ξ∗

η(t, s) = H(η, S∗

η(t, s),K
∗

η(t, s)).

Theorem 2:For given positive scalarsη1 andη2, if η1 ≤ η2,
then the following relationship holds

Ξ∗

η1
(t, s) ≤ Ξ∗

η2
(t, s) (27)

for all t, s ∈ [0 N ] with initial conditionsΞ∗

η1
(t, 0) = Ξ∗

η2
(t, 0)

andΞ∗

η1
(0, s) = Ξ∗

η2
(0, s).

Proof: The proof of this theorem is conducted by the in-
ductive approach. It follows directly from the initial conditions
that (27) is true for(t, s) ∈ {(k, l)|k, l ∈ [0 N ]; k + l = 1}.

Suppose that (27) holds for(t, s) ∈ {(k, l)|k, l ∈ [1 N ]; k+
l = θ}. Then, for(t, s) ∈ {(k, l)|k, l ∈ [1 N ]; k+ l = θ+1},
it is easy to check that

S∗

η1
(t, s) = G(η1,Ξ

∗

η1
(t, s− 1),Ξ∗

η1
(t− 1, s))
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≤ G(η2,Ξ
∗

η2
(t, s− 1),Ξ∗

η2
(t− 1, s))

= S∗

η2
(t, s) (28)

and this further indicates

H(η1, S
∗

η1
(t, s),K∗

η2
(t, s)) ≤ H(η1, S

∗

η2
(t, s),K∗

η2
(t, s))

≤ H(η2, S
∗

η2
(t, s),K∗

η2
(t, s)).

(29)

In addition, noting thatK∗

η1
(t, s) ensures the minimal bound

Ξ∗

η1
(t, s), one has

Ξ∗

η1
(t, s) = H(η1, S

∗

η1
(t, s),K∗

η1
(t, s))

≤ H(η1, S
∗

η1
(t, s),K∗

η2
(t, s)). (30)

It follows from (28)-(30) that

Ξ∗

η1
(t, s) = H(η1, S

∗

η1
(t, s),K∗

η1
(t, s))

≤ H(η2, S
∗

η2
(t, s),K∗

η2
(t, s))

= Ξ∗

η2
(t, s)

for (t, s) ∈ {(k, l)|k, l ∈ [1 N ]; k + l = θ+ 1}. The proof of
this theorem is now complete.

Remark 7:The monotonicity of the minimal bound regard-
ing the quantization accuracy has been investigated in Theo-
rem 2, where the decrease ofη enables the tightening of the
bound. In addition to the signal quantization, the sensor failure
also plays an important role in guaranteeing a satisfactory
filtering performance. Intuitively, the filter performs better with
the increase of the coefficient̄γ(t, s) accounting for more
available information. Owing to the complexity of the analytic
expression of the minimal bound caused by the dynamical
quantization, the monotonicity issue cannot be directly estab-
lished for the sensor failure. To better characterize the influ-
ence of the sensor failure, a simplified case is considered here.
SettingD(t, s) = 0 yields ȳ(t, s) = E(t, s)y(t, s) + ∆(t, s)
from (4), namely, the quantizer becomes static rather than
dynamical. In this case, taking the first variation toΞ(t, s)
with regard toγ̄(t, s), the monotonicity ofΞ(t, s) regarding
γ̄(t, s) (specifically,Ξ(t, s) is nondecreasing with the decline
of γ̄(t, s)) can be proved by some routine computations. The
detailed proof is skipped here for the sake of brevity.

Next, the uniform boundedness of the minimum upper
bound on the error variance will be analyzed. For this purpose,
the following assumption is given.

Assumption 2:For t, s ∈ [0 N ] and ℓ = 1, 2, there are
positive scalars̄aℓ, λ̄, bℓ, b̄ℓ, f ℓ, f̄ℓ, eℓ, ēℓ, q, q̄, r, r̄, c̄ℓ, and
c that satisfy the following inequalities:

Āℓ(t, s)Ā
T
ℓ (t, s) ≤ āℓI, X̄(t, s) ≤ λ̄I

bℓI ≤ Bℓ(t, s)B
T
ℓ (t, s) ≤ b̄ℓI, qI ≤ Q(t, s) ≤ q̄I

f
ℓ
I ≤ F̂ℓ(t, s)F̂

T
ℓ (t, s) ≤ f̄ℓI, rI ≤ R(t, s) ≤ r̄I

e1I ≤ Ē1(t, s)Ē
T
1 (t, s) ≤ ē1I,

e2I ≤ E2(t, s)E
T
2 (t, s) ≤ ē2I

Ēℓ(t, s)C(t, s)C
T (t, s)ĒT

ℓ (t, s) ≤ c̄ℓI

E(t, s)C(t, s)CT (t, s)ET (t, s) ≤ cI.

