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A Two-Stage Integrated Method for Early Prediction
of Remaining Useful Life of Lithium-ion Batteries

Guijun Ma, Zidong Wang, Weibo Liu, Jingzhong Fang, Yong Zhang, Han Ding, and Ye Yuan

Abstract—This article puts forward a two-stage integrated
method to predict the remaining useful life (RUL) of lithium-
ion batteries (LIBs). At the first stage, a convolutional neural
network (CNN) is employed to preliminarily estimate the cycle
life of each testing LIB, where the network structure of the
CNN is carefully designed to extract the discharge capacity
features. By analyzing the cycle lives, an LIB which has the
most similar degradation mode to each testing LIB is chosen
from the training dataset. The capacities of the selected LIB are
identified based on a double exponential model (DEM). At the
second stage, the identified DEM is utilized as the initial mean
function of the Gaussian process regression (GPR) algorithm.
The GPR algorithm is then applied to early RUL prediction of
each testing LIB in a personalized manner. To verify the efficacy
of the proposed method, four LIBs with long-term cycle lives
are selected as the testing dataset. Experimental results show the
superior performance of the proposed method over the standard
CNN-based RUL prediction method and the standard GPR-based
RUL prediction method.

Index Terms—Remaining useful life prediction, cycle life
prediction, lithium-ion batteries, convolutional neural network,
Gaussian process regression.

I. INTRODUCTION

With the rapid development of electric vehicles, consumer
electronics and grid energy storage systems, the global lithium-
ion battery (LIB) market is expected to exceed 170 billion
dollars in 2030 [34]. Along with the widespread application
of LIBs, battery health management (BHM) of LIBs has
gained increasing research interest from academia and industry
in recent years. To develop reliable BHM techniques, an
advanced battery management system needs to include several
essential functions such as fault diagnosis, fault alarm, thermal
management, state of charge (SOC) estimation, state of health
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(SOH) estimation and remaining useful life (RUL) prediction
[27], [35], [42]. Among these functions, RUL prediction
of LIBs aims to predict the leftover cycles that the LIBs
could operate properly. An accurate prediction of RUL could
improve the operation safety of LIB and provide end-users
with a well-scheduled usage plan. To date, a great number of
RUL prediction methods for LIBs have been developed, which
can be roughly classified into three groups: 1) model-based
methods, 2) data-driven methods, and 3) integrated methods
[11], [18], [19], [30].

Model-based methods utilize mechanism models, equivalent
circuit models (ECMs) or empirical models to investigate
the degradation modes of LIBs. Mechanism models mainly
consider three factors related to the internal attenuation mech-
anism (i.e., loss of lithium, loss of active material in the
positive electrode and the negative electrode) [2], [41]. ECMs
employ circuits to simplify the battery operation process,
where the mapping function from ohmic/polarization resis-
tance to capacity attenuation is established to analyze the
degradation process of ECMs [26]. Empirical models like
exponential models and polynomial models are easier to be
constructed according to empirical degradation trend of LIB
capacities [31], [51]. The adaptive filter techniques are usually
employed to update the model parameters [47], [49]. Although
the model-based methods have the advantage of good inter-
pretability, these models are established by approximating the
degradation mechanism, thus inevitably generating significant
RUL prediction errors.

Data-driven methods could predict the RUL of LIBs by
training the LIB degradation data with machine learning (ML)
algorithms. Many data-driven methods have been developed
to predict the RUL of each LIB in a personalized manner.
The RUL of the LIB at a certain cycle can be obtained by
predicting the degradation path using ML algorithms such
as long short-term memory (LSTM) network [50], [52], au-
toregression [24], [56], relevance vector machine (RVM) [6],
naive Bayes [32], convolutional neural network (CNN) [29],
support vector regression (SVR) [54], Box-Cox transformation
[53], and Gaussian process regression (GPR) [17], [20], [48].
With the purpose of accurate RUL prediction of LIBs, the
above-mentioned data-driven methods need a great number of
historical capacity data of LIBs for training, which includes
the capacity data with more than 25% of total charge-discharge
cycles. Unfortunately, these data-driven methods may not
perform well on early RUL prediction of LIBs due to the
limited capacity data.

Another kind of data-driven methods aims to perform early
RUL prediction by estimating the cycle life of LIBs, where
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the cycle life is predicted for each LIB by virtue of early
cycling data. For instance, the handcrafted feature (which is
the variance of the discharge capacity difference between the
10th cycle and 100th cycle) have been utilized to predict the
cycle lives of LIBs in a dataset with 124 LIBs by using
an elastic net [38]. Based on the same dataset, a wrapper
feature selection method has been developed for improving
the prediction accuracy using a variety of machine learning
algorithms [10]. Additionally, the dilated CNN [13] and the
LSTM with attention mechanism [33] have been developed to
predict the cycle lives of LIBs. Note that the above early RUL
prediction methods intend to learn a global mapping function
among 124 LIBs, which ignores the personalized degradation
process of LIBs, thus generating relatively large prediction
errors (i.e., more than 10% mean absolute percentage error).

