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Recursive Filtering for Stochastic Parameter
Systems with Measurement Quantizations and

Packet Disorders
Dan Liu, Zidong Wang, Yurong Liu and Fuad E. Alsaadi

Abstract—In this paper, the recursive filtering problem is put
forward for stochastic parameter systems subject to quantization
effects and packet disorders. Before entering communication
networks, measurement outputs are quantized by logarithmic
quantizers. The packet disorders result from transmission delays
which are provoked by communication constraints and occur
randomly in the sensor-to-filter channel. In case of measurement
quantizations and packet disorders, the objective of this paper
is to devise a novel recursive filter approach that is capable of
1) guaranteeing desired upper bounds on the resultant filtering
error covariances; and 2) minimizing such upper bounds by
acquiring appropriate filter gains. Furthermore, sufficient con-
ditions are established to ensure the mean-square boundedness
of filtering errors by means of stochastic analysis techniques. At
last, simulations are given to validate the applicability of our
designed approach.

Index Terms—Recursive filtering, stochastic parameter system-
s, measurement quantizations, packet disorders.

I. INTRODUCTION

For decades, the filtering issue has been well recognized
as a fundamental yet attractive research topic in various
practical realms such as control engineering, target tracking
and signal processing. The classical Kalman filtering (KF)
algorithm, which was proposed in 1960s, has been deemed
to be one of the most powerful tools for addressing state
estimation problems for linear systems with exactly known
parameters. Unfortunately, in almost all practical applications,
the systems are nonlinear by nature and the parameters might
be uncertain, and this hinders the broad application of the
KF. Therefore, a recurring research interest has been aroused
towards the development of alternative estimation schemes
(catering for nonlinearities and/or uncertainties) with examples
including the extended Kalman filtering [8], [38], H∞ filtering
[40], [42], set-membership filtering [23], [36] and unscented
Kalman filtering algorithms [15], [16].
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In recent years, the stochastic parameter system has shown
its wide existence in a variety of application fields such as
radar control, mobile robot localization, economic systems
and navigation systems [1], [4], [5], [28], [39], and a great
many results have been available in the literature. For example,
in [12], a nonlinear filtering task has been accomplished
in the presence of correlated noises, fading measurements
and random parameter matrices. In [33], the distributed H∞
filtering problem has been considered for stochastic parameter
systems with successive packet dropouts.

Within a networked environment, output signals are nor-
mally quantized before transmitting through communication
networks owing mainly to the limited data length and com-
munication capacity. From a mathematical point of view,
quantization can be viewed as a mapping that maps the
signals with continuous amplitudes to those with a finite
number of discrete amplitudes. Signal quantization would
inevitably generate additional errors that are very likely to
bring about performance deteriorations, and thus it is of crucial
importance to incorporate the side-effect of the quantization
procedure in system analysis/synthesis. As such, great research
enthusiasm has been consistently generated towards this topic
and numerous results have been reported on addressing the
quantization problems [11], [21], [22], [24]–[27]. In particular,
a popular yet effective way has been proposed in [10] to
resolve quantization issues by converting quantization errors
into sector-bounded uncertainties, and this approach has since
gained a substantial deal of research interest with potential
applications in many practical situations [6], [9], [13], [37].

In addition to the signal quantizations, another challenging
issue that is unavoidably confronted within the network envi-
ronment is the packet disorder. The so-called packet disorders
indicate that measurements sent earlier (later) could reach their
destination later (earlier) due to random transmission delays
caused by limited network bandwidth. In other words, the
“first sent first arrive” principle might not be followed when
packets are going through the sensor-to-filter channel. In the
presence of packet disorders, the latest arrival packet might
not have the newest target information, and this gives rise to
some new challenges in computation or even seriously worsen
the filtering performance.

To date, the packet disorder problem has stirred a rapidly
increasing research interest, and some initial yet inspiring
results have been published in [14], [19], [20], [35], [41]. For
example, the negative effects caused by the phenomenon of
packet disorders have been analyzed in [41] for networked
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control systems and a compensation strategy has been present-
ed to alleviate the negative effects. In [19], a novel mechanism
has been put forward for networked filtering problems subject
to both packet disorders and transmission delays where the
newest signal has been selected as the actual input arriving
at the receiver. In addition, for filtering problem of networked
systems with measurement quantizations and packet disorders,
[2], [3] have presented meaningful research results, in which
multipath signal quantizations and data packet dropouts are
considered for the first time, respectively.

The occurrence of transmission delays is ubiquitous in the
data communication owing primarily to the finite network
resource, and much work has been done [7], [17], [18].
According to the way they occur, transmission delays can be
categorized as random and deterministic ones. Random trans-
mission delay (RTD), which is the immediate cause for packet
disorder, is generally assumed to be regulated by Markov
chains of a priori known transition probability matrices (TPM-
s) [19], [35]. Different from such a Markov description, the
RTDs considered in our study are characterized by random but
bounded variables whose probability distributions are known
via statistical tests. This gives rise to extra difficulties in both
the mathematical derivation and the filter implementation with
regard to the RTD-induced packet disorders. By now, the
recursive KF problem with RTD-induced packet disorders has
not been comprehensively investigated, let alone the setting
where the stochastic parameter systems are involved.