Remark 8:Notice that Assumption 2 implies certain con-
straints for suppressing the amplitudes of system parameters

and noise variances. This assumption is justified from the usual
energy-bounded constraints in literally all practical applica-
tions. On the other hand, recalling thatE2(t, s)ET

2 (t, s) =
E(t, s)ET (t, s) + I, there must be a positive scalare2
such thate2I ≤ E2(t, s)E

T
2 (t, s). Moreover, the conditions

bℓI ≤ Bℓ(t, s)B
T
ℓ (t, s) and f

ℓ
I ≤ F̂ℓ(t, s)F̂

T
ℓ (t, s) indicate

that matricesBℓ(t, s) and F̂ℓ(t, s) are of full row rank,
respectively. These conditions are fairly flexible yet general.
Roughly speaking, ifbℓI ≤ Bℓ(t, s)B

T
ℓ (t, s) is not satisfied,

a full row rank matrix can be reset. Specifically, it follows
from the full rank decomposition thatBℓ(t, s)w(t, s) =
B1ℓ(t, s)B2ℓ(t, s)w(t, s), whereB1ℓ(t, s) is a redefined matrix
of full row rank andB2ℓ(t, s)w(t, s) could be regarded as a
new process noise.

Denote

rv̄ , min{r, η2/4}, r̄v̄ , max{r̄, η2/4}

Q̆ℓ(t, s) , Bℓ(t, s)Q(t, s)BT
ℓ (t, s)

+ (1 + β−1)Fℓ(t, s)Rv̄(t, s)F
T
ℓ (t, s).

Based on Assumption 2 andRv̄(t, s) defined in Lemma 3,
one has

rv̄I ≤ Rv̄(t, s) ≤ r̄v̄I. (31)

In addition, the expression of̆Qℓ(t, s) infers

Q̆ℓ(t, s) = diag
{

Bℓ(t, s)Q(t, s)BT
ℓ (t, s),

(1 + β−1)F̂ℓ(t, s)Rv̄(t, s)F̂
T
ℓ (t, s)

}

≥

[

qbℓI 0
0 (1 + β−1)rv̄f ℓ

I

]

≥ min
{

qbℓ, (1 + β−1)rv̄f ℓ

}

I , φ
ℓ
I. (32)

Similarly, it is straightforward to see that

Q̆ℓ(t, s) ≤

[

q̄b̄ℓI 0
0 (1 + β−1)r̄v̄ f̄ℓI

]

≤ max
{

q̄b̄ℓ, (1 + β−1)r̄v̄ f̄ℓ
}

I , φ̄ℓI. (33)

The following theorems demonstrate the boundedness prop-
erty of the minimal boundΞ(t, s).

Theorem 3:Under Assumption 2, for allt, s ∈ [0 N ], the
minimum matrixΞ(t, s) obeys the following inequality

Ξ(t, s) ≥

[

(

φ
1
+ φ

2

)

−1

+ e−1

2 r−1
v̄ ē1

]

−1

I. (34)

Proof: It is calculated from (16) and (32) that

S(t, s) ≥Q̆1(t, s− 1) + Q̆2(t− 1, s) ≥ φ
1
I + φ

2
I

which infers

S−1(t, s) ≤
(

φ
1
+ φ

2

)

−1

I. (35)

By resorting to Assumption 2 and (31), one has

γ̂(t, s)Ê(t, s)X̄(t, s)ÊT (t, s) + E2(t, s)Rv̄(t, s)E
T
2 (t, s)

≥ E2(t, s)Rv̄(t, s)E
T
2 (t, s) ≥ e2rv̄I.
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In the light of the matrix inversion lemma, expressions (20)
and (22), and inequality (35), the following relationship is
obtained:

Ξ−1(t, s) =S−1(t, s) + ĒT
1 (t, s)

[

γ̂(t, s)Ê(t, s)X̄(t, s)

×ÊT (t, s) + E2(t, s)Rv̄(t, s)E
T
2 (t, s)

]

−1

Ē1(t, s)

≤
(

φ
1
+ φ

2

)

−1

I + e−1

2 r−1
v̄ ĒT

1 (t, s)Ē1(t, s)

≤

[

(

φ
1
+ φ

2

)

−1

+ e−1

2 r−1
v̄ ē1

]

I

which completes the proof.
Theorem 4:Under Assumption 2, for allt, s ∈ [0 N ], the

minimum matrixΞ(t, s) obeys the following inequality

Ξ(t, s) ≤ ξ(t, s)I (36)

with initial constraintsΞ(t, 0) ≤ ξ(t, 0)I and Ξ(0, s) ≤
ξ(0, s)I, where

ξ(t, s) =
∑t

k=1
µ1ρ(t− k, s− 1)ξ(k, 0)

+
∑s

l=1
µ2ρ(t− 1, s− l)ξ(0, l)

+
∑t−1

k=0

∑s−1

l=0
ρ(t− k − 1, s− l − 1)

× (β1(k + 1, l) + β2(k, l + 1)) (37)

with

µ1 , (1 + µ)ā1, µ2 ,
(

1 + µ−1
)

ā2, ρ(0, 0) , 1

ρ(0, s) , µ1ρ(0, s− 1), ρ(t, 0) , µ2ρ(t− 1, 0)

ρ(t, s) , µ1ρ(t, s− 1) + µ2ρ(t− 1, s)

βℓ(t, s) , φ̄ℓ + (1 + α−1)λ̄c̄ℓγ̂(t, s) + ξ̄ℓ(t, s), ℓ = 1, 2

ξ̄ℓ(t, s) ,
(

αλ̄cγ̂(t, s) + βr̄v̄ ē2
)

āℓē1e
−2
1 ξ2(t, s)

(

φ
1
+ φ

2

)

−2

.

Proof: Based on the expressions ofÊℓ(t, s) and Ê(t, s),
it is obtained from Assumption 2 that

Êℓ(t, s)Ê
T
ℓ (t, s) = diag

{

0, Ēℓ(t, s)C(t, s)C
T (t, s)ĒT

ℓ (t, s)
}

≤ diag {0, c̄ℓI} ≤ c̄ℓI (38)

Ê(t, s)ÊT (t, s) = E(t, s)C(t, s)CT (t, s)ET (t, s) ≤ cI.
(39)

Furthermore, we know from (22) and (35) that

R̂(t, s) ≥ Ē1(t, s)S(t, s)Ē
T
1 (t, s) ≥ e1

(

φ
1
+ φ

2

)

I.

Then, recalling the explicit formulation of the gain matrix
K(t, s), we have following inequality

KT (t, s)K(t, s)

= R̂−1(t, s)Ē1(t, s)S
T (t, s)S(t, s)ĒT

1 (t, s)R̂−1(t, s)

≤ ē1λ
2
max{S(t, s)}R̂

−1(t, s)R̂−1(t, s)

≤ ē1e
−2

1

(

φ
1
+ φ

2

)

−2

λ2max{S(t, s)}I. (40)

Moreover, considering the definitions of̄Qℓ(t, s) andR̄ℓ(t, s)
in Theorem 1, we have

Q̄ℓ(t, s) + R̄ℓ(t, s)

= Q̆ℓ(t, s) + (1 + α−1)γ̂(t, s)Êℓ(t, s)X̄(t, s)ÊT
ℓ (t, s)

+ Āℓ(t, s)K(t, s)
[

αγ̂(t, s)Ê(t, s)X̄(t, s)ÊT (t, s)

+ βE2(t, s)Rv̄(t, s)E
T
2 (t, s)

]

KT (t, s)ĀT
ℓ (t, s)

≤ φ̄ℓI + (1 + α−1)λ̄c̄ℓγ̂(t, s)I +
(

αλ̄cγ̂(t, s) + βr̄v̄ ē2
)

× āℓē1e
−2

1

(

φ
1
+ φ

2

)