Compared with model-based methods and data-driven meth-
ods, the goal of integrated methods is to balance the accuracy
and interpretability by integrating data-driven methods and
model-based methods. For example, an error compensation
mechanism has been utilized in [4] to reduce LIB RUL predic-
tion errors by combining unscented Kalman filter (UKF) with
RVM based on a double exponential model (DEM), where
the UKF has been employed for parameter identification of the
DEM, and the RVM has been adopted for error compensation.
In addition, the predicted capacity errors have been applied
to update DEM parameters, where an optimized SVR has
been used for error prediction, and the adaptive UKF has
been employed for parameter identification [44]. Note that the
aforementioned integrated methods rely on more than 35% of
total charge-discharge cycles to train a reliable model, which
also limits their application on RUL prediction at early cycles.
Motivated by the above discussions, there is an urgent need
to develop an advanced method that has satisfactory accuracy
and good interpretability for early RUL prediction of LIBs.

This article puts forward a two-stage integrated method for
early RUL prediction of LIBs. At the first stage, a carefully-
designed CNN is utilized to preliminarily estimate the cycle
life of each testing LIB. Then, one specific LIB (which has
the closest cycle life to the predicted cycle life of the testing
LIB) is chosen from the training dataset, and the capacities
of the selected LIB are identified based on a DEM. At the
second stage, an integrated strategy is employed to enhance the
prediction accuracy of early RUL. To be specific, the identified
DEM is adopted as the mean function of the GPR algorithm
which is then trained on a small number of capacities of the
testing LIB. Then, capacities in the future cycles are iteratively
predicted by the trained GPR algorithm, and RUL could be
calculated once the capacity reaches the failure threshold, i.e.,
80% of its nominal capacity.

The main contributions of this article are summarized as
follows:

1) A two-stage method is put forward for early RUL pre-
diction of LIBs where 1) the CNN is introduced to
preliminarily predict cycle lives of LIBs at the first stage;
and 2) the GPR algorithm with a modified mean function
is adopted for personalized RUL prediction at the second
stage.

2) The structure of the CNN is designed carefully, which
could effectively extract cycle life features without human
intervention.

3) An integrated strategy is proposed where an identified
DEM is used as the mean function of the GPR algorithm
to enhance the prediction accuracy of early RUL and
narrow the confidence interval of the predicted RUL.

4) The proposed two-stage integrated method is successfully
verified on a well-known LIB dataset. Experimental re-
sults reveal that the proposed method is superior to the
standard CNN and the standard GPR algorithm for early
RUL prediction.

The remaining sections of this article are organized as
follows. The background of the DEM, the CNN and the GPR
algorithm are introduced in Section II. Then, a two-stage
integrated method is presented for RUL prediction of LIBs.
In addition, the evaluation metrics for cycle life prediction
and RUL prediction are provided in this section. Section III
mainly introduces the LIB dataset utilized in this paper.
Section IV presents the experimental results, where the results
for the first-stage cycle life prediction and the second-stage
RUL prediction are discussed in detail. Finally, conclusions
and some possible future research directions are provided in
Section V.

II. METHODS

In this section, a brief description to the DEM, the CNN and
the GPR algorithm is provided for health management of LIBs.
Then, the developed two-stage integrated method is introduced
with details. The performance evaluation metrics for cycle life
prediction and RUL prediction of LIBs are described.

A. The DEM

The DEM, which is a nonlinear model, has been widely
accepted to describe the physics-based degradation mode of
LIBs by balancing the accuracy and the computational com-
plexity [3], [44].

In this paper, the DEM is utilized to represent the LIB
degradation curve. The capacity yk of an LIB at the kth cycle
is given as follows:

yk = a · exp(b · k) + c · exp(d · k), (1)

where a, b, c and d are the model parameters which are
different for LIBs; and the symbol “·” represents the dot
product.

B. The CNN

As a popular deep learning technique, CNN has been
extensively utilized in computer vision, speech processing,
natural language processing, face recognition, and time-series
prediction [1], [15], [25], [46]. It is known that the CNN
could automatically extract implicit features from raw input
and implement an “end-to-end” mapping from the raw data to
the corresponding labels [7], [8], [46].