In this paper, we aim at developing a recursive filtering
approach for stochastic parameter systems with measurement
quantizations and packet disorders. The addressed problem
seems to be nontrivial due primarily to the following substan-
tial difficulties: 1) how to characterize the random perturba-
tions of system parameters in the recursive filtering problem;
2) how to describe the actual filter inputs in the presence of
measurement quantizations and packet disorders; 3) how to
design an appropriate recursive filter that alleviates the effects
of packet disorders; and 4) how to ensure the boundedness of
the filtering errors. To tackle the above difficulties, the primary
contributions we are making are highlighted as follows: 1)
a general stochastic parameter model is proposed to tackle
the concurrence of packet disorders and measurement quan-
tizations where bounded random variables are introduced to
characterize RTDs with their probability distributions known
a priori; 2) a reasonable mathematical description is presented
to account for the measurement outputs that reflect the impacts
of the quantization and RTDs; 3) a novel recursive filter, which
is capable of reducing the adverse effects of packet disorders,
is proposed to ensure certain locally minimized upper bounds
on filtering error covariances; and 4) sufficient conditions are
established to ensure the mean-square boundedness of filtering
errors.

Notation: For a matrix X , XT , X−1 and tr{X} denote,
respectively, the transpose, inverse and trace of X . E{·}
denotes the expectation operator. The notation ‖ · ‖ stands for
the Euclidean (spectral) norm of real vectors (matrices). brc
is the biggest integer no bigger than real number r.

II. PROBLEM FORMULATION

Consider the following stochastic parameter model:

xk+1 = Akxk +Bkwk, (1)
~yk = Ckxk +Dkvk, (2)

where xk ∈ Rm is the system state and ~yk ∈ Rn is the
measurement output. wk ∈ Rw and vk ∈ Rv are zero-mean
white noises distributed within bounded domains with covari-
ances Qk > 0 and Rk > 0, respectively. Ak ∈ Rm×m and
Bk ∈ Rm×w are the random parameter matrices, Ck ∈ Rn×m
and Dk ∈ Rn×v are the deterministic matrices. The initial
value x0 and matrices Ak and Bk have the following statistical
properties:

E{x0} = x̄0, E{(x0 − x̄0)(x0 − x̄0)T } = P0, (3)

E{Ak} = Āk, Cov{Akij , Akst} = TAk
ijA

k
st
, (4)

E{Bk} = B̄k, Cov{Bkij , Bkst} = TBk
ijB

k
st
, (5)

where Akij and Bkij are the (i, j)-th entries of Ak and Bk,
respectively. TAk

ijA
k
st

and TBk
ijB

k
st

are known scalars, and P0 is
a known matrix. Denoting Ãk = Ak−Āk and B̃k = Bk−B̄k,
we have E{Ãk} = 0 and E{B̃k} = 0. Throughout this
paper, x0, wk, vk, Ak and Bk are supposed to be mutually
independent.

Remark 1: In a networked environment, system parameters
are likely to suffer from random perturbations because of the
sudden environment changes and abrupt fluctuations of net-
work loads. The statistical properties of the random parameter
perturbations can be determined via statistical experiments,
and the underlying system is modeled as the form of (1)-(2)
in this paper, where the existence of the stochastic parameters
would induce extra difficulties in the subsequent mathematical
derivation.
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Fig. 1: Diagrammatic sketch of filtering problem with quanti-
zation effects.

It can be seen from Fig. 1 that the measurement output ~yk is
quantized before entering the filter through a communication
network and the signal after quantization is y̌k. The well-
known logarithmic quantizer is used and the mapping of the
involved quantization process is

q(~yk) =
[
q1(~y

(1)
k ) q2(~y

(2)
k ) · · · qn(~y

(n)
k )

]T
.

For each qj(·), the set of quantization levels is

Υj =
{
±υ(j)l , υ

(j)
l = (ρ(j))lυ

(j)
0 , l = 0,±1,±2, . . .

}
∪ {0},

0 < ρ(j) < 1, υ
(j)
0 > 0,

where ρ(j) (j = 1, 2, . . . , n) is the quantization density and
υ
(j)
0 is a scaling constant.
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The mapping from the entire segment to different quantiza-
tion levels is accomplished through

qj(~y
(j)
k ) =


υ
(j)
l ,

1

1 + θj
υ
(j)
l < ~y

(j)
k ≤

1

1− θj
υ
(j)
l ,

0, ~y
(j)
k = 0,

− qj(−~y(j)k ), ~y
(j)
k < 0,

where θj = (1− ρ(j))/(1 + ρ(j)). Hence,

qj(~y
(j)
k ) = (1 + ∆

(j)
k )~y

(j)
k

with |∆(j)
k | ≤ θj .

Denoting ∆k , diag{∆(1)
k ,∆

(2)
k , . . . ,∆

(n)
k }, the quantized

measurement signal is

y̌k = (I + ∆k)Ckxk + (I + ∆k)Dkvk. (6)

By letting Θ , diag{θ1, θ2, . . . , θn} and Uk = ∆kΘ−1, it is
obvious that the unknown real-valued time-varying matrix Uk
satisfies UkUTk = UTk Uk ≤ I .