−2

λ2max{S(t, s)}I (41)

for t, s ≥ 1, where Assumption 2 and inequalities (31), (33),
and (38)-(40) have been utilized in the above derivation. In
addition, in the case oft = 0 or s = 0, the gain matrix can
be set asK(t, s) = 0, which results in

Q̄ℓ(t, s) + R̄ℓ(t, s)

= Q̆ℓ(t, s) + (1 + α−1)γ̂(t, s)Êℓ(t, s)X̄(t, s)ÊT
ℓ (t, s)

≤ φ̄ℓI + (1 + α−1)λ̄c̄ℓγ̂(t, s)I (42)

which means the validity of̄Qℓ(t, s)+R̄ℓ(t, s) ≤ βℓ(t, s)I for
t = 0 or s = 0. Thus, it is concluded from (41) and (42) that,
if S(t, s) ≤ ξ(t, s)I, then

Q̄ℓ(t, s) + R̄ℓ(t, s) ≤ βℓ(t, s)I (43)

holds for all t, s ∈ [0 N ].
SinceΞ(t, s) ≤ S(t, s) is valid from (20), the inequality

(36) can be confirmed if the assertionS(t, s) ≤ ξ(t, s)I holds.
In the following, this assertion is to be proven by the inductive
method. For the initial step, setting(t, s) = (1, 1), we have
from (16), (42), Assumption 2, and the initial constraints on
Ξ(t, s) that

S(1, 1) ≤ (1 + µ)Ā1(1, 0)Ξ(1, 0)Ā
T
1 (1, 0) + β1(1, 0)I

+ (1 + µ−1)Ā2(0, 1)Ξ(0, 1)Ā
T
2 (0, 1) + β2(0, 1)I

≤ (1 + µ)ā1ξ(1, 0)I + (1 + µ−1)ā2ξ(0, 1)I

+ (β1(1, 0) + β2(0, 1)) I

= ξ(1, 1)I.

Assume that inequalityS(t, s) ≤ ξ(t, s)I is true when
(t, s) ∈ {(k, l)|k, l ∈ [1 N ]; k + l = θ} for a given integer
θ. This assumption immediately guarantees the correctness of
(36) and (43) for(t, s) ∈ {(k, l)|k, l ∈ [1 N ]; k + l = θ}.
Then, when(t, s) ∈ {(k, l)|k, l ∈ [1 N ]; k + l = θ + 1},
the following result is obtained from the following algebraic
manipulations:

S(t, s)

≤ (1 + µ)ā1ξ(t, s− 1)I + (1 + µ−1)ā2ξ(t− 1, s)I

+ (β1(t, s− 1) + β2(t− 1, s)) I

= µ1

[

∑t

k=1
µ1ρ(t− k, s− 2)ξ(k, 0)

+
∑s−1

l=1
µ2ρ(t− 1, s− l − 1)ξ(0, l)

+
∑t−1

k=0

∑s−2

l=0
ρ(t− k − 1, s− l − 2)

× (β1(k + 1, l) + β2(k, l+ 1))
]

I

+ µ2

[

∑t−1

k=1
µ1ρ(t− k − 1, s− 1)ξ(k, 0)

+
∑s

l=1
µ2ρ(t− 2, s− l)ξ(0, l)
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+
∑t−2

k=0

∑s−1

l=0
ρ(t− k − 2, s− l− 1)

× (β1(k + 1, l) + β2(k, l + 1))
]

I

+ (β1(t, s− 1) + β2(t− 1, s))I

= µ1

[

∑t−1

k=1

(

µ1ρ(t− k, s− 2)

+ µ2ρ(t− k − 1, s− 1)
)

ξ(k, 0) + µ1ρ(0, s− 2)ξ(t, 0)
]

I

+ µ2

[

∑s−1

l=1

(

µ2ρ(t− 2, s− l)

+ µ1ρ(t− 1, s− l− 1)
)

ξ(0, l) + µ2ρ(t− 2, 0)ξ(0, s)
]

I

+
[

µ1

∑t−1

k=0

∑s−2

l=0
ρ(t− k − 1, s− l − 2)

+ µ2

∑t−2

k=0

∑s−1

l=0
ρ(t− k − 2, s− l − 1)

]