In this paper, a CNN with three convolutional modules (de-
noted by Conv1, Conv2 and Conv3) and two fully connected
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modules (represented by FC1 and FC2) is carefully designed
for cycle life prediction of LIBs. The structure of the designed
CNN is depicted in Fig. 1. To be specific, each convolutional
module is constructed by one convolutional layer, one batch
normalization layer [37], and the leaky rectified linear unit
(Leaky ReLU) activation function in a top-down manner.
Note that the max-pooling layer is only added in the first
convolutional module, i.e., Conv1). The sigmoid function is
chosen as the activation function in FC2. The Adam optimizer
[14] is adopted in this paper to update weights of the CNN.
The forward propagation process of the designed CNN is
described by:

ŷ = Sigmoid (FC2 (FC1 (Conv3 (Conv2 (Conv1 (I)))))) ,
(2)

where ŷ is the predicted cycle lives of N LIBs; and I ∈
RN×m×n is the input data of the CNN, in which m and n are
the number of utilized charge-discharge cycles of each LIB
and the length of the discharge capacity data at each charge-
discharge cycle, respectively.

Through stacking the above-mentioned three convolutional
modules (Conv1, Conv2 and Conv3), the features of the dis-
charge capacities of LIBs could be extracted effectively. Then,
two fully connected modules (FC1 and FC2) are employed for
cycle life prediction of LIBs.

The mean square error (MSE) is utilized to measure the
regression loss Lmse:

Lmse =
1

N

N∑
i=1

(yi − ŷi)2 , (3)

where ŷi denotes the predicted cycle lives, and yi is the actual
cycle lives.

C. The GPR Algorithm

A GP is a collection of random variables, and any finite
number of these random variables follow a joint Gaussian
distribution [21]. The GPR algorithm is capable of tackling
the complicated regression problem based on the GP. For an
input x, the output of the GPR algorithm y(x) is a GP (with
a mean function m(x) and a covariance function k(x, x′)),
which is shown as follows:

y(x) ∼ GPR (m(x), k(x, x′)), (4)

where x′ is another input.
In this paper, k(x, x′) is a squared exponential (SE) covari-

ance function given by:

k(x, x′) = σ2 exp
(
−(x− x′)2

2l2

)
, (5)

where σ and l are two parameters (which are required to be
optimized) for controlling the amplitude and length scales of
the function, respectively.

Given a training dataset with n samples, the attribute/data
set and the corresponding label set are denoted by x =
[x1, x2, . . . , xn] and y = [y1, y2, . . . , yn], respectively. The
joint Gaussian distribution of the training samples is described
as:

y ∼ N(m(x),K(x, x)), (6)

Conv1

Conv2

Conv3
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FC2

Output 

Convolutional Layer

Leaky ReLU

Max-pooling Layer 

Fully Connected Layer

Leaky ReLU

Fully Connected Layer
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Input
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1 × 8 × 10  × 23
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1 × 32 × 8  × 19
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Fig. 1. The designed CNN architecture. One input sample with the shape
of 1× 100× 1000 is fed into three convolutional modules (Conv1, Conv2
and Conv3) and two fully connected modules (FC1 and FC2) in a top-down
way, where the internal layers in each module are shown in the left blocks.
Moreover, the output shape of each module is marked next to the arrow.

where K(x, x) = (k(xi, xj))n×n is a covariance matrix with
each matrix element k(xi, xj) being calculated by (5).

In the GPR algorithm, the parameters θ = [σ, l] is optimized
by maximizing the logarithm marginal likelihood (LML),
which is given by:

LML = ln p(y | x,θ)

=
1

2
log(det(K(x, x)))− n

2
log 2π

− 1

2
(y−m(x))T K−1(x, x)(y−m(x)),

(7)

where det(·) is the determinant of the square matrix “·”.
Given a testing dataset with m samples, the attribute/data

set and the corresponding label set are denoted by x∗ =
[x∗1, x

∗
2, . . . , x

∗
p] and y∗ = [y∗1 , y

∗
2 , . . . , y

∗
p ], respectively. The

training labels y and the testing labels y∗ obey the following
joint Gaussian distribution:[

y
y∗

]
∼ N

([
m(x)
m(x∗)

]
,

[
K(x, x) K(x, x∗)

KT (x, x∗) K(x∗, x∗)

])
. (8)

According to (8), the predicted mean ŷ∗ and the predicted
covariance cov(ŷ∗) can be derived as:

ŷ∗ = m(x∗) + KT (x, x∗)K−1(x, x)(y−m(x)), (9)

cov(ŷ∗) = K(x∗, x∗)−KT (x, x∗)K−1(x, x)K(x, x∗). (10)

Generally, m(x) = 0 is employed when using the GPR
algorithm for most prediction tasks. It should be mentioned
that the DEM (described in (1)) is adopted as the mean
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function m(x) for estimating the capacities of the LIBs in this
article.