It is clear from Fig. 1 that, at time k, the measurement before
and after transmission through the communication network are
y̌k and yk, respectively. Such a phenomenon is due mainly to
the occurrence of RTDs in the transmission process. In this
paper, the transmission delay is denoted by a random variable
τk which satisfies

Prob{τk = i} = pi, i = 0, 1, · · · , q,

where q and pi are known positive integers satisfying 0 ≤ pi ≤
1 and

∑q
i=0 pi = 1. Hence, the actual measurement arriving

at the filter is{
yk = y̌k−τk ,

ys = φs, s = −q,−q + 1, · · · , 0.
(7)

Remark 2: Generally, data packets are transmitted with
time stamps in the sensor-to-filter channel, and this is con-
venient for the filter to recognize the arrived packets. In
practical applications, however, data packets may not have
time-stamps when the bandwidth is limited or the network
is unacknowledged. For example, the sign of innovations in
[30] is transmitted without time stamps. In view of this,
the data packets in this paper are assumed to be non-time-
stamped during the data transmission. In other words, the filter
would have no acknowledgment of the sent time-instant for
the arrived packets and, subsequently the delays of packets
received by the filter would be unknown. Under this situation,
instead of using the time stamps to obtain the delays, we
describe the transmission delays as random variables whose
probability distributions are known. In addition, we assume
that only one packet reaches the filter at each time because of
limited network resources.

In this paper, the following filter is put forward:

x̂k+1|k = Ākx̂k|k, (8)
x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − Ck+1−dx̂k+1−d|k−d),

(9)

where x̂k|k is the estimate of state xk with x̂0|0 = x̄0, x̂k+1|k
is the prediction of xk, Kk+1 is the filter gain, and the integer
d satisfies

d =

 bτ̄c, if τ̄ − bτ̄c < 1

2
,

bτ̄c+ 1, otherwise,
(10)

where τ̄ , E{τk+1} =
q∑
i=0

ipi.

Our purpose in this paper is twofold: 1) design filter (8)-
(9) such that certain upper bounds are guaranteed for filtering
error covariances, i.e., there exists Ψk|k > 0 satisfying

E{(xk+1 − x̂k+1|k+1)(xk+1 − x̂k+1|k+1)T } ≤ Ψk+1|k+1;

and 2) minimize Ψk|k through appropriately designing Kk.
Remark 3: Notice that the innovation in the proposed filter

structure differs from that in the traditional filter. Specifically
speaking, the innovation in (9) depends on the parameter d
(rather than the time delay τk) because τk is a random variable
that should not appear in the designed filter for practical
realizability, and thus the expectation value τ̄ is adopted in
filter (8)-(9). Obviously, in discrete-time systems, τ̄ might not
be an integer while the time subscript must be an integer.
Therefore, τ̄ is rounded to an integer d (see (10)) with the
help of the floor function. Roughly speaking, the structure of
filter (8)-(9) can mitigate the negative effects resulting from
packet disorders to some extent, and the robustness of filter
(8)-(9) can be improved accordingly.

III. MAIN RESULTS

In this section, the recursive filtering problem is considered
for stochastic parameter systems with measurement quanti-
zations and packet disorders. Upper bounds are derived for
error covariances and then minimized by selecting proper Kk.
First, we calculate upper bounds Ψk|k. Then, filter gains Kk

are obtained by minimizing the acquired Ψk|k. Finally, the
boundedness of filtering errors is discussed.

Lemma 1: [34] Let the scalar η > 0, symmetric matrix
M > 0, matrices A,B,C and D be given such that CCT ≤ I
and η−1I −DMDT > 0 hold. Then, we have

(A+BCD)M(A+BCD)T

≤A(M−1 − ηDTD)−1AT + η−1BBT .

Lemma 2: The state variance Xk+1 , E{xk+1x
T
k+1} can

be recursively calculated as

Xk+1

= ĀkXkĀ
T
k + ΞÃkÃk

(Xk) + B̄kQkB̄
T
k + ΞB̃kB̃k

(Qk),

where(
ΞÃkÃk

(Xk)
)
st

, E{ÃkXkÃ
T
k }st

=

m∑
j=1

m∑
i=1

TAk
tjA

k
si
Xk
ij , (s, t = 1, 2, . . . ,m),(

ΞB̃kB̃k
(Qk)

)
lh

, E{B̃kQkB̃Tk }lh

=

w∑
j=1

w∑
i=1

TBk
hjB

k
li
Qkij , (l, h = 1, 2, . . . ,m).



REVISION 4

Moreover, the initial value is X0 = x̄0x̄
T
0 + P0.

Proof: Rewrite (1) as

xk+1 = (Āk + Ãk)xk + (B̄k + B̃k)wk.

In light of E{Ãk} = 0 and E{B̃k} = 0, one has

Xk+1 = ĀkE{xkxTk }ĀTk + ĀkE{xkxTk ÃTk }
+ E{ÃkxkxTk }ĀTk + E{ÃkxkxTk ÃTk }
+ B̄kE{wkwTk }B̄Tk + B̄kE{wkwTk B̃Tk }
+ E{B̃kwkwTk }B̄Tk + E{B̃kwkwTk B̃Tk }

= ĀkXkĀ
T
k + B̄kQkB̄

T
k + E{ÃkxkxTk ÃTk }

+ E{B̃kwkwTk B̃Tk }.

