
Economic Modelling 123 (2023) 106273

A
0

Contents lists available at ScienceDirect

Economic Modelling

journal homepage: www.journals.elsevier.com/economic-modelling

Connectedness between fossil and renewable energy stock indices: The
impact of the COP policies
Guglielmo Maria Caporale a,∗,1, Nicola Spagnolo a,b,c, Awon Almajali a,d

a Department of Economics and Finance, Brunel University London, UK
b Centre for Applied Macroeconomic Analysis (CAMA), National Australian University, Australia
c Economics, Universita’ degli Studi della Campania, Luigi Vanvitelli, Italy
d Department of Banking and Finance, Mutah University, Jordan

A R T I C L E I N F O

JEL classification:
C32
G15
Q40

Keywords:
COP
Fossil and renewable energy
Stock indices
VAR
Connectedness

A B S T R A C T

Switching from fossil to renewable energy is essential to reduce global warming. The existing literature has
found evidence of connectedness between fossil and renewable energy stock indices but has not considered the
possible impact of climate policies on those linkages. This paper provides evidence on the latter issue to fill
this gap. Specifically, in addition to full sample estimation, endogenous break tests and sub-sample estimation
are carried out using daily data for a wide range of indices over the last decade. The results suggest that
renewable energy stock indices play a significant role in terms of connectedness; moreover, the two detected
breaks indicate that both the unsuccessful COP17 held in Durban in 2011 and the anticipation of decisive action
at the COP26 in Glasgow affected connectedness, namely spillovers are stronger during periods characterized
by more effective climate policies. This confirms the crucial importance of policy intervention to tackle climate
change.
1. Introduction

The use of renewable instead of fossil energy is being increasingly
advocated by experts, governments and public opinion as a necessary
choice to address climate change, namely the observed large-scale,
long-term shift in temperatures and weather patterns. This is because
one of its main drivers since the start of the industrial revolution in the
late 18th century has been the burning of fossil fuels such as coal, oil
and gas. These generate greenhouse gas emissions, including carbon
dioxide (CO2) and methane, which bring about rising temperatures
and global warming; as a result, the Earth is now about 1.1 degrees
Celsius warmer than in the late 1800s, the latest decade having been
the warmest on record. The 2018 UN Climate Change Annual Report
concluded that it was essential to decrease global temperature rise to
no more than 1.5 degrees Celsius (from the expected 2.7 by the end of
the century without any measures) to slow down the effects of climate
change. However, in October 2018, the Intergovernmental Panel on
Climate Change (IPCC) warned in its “Global Warming of 1.5 ◦C” report
that even if that target were achieved the impact of global warming on
the environment would be far greater than expected, and in January
2019 The World Economic Forum for a third year in a row identified
climate change as the main threat to the planet in its Global Risks
Report.

∗ Correspondence to: Department of Economics and Finance, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH UK.
E-mail address: Guglielmo-Maria.Caporale@brunel.ac.uk (G.M. Caporale).

1 We are grateful to two anonymous referees for their insightful comments on an earlier version of this paper.

To tackle these issues since 1995 Annual UN Climate Change Con-
ferences have been held within the UN Framework Convention on
Climate Change (UNFCCC); each of these meetings is known as a Con-
ference of the Parties (COP), the latest having taken place in Glasgow,
31 October–13 November 2021 (COP26). Over the years a number of
COP protocols have been signed with the aim of reducing reliance on
fossil fuels and encouraging the transition to renewable energy, which
comes from the Earth’s natural resources (sunlight, wind, waves, the
tides and geothermal heat from within the planet), is inexhaustible
and does not pollute the environment; moreover, new clean energy
technologies are reducing its costs compared to fossil fuels and making
it more affordable. The International Energy Agency (IAE) reported in
its “Global Energy Review 2021” that a record amount of renewable
electricity was added to energy systems globally in 2021, despite higher
commodity prices increasing production and transportation costs for
solar panels and wind turbines.

It is clear that governments have an important role to play in
accelerating the shift to clean energy by providing more support and in-
centives for investment in renewables as well as by adopting measures
at the very least to “phase down” polluting energy sources such as coal
as agreed at COP26. In particular, one would expect the decisions taken
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Fig. 1. Plots of the Return Series.
Fig. 2. Plots of the Volatility Series.
at such meetings with the aim of reducing carbon emissions (binding
thresholds, fiscal incentives etc.) to make investment in clean energy
more profitable relative to that in polluting energy sources and thus
to drive up stock returns for the former sector relative to those for
the latter. Therefore effective policies to combat climate change should
strengthen (negative) spillovers between those two sets of markets,
which should instead remain relatively weak when no decisive action
is taken to cut down emissions. More precisely, a preliminary analysis
of the data as well as the existing empirical evidence which is discussed
2

below in the literature review, lead us to formulate two hypotheses
of interest: the first concerns the presence of significant static and
dynamic linkages between stocks issued for two different forms of
energy markets, namely fossil fuels and renewable energy respectively;
the second postulates the existence of significant effects of the outcomes
of the COP meetings on the relationships being examined (specifically,
that effective climate policies should make them stronger). To preview
the results, the obtained evidence supports those hypotheses: we find
that spillovers between the two sets of markets are sizeable; moreover,
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Table 1
Variables sources and definitions.

Index Definition Source

MAC Global
Energy Index

The MAC Global Solar Energy
Index is a rules-based stock index
tracking the performance of
companies in global solar energy
businesses.

The "MAC Global Solar Energy
Stock Index" is the tracking Index
for the ‘‘Invesco Solar ETF’’
which is an exchange-traded fund
(ETF) that is traded on the New
York Stock Exchange ARCA. MAC
includes 43 companies.

ISE Global
Wind Energy
Index

The ISE Global Wind Energy
Index is designed to track public
companies that are active in the
wind energy industry based on
analysis of the products and
services offered by those
companies. The Index began on
December 16, 2005 with a base
value of 100.00.

It is one of the Nasdaq ISE
indices. ISE includes 52
companies.

Crude Oil West Taxes Intermediate crude oil. New York Mercantile Exchange
(NYMEX).

Coal Newcastle Coal Index. New York Mercantile Exchange
(NYMEX).

Natural Gas Natural Gas Index. It is listed on the Chicago
Mercantile Exchange.

European
Renewable
Energy Index

ERIX tracks the performance of
European renewable energy
companies that are active in
either or several of the following
six investment clusters: biofuels,
geothermal, marine, solar, water,
and wind.

The Index is provided by Societe
Generale, which has contracted
with S&P Opco, LLC (a subsidiary
of S&P Dow Jones Indices LLC)
(‘‘S&P Dow Jones Indices’’ ) to
maintain and calculate the Index.
The index members are the 10
largest and most liquid stocks
from the list of eligible
companies. ERIX is rebalanced
every quarter and an index
review takes place every six
months.

S&P500 Global
Clean Energy Index

It is designed to measure the
performance of the one hundred
largest companies by market
capitalization in global clean
energy-related businesses from
both developed and emerging
markets , with target constituent
count of 100.

It is one of the S&P DOW JONES
indices. S&P500 has a target
constituent count of 100
companies.

The World
Renewable
Energy Index

Renewable energy tracks the 30
largest companies of the
renewable energy industry
worldwide by market
capitalization. The RENIXX
comprises stocks such as sectors
as wind energy, solar energy
industry, hydropower, geothermal
energy, bio-energy or fuel cell
technology.