D. The Proposed Two-Stage Integrated Method

In this article, a two-stage integrated RUL prediction method
is developed for the early prediction of LIB RUL. At the first
stage, a CNN with a specifically designed network architecture
is trained on the discharge capacity data and corresponding
cycle lives, which is then used to predict the cycle life of
each testing LIB preliminarily. Then, the LIB (which has the
closest cycle life to the CNN predicted cycle life of the testing
LIB) is chosen from the training dataset. The capacities of the
selected LIB are identified based on a DEM. At the second
stage, the identified DEM is adopted as the mean function
for the GPR algorithm which is then trained based on the
capacities before the end of monitoring (EOM) cycle of the
testing LIB. The trained GPR algorithm is thus employed for
personalized early prediction of LIB RUL at the given EOM
cycle.

The procedure of the two-stage integrated method for early
RUL prediction is presented as follows:

1. Preliminary cycle life prediction:

1) Train a CNN based on the training dataset with N1

LIBs and the validation dataset with N2 LIBs using
(2)-(3).

2) Use the trained CNN to preliminarily estimate the cycle
life of the testing LIB.

3) Choose the LIB (which has the most similar cycle life
to the CNN predicted cycle life of the testing LIB)
from the training dataset.

4) Identify the capacity curve of the selected LIB based
on the DEM in (1).

2. Personalized RUL prediction:

1) Take the DEM as the mean function of the GPR
algorithm.

2) Train the GPR algorithm using D = (k, yk), k =
1, 2, . . . , tEOM of the testing LIB.

3) Predict the LIB capacities and the corresponding con-
fidence intervals from EOM to the future cycles using
(9)-(10).

4) Calculate the RUL and its confidence interval of the
testing LIB at the given EOM cycle once the predicted
capacity reaches the failure threshold.

E. Evaluation Metrics

In this article, several well-known performance indicators
are employed to assess the performance of the methods.

1) Evaluation Metrics for Cycle Life Prediction: At the first
stage, the mean absolute percentage error (MAPE) and the root
mean square error (RMSE) are chosen as the evaluation met-
rics for assessing the results of the cycle life prediction [38].
The MAPE denotes the average value of absolute percentage
errors between the predicted cycle lives and the actual cycle
lives of a certain number of LIBs. The RMSE is employed to

calculate the average deviation of cycle lives. The MAPE and
the RMSE are described by:

MAPE = 1
n

∑n
i=1

|Ti−T̂i|
Ti

× 100%, (11)

RMSE =
√

1
n

∑n
i=1(Ti − T̂i)2, (12)

where n is the number of testing LIBs; Ti and T̂i are the
actual cycle life and the predicted cycle life with respect to the
ith LIB, respectively; and the symbol |·| denotes the absolute
value.

2) Evaluation Metrics for RUL Prediction: At the second
stage, three commonly-used metrics (which are the absolute
error (AE), the accuracy percentage (AP), and the trend
steadiness (TS)) are deployed to evaluate the RUL prediction
results for one testing LIB in terms of prediction accuracy
and steadiness [4], [29]. The AE is utilized to measure the
deviation between the real and estimated RUL for each testing
LIB. The AP is adopted to measure the percentage of the
relative error for RUL prediction results. The TS is employed
to assess the deviation between the predicted and actual
capacities of each testing LIB. The three metrics are described
as follows:

AE =
∣∣∣T − T̂ ∣∣∣ , (13)

AP =

(
1− |T−T̂ |T

)
× 100%, (14)

TS =
√

1
T

∑tEOM+T
i=tEOM+1(yi − ŷi)2, (15)

where T and T̂ are the actual RUL and predicted RUL for
the testing LIB, respectively; the symbol |·| is the absolute
value; yi and ŷi are the actual capacity and the predicted
capacity at the ith cycle, respectively; and tEOM denotes the
certain charge-discharge cycle which is applied to predict the
LIB RUL. The prediction performance is satisfactory when the
values of AE and TS are small while the value of AP is large.

III. THE LIB DATASET

The utilized dataset is obtained from [38], which in-
cludes 124 lithium-iron-phosphate (LFP)/graphite LIBs. In this
dataset, the nominal capacity and nominal voltage of each LIB
are 1.1 Ah and 3.3 V, respectively. The cycle lives of the LIBs
in this dataset are in the range of 150 to 2,300 cycles. The
capacities of the LIBs are shown in Fig. 2 (a). As stated in
[38], the raw dataset is divided into three parts, i.e., the training
dataset (with 41 LIBs), the primary testing dataset (with 43
LIBs) and the secondary testing dataset (which includes 40
LIBs). The primary testing dataset is used to evaluate the
model performance, and the secondary testing dataset (which
is sampled from the utilized dataset after the model training
process) is used for a rigorous test of the trained model.