According to the property of conditional expectation and
(4)-(5), we obtain

E{ÃkxkxTk ÃTk } = E
{
E{ÃkxkxTk ÃTk |Ãk}

}
= E

{
ÃkE{xkxTk }ÃTk

}
= E{ÃkXkÃ

T
k }

, ΞÃkÃk
(Xk)

and

E{B̃kwkwTk B̃Tk } = E
{
E{B̃kwkwTk B̃Tk |B̃k}

}
= E

{
B̃kE{wkwTk }B̃Tk

}
= E{B̃kQkB̃Tk }
, ΞB̃kB̃k

(Qk).

The proof is now complete.
Denoting

ek+1|k , xk+1 − x̂k+1|k

and subtracting (8) from (1), one has

ek+1|k = Ākek|k + Ãkxk + (B̄k + B̃k)wk. (11)

Similarly, defining

ek+1|k+1 , xk+1 − x̂k+1|k+1

and subtracting (9) from (1), one has

ek+1|k+1 = ek+1|k −Kk+1(yk+1 − Ck+1−dx̂k+1−d|k−d).
(12)

Adding

Kk+1Ck+1ek+1|k −Kk+1Ck+1ek+1|k = 0

to both sides of (12) yields

ek+1|k+1 = (I −Kk+1Ck+1)ek+1|k +Kk+1Ck+1ek+1|k

−Kk+1(I + ∆k+1−τk+1
)Ck+1−τk+1

xk+1−τk+1

−Kk+1(I + ∆k+1−τk+1
)Dk+1−τk+1

vk+1−τk+1

+Kk+1Ck+1−dx̂k+1−d|k−d. (13)

Denote
Pk+1|k , E{ek+1|ke

T
k+1|k},

Pk|k , E{ek|keTk|k}.

Lemma 3: The one-step prediction error covariance Pk+1|k
obeys the following recursion:

P k+1|k

= ĀkPk|kĀ
T
k + ΞÃkÃk

(Xk) + B̄kQkB̄
T
k + ΞB̃kB̃k

(Qk).

Proof: Substituting (11) into Pk+1|k yields

Pk+1|k = E
{

[Ākek|k + Ãkxk + (B̄k + B̃k)wk]

× [Ākek|k + Ãkxk + (B̄k + B̃k)wk]T
}

= ĀkPk|kĀ
T
k + ΞÃkÃk

(Xk) + B̄kQkB̄
T
k

+ ΞB̃kB̃k
(Qk),

and the proof is thus complete.
Lemma 4: The filtering error covariance Pk+1|k+1 is given

as follows:

Pk+1|k+1 = (I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)T

+Kk+1Ck+1Pk+1|kC
T
k+1K

T
k+1 +Ak+1

+ Bk+1 + Ck+1 +D1,k+1 +DT1,k+1

−D2,k+1 −DT2,k+1 −D3,k+1 −DT3,k+1

+D4,k+1 +DT4,k+1 −D5,k+1 −DT5,k+1

−D6,k+1 −DT6,k+1 +D7,k+1 +DT7,k+1

−D8,k+1 −DT8,k+1 −D9,k+1 −DT9,k+1,

where

Ak+1 , Kk+1E
{

(I + ∆k+1−τk+1
)Ck+1−τk+1

xk+1−τk+1

× xTk+1−τk+1
CTk+1−τk+1

(I + ∆k+1−τk+1
)T
}
KT
k+1,

Bk+1 , Kk+1E
{

(I + ∆k+1−τk+1
)Dk+1−τk+1

vk+1−τk+1

× vTk+1−τk+1
DT
k+1−τk+1

(I + ∆k+1−τk+1
)T
}
KT
k+1,

Ck+1 , Kk+1Ck+1−dx̂k+1−d|k−dx̂
T
k+1−d|k−dC

T
k+1−dK

T
k+1,

D1,k+1 , (I −Kk+1Ck+1)E{ek+1|ke
T
k+1|k}C

T
k+1K

T
k+1,

D2,k+1 , (I −Kk+1Ck+1)E
{
ek+1|kx

T
k+1−τk+1

× CTk+1−τk+1
(I + ∆k+1−τk+1

)T
}
KT
k+1,

D3,k+1 , (I −Kk+1Ck+1)E
{
ek+1|kv

T
k+1−τk+1

×DT
k+1−τk+1

(I + ∆k+1−τk+1
)T
}
KT
k+1,

D4,k+1 , (I −Kk+1Ck+1)E{ek+1|kx̂
T
k+1−d|k−d}

× CTk+1−dK
T
k+1,

D5,k+1 , Kk+1Ck+1E
{
ek+1|kx

T
k+1−τk+1

CTk+1−τk+1

× (I + ∆k+1−τk+1
)T
}
KT
k+1,

D6,k+1 , Kk+1Ck+1E
{
ek+1|kv

T
k+1−τk+1

DT
k+1−τk+1

× (I + ∆k+1−τk+1
)T
}
KT
k+1,

D7,k+1 , Kk+1Ck+1E{ek+1|kx̂
T
k+1−d|k−d}C

T
k+1−dK

T
k+1,

D8,k+1 , Kk+1E
{

(I + ∆k+1−τk+1
)Ck+1−τk+1

xk+1−τk+1

× x̂Tk+1−d|k−d
}
CTk+1−dK

T
k+1,

D9,k+1 , Kk+1E
{

(I + ∆k+1−τk+1
)Dk+1−τk+1

vk+1−τk+1

× x̂Tk+1−d|k−d
}
CTk+1−dK

T
k+1.