RENIXX has been created and is
calculated by IWR, a renewable
energy institute. RENIXX
comprises the world’s 30 largest
companies in the renewable
energy industry whose weighting
in the index is based on the
market capitalization.

Wilder Hill Clean
Energy Index

Renewable Energy Supplies,
Power Energy Delivery,Storage,
Clean Fuels, as well as Green
Utilities.

The WilderHill Clean Energy
Index (ECO), live since 2004, and
is calculated by the New York
Stock Exchange (NYSE). ECO
includes 78 stocks.

Note: The series used are daily and span the period from 25/03/2010 to 23/12/2021 for a total of 2943 observations.
onnectedness appears to change around the time of key COP meetings,
hich most likely reflects the impact of the policy decisions adopted at

hose events.
The layout of the paper is as follows. Section 2 briefly reviews

he relevant literature. Section 3 provides some information about the
OP meetings and the key policy decisions adopted on those occasions.
ection 4 outlines the Diebold and Yilmaz (2014) method used for the
nalysis. Section 5 presents the data and the empirical results. Section 6
ffers some concluding remarks.
3

2. Literature review

Linkages between the fossil and renewable energy markets have
been investigated in numerous papers. For instance, Henriques and
Sadorsky (2008) estimated a VAR and found causal effects of oil prices
and technology stock prices on those of renewable energy companies.
Sadorsky (2012) adopted a GARCH framework to examine volatility
spillovers and concluded that the stock prices of clean energy compa-
nies in their second moments are linked more strongly to technology
ones than to oil prices. Kumar et al. (2012) showed that renewable
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Table 2
Descriptive statistics.

Fossil and renewable energy stock index returns

Variables Mean S.D. Min Max Skewness Kurtosis

MAC 0.01 2.23 −14.96 11.95 −0.14 6.53
ISE Wind 0.02 1.40 −23.42 11.95 1.11 97.12
Crude Oil 0.02 2.64 −28.22 31.96 0.17 31.87
Coal 0.02 1.59 −43.25 14.49 −6.49 29.25
Gas 0.01 2.98 −18.05 19.80 0.33 6.95

ERIX 0.03 1.62 −12.97 8.76 −0.41 6.51
S&P500 0.01 1.51 −12.50 11.03 −0.55 10.15
RENIXX 0.03 1.65 −10.79 9.12 −0.26 6.71
ECO 0.01 2.00 −16.24 13.40 −0.48 8.76

Note: The series used are daily and span from 25/03/2010 to 23/12/2021, for a total of 2943 observations.
Fig. 3. Benchmark model overall spillover (Return System).
Fig. 4. Benchmark model including ERIX overall spillover (Return System).
energy stock prices are responsive to interest rates, past oil price
changes and technology stock prices. Wen et al. (2014) focused on
China and found volatility spillovers between oil prices and renewable
energy company stock prices using a GARCH model incorporating
asymmetries. Bondia et al. (2016) applied threshold cointegration tests
allowing for endogenous structural breaks and reported that the stock
prices of alternative energy companies are affected by technology stock
prices, oil prices and interest rates only in the short run.

Reboredo et al. (2017) implemented instead a wavelet decompo-
sition approach and detected stronger dependence between oil and
4

renewable energy returns in the long run compared to the short run,
whilst Reboredo and Ugolini (2018) used a multivariate vine-copula
dependence setup and found that during the period 2009–2016 oil and
electricity prices were the main drivers of clean energy stock returns
in the US and the EU, respectively. Dutta (2017) reported that clean
energy stock market returns are affected by changes in the crude oil
volatility index (OVX) in the long run. Ferrer et al. (2018) analysed
connectedness between crude oil prices, the stock prices of US clean
energy companies and various financial variables in the frequency
domain and found linkages mainly in the short run, whilst he could
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Fig. 5. Benchmark model including S&P500 overall spillover (Return System).

Fig. 6. Benchmark model including RENIXX overall spillover (Return System).

Fig. 7. Benchmark model including ECO overall spillover (Return System).
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Fig. 8. Benchmark model overall spillover (Volatility System).

Fig. 9. Benchmark model including ERIX overall spillover (Volatility System).

Fig. 10. Benchmark model including S&P500 overall spillover (Volatility System).
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Fig. 11. Benchmark model including RENIXX overall spillover (Volatility System).
Fig. 12. Benchmark model including ECO overall spillover (Volatility System).
Table 3
Structural breaks dates.

Systems First break Second break

Panel A: Return
Five Variable System 29/10/2012 06/03/2020
First System 29/10/2012 06/03/2020
Second System 29/10/2012 21/12/2015
Third System 29/10/2012 05/03/2020
Fourth System 29/10/2012 06/03/2020

Panel B: Volatility
Five Variable System 06/08/2012 12/02/2018
First System 06/08/2012 06/02/2019
Second System 06/08/2012 21/03/2018
Third System 06/08/2012 07/02/2019
Fourth System 06/08/2012 24/03/2020

Note: The break dates have been obtained by carrying out the Bai and Perron (1998)
tests.

not detect any impact of crude oil prices on the stock prices of re-
newable energy companies. Alkathery and Chaudhiri (2021) estimated
multivariate GARCH models to analyse the co-movement between oil
price, EU carbon allowance prices, the global clean energy index and
the equity index in three GCC countries (Kuwait, Saudi Arabia and
the United Arab Emirates) and found evidence of significant volatility
spillovers in all three markets.
7

Liu and Shigeyuki (2020) applied the Diebold and Yilmaz (2014)
approach to examine return and volatility spillovers from fossil fuel
(crude oil and natural gas) and traditional stock markets to renewable
stock markets in the US and Europe and estimated stronger spillovers
in the case of the US and from traditional stock markets to renewable
energy stocks in both regions. Hanif et al. (2021) investigated frequency
volatility spillovers, connectedness and the nonlinear dependence be-
tween the European emission allowance (EUA) prices and renewable
energy indices using a time-scale spillover index and different copula
functions. They found stronger short-run spillovers in the case of carbon
prices and both S&P clean energy and wind energy indices in the short,
and stronger long-run ones in the case of the clean energy indices and
carbon price. Finally, Geng et al. (2021) applied the connectedness
network approach to Europe and found high interdependence between
crude oil returns and clean energy companies’ returns and also a greater
impact of bad news on information connectedness compared to good
news.

Ozcan et al. (2020) employed the Generalized Method of Moments
(GMM) to estimate a panel Vector Autoregressive Regression (PVAR)
for a sample of 35 OECD economies from 2000 to 2014 and found
that economic growth and energy consumption patterns affect the
environmental performance of countries. González-Álvarez and Mon-
tañés (2023) examined the relationship between energy consumption,
carbon dioxide (CO2) emissions and economic growth using a sample
of 31 countries and reported that, for the majority of the countries
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Fig. 13. Benchmark model Net Pairwise (Return System).
Table 4
Benchmark model (Returns).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas From

MAC 75.23 19.27 5.28 0.05 0.17 24.77
ISE.Wind 20.96 74.79 4.09 0.07 0.09 25.21
Crude Oil 6.12 4.45 88.00 0.53 0.91 12.00
Coal 0.04 0.15 0.62 98.84 0.35 1.16
Gas 0.11 0.09 1.00 0.09 98.69 1.31
Directional to others 27.23 23.96 11.00 0.74 1.53 64.45
Net Directional Con. 2.46 −1.25 −1.00 −0.42 0.22 12.89