× (β1(k + 1, l) + β2(k, l + 1)) I

+ (β1(t, s− 1) + β2(t− 1, s))I

= µ1

[

∑t−1

k=1
ρ(t− k, s− 1)ξ(k, 0) + ρ(0, s− 1)ξ(t, 0)

]

I

+ µ2

[

∑s−1

l=1
ρ(t− 1, s− l)ξ(0, l) + ρ(t− 1, 0)ξ(0, s)

]

I

+
∑t−2

k=0

∑s−2

l=0
ρ(t− k − 1, s− l− 1)

× (β1(k + 1, l) + β2(k, l + 1)) I

+
∑t−2

k=0
ρ(t− k − 1, 0) (β1(k + 1, s− 1) + β2(k, s)) I

+
∑s−2

l=0
ρ(0, s− l − 1) (β1(t, l) + β2(t− 1, l + 1)) I

+ (β1(t, s− 1) + β2(t− 1, s))I

=
∑t

k=1
µ1ρ(t− k, s− 1)ξ(k, 0)I

+
∑s

l=1
µ2ρ(t− 1, s− l)ξ(0, l)I

+
∑t−1

k=0

∑s−1

l=0
ρ(t− k − 1, s− l− 1)

× (β1(k + 1, l) + β2(k, l + 1)) I = ξ(t, s)I.

Therefore, one hasS(t, s) ≤ ξ(t, s)I for all t, s ∈ [1 N ] and
thus the validity of (36) is ensured, and this ends the proof.

Remark 9:The evaluation of the filtering performance has
been presented in this subsection. To be exact, Theorem 2
looks into the monotonicity of the optimal bound concerning
the quantization accuracy, which is in conformity with the
engineering practice. Theorems 3-4 show the boundedness
of the matrixΞ(t, s) at each iteration under Assumption 2.
The obtained bounds rely on all the factors including the
initial constraints, the noise information, the amplitudes of the
system parameters, the statistics of the sensor failure, and the
quantization level.

Remark 10:Till now, the recursive filtering problem has
been systematically studied for 2-D systems with dynamic
quantization and sensor failure. An augmented state has been
constructed, which embraces and jointly estimates the states
of the quantizer and the original system.In contrast to the
existing literature, this article exhibits the following distinctive
features: 1) a novel dynamic quantization with impressive
flexibility is developed for 2-D systems; 2) a new filtering
scheme is proposed to withstand the quantization error and

the sensor failure with guaranteed filtering performance; and
3) the filtering performance is evaluated with respect to the
boundedness and monotonicity issues of the minimum bound.

IV. N UMERICAL EXAMPLE

In this section, validity of the proposed filtering scheme is
examined via a simulation example.

Consider the 2-D system (1) defined over a finite horizon
t, s ∈ [0 60] with the following parameters:

A1(t, s) =

[

0.75 0.1 cos(t)
0.1 0.3 + 0.1 sin(s)

]

A2(t, s) =

[

0.3 0
0 0.4− 0.1 sin(s)

]

B1(t, s) =

[

0.2−0.1 cos(2t)
0.15e−s

]

, B2(t, s) =

[

0.1
0.1e−2t

]

C(t, s) =
[

−1 1 + 0.3 sin(5(t+ s))
]

D1(t, s) = 0.4−0.15 sin(t), D2(t, s) = 0.25 + 0.1 cos(2s)

E1(t, s) = 0.5, E2(t, s) = −0.5, F2(t, s) = 0.1

F1(t, s) = 0.2 sin(t) cos(s), D(t, s) = E(t, s) = 1.

The noisesw(t, s) and v(t, s) are Gaussian white sequences
with respective variancesQ(t, s) = 0.16 andR(t, s) = 0.25.
The random variableγ(t, s) is chosen to satisfy the Bernoulli
distribution with γ̄(t, s) = 0.9 and γ̂(t, s) = 0.09. The quan-
tization level is given asη = 0.1, and the scaling parameters
are taken asς = µ = 0.5 andα = β = 1. In this simulation,
we assume that the initial states of system (1) are random
vectors whose components obey the uniform distribution over
the interval[−0.3, 0.3], and thus the expectations and variances
of the initial states are calculated asx1(t) = x2(s) = [0 0]T

andPu(t, 0) = Pu(0, s) = 0.03I.
The estimate error is of interest. Forℓ = 1, 2, the ℓ-th

component ofeu(t, s) is denoted aseℓ(t, s). Further define

Ξ̄η(t, s) , tr
{

[Inx 0nψ ]Ξ(t, s)[Inx 0nψ ]
T
}

under a given quantization levelη. As such,Ξ̄η(t, s) indicates
the trace of the minimum upper bound on the error variance
[Inx 0nψ ]Pu(t, s)[Inx 0nψ ]

T , which is regarded as an index
of the filtering performance.