Proof: According to (12), the expression of filtering error
covariance Pk+1|k+1 can be obtained. Hence, the proof can be
derived readily.
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Theorem 1: Let positive scalars γi,k+1 (i = 0, 1, . . . , q) and
εr (r = 1, 2, . . . , 9) be given. With initial condition Ψ0|0 =
P0|0 > 0, if the following equalities

Ψk+1|k

= ĀkΨk|kĀ
T
k + ΞÃkÃk

(Xk) + B̄kQkB̄
T
k + ΞB̃kB̃k

(Qk),
(14)

Ψk+1|k+1

= ε1(I −Kk+1Ck+1)Ψk+1|k(I −Kk+1Ck+1)T

+Kk+1

[
ε2Ck+1Ψk+1|kC

T
k+1 +

q∑
i=0

pi
(
ε3tr{Ck+1−i

×Xk+1−iC
T
k+1−i}+ ε4tr{Dk+1−iRk+1−iD

T
k+1−i}

)
×
(
(I − γi,k+1ΘΘ)−1 + γ−1i,k+1I

)
+ ε5Ck+1−d

× x̂k+1−d|k−dx̂
T
k+1−d|k−dC

T
k+1−d

]
KT
k+1, (15)

where

ε1 , 1 + ε1 + ε2 + ε3 + ε4,

ε2 , 1 + ε−11 + ε5 + ε6 + ε7,

ε3 , 1 + ε−12 + ε−15 + ε8,

ε4 , 1 + ε−13 + ε−16 + ε9,

ε5 , 1 + ε−14 + ε−17 + ε−18 + ε−19 ,

have solutions Ψk+1|k > 0 and Ψk+1|k+1 > 0 such that
constraints

γ−1i,k+1I −ΘΘ > 0 (i = 0, 1, . . . , q)

are satisfied, then Ψk+1|k+1 is an upper bound of Pk+1|k+1,
i.e., Pk+1|k+1 ≤ Ψk+1|k+1.

Proof: The initial condition implies P0|0 ≤ Ψ0|0. As-
suming Pk|k ≤ Ψk|k, then Pk+1|k+1 ≤ Ψk+1|k+1 needs to be
proved.

It follows from Lemma 3 and Pk|k ≤ Ψk|k that

P k+1|k

≤ ĀkΨk|kĀ
T
k + ΞÃkÃk

(Xk) + B̄kQkB̄
T
k + ΞB̃kB̃k

(Qk)

, Ψk+1|k. (16)

Next, we are set to show that Pk+1|k+1 ≤ Ψk+1|k+1. By
utilizing the elementary inequality abT+baT ≤ εaaT+ε−1bbT

(where ε is an arbitrary positive scalar, and a and b are
arbitrary vectors), one has

D1,k+1 +DT1,k+1

≤ε1(I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)T

+ ε−11 Kk+1Ck+1Pk+1|kC
T
k+1K

T
k+1,

−D2,k+1 −DT2,k+1

≤ε2(I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)T

+ ε−12 Ak+1,

−D3,k+1 −DT3,k+1

≤ε3(I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)T

+ ε−13 Bk+1,

D4,k+1 +DT4,k+1

≤ε4(I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)T

+ ε−14 Ck+1,

−D5,k+1 −DT5,k+1

≤ε5Kk+1Ck+1Pk+1|kC
T
k+1K

T
k+1 + ε−15 Ak+1,

−D6,k+1 −DT6,k+1

≤ε6Kk+1Ck+1Pk+1|kC
T
k+1K

T
k+1 + ε−16 Bk+1,

D7,k+1 +DT7,k+1

≤ε7Kk+1Ck+1Pk+1|kC
T
k+1K

T
k+1 + ε−17 Ck+1,

−D8,k+1 −DT8,k+1 ≤ ε8Ak+1 + ε−18 Ck+1,

−D9,k+1 −DT9,k+1 ≤ ε9Bk+1 + ε−19 Ck+1.

Combining Lemma 1 and ∆k+1 = Uk+1Θ, we obtain that

Ak+1 = Kk+1

q∑
i=0

pi(I + ∆k+1−i)Ck+1−iXk+1−i

× CTk+1−i(I + ∆k+1−i)
TKT

k+1

≤ Kk+1

q∑
i=0

pitr{Ck+1−iXk+1−iC
T
k+1−i}

× (I + ∆k+1−i)(I + ∆k+1−i)
TKT

k+1

= Kk+1

q∑
i=0

pitr{Ck+1−iXk+1−iC
T
k+1−i}

× (I + Uk+1−iΘ)(I + Uk+1−iΘ)TKT
k+1

≤ Kk+1

q∑
i=0

pitr{Ck+1−iXk+1−iC
T
k+1−i}

×
(

(I − γi,k+1ΘΘ)−1 + γ−1i,k+1I
)
KT
k+1

and

Bk+1 = Kk+1

q∑
i=0

pi(I + ∆k+1−i)Dk+1−iRk+1−i

×DT
k+1−i(I + ∆k+1−i)

TKT
k+1

≤ Kk+1

q∑
i=0

pitr{Dk+1−iRk+1−iD
T
k+1−i}

× (I + ∆k+1−i)(I + ∆k+1−i)
TKT

k+1

≤ Kk+1

q∑
i=0

pitr{Dk+1−iRk+1−iD
T
k+1−i}

×
(

(I − γi,k+1ΘΘ)−1 + γ−1i,k+1I
)
KT
k+1.