All the LIBs in this dataset have been cycled under an
identical discharge condition. Specifically, the LIBs have been
discharged with a constant-current discharge rate of 4 C until
the voltage reached 2 V, and then discharged with a constant
voltage of 2 V until the current reached C/50. The fast-
charging conditions are in the range of 3.6 C to 6 C. The
LIBs have been tested at a constant temperature of 30 ◦C
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in an environmental chamber. The cycle life of each LIB is
the number of charge-discharge cycles when the SOH reaches
80%.

During the first-stage cycle life prediction, 26 of 41 LIBs in
the training dataset are randomly selected for model training
and the other 15 LIBs are chosen for model validation and
model selection. Then, 43 LIBs in the primary testing dataset
and 40 LIBs in the secondary testing dataset are used to
evaluate the model performance.

At the second stage, four representative testing LIBs with
long-term cycle lives (which are a-2, c-34, c-30 and a-9 in
the two testing datasets) are employed in this paper for early
prediction of LIB RUL. For ease of presentation, a-2, c-34,
c-30 and a-9 (whose cycle lives are more than 900 cycles) are
denoted by Cell 1, Cell 2, Cell 3 and Cell 4, respectively. The
capacities of Cells 1-4 are illustrated in Fig. 2 (b). It should be
noted that the discontinuous capacities of Cell 1 are attributed
to a long time pause of the LIB cycling as stated in [38].

Fig. 2. (a) Capacities of 124 LFP/graphite LIBs. (b) Capacities of four testing
LIBs (Cells 1-4).

IV. RESULTS AND DISCUSSION

In this section, experimental settings are introduced, and
experimental results for RUL prediction are presented. Specif-
ically, the details of the cycle life prediction at the first stage
and the RUL prediction at the second stage are introduced
separately.

A. Stage 1: Cycle Life Prediction

At the first stage, the CNN is employed for cycle life pre-
diction of LIBs. To achieve this objective, data pre-processing
and data splitting are carried out in order to train a carefully-
designed CNN for cycle life prediction of the testing LIBs.
In the experiment, we aim to find a specific LIB from the
training dataset whose degradation mode is as similar as that

of the testing LIB. Note that the degradation mode of LIBs is
analyzed based on the cycle life [38].

1) Experimental Setting: In the experiment, the discharge
capacities and discharge voltages in each charge-discharge
cycle are fitted by using a spline function, and the discharge
capacities are then linearly interpolated to a certain length
of 1000. The discharge capacities in the first 100 cycles of
each LIB (see Fig. 3) are employed to build up a one-channel
“image” with a shape of 1×100×1000. Then, 26 of 41 LIBs
(Itrain ∈ R26×100×1000) with cycle lives (which are utilized
as the labels Ytrain ∈ R26×1) are randomly chosen from the
training dataset to train the CNN.

The rest 15 LIBs (Ival ∈ R15×100×1000) with cycle lives
(i.e., labels Yval ∈ R15×1) in the training dataset are employed
for model validation and model selection. In addition, all LIBs
in the primary testing dataset (Ipr ∈ R43×100×1000) and the
secondary testing dataset (Isec ∈ R40×100×1000) are applied
for cycle life prediction.

Fig. 3. The discharge capacity is a function of discharge voltage of a
representative LIB.

2) Model Training: In the experiment, the input data Itrain
and the labels Ytrain are employed to train the CNN. The
network architecture of the CNN is depicted in Fig. 1, and the
parameters of the CNN are presented in Table I. To facilitate
the convolutional operation, the number of convolutional ker-
nels in three convolutional layers are set to be 8, 16 and 32,
respectively. The kernel size and stride in each convolutional
layer or the max-pooling layer are empirically chosen. The
number of neurons in the fully connected layers (which are
in FC1 and FC2) are set to be 100 and 1, respectively. The
slopes of all Leaky ReLU activation functions are set as 0.1
by default. The sigmoid activation function is adopted in the
output layer. The maximum number of training epoch is set
to be 1000.

During the training process, the CNN is evaluated on the
validation dataset with the input Ival and the labels Yval so as
to optimize the CNN with the minimum validation error. The
Adam optimizer [14] with a learning rate of 1e-5 is applied
to update the weights.