According to the theoretical results, the filtering algorithm
can be recursively carried out to solve the addressed prob-
lem, and the corresponding simulation results are presented
in Figs. 1–3. Specifically, Figs. 1–2 plot the filtering error
trajectories ofe1(t, s) and e2(t, s), and Fig. 3 depicts the
evolution of Ξ̄η(t, s). It is concluded from Figs. 1–3 that the
estimation states draw close to their real ones, namely, the
proposed filter performs quite well.

In the sequel, we consider different cases to quantitatively
demonstrate effects of the quantization accuracy, the RSF,and
the process noise.

Case 1: In this case, the influence of the quantization
accuracy is presented. Let us reset the quantization level as
η1 = 0.5 and η2 = 1, while remaining all the other parame-
ters. The corresponding performance indexes are denoted by
Ξ̄η1

(t, s) and Ξ̄η2
(t, s), respectively. By applying Theorem 1,

the relating local minimum upper bounds and the filter gains
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Fig. 1. Trajectory of the filtering errore1(t, s).

Fig. 2. Trajectory of the filtering errore2(t, s).
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Fig. 3. Trajectory ofΞ̄η(t, s) with η = 0.1 and γ̄(t, s) = 0.9.

can also be obtained. The simulation results are shown in
Figs. 4–5, where differences of the performance indexes are
displayed between different quantization levels. It is easy to
see that the increase of the quantization level amplifies the
minimum upper bound, which is in accord with the theoretical
result.
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Fig. 4. Trajectory ofΞ̄η1
(t, s)− Ξ̄η(t, s).

Fig. 5. Trajectory ofΞ̄η2
(t, s)− Ξ̄η1

(t, s).

Case 2: This case discusses the effect of the RSF on the
filtering performance. The value of the RSF coefficientγ̄(t, s)
is selected as0.9 and 0.5 in two different scenarios. The
simulation results are given in Figs. 3 and 6, which plot the
trajectories of the performance index̄Ξη(t, s) under different
γ̄(t, s). Obviously, it is witnessed from Figs. 3 and 6 that the
increase in the occurrence probability of the sensor failure
degrades the filtering performance.

Case 3: The impact of the noise intensity is examined in
this case. The noise variance is reset asQ(t, s) = 0.36, and
the corresponding simulation result is depicted in Fig. 7. A
comparison of Figs. 3 and 7 implies that a larger noise variance
leads to a worse filtering performance.
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Fig. 6. Trajectory ofΞ̄η(t, s) with γ̄(t, s) = 0.5.
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Fig. 7. Trajectory ofΞ̄η(t, s) with Q(t, s) = 0.36.

V. CONCLUSIONS

In this article, a recursive filtering strategy has been devel-
oped for the 2-D system with inaccurate measurements. The
measured outputs are subject to the sensor failure modeled by
independent and identically distributed random variableswith
known statistics. The received measurements also undergo
quantization effects by exploiting a novel dynamic quantizer.
In virtue of the induction and matrix analysis techniques,
sufficient criteria have been established to acquire the fea-
sible upper bounds on the error variances and determine
the desired recursive filter that ensures the minimal upper
bounds. Afterwards, impacts of the quantization accuracy and
the sensor failure coefficient on the filtering performance
have been expounded. The boundedness of the minimal upper
bound has been further illustrated under some mild conditions.
Finally, numerical results have been presented to exemplify
the validity of the proposed filtering scheme.Our future
research topics would include some potential extensions of
the proposed methods to cope with 1) the filtering issue for

systems with other communication constraints such as coded
measurements or cyber-attacks, and 2) the state estimationfor
more complicated systems including 2-D systems over sensor
networks.
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