Summarizing the above discussion, it is deduced that

Pk+1|k+1 ≤ ε1(I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)T

+Kk+1

[
ε2Ck+1Pk+1|kC

T
k+1

+

q∑
i=0

pi
(
ε3tr{Ck+1−iXk+1−iC

T
k+1−i}

+ ε4tr{Dk+1−iRk+1−iD
T
k+1−i}

)
×
(
(I − γi,k+1ΘΘ)−1 + γ−1i,k+1I

)
+ ε5Ck+1−dx̂k+1−d|k−dx̂

T
k+1−d|k−d

× CTk+1−d

]
KT
k+1. (17)
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Inequality (16) combined with (17) implies that Pk+1|k+1 ≤
Ψk+1|k+1.

Theorem 2: The filter gain is

Kk+1 = ε1Ψk+1|kC
T
k+1Π−1k+1, (18)

where

Πk+1 , (ε1 + ε2)Ck+1Ψk+1|kC
T
k+1

+

q∑
i=0

pi
(
ε3tr{Ck+1−iXk+1−iC

T
k+1−i}

+ ε4tr{Dk+1−iRk+1−iD
T
k+1−i}

)
×
(
(I − γi,k+1ΘΘ)−1 + γ−1i,k+1I

)
+ ε5Ck+1−dx̂k+1−d|k−dx̂

T
k+1−d|k−dC

T
k+1−d.

Furthermore, the minimal upper bound matrix Ψk+1|k+1 is

Ψk+1|k+1 = −ε21Ψk+1|kC
T
k+1Π−1k+1Ck+1Ψk+1|k + ε1Ψk+1|k.

(19)

Proof: The upper bound matrix shown in (15) is rewritten
as

Ψk+1|k+1 = Kk+1Πk+1K
T
k+1 − ε1Ψk+1|kC

T
k+1K

T
k+1

− ε1Kk+1Ck+1Ψk+1|k + ε1Ψk+1|k

= (Kk+1 − ε1Ψk+1|kC
T
k+1Π−1k+1)Πk+1

× (Kk+1 − ε1Ψk+1|kC
T
k+1Π−1k+1)T

− ε21Ψk+1|kC
T
k+1Π−1k+1Ck+1Ψk+1|k

+ ε1Ψk+1|k.

It is easily known that Ψk+1|k+1 are minimized through setting
Kk+1 = ε1Ψk+1|kC

T
k+1Π−1k+1.

Definition 1: [29] The stochastic process ξk is exponentially
mean-square bounded if there exist real numbers % > 0, ι > 0
and 0 < σ < 1 such that

E{‖ξk‖} ≤ %‖ξ0‖2σk + ι

holds for all k ≥ 0.
Theorem 3: If there exist positive real numbers a <

1, b, b, c, c, d, q, q, r, ϕ, ϕ, l1, l2, θ, χ1, χ2 such that

‖Āk‖ ≤ a, b ≤ ‖B̄k‖ ≤ b, c2I ≤ CkCTk ≤ c2I,
‖D̄k‖ ≤ d, qI ≤ Qk ≤ qI, Rk ≤ rI,
ϕI ≤ Ψk+1|k ≤ ϕI, Xk ≤ χ1I,

tr
{

ΞÃkÃk
(Xk)

}
≤ l1, tr

{
ΞB̃kB̃k

(Qk)
}
≤ l2,

‖Θ‖ ≤ θ, ‖x̂k+1|k‖ ≤ χ2

hold, then filtering errors in (13) are exponentially mean-
square bounded.

Proof: (13) is rewritten as

ek+1|k+1 = Ākek|k + fk+1 + hk+1, (20)

where

fk+1 , Ãkxk + (B̄k + B̃k)wk,

hk+1 , −Kk+1(I + ∆k+1−τk+1
)Ck+1−τk+1

xk+1−τk+1

−Kk+1(I + ∆k+1−τk+1
)Dk+1−τk+1

vk+1−τk+1

+Kk+1Ck+1−dx̂k+1−d|k−d.

One derives from (18) that

‖Kk+1‖ = ‖ε1Ψk+1|kC
T
k+1Π−1k+1‖

≤ ‖ε1Ψk+1|kC
T
k+1[ε1Ck+1Ψk+1|kC

T
k+1]−1‖

≤ ϕ c

ϕc2
, k.