3) Cycle Life Prediction of LIBs: Experimental results of
cycle life prediction for the primary and the secondary testing
datasets are illustrated in Fig. 4. The RMSE and the MAPE
results are displayed in Table II. As shown in Table II, RMSE
and MAPE (see (11)-(12)) are used for performance evaluation
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TABLE I
PARAMETER SETTING OF THE CNN

Module Layer Kernels/Nodes Slope Kernel size/Stride Output size

Input Input - - - 1×100×1000

Conv1

Convolutional layer 8 - (50,50)/(5,40) 1×8×11×24

Batch normalization 8 - - 1×8×11×24

Leaky ReLU - 0.1 - 1×8×11×24

Max-pooling layer - - (2,2)/(1,1) 1×8×10×23

Conv2

Convolutional layer 16 - (2,3)/(1,1) 1×16×9×21

Batch normalization 16 - - 1×16×9×21

Leaky ReLU - 0.1 - 1×16×9×21

Conv3

Convolutional layer 32 - (2,3)/(1,1) 1×32×8×19

Batch normalization 32 - - 1×32×8×19

Leaky ReLU - 0.1 - 1×32×8×19

Flatten Flatten - - - 1×4864

FC1
Fully connected layer 100 - - 1×100

Leaky ReLU - 0.1 - 1×100

FC2

(Output)

Fully connected layer 1 - - 1×1

Sigmoid - - - 1×1

on cycle life prediction, where the RMSEs of our method on
the primary and the secondary testing datasets are 90 cycles
and 160 cycles, respectively. The MAPEs of our method on
the primary and the secondary testing datasets are 10% and
11.7%, respectively.

To verify the effectiveness of our model, the cycle life
prediction results stated in [38] are utilized as the benchmark.
It should be mentioned that the approach proposed in [38]
combines the handcrafted features with an elastic net for cycle
life prediction. As displayed in Table II, the prediction error
of our method is smaller than that of the benchmark method,
which demonstrates the superiority of our method.

4) Degradation Mode Identification of Chosen LIBs: By
analyzing the predicted cycle life of each testing cell, the
most similar LIB (which has the closest cycle life) is chosen
from the training dataset, which indicates that the selected
LIB has similar degradation mode to the testing LIB. The
capacities of Cells 1-4 and the chosen LIBs in the training
dataset are displayed in Fig. 5. The actual cycle lives and
predicted cycle lives of Cells 1-4 as well as the four selected
LIBs are presented in Table III. In Table III, the predicted
cycle life of Cell 1 is 2092 cycles, and the chosen LIB in the
training dataset is a-1 whose actual cycle life is 2157 cycles.
Thus, the capacities of a-1 are adopted as the initial capacities
of Cell 1 for further RUL prediction.

Based on the DEM defined in (1), the model parameters are
determined by using a MATLAB curve fitting tool to analyze
the capacity data. The fitting results of the four LIBs are shown
in Fig. 6. The identified DEM parameters [a; b; c; d] ∈ R4×1

are recorded in Table IV.

B. Stage 2: RUL Prediction

This section presents the experimental setting of the per-
sonalized RUL prediction method and demonstrates the RUL
prediction results on Cells 1-4.
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Fig. 4. The actual cycle life versus the predicted cycle lives for the training
dataset, the primary testing dataset and the secondary testing dataset. The
training data are used to train the CNN model parameters. The primary
testing dataset is used to verify the performance of the trained CNN, and
the secondary testing dataset is used to further evaluate the effectiveness of
the trained CNN.

(a) (b)

(c) (d)

Fig. 5. The capacities of Cells 1-4 and the selected training LIBs.

1) Experimental Setting: The input data and output labels
of the GPR algorithm are the cycle numbers and the capacities
of the testing LIBs, respectively. Notice that the input of the
GPR algorithm for training is a d-dimensional vector where
d is the value of EOM. In this experiment, EOM is set to be
three early cycle numbers, i.e., 200, 300 and 500. The main
objective of this stage is to predict the capacities of the LIB
within a certain time period according to the corresponding
cycle numbers (which are larger than the EOM value). Thus,
the RUL of the LIB is calculated when the predicted capacity
of this LIB reaches the end of life (EOL), i.e., 0.88 Ah.

2) Model Training: By taking the identified DEM as the
initial mean function of the GPR algorithm, the capacities of
a testing LIB at early cycles are adopted to train the GPR
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TABLE II
RMSE AND MAPE FOR CYCLE LIFE PREDICTION

RMSE (cycles) MAPE (%)

Train Primary test Secondary test Train Primary test Secondary test

Severson et al. [38] 51 91 173 5.6 13 8.6

CNN model (Ours) 51 90 160 5.1 10 11.7

TABLE III
ACTUAL CYCLE LIVES, PREDICTED CYCLE LIVES AND CHOSEN LIBS FOR

CELLS 1-4

Cell 1 Cell 2 Cell 3 Cell 4

Actual cycle life 2234 1156 933 1052

Predicted cycle life 2092 1224 1068 934

Chosen LIB a-1 (2157) a-3 (1431) a-5 (1072) a-40 (964)

(a) (b)

(c) (d)

Fig. 6. Fitting curves of four chosen LIBs.