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas From

MAC 70.31 16.98 12.21 0.48 0.03 29.69
ISE.Wind 17.21 72.87 9.08 0.74 0.10 27.13
Crude Oil 13.02 9.46 74.87 1.39 1.26 25.13
Coal 0.99 1.42 2.29 94.82 0.48 5.18
Gas 0.57 1.04 1.67 0.60 96.12 3.88
Directional to others 31.79 28.90 25.26 3.21 1.87 91.03
Net Directional Con. 2.09 1.77 0.12 −1.98 −2.01 18.21

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas From

MAC 77.39 15.90 6.66 0.03 0.03 22.61
ISE.Wind 18.31 75.03 6.47 0.10 0.09 24.97
Crude Oil 6.91 6.67 85.61 0.03 0.78 14.39
Coal 0.01 0.18 0.17 99.26 0.38 0.74
Gas 0.04 0.18 0.91 0.14 98.73 1.27
Directional to others 25.27 22.92 14.21 0.29 1.27 63.97
Net Directional Con. 2.66 −2.05 −0.18 −0.44 0.01 12.79

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas From

MAC 64.25 32.47 1.69 0.03 1.56 35.75
ISE.Wind 33.77 64.35 1.33 0.05 0.50 35.65
Crude Oil 3.02 3.15 91.71 1.34 0.78 8.29
Coal 0.01 0.07 1.42 97.65 0.84 2.35
Gas 1.11 0.43 0.80 0.51 97.15 2.85
Directional to others 37.91 36.12 5.24 1.93 3.68 84.88
Net Directional Con. 2.16 0.47 −3.05 −0.42 0.84 16.98

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all

others. The total connectedness is in bold.
8
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Fig. 14. Benchmark model including ERIX Net Pairwise (Return System).
Table 5
Benchmark model including ERIX (Returns).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas ERIX From

MAC 62.15 15.98 4.36 0.04 0.14 17.32 37.85
ISE.Wind 15.37 54.65 3.02 0.05 0.08 26.83 45.33
Crude Oil 5.95 4.36 85.58 0.51 0.89 2.71 14.42
Coal 0.04 0.14 0.62 98.76 0.35 0.08 1.24
Gas 0.12 0.12 1.00 0.10 98.60 0.07 1.40
ERIX 16.73 26.62 1.89 0.04 0.05 54.67 45.35
Directional to others 38.21 47.22 10.90 0.74 1.51 47.01 145.59
Net Directional Con. 0.36 1.87 −3.53 −0.50 0.11 1.68 24.26

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ERIX From

MAC 53.87 14.14 9.31 0.36 0.02 22.30 46.13
ISE.Wind 14.15 56.86 7.58 0.73 0.15 20.55 43.14
Crude Oil 11.61 9.32 67.06 1.22 1.10 9.68 32.94
Coal 0.96 1.72 2.24 94.06 0.45 0.57 5.94
Gas 0.57 1.23 1.62 0.59 95.74 0.24 4.26
ERIX 22.39 19.61 7.48 0.26 0.07 50.19 49.81
Directional to others 49.68 46.03 28.23 3.15 1.79 53.34 182.22
Net Directional Con. 3.55 2.88 −4.71 −2.79 −2.47 3.53 30.37

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ERIX From

MAC 68.08 13.97 5.88 0.02 0.02 12.03 31.92
ISE.Wind 12.56 51.50 4.47 0.06 0.07 31.34 48.50
Crude Oil 6.70 6.49 82.73 0.04 0.74 3.29 17.27
Coal 0.01 0.17 0.17 99.14 0.37 0.13 0.86
Gas 0.04 0.20 0.89 0.13 98.49 0.25 1.51
ERIX 11.08 32.58 2.35 0.03 0.03 53.92 46.08
Directional to others 30.39 53.42 13.77 0.28 1.23 47.05 146.14
Net Directional Con. −1.53 4.92 −3.50 −0.58 −0.28 0.97 24.36

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ERIX From

(continued on next page)
considered, CO2 emissions levels are not clearly linked to economic
growth. Song et al. (2022) used the VAR-GARCH framework to exam-
ine the connectedness between wind and solar generation and found
9

dynamic volatility spillovers between wind and solar power; moreover,
these appear to be trending and periodic, with reliance on wind and
solar capacity resulting from new installations. Tzeremes et al. (2023)
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Table 5 (continued).
MAC 51.96 26.76 1.29 0.02 1.23 18.75 48.04
ISE.Wind 23.34 43.70 1.00 0.03 0.36 31.56 56.30
Crude Oil 2.90 3.40 91.12 1.31 0.70 0.56 8.88
Coal 0.01 0.07 1.38 97.58 0.83 0.12 2.42
Gas 1.06 0.47 0.73 0.50 97.10 0.15 2.90
ERIX 17.74 34.30 0.20 0.11 0.11 47.54 52.46
Directional to others 45.05 65.00 4.60 1.97 3.23 51.15 171.00
Net Directional Con. −2.99 8.71 −4.28 −0.45 0.33 −1.31 28.50

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
Table 6
Benchmark model including S&P500 (Returns).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas S&P500 From

MAC 48.63 12.70 3.39 0.03 0.11 35.14 51.37
ISE.Wind 15.63 54.78 3.06 0.05 0.07 26.41 45.22
Crude Oil 5.67 4.24 82.00 0.50 0.84 6.75 18.00
Coal 0.04 0.14 0.63 98.74 0.36 0.09 1.26
Gas 0.11 0.11 0.99 0.10 98.48 0.22 1.52
S&P500 32.26 20.24 3.71 0.04 0.16 43.59 56.41
Directional to others 53.71 37.44 11.79 0.71 1.53 68.60 173.78
Net Directional Con. 2.33 −7.78 −6.21 −0.55 0.01 12.19 28.96

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas S&P500 From

MAC 44.13 11.07 7.68 0.30 0.02 36.80 55.87
ISE.Wind 13.92 57.43 7.19 0.63 0.14 20.69 42.57
Crude Oil 11.12 8.15 63.79 1.19 1.10 14.65 36.21
Coal 0.97 1.51 2.27 93.48 0.46 1.30 6.52
Gas 0.57 1.24 1.70 0.59 95.46 0.44 4.54
S&P500 34.07 15.51 9.45 0.41 0.07 40.51 59.49
Directional to others 60.64 37.48 28.28 3.12 1.78 73.89 205.20
Net Directional Con. 4.77 −5.09 −7.93 −3.39 −2.75 14.40 34.20

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas S&P500 From

MAC 57.30 10.07 2.46 0.05 0.21 29.91 42.70
ISE.Wind 13.04 58.78 2.02 0.19 0.07 25.89 41.22
Crude Oil 3.58 2.50 88.94 0.37 1.06 3.55 11.06
Coal 0.09 0.17 0.85 98.56 0.12 0.21 1.44
Gas 0.28 0.10 1.22 0.30 98.05 0.05 1.95
S&P500 28.09 20.23 2.73 0.05 0.05 48.84 51.16
Directional to others 45.09 33.08 9.27 0.96 1.51 59.61 149.53
Net Directional Con. 2.38 −8.14 −1.78 −0.48 −0.44 8.45 24.92