By utilizing properties of the matrix trace, we obtain

E{fTk+1fk+1} = E{xTk ÃTk Ãkxk}+ E{wTk B̃Tk B̃kwk}
+ E{wTk B̄Tk B̄kwk}

= tr
{

ΞÃkÃk
(Xk)

}
+ tr

{
ΞB̃kB̃k

(Qk)
}

+ tr
{
E{wkwTk }B̄Tk B̄k

}
≤ l1 + l2 + wqb

2
, f

and

E{hTk+1hk+1}
≤ (1 + ς1)E

{
xTk+1−τk+1

CTk+1−τk+1
(I + ∆k+1−τk+1

)T

×KT
k+1Kk+1(I + ∆k+1−τk+1

)Ck+1−τk+1
xk+1−τk+1

}
+ (1 + ς2)E

{
vTk+1−τk+1

DT
k+1−τk+1

(I + ∆k+1−τk+1
)T

×KT
k+1Kk+1(I + ∆k+1−τk+1

)Dk+1−τk+1
vk+1−τk+1

}
+ (1 + ς−11 + ς−12 )E

{
x̂Tk+1−d|k−dC

T
k+1−dK

T
k+1

×Kk+1Ck+1−dx̂k+1−d|k−d
}

= (1 + ς1)

q∑
i=0

pitr
{
Xk+1−iC

T
k+1−i(I + ∆k+1−i)

TKT
k+1

×Kk+1(I + ∆k+1−i)Ck+1−i
}

+ (1 + ς2)

q∑
i=0

pitr
{
Rk+1−iD

T
k+1−i(I + ∆k+1−i)

TKT
k+1

×Kk+1(I + ∆k+1−i)Dk+1−i
}

+ (1 + ς−11 + ς−12 )tr
{
x̂Tk+1−d|k−dC

T
k+1−dK

T
k+1

×Kk+1Ck+1−dx̂k+1−d|k−d
}

≤ (1 + ς1)mχ1c
2(1 + θ)2k

2
+ (1 + ς2)vrd

2

× (1 + θ)2k
2

+ (1 + ς−11 + ς−12 )χ2
2c

2k
2

, h,

where ς1 and ς2 are positive scalars.
Subsequently, consider the following iterative matrix equa-

tion in regard to Φk:

Φk+1 = ĀkΦkĀ
T
k + B̄kQkB̄

T
k + κI, (21)

where the scalar κ > 0 and

Φ0 = B̄0Q0B̄
T
0 + κI.

On the one hand, it can be inferred from (21) that

‖Φk+1‖ ≤ ‖Āk‖2‖Φk‖+ ‖B̄kQkB̄Tk ‖+ ‖κI‖

≤ a2‖Φk‖+ b
2
q + κ.

By further iteration, one has

‖Φk‖ ≤ a2k‖Φ0‖+ (b
2
q + κ)

k−1∑
i=0

a2i.
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On the basis of 0 < a < 1, we have

‖Φk‖ ≤ ‖Φ0‖+ (b
2
q + κ)

∞∑
i=0

a2i

= ‖Φ0‖+
b
2
q + κ

1− a2
. (22)

On the other hand, it follows from (21) that

Φk ≥ κI. (23)

Resorting to (22)-(23), there exists a scalar φ > 0 such that
κI ≤ Φk ≤ φI for all k ≥ 0.

Let Vk(ek|k) , eTk|kΦ−1k ek|k. For a positive scalar δ, we
know from (20) that

E{Vk+1(ek+1|k+1)|ek|k} − (1 + δ)Vk(ek|k)

= E
{

(Ākek|k + fk+1 + hk+1)TΦ−1k+1(Ākek|k

+ fk+1 + hk+1)
}
− (1 + δ)eTk|kΦ−1k ek|k

≤ (1 + δ)E
{
eTk|k(ĀTk Φ−1k+1Āk − Φ−1k )ek|k

}
+ (1 + δ−1)E{hTk+1Φ−1k+1hk+1}
+ E{fTk+1Φ−1k+1fk+1}. (24)

By employing the matrix inversion lemma, one has

ĀTk Φ−1k+1Āk − Φ−1k

= ĀTk (ĀkΦkĀ
T
k + B̄kQkB̄

T
k + κI)−1Āk − Φ−1k

= −
[
Φk + ΦkĀ

T
k (B̄kQkB̄

T
k + κI)−1ĀkΦk

]−1
= −

[
I + ĀTk (B̄kQkB̄

T
k + κI)−1ĀkΦk

]−1
Φ−1k

≤ −

(
1 +

a2φ

b2q

)−1
Φ−1k . (25)

Substituting (25) into (24) yields

E{Vk+1(ek+1|k+1)|ek|k} − (1 + δ)Vk(ek|k)

≤ −(1 + δ)

(
1 +

a2φ

b2q

)−1
Vk(ek|k) +

f

κ
+ (1 + δ−1)

h

κ
.

(26)

Inequality (26) implies

E{Vk+1(ek+1|k+1)|ek|k} ≤ αVk(ek|k) + µ, (27)

where

α , (1 + δ)

1−

(
1 +

a2φ

b2q

)−1 ,
µ ,

f

κ
+ (1 + δ−1)

h

κ
.