TABLE IV
IDENTIFIED DEM PARAMETERS OF THE CHOSEN LIBS FOR CELLS 1-4

Testing LIB Chosen LIB DEM parameters

Cell 1 a-1 [-0.0002079; 0.003009; 1.085; -3.117e-05]

Cell 2 a-3 [-0.001105; 0.003635; 1.086; -1.223e-05]

Cell 3 a-5 [-1.634e-05; 0.008557; 1.085; -4.489e-05]

Cell 4 a-40 [-0.00119; 0.0053; 1.088; -1.202e-05]

algorithm before the EOM cycle. Then, the obtained GPR
algorithm is used to predict the RUL of the testing LIB at
the EOM cycle.

In this paper, a bias term e is added into the mean function
(see (1)), which is given by:

yk = a · exp(b · k) + c · exp(d · k) + e. (16)

As shown in Fig. 6, there exists a bias between the testing
LIBs and their corresponding LIBs selected from the training
dataset. The introduction of the bias term could contribute
to the training of the GPR algorithm, which improves the
flexibility of the GPR algorithm.

TABLE V
EVALUATION METRICS FOR DIFFERENT METHODS AND DIFFERENT EOM

CYCLES

LIB EOM Methods Predicted RUL Actual RUL AE AP TS

Cell 1

200

CNN alone 1892 2034 142 93.019% -
GPR w/o prior 907 2034 1127 44.592% 0.3358
GPR w/o bias 1894±31 2034 140±31 93.117%±1.524% 0.0238
Ours 1938±28 2034 96±28 95.280%±1.377% 0.0156

300

CNN alone 1792 1934 142 92.658% -
GPR w/o prior 1428 1934 506 73.837% 0.0883
GPR w/o bias 1753±24 1934 181±24 90.641%±1.241% 0.0331
Ours 1874±19 1934 60±19 96.898%±0.982% 0.0098

500

CNN alone 1592 1734 142 91.811% -
GPR w/o prior 957 1734 777 55.190% 0.3819
GPR w/o bias 1614±24 1734 120±24 93.080%±1.384% 0.0217
Ours 1683±10 1734 51±10 97.059%±0.577% 0.0086

Cell 2

200

CNN alone 1024 956 68 92.887% -
GPR w/o prior 1067 956 111 88.389% 0.0240
GPR w/o bias 1255±84 956 299±84 68.724%±8.787% 0.0498
Ours 1050±24 956 94±24 90.167%±2.511% 0.0130

300

CNN alone 924 856 68 92.056% -
GPR w/o prior 1510 856 654 23.598% 0.0272
GPR w/o bias 1135±78 856 279±78 67.407%±9.112% 0.0500
Ours 870±24 856 14±24 98.365%±2.804% 0.0107

500

CNN alone 724 656 68 89.634% -
GPR w/o prior 1555 656 899 -37.043% 0.0359
GPR w/o bias 935±78 656 279±78 57.470%±11.890% 0.0545
Ours 614±14 656 42±14 93.598%±2.134% 0.0248

Cell 3

200

CNN alone 868 733 135 81.583% -
GPR w/o prior 885 733 152 79.263% 0.0245
GPR w/o bias 819±22 733 86±22 88.267%±3.001% 0.0223
Ours 756±5 733 23±5 96.862%±0.682% 0.0075

300

CNN alone 768 633 135 78.673% -
GPR w/o prior 571 633 62 90.205% 0.0381
GPR w/o bias 776±2 633 143±2 77.409%±0.316% 0.0341
Ours 656±4 633 23±4 96.367%±0.632% 0.0075

500

CNN alone 568 433 135 68.822% -
GPR w/o prior 485 433 52 87.991% 0.0106
GPR w/o bias 389±1 433 44±1 89.838%±0.231% 0.0319
Ours 435±4 433 2±4 99.538%±0.924% 0.0083

Cell 4

200

CNN alone 734 852 118 86.150% -
GPR w/o prior 765 852 87 89.789% 0.0546
GPR w/o bias 724±6 852 128±22 84.977%±0.704% 0.0660
Ours 748±7 852 104±7 87.793%±0.822% 0.0499

300

CNN alone 634 752 118 84.309% -
GPR w/o prior 602 752 150 80.053% 0.0903
GPR w/o bias 663±2 752 89±2 88.165%±0.266% 0.0440
Ours 725±2 752 27±2 96.410%±0.266% 0.0123

500

CNN alone 434 552 118 78.623% -
GPR w/o prior 367 552 185 66.486% 0.1355
GPR w/o bias 463±2 552 89±2 83.877%±0.362% 0.0514
Ours 558±3 552 6±3 98.913%±0.544% 0.0019

3) RUL Prediction: In this paper, RUL is an estimation of
the leftover charge-discharge cycles that a cell would operate
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(a)