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas S&P500 From

MAC 44.46 17.20 2.99 0.05 0.55 34.76 55.54
ISE.Wind 19.19 46.42 2.84 0.02 0.29 31.25 53.58
Crude Oil 5.52 4.81 82.43 0.48 0.75 6.00 17.57
Coal 0.01 0.07 0.57 98.77 0.51 0.07 1.23
Gas 0.42 0.38 0.86 0.13 97.68 0.52 2.32
S&P500 31.27 25.90 2.85 0.05 0.41 39.53 60.47
Directional to others 56.41 48.35 10.11 0.73 2.51 72.61 190.71
Net Directional Con. 0.86 −5.22 −7.47 −0.51 0.19 12.14 31.79

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
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tudied the relationship between energy transition, CO2 emissions,
conomic growth and information and communications technology
ICT) in the BRICS countries using the GMM-PVAR method for the
eriod 2000–2017. Their results indicate that energy transition is sig-
ificantly affected by carbon emissions and economic growth. Dogan
t al. (2022) examined the nexus between green finance and five types
f renewable energy (biofuels, fuel cell, geothermal, solar, and wind)
sing the TVPVAR method and concluded that dynamic connectedness
luctuates over time and is affected by economic events and news. Some
ther studies also take into account for the possible role of investment
entiment. In particular, Songa et al. (2019) used the Diebold and
10

d

ilmaz (2014) connectedness measure to investigate the relationship
etween the fossil energy and renewable energy markets as well as
nvestor sentiment. They found that there are stronger linkages between
olatilities compared to returns, and also that the fossil energy market,
specially crude oil, has a greater impact on the renewable energy stock
arket than investor sentiment. Our analysis below extends their study

y considering an updated sample as well as a wider set of indices
nd examining the possible impact of the COP policy decisions on the
volution of the connectedness parameters by testing for breaks and
oing sub-sample estimation as well.
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Fig. 15. Benchmark model including S&P500 Net Pairwise (Return System).
Fig. 16. Benchmark model including RENIXX Net Pairwise (Return System).
3. The United Nations Framework Convention on Climate Change

In June 1992, years of diplomatic efforts finally led to holding the
UN Conference on the Environment and Development (UNCED), also
known as the Earth Summit, and to the creation of three frameworks:
the UN Framework Convention on Climate Change (UNFCCC), the UN
Convention on Biological Diversity (UNCBD), and the UN Convention
to Combat Desertification (UNCCD). The governments of the signatory
countries became parties to these legally binding conventions and
11
began to meet regularly to discuss progress at the so-called Conferences
of Parties (COPs) on climate, biodiversity, and desertification.

The UNFCCC, signed by 197 countries as of 2015, has since be-
come the best known of the three conventions, with the 197 national
delegations being divided into five regional groups: Africa, Asia, Latin
America, Western Europe, Eastern Europe and Other States. Starting
with COP1 in Berlin in 1995, the UNFCCC Secretariat has been con-
vening its signatories yearly at what has become the world’s largest
climate event. Growing interest from civil society groups, journalists,
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Fig. 17. Benchmark model including ECO Net Pairwise (Return System).
Fig. 18. Benchmark model Net Pairwise (Volatility System).
business representatives, academics, and others has meant that recent
COP meetings have attracted thousands of participants worldwide.

The pace of progress in tackling climate change has differed across
the 197 signatories. In some cases, individual countries have been
developing and publishing new versions of their national action plans
to deal with climate issues. The departure of the US, the second
largest emitter of greenhouse gases, from the Paris Agreement in 2019
severely affected the global community’s overall ability to address
climate change. The US re-joined the agreement in early 2021, thus
bringing renewed focus and momentum. Therefore, COP26, which
12
was held in Glasgow on 31 October–13 November 2021, marked an
important milestone. By its conclusion, 151 countries had submitted
new climate plans (nationally determined contributions) to reduce
their emissions by 2030. The goal of limiting temperature rise to 1.5
degrees 𝐶 would require reducing global emissions by half by 2030.
The 2030 targets previously set by various major emitters were still
very weak (especially in the case of Australia, China, Saudi Arabia,
Brazil and Russia) and in those countries credible pathways to achieve
net-zero targets were still lacking. The COP26 agreements represent
some encouraging progress in this direction: all countries have been
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Fig. 19. Benchmark model including ERIX Net Pairwise (Volatility System).
Fig. 20. Benchmark model including S&P500 Net Pairwise (Volatility System).
asked to strengthen their 2030 targets by the end of 2022 to align them
with the Paris Agreement’s temperature goals, and those that had not
yet done so have also been asked to submit long-term strategies aiming
to reach net-zero emissions by 2050.

4. The model

We use the methodology proposed by Diebold and Yilmaz (2014)
to examine the connectedness between the fossil and renewable energy
13
indices considered in this study and their dynamic spillovers. This
approach is based on a vector auto-regression (VAR) model specified
as follows:

𝐴𝑡 =
𝑃
∑

𝑖=1
𝛹𝑖𝐴𝑡−1 + 𝜖𝑡, (1)

where 𝐴𝑡 is an 𝑁 × 1 vector of endogenous variables, 𝑖 indicates the
VAR order, and 𝜖 is a vector of 𝑖𝑖𝑑 error terms. The moving average
𝑡
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Fig. 21. Benchmark model including RENIXX Net Pairwise (Volatility System).
Fig. 22. Benchmark model including ECO Net Pairwise (Volatility System).
representation of the VAR(p) process is given by:

𝐴𝑡 =
∝
∑

𝑖=1
𝑍𝑖𝜖𝑡−1, (2)

where the 𝑁 × 𝑁 coefficient matrices 𝑍𝑖 are recursively defined as
𝑍𝑖 =

∑𝑃
𝑘=1 𝑍𝑖−𝑘 with 𝑍0 being the 𝑁 × 𝑁 identity matrix. We use

the generalized decomposition of the covariance matrix of 𝜖𝑡 calculated
as in Koop et al. (1996) and Pesaran and Shin (1998). The main
advantage of this method over the Cholesky decomposition is that the
14
resulting spillover indices are robust to the ordering of the variables.
The generalized version of the 𝐻-step-ahead forecast-error variance
decomposition has the following form:

𝑐𝑔𝑖𝑗 (𝐻) =
𝜎−1𝑗𝑗

∑𝐻−1
ℎ=0

(

𝜖′𝑖𝑍ℎ
∑

𝜖𝑗
)2

∑𝐻−1
ℎ=0

(

𝜖′𝑖𝑍ℎ
∑

𝑍 ′
ℎ𝜖𝑗

)

, (3)

where the term 𝜎𝑗𝑗 is a vector of standard deviations of the error terms
for the 𝑗th equation and 𝑖th is an 𝑁×1 vector, with 1 for the 𝑖th equation
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Fig. 23. Benchmark model Net Directional (Return System).
Fig. 24. Benchmark model including ERIX Net Directional (Return System).
and 0 elsewhere. In order to create spillover indices, each entry of the
variance decomposition table is normalized by its row sum as follows:

𝑐𝑔𝑖𝑗 (𝐻) =
𝑐𝑔𝑖𝑗 (𝐻)

∑𝑁
𝑗=1 𝑐

𝑔
𝑖𝑗 (𝐻)

(4)

Having calculated the spillovers from market 𝑗 to market 𝑖, for all 𝑖
and 𝑗, three spillover indices are then constructed, namely: (i) the total
spillover index, which measures spillovers across all markets, and has
15
the following form:

𝑆𝑔(𝐻) =

∑𝑁
𝑖,𝑗=1,𝑖≠𝑗 𝑐

𝑔
𝑖𝑗 (𝐻)

𝑁
∗ 100 (5)

(ii) the spillover to market 𝑖 from all other markets, which is defined
as

𝑆𝑔 (𝐻) =

∑𝑁
𝑗=1,𝑖≠𝑗 𝑐

𝑔
𝑖𝑗 (𝐻)

∗ 100 (6)
𝑖,0 𝑁
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Fig. 25. Benchmark model including S&P500 Net Directional (Return System).
Fig. 26. Benchmark model including RENIXX Net Directional (Return System).
and (iii) the spillover from market 𝑖 to all other markets, which is equal
to

𝑆𝑔
0,𝑖(𝐻) =

∑𝑁
𝑗=1,𝑖≠𝑗 𝑐

𝑔
𝑗𝑖(𝐻)

𝑁
∗ 100 (7)

In the analysis that follows, we provide estimates of the spillover
indices given by Eqs. 5–(7) for both the returns and volatilities of all
the fossil and renewable energy indices selected.