For some δ > 0, we know α ∈ (0, 1). Furthermore, we
derive that

E{‖ek+1|k+1‖2} ≤
φ

κ
E{‖e0|0‖2}αk+1 + µφ

k∑
i=0

αi

≤ φ

κ
E{‖e0|0‖2}αk+1 + µφ

∞∑
i=0

αi

=
φ

κ
E{‖e0|0‖2}αk+1 +

µφ

1− α
.

Noting Definition 1, our proof is now complete.
Remark 4: A recursive filtering problem is proposed in

this paper for stochastic parameter systems where a new
observation model is put forward to model output signals
suffering from quantization effects and RTDs. Based on an
integer-valued function, we develop a novel filter so as to
offset the side-effects of packet disorders. In Theorem 1, upper
bounds are derived for filtering error covariances by virtue of
(14)–(15) which are later minimized in Theorem 2 by properly
selecting filter gains. Moreover, the mean-square boundedness
of the resultant filtering errors is analyzed in Theorem 3.

Remark 5: The Kalman filter (and its variants) for lin-
ear/nonlinear systems has attracted an ever-increasing research
attention due mainly to the demand for system monitoring and
the prevalence of system/measurement noises, and a number
of excellent filtering algorithms have been reported in the
literature, see e.g. [8], [15], [16], [38]. Compared to existing
literature, the main results developed in this paper exhibit
the following distinctive features: 1) the underlying stochastic
parameter model is quite general to take into simultaneous ac-
count the packet disorders and the measurement quantizations;
2) random but bounded variables are introduced to characterize
the RTDs with their probability distributions known a priori;
3) the devised recursive filter is capable of resisting the adverse
effects from packet disorders and also locally minimized
certain upper bounds on filtering error covariances; and 4) the
mean-square boundedness of filtering errors is established by
virtual of the matrix analysis techniques.

IV. SIMULATION EXAMPLE

Consider system (1)-(2) with parameters:

Āk =

[
−0.6 0.39
0.48 0.53

]
, Ãk = β1,k

[
0.5 0
0 0.2

]
,

B̄k =

[
0.05
0.05

]
, B̃k = β2,k

[
0.1
0

]
,

Ck =
[
0.01 1.03

]
, Dk = 0.2,

where β1,k ∈ R and β2,k ∈ R are Gaussian white sequences
with zero means and unity variances.

Set x̂0|0 = x̄0 =
[
0.5 0.4

]T
, P0 = I2, q = 3, X−2 =

X−1 = X0 = x̄0x̄
T
0 + P0, x̂−2|−3 = x̂−1|−2 = x̂0|−1 = x̄0

and Qk = Rk = 0.5. In addition, let υ(1)0 = 2, ρ(1) = 0.2,
γ0,k+1 = γ1,k+1 = γ2,k+1 = γ3,k+1 = 0.5, ε1 = 0.6, ε2 =
0.48, ε3 = 0.18, ε4 = 0.05, ε5 = 0.9, ε6 = 0.1, ε7 =
0.15, ε8 = 0.1 and ε9 = 0.5.

Denote the mean square error (MSE) of the i-th state
estimate as

MSEi =
1

M

M∑
j=1

(x
(j)
i,k − x̂

(j)
i,k|k)2

where M = 100 is the number of independent simulation tests.
The detailed simulation results are given in Figs. 2–5.

Figs. 2–3 depict trajectories of states xi,k and their estimates
x̂i,k (i = 1, 2), which illustrate that the developed filter
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can estimate the actual state well. To quantify the accuracy
of estimation, Figs. 4–5 plot the upper bounds of Ψi,k|k
and MSEi (i = 1, 2) of state estimation, where MSE0

i and
upper bound0

i represent the MSE and upper bound with
respect to the i-th (i = 1, 2) state when d = 0, respectively.
Similarly, the MSE3

i and upper bound3
i represent the MSE

and upper bound with respect to the i-th (i = 1, 2) state when
d = 3, respectively. It is easily seen that the MSE curves
always stay below that of the upper bound. In addition, these
upper bounds and MSEs become larger with the increase of d,
which shows the influences on the filter performance brought
by the RTD-induced packet disorders. The above simulation
results confirm that the filtering performance of our proposed
scheme is acceptable for the addressed system subject to
random parameter matrices, measurement quantizations and
packet disorders.
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Fig. 2: x1,k and x̂1,k.

0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (k)

 

 
Actual state x2,k
Estimate state x̂2,k

Fig. 3: x2,k and x̂2,k.

V. CONCLUSION

This paper has coped with the recursive filtering problem
for stochastic parameter systems with quantization effects and

0 10 20 30 40 50
−4
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MSE3
1

Upperbound 0
1

Upperbound 3
1

Fig. 4: MSE1 and its bounds when d = 0 and d = 3.
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MSE3
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2
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2

Fig. 5: MSE2 and its bounds when d = 0 and d = 3.

packet disorders. A logarithmic quantizer has been employed
to cope with the measurement outputs before the transmission.
Transmission delays occurred within the sensor-to-filter chan-
nel have been modeled by random variables of known distribu-
tions. Upper bounds on filtering errors have been acquired and
filter gains have been determined through minimizing these
bounds. Subsequently, the boundedness of filtering errors has
also been analyzed. Future research topics would include the
extension of the main results to some practical applications
such as networked control systems [31] and [32], where the
quantized control problem has been investigated.
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