(d)

(c)

(b)

Fig. 7. Predicted capacities for (a) Cell 1, (b) Cell 2, (c) Cell 3 and (d) Cell 4. For each testing LIB, EOM cycles of 200, 300 and 500 are used to test the
prediction performance. Two benchmark methods, the GPR algorithm without an initial mean function (denoted by GPR w/o prior) and the GPR algorithm
without a bias term (denoted by GPR w/o bias), are used to compare with the proposed approach. RULs are calculated when the predicted capacity reaches
the EOL.

successfully. By predicting the battery capacities after the
EOM cycle using the GPR algorithm, RUL can be calculated
by the difference between the EOM cycle and the failure
charge-discharge cycle (which is the cycle number when the
predicted capacity reaches the EOL).

The performance of the proposed two-stage integrated
method for RUL prediction is evaluated on Cells 1-4. In

this paper, the standard CNN (denoted by CNN alone), the
GPR algorithm without an initial mean function (denoted by
GPR w/o prior) and the GPR algorithm without the bias term
(denoted by GPR w/o bias) are adopted for comparison. It
should be pointed out that the designed CNN utilizes the
prediction results of cycle life at the first stage, where the
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predicted RUL at the EOM cycle is the difference between
the predicted cycle life and the EOM cycle. By using the GPR
algorithm, the predicted capacities and the corresponding 99%
confidence intervals for Cells 1-4 are displayed in Fig. 7. The
RUL prediction results of the selected methods are recorded in
Table V, where AE, AP and TS (see (13)-(15)) are employed
for performance evaluation.

For ease of presentation, let us take Cell 1 with an EOM
cycle of 200 as an example. Fig. 7 (a) displays the prediction
results of the capacities for Cell 1, where the predicted capaci-
ties and corresponding confidence intervals are both presented.
As shown in Table V, the AE, AP and TS of the proposed two-
stage integrated method are 96±28 cycles, 95.280%±1.377%
and 0.0156 Ah, respectively. The standard CNN obtains the
AE of 142 cycles and the AP of 93.019%. The confidence
intervals are not provided because the standard CNN is a point-
wise estimation method, and the TS is unavailable because
the standard CNN can only predict the cycle life of LIBs.
Compared with the standard CNN, the proposed method could
predict the RUL for each LIB in a personalized way, thus
effectively improving the RUL prediction accuracy on each
individual LIB.

As given in Table V, the AE, AP and TS of the GPR w/o
prior are 1127 cycles, 44.592% and 0.03358 Ah, respectively.
The AE, AP and TS of the GPR w/o bias are 140±31
cycles, 93.117%±1.524% and 0.0238 Ah, respectively. The
confidence intervals predicted by GPR w/o prior are too
large to be quantified, which are not presented in this paper.
Compared with the GPR w/o prior, the proposed approach
exhibits smaller prediction errors for both RUL prediction
and confidence interval prediction, which demonstrates that
the DEM-based mean function could benefit the capacity
prediction process. In addition, our approach outperforms the
GPR w/o bias owing to the introduction of the bias term which
makes the GPR training process more flexible.

Motivated by above discussions, we can conclude that our
method demonstrates superior performance over the baselines
on Cell 1 with an EOM cycle of 200. Likewise, we could
obtain similar results on Cells 2-4 with different settings of
EOM cycles, which further verifies the effectiveness of our
method on early RUL prediction of LIBs.

V. CONCLUSION

In this article, a two-stage integrated method has been put
forward for early RUL prediction of LIBs, where a CNN
with designed network structure has been applied to cycle
life prediction, and the GPR algorithm has been utilized to
estimate the RUL of LIB in a personalized manner. At the
cycle life prediction stage, a specific LIB (whose cycle life is
the most similar to the predicted one of the testing LIB) has
been chosen from the training dataset for identifying the DEM
based on the capacity data. At the RUL prediction stage, the
identified DEM has been utilized as the initial mean function
for the GPR algorithm. Then, the GPR algorithm has been
trained based on the capacity data of each testing LIB (with
only a small number of charge-discharge cycles) for early RUL
prediction. The proposed early prediction method has been

successfully exploited in four selected long-cycle-life LIBs
for personalized RUL prediction. Experimental results have
revealed that the two-stage integrated method outperforms the
benchmark methods in terms of the RUL prediction accuracy.
In the future, we aim to 1) apply the proposed method to
RUL prediction of other batteries; 2) employ evolutionary
computation methods to optimize the hyperparameters of the
proposed method [9], [22], [23], [39], [40], [43]; 3) use some
up-to-date filtering and state estimation algorithms for cycle
life prediction of LIBs and build reliable BHM systems [5],
[12], [16], [36], [45], [55].
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