Furthermore, we use a rolling window approach to estimate 10-step
ahead dynamic spillover indices based on a 40-week window.
16
5. Empirical analysis

The dataset used for the analysis includes conventional and renew-
able energy daily indices retrieved from Bloomberg. More specifically,
the benchmark model comprises five indices, namely: the MAC Global
Solar Energy Index (MAC), the ISE Global Wind Energy Index (ISE
Wind), the West Texas Intermediate Crude Oil Index, the Newcastle
Coal Index, and the Natural Gas Index. One of the following four
renewable energy indices is then added in turn to the benchmark
model: the European Renewable Energy Index (ERIX), the S&P500
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Fig. 27. Benchmark model including ECO Net Directional (Return System).
Fig. 28. Benchmark model Net Directional (Volatility System).
Global Clean Energy Index (S&P500), the World Renewable Energy
Index (RENIXX), and the Wilder Hill Clean Energy Index (ECO). The
sample period goes from 25/03/2010 to 23/12/2021, for a total of
2943 observations. The rationale for ending the sample in December
2021 is that the most recent key policy decisions with a possible
impact on the linkages of interest were taken at COP 26 in Glasgow,
31 October–12 November 2021, whilst the following COP27, held
in Sharm el-Sheik, Egypt, on 6–18 November 2022 was inconclusive
(specifically, no commitments to phase out fossil fuels were made),
and thus extending the sample size would not provide any important
17
additional information concerning the issues being examined. Table 1
provides precise variable definitions and data sources. Daily returns are
then calculated as the log difference of consecutive daily prices indices,
whereas their volatility is modelled as a GARCH (1,1) process. Figs. 1
and 2 show returns and volatility for both fossil and renewable energy
stock indices. Visual inspection reveals similar patterns for the two sets
of series and the presence of spikes, which generally correspond to the
dates of COP meetings. These observations, together with the evidence
discussed in the literature review, leads us to formulate the following
two hypotheses to be tested: (1) there exist statistically significant
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Fig. 29. Benchmark model including ERIX Net Directional (Volatility System).
Fig. 30. Benchmark model including S&P500 Net Directional (Volatility System).
static and dynamic linkages between the fossil and renewable energy
markets, which can be measured by their degree of connectedness;
(2) the degree of connectedness varies over time in response to policy
decisions taken at the COP meetings, becoming stronger when climate
policies are effective. Table 2 reports descriptive statistics for fossil and
renewable energy stock index returns. It can be seen that ERIX and
RENIXX exhibit the highest daily mean (0.03%), followed by ISE Wind,
Crude Oil, and Coal (0.02%). The Natural Gas Index has the highest
standard deviation (2.98%), followed by Crude Oil (2.64%) and MAC
18
(2.23%). Of the renewable energy indices, ECO is the most volatile
(2.00%), whereas S&P500 has the lowest mean returns (0.01%) and
volatility (1.51%). Excess skewness is exhibited by ISE Wind and Coal,
whilst all series appear to be leptokurtic, especially in the case of ISE
Wind, Crude Oil and Coal.

The first (benchmark) model estimated to investigate both static and
dynamic connectedness following the approach of Diebold and Yilmaz
(2014) includes five widely used energy indices for both renewable and
fossil energy sources (MAC, ISE, Crude Oil, Coal and Natural Gas). As
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Fig. 31. Benchmark model including RENIXX Net Directional (Volatility System).
Fig. 32. Benchmark model including ECO Net Directional (Volatility System).
already mentioned, the analysis is carried out for both returns and their
volatilities, the latter being modelled as a GARCH(1,1)".2

The static results are presented in Tables 4–8 for returns, and in
Tables 9–13 for their volatilities. These tables report the percentage
contribution from 𝑖 to 𝑗 in each case. The row ‘‘Directional to others’’
presents the total spillover effects from each variable to all others, while
the last column, ‘‘From’’, reports the total spillover received by each

2 These results are not reported for space reasons but are available upon
request.
19
series from all others. Total connectedness is in bold (see Figs. 11 and
12).

The benchmark model for returns yields an estimate of total con-
nectedness of 12.89%, with MAC having a strong effect on ISE Wind
(20.96%). MAC and Gas appear to be the two givers, whereas ISE
Wind, Crude Oil and Coal are the receivers. In the extended system
including in turn ERIX, S&P500, RENIXX and ECO the results (Tables 5–
8) suggest that the additional variable is in each case the biggest
giver in the corresponding system, with ERIX contributing 45.35%,
S&P500 56.41%, RENIXX 49.35%, and ECO 52.00%. Furthermore,
total connectedness is higher (on average, twice as big) in all cases
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Table 7
Benchmark model including RENIXX (Returns).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas RENIXX From

MAC 53.98 13.82 3.80 0.02 0.12 28.25 46.02
ISE.Wind 16.78 59.96 3.30 0.06 0.07 19.83 40.04
Crude Oil 5.91 4.30 84.70 0.51 0.88 3.71 15.30
Coal 0.04 0.15 0.62 98.83 0.35 0.01 1.17
Gas 0.12 0.10 1.00 0.09 98.62 0.07 1.38
RENIXX 29.87 16.78 2.57 0.05 0.08 50.65 49.35
Directional to others 52.72 35.14 11.29 0.74 1.50 51.87 153.26
Net Directional Con. 6.69 −4.90 −4.01 −0.43 0.12 2.52 25.54

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas RENIXX From

MAC 50.69 12.34 8.80 0.34 0.02 27.81 49.31
ISE.Wind 14.58 61.77 7.65 0.65 0.09 15.27 38.23
Crude Oil 12.00 8.73 68.95 1.28 1.16 7.88 31.05
Coal 0.98 1.49 2.28 94.29 0.47 0.50 5.71
Gas 0.57 1.10 1.66 0.60 95.77 0.31 4.23
RENIXX 31.36 13.75 6.45 0.19 0.04 48.21 51.79
Directional to others 59.47 37.40 26.84 3.06 1.79 51.77 180.33
Net Directional Con. 10.16 −0.84 −4.21 −2.66 −2.44 −0.02 30.05

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas RENIXX From

MAC 60.17 11.55 4.05 0.02 0.01 24.19 39.83
ISE.Wind 13.97 60.84 3.97 0.07 0.09 21.06 39.16
Crude Oil 5.50 5.13 85.42 0.02 1.03 2.89 14.58
Coal 0.01 0.15 0.14 99.26 0.37 0.06 0.74
Gas 0.03 0.21 1.22 0.13 98.40 0.00 1.60
RENIXX 26.07 18.54 2.50 0.07 0.02 52.80 47.20
Directional to others 45.58 35.59 11.89 0.31 1.52 48.21 143.10
Net Directional Con. 5.75 −3.57 −2.69 −0.43 −0.08 1.01 23.85

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas RENIXX From

MAC 43.97 22.26 1.20 0.02 1.08 31.47 56.03
ISE.Wind 25.10 47.66 1.01 0.03 0.36 25.85 52.34
Crude Oil 3.36 3.42 88.21 1.27 0.93 2.80 11.79
Coal 0.00 0.08 1.38 97.66 0.84 0.04 2.34
Gas 1.10 0.47 1.11 0.51 96.00 0.82 4.00
RENIXX 31.88 23.12 0.70 0.12 0.70 43.48 56.52
Directional to others 61.45 49.34 5.41 1.95 3.91 60.98 183.03
Net Directional Con. 5.42 −3.01 −6.39 −0.39 −0.09 4.45 30.50

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
Table 8
Benchmark model including ECO (Returns).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas ECO From

MAC 48.88 12.61 3.43 0.03 0.11 34.94 51.12
ISE.Wind 17.35 61.37 3.42 0.05 0.08 17.72 38.63
Crude Oil 5.61 4.17 80.75 0.49 0.83 8.16 19.25
Coal 0.04 0.15 0.63 98.80 0.35 0.03 1.20
Gas 0.12 0.11 0.99 0.09 98.48 0.21 1.52
ECO 34.41 12.62 4.82 0.03 0.12 48.00 52.00
Directional to others 57.53 29.65 13.29 0.70 1.49 61.07 173.72
Net Directional Con. 6.40 −8.97 −5.96 −0.50 −0.03 9.07 27.29

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ECO From

MAC 45.96 11.13 7.99 0.31 0.02 34.58 54.04
ISE.Wind 14.66 61.64 7.71 0.59 0.09 15.32 38.36
Crude Oil 11.03 7.94 63.30 1.14 1.08 15.51 36.70
Coal 0.99 1.37 2.22 93.14 0.48 1.80 6.86
Gas 0.57 1.03 1.68 0.60 95.55 0.58 4.45
ECO 33.20 11.35 10.76 0.50 0.13 44.05 55.95

(continued on next page)
compared to the benchmark model, which implies that the aggregate
renewable energy indices play a major role. By contrast, in the case
20
of the corresponding volatilities (Tables 10–13), although the same
indices are still the main givers, total connectedness is lower compared
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Table 8 (continued).
Directional to others 60.44 32.83 30.37 3.14 1.79 67.79 196.36
Net Directional Con. 6.40 −5.53 −6.34 −3.72 −2.66 11.84 32.73

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ECO From

MAC 50.07 10.20 4.26 0.02 0.02 35.44 49.93
ISE.Wind 15.20 60.51 5.27 0.07 0.08 16.87 37.49
Crude Oil 6.19 5.89 77.72 0.03 0.72 9.46 22.28
Coal 0.01 0.16 0.17 99.24 0.37 0.05 0.76
Gas 0.04 0.19 0.92 0.13 98.71 0.01 1.29
ECO 34.39 10.45 6.03 0.01 0.01 49.12 50.88
Directional to others 55.82 26.90 16.65 0.26 1.19 61.82 162.64
Net Directional Con. 5.89 −10.59 −5.63 −0.51 −0.09 10.94 27.11

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ECO From

MAC 43.15 22.10 1.10 0.02 1.03 32.60 56.85
ISE.Wind 25.96 48.82 1.09 0.04 0.39 23.70 51.18
Crude Oil 2.76 3.20 87.03 1.27 0.66 5.09 12.97
Coal 0.01 0.07 1.41 97.55 0.84 0.12 2.45
Gas 1.06 0.49 0.70 0.50 96.11 1.13 3.89
ECO 33.02 20.37 2.10 0.08 0.62 43.81 56.19
Directional to others 62.81 46.23 6.40 1.91 3.54 62.63 183.53
Net Directional Con. 5.96 −4.95 −6.57 −0.54 −0.35 6.45 30.59

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
Table 9
Benchmark model (Volatility).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas From

MAC 97.14 1.92 0.86 0.07 0.02 2.86
ISE.Wind 1.29 98.61 0.09 0.00 0.01 1.39
Crude Oil 4.06 0.36 95.41 0.10 0.07 4.59
Coal 0.05 0.00 0.36 98.86 0.73 1.14
Gas 0.06 0.04 0.48 0.28 99.14 0.86
Directional to others 5.45 2.33 1.78 0.44 0.83 10.84
Net Directional Con. 2.59 0.94 −2.80 −0.70 −0.02 2.17

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas From

MAC 68.70 21.41 9.61 0.02 0.26 31.30
ISE.Wind 18.57 69.65 11.32 0.06 0.39 30.35
Crude Oil 4.97 16.45 78.44 0.01 0.13 21.56
Coal 0.16 0.09 0.46 93.08 6.21 6.92
Gas 0.06 2.11 0.74 0.54 96.56 3.44
Directional to others 23.75 40.06 22.13 0.64 6.99 93.57
Net Directional Con. −7.55 9.71 0.57 −6.28 3.55 18.71

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas From

MAC 99.42 0.22 0.19 0.15 0.02 0.58
ISE.Wind 0.24 99.70 0.04 0.00 0.02 0.30
Crude Oil 2.07 0.19 97.50 0.03 0.21 2.50
Coal 0.30 0.02 0.04 98.20 1.44 1.80
Gas 0.09 0.19 0.45 0.12 99.14 0.86
Directional to others 2.70 0.62 0.72 0.31 1.68 6.03
Net Directional Con. 2.12 0.32 −1.78 −1.49 0.83 1.21

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas From

MAC 55.42 36.54 7.28 0.52 0.24 44.58
ISE.Wind 38.11 52.57 9.18 0.08 0.07 47.43
Crude Oil 14.05 7.52 77.75 0.42 0.26 22.25
Coal 0.26 0.18 1.13 97.77 0.66 2.23
Gas 0.04 0.13 0.51 0.08 99.24 0.76
Directional to others 52.47 44.37 18.10 1.09 1.23 117.26
Net Directional Con. 7.89 −3.07 −4.15 −1.14 0.47 23.45

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
21



Economic Modelling 123 (2023) 106273G.M. Caporale et al.

t
a
o
i
b
f
t
s
s
a
d
t
I
i
w
l
t
a
f
a
c
H
c

Table 10
Benchmark model including ERIX (Volatility).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas ERIX From

MAC 72.02 1.37 0.56 0.08 0.02 25.96 27.98
ISE.Wind 1.03 95.66 0.08 0.00 0.01 3.21 4.34
Crude Oil 3.61 0.33 93.62 0.09 0.07 2.27 6.38
Coal 0.04 0.00 0.37 98.79 0.73 0.08 1.21
Gas 0.04 0.04 0.47 0.27 99.11 0.06 0.89
ERIX 20.49 2.38 0.20 0.01 0.03 76.88 23.12
Directional to others 25.21 4.12 1.68 0.46 0.86 31.57 63.90
Net Directional Con. −2.76 −0.22 −4.70 −0.75 −0.03 8.45 10.65

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ERIX From

MAC 56.91 18.26 7.82 0.02 0.17 16.81 43.09
ISE.Wind 13.31 50.47 8.10 0.05 0.27 27.80 49.53
Crude Oil 4.28 14.98 69.32 0.01 0.09 11.31 30.68
Coal 0.17 0.09 0.48 92.87 6.29 0.09 7.13
Gas 0.04 2.19 0.66 0.54 93.63 2.93 6.37
ERIX 13.76 32.60 6.31 0.04 0.48 46.81 53.19
Directional to others 31.56 68.13 23.38 0.65 7.31 58.95 189.97
Net Directional Con. −11.52 18.61 −7.30 −6.48 0.94 5.76 31.66

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ERIX From

MAC 91.52 0.17 0.01 0.19 0.04 8.06 8.48
ISE.Wind 0.27 99.30 0.01 0.01 0.01 0.41 0.70
Crude Oil 0.85 0.03 94.60 0.01 0.07 4.44 5.40
Coal 0.39 0.00 0.09 98.90 0.55 0.07 1.10
Gas 0.01 0.10 0.03 0.07 99.55 0.23 0.45
ERIX 10.60 0.18 0.21 0.18 0.06 88.77 11.23
Directional to others 12.12 0.49 0.35 0.47 0.72 13.21 27.36
Net Directional Con. 3.64 −0.22 −5.05 −0.63 0.28 1.98 4.56

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ERIX From

MAC 41.29 26.46 2.14 0.26 0.56 29.29 58.71
ISE.Wind 22.18 37.76 1.74 0.00 0.10 38.23 62.24
Crude Oil 8.98 4.40 82.42 0.41 0.49 3.30 17.58
Coal 0.46 0.01 0.67 97.54 1.24 0.08 2.46
Gas 0.02 0.01 0.84 0.19 98.31 0.63 1.69
ERIX 22.05 27.95 1.13 0.09 0.05 48.73 51.27
Directional to others 53.68 58.83 6.53 0.96 2.44 71.52 193.95
Net Directional Con. −5.33 −3.41 −11.06 −1.50 0.75 20.26 32.33

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
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o the model for returns. The dynamic analysis (see Figs. 3–7 for returns
nd Figs. 8–12 for their volatilities) suggests the possible presence
f two structural breaks in the connectedness coefficients, which we
nvestigate next by applying the Bai and Perron (1998) endogenous
reak tests. The results indicate that there are two breaks in all cases,
or both returns and their volatilities, the first on 29/10/2012, and
he second on 6/3/2020 (see Table 3). Therefore, we re-run both the
tatic and the dynamic analysis for each of the three corresponding sub-
amples (before the first break, between the first and the second break,
nd finally after the second break). These estimates suggest a higher
egree of spillovers during the first and third sub-samples compared
o the second one in all cases, for both returns and their volatilities.
nterestingly, the first break follows the 2011 UNCCC (COP17) meet-
ng held in Durban, South Africa, 28 November–11 December 2011,
hich was not very successful, despite a new legally binding treaty to

imit carbon emissions being agreed, since experts soon concluded that
his was not sufficient to avoid global warming beyond 2.0 degrees
nd that more decisive action would be required. The second break
ollows instead COP25, Madrid, 2–13 December 2019. This was also
disappointing event, since any decisions concerning carbon emission

uts were postponed to the next climate conference, namely COP26.
owever, precisely because of the perceived failure of this meeting,
22

alls for further action soon gathered momentum and, in a briefing a
iven exactly on 6/3/2020 about the UN Climate Change Conference
OP26, expected to take place in Glasgow in November 2020 (then
ostponed to 31 October–13 November 2021 due to COVID-19), UN
ecretary-General António Guterres called 2020 “a pivotal year for how
e address climate change”, adding that “success in Glasgow depends
n countries, the private sector and civil society demonstrating that
hey are taking significant steps to raise ambition on cutting greenhouse
as emissions, building resilience to climate and financing both.”3 He
isted four priorities for COP26: first, that national climate plans – the
DCs – should show that countries are working to implement the Paris
greement, and that each new NDC should show more ambition than

he previous one; second, that all nations should adopt strategies to
each net zero emissions by 2050; third, the development of a robust
ackage of projects and initiatives to help communities and nations
dapt to climate disruption and build resilience against future impacts;
ourth, the provision of finance, with developed countries at COP26
elivering on their commitment to mobilize 100 billion dollars a year
y 2020. Key measures towards achieving at least some of these goals

3 See https://unfccc.int/news/2020-is-a-pivotal-year-for-climate-un-chief-
nd-cop26-president.

https://unfccc.int/news/2020-is-a-pivotal-year-for-climate-un-chief-and-cop26-president
https://unfccc.int/news/2020-is-a-pivotal-year-for-climate-un-chief-and-cop26-president
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Table 11
Benchmark model including S&P500 (Volatility).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas S&P500 From

MAC 56.78 0.85 0.35 0.04 0.04 41.93 43.22
ISE.Wind 1.22 95.52 0.06 0.00 0.00 3.19 4.48
Crude Oil 3.57 0.27 87.20 0.09 0.08 8.79 12.80
Coal 0.05 0.00 0.37 98.84 0.72 0.02 1.16
Gas 0.06 0.06 0.49 0.28 99.07 0.04 0.93
S&P500 36.33 1.50 1.25 0.01 0.03 60.89 39.11
Directional to others 41.21 2.68 2.53 0.42 0.88 53.97 101.69
Net Directional Con. −2.00 −1.80 −10.27 −0.74 −0.05 14.87 16.95

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas S&P500 From

MAC 46.42 13.65 5.31 0.03 0.14 34.45 53.58
ISE.Wind 14.87 46.92 6.20 0.06 0.22 31.73 53.08
Crude Oil 5.72 14.48 65.45 0.00 0.09 14.26 34.55
Coal 0.05 0.08 0.70 92.77 6.36 0.04 7.23
Gas 0.09 2.08 0.63 0.54 95.59 1.07 4.41
S&P500 26.22 23.74 6.75 0.04 0.23 43.01 56.99
Directional to others 46.95 54.03 19.60 0.68 7.04 81.55 209.85
Net Directional Con. −6.63 0.95 −14.96 −6.55 2.63 24.57 34.98

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas S&P500 From

MAC 74.54 0.17 0.15 0.11 0.02 25.01 25.46
ISE.Wind 0.23 98.99 0.00 0.00 0.05 0.73 1.01
Crude Oil 1.93 0.06 93.78 0.03 0.27 4.04 6.22
Coal 0.31 0.00 0.03 98.20 1.44 0.02 1.80
Gas 0.12 0.15 0.26 0.06 99.28 0.13 0.72
S&P500 27.52 0.08 1.07 0.08 0.13 71.12 28.88
Directional to others 30.12 0.46 1.51 0.28 1.80 29.93 64.10
Net Directional Con. 4.65 −0.55 −4.71 −1.52 1.08 1.05 10.68

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas S&P500 From

MAC 36.42 23.17 5.44 0.31 0.16 34.50 63.58
ISE.Wind 25.77 32.28 7.16 0.03 0.03 34.74 67.72
Crude Oil 15.21 15.33 50.87 0.15 0.03 18.40 49.13
Coal 0.17 0.17 0.47 98.61 0.53 0.05 1.39
Gas 0.03 0.65 0.11 0.07 99.06 0.08 0.94
S&P500 31.03 24.79 7.16 0.08 0.08 36.86 63.14
Directional to others 72.22 64.10 20.34 0.64 0.82 87.78 245.90
Net Directional Con. 8.64 −3.62 −28.79 −0.74 −0.12 24.64 40.98

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
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ere in fact agreed at COP26, as previously detailed (see Section 3
bove).

Net pairwise connectedness, which measures how information is
ransmitted between markets, is shown in Figs. 13–17 for returns, and
n Figs. 18–22 for their volatilities. As can be seen, the net pairwise
ontribution of all variables fluctuates between positive and negative,
hich possibly reflects policy changes as previously argued. It also
ppears that the transmission mechanism is not dominated by any
articular market. For example, the results for the MAC-ISE WIND pair
ndicate that MAC was a recipient of information from ISE WIND at the
eginning of the sample period, but subsequently became a contributor
o ISE WIND. In general the degree of connectedness is weak at the
eginning of the sample and over the period from 2019 to 2020, and
lightly stronger afterwards.

Figs. 23 to 32 show the net directional spillovers for both the
eturn and volatility systems, with positive spillovers indicating infor-
ation transmission to all other markets, while negative ones measure

he contribution from those. The results suggest that, in both sets of
enchmark models, markets are mainly affected by MAC and also to
ome extent by ISE WIND, particularly during the periods around the
OP17 and COP26 meetings. Moreover, the models including ERIX
roduce similar evidence. By contrast, all other specifications lead
o the conclusion that the renewable energy indices were the main
23
ransmitters during most of the sample period, especially in the case
f S&P500 and ECO; moreover, the contributions from these indices
ere slightly higher around the COP17 and COP26 meetings compared

o other COP meeting periods. On the whole, the empirical evidence
iscussed above provides convincing support to the two hypotheses of
nterest, namely it confirms the existence of sizeable return and volatil-
ty spillovers between the two sets of markets considered, and also that
uch spillovers are generally stronger during periods characterized by
ore effective climate policies resulting from successful COP meetings.

. Conclusions

This paper contributes to the literature on renewable energy and
limate change by investigating static and dynamic connectedness be-
ween the first and second moments of fossil and renewable energy
tock indices in the last decade at the daily frequency. For this purpose
he Diebold and Yilmaz (2014) methodology is applied; in addition,
ndogenous break tests are implemented to detect any shifts that might
ave occurred over time and, two breaks having been identified, sub-
ample estimates are also obtained and the findings are related to
olicies agreed in the COP meetings. The analysis extends in several
ays that carried out by Songa et al. (2019) in an earlier study,

ince it considers a longer sample as well as a wider set of indices,
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Table 12
Benchmark model including RENIXX (Volatility).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas RENIXX From

MAC 63.62 1.19 0.65 0.08 0.04 34.43 36.38
ISE.Wind 1.19 96.83 0.10 0.00 0.01 1.87 3.17
Crude Oil 3.75 0.33 91.08 0.09 0.08 4.67 8.92
Coal 0.05 0.00 0.36 98.83 0.73 0.02 1.17
Gas 0.07 0.05 0.47 0.29 99.10 0.01 0.90
RENIXX 29.79 1.40 1.35 0.00 0.02 67.44 32.56
Directional to others 34.86 2.97 2.92 0.46 0.87 41.01 83.09
Net Directional Con. −1.52 −0.20 −6.00 −0.71 −0.03 8.46 13.85

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas RENIXX From

MAC 52.23 16.20 6.95 0.03 0.16 24.44 47.77
ISE.Wind 14.64 54.82 8.63 0.05 0.27 21.59 45.18
Crude Oil 4.62 15.24 71.58 0.00 0.08 8.48 28.42
Coal 0.16 0.09 0.48 92.97 6.26 0.04 7.03
Gas 0.06 2.08 0.60 0.57 95.84 0.85 4.16
RENIXX 23.74 22.42 4.94 0.02 0.02 48.86 51.14
Directional to others 43.21 56.03 21.59 0.68 6.80 55.39 183.70
Net Directional Con. −4.56 10.84 −6.82 −6.35 2.64 4.25 30.62

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas RENIXX From

MAC 79.05 0.12 0.02 0.16 0.06 20.58 20.95
ISE.Wind 0.14 99.76 0.03 0.01 0.01 0.06 0.24
Crude Oil 1.14 0.09 91.10 0.02 0.11 7.53 8.90
Coal 0.36 0.00 0.11 98.94 0.58 0.01 1.06
Gas 0.05 0.15 0.02 0.07 99.69 0.03 0.31
RENIXX 23.29 0.06 1.30 0.28 0.78 28.21 55.97
Directional to others 24.97 0.43 1.30 0.28 0.78 28.21 55.97
Net Directional Con. 4.02 0.19 −7.60 −0.78 0.47 3.70 9.33

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas RENIXX From

MAC 37.55 23.97 2.51 0.33 0.60 35.05 62.45
ISE.Wind 25.33 43.73 2.13 0.01 0.08 28.72 56.27
Crude Oil 10.15 4.69 78.48 0.47 0.26 5.94 21.52
Coal 0.44 0.01 0.79 97.15 1.36 0.25 2.85
Gas 0.00 0.01 0.83 0.21 98.71 0.24 1.29
RENIXX 28.42 17.37 2.44 0.02 0.06 51.69 48.31
Directional to others 64.34 46.06 8.70 1.04 2.36 70.20 192.70
Net Directional Con. 1.89 −10.21 −12.83 −1.81 1.06 21.89 32.12

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
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t allows for parameter shifts and provides a policy interpretation of
he detected spillover changes. The results suggest that the renewable
nergy indices under examination play a significant role in terms of
onnectedness and that markets have reacted to the policy measures
dopted at the COP meetings. In particular, both the unsuccessful
OP17 held in Durban in 2011 and the anticipation of decisive action at
he then forthcoming COP26 in Glasgow to be held in 2021 affected the
egree of connectedness of the estimated systems including both fossil
nd renewable energy indices. These findings confirm the validity of
he two hypotheses formulated at the outset concerning the existence
f linkages between the two sets of markets considered and their
trengthening in the presence of more decisive policy actions to combat
limate change.

Although the existence of significant spillovers between the two
ypes of markets had already been established in previous papers (see,
.g., Reboredo et al., 2017; Reboredo and Ugolini, 2018; Songa et al.,
019; Liu and Shigeyuki, 2020) , our analysis provides an additional,
mportant piece of information, namely the fact that such linkages
ppear to be affected by policy changes. More specifically, it is clear
hat they are weaker during periods when less effective climate change
olicies are in place, whilst more decisive measures and tighter targets
end to strengthen spillover effects. The main transmission mechanism
s likely to be through the impact of these policies on the relative value
24

c

f stocks in the two sets of markets, specifically by driving up the price
f those in the renewable sector. This confirms the crucial importance
f policy intervention and support for renewable energy to tackle
limate change. It is only to be hoped that the COP26 agreements will
e fully implemented and followed by even more ambitious targets to
romote the use of renewable energy and reduce global warming with
ts devastating effects on the environment. To be more precise, a variety
f policy tools are available and should be considered by national
overnments. They include stringent emission ceilings to be imposed
n industries as well as individual car users, and fiscal incentives for
lean energy such as lower tax rates and direct subsidies to promote
he production and usage of renewable energy. The adoption of such
olicies also affects the behaviour of market participants by making
nvestment in renewable energy (as opposed to fossil fuel) stocks more
ppealing. This is important to promote sustainable development which
s compatible with the preservation of the planet. Moreover, it implies
hat investors would be well advised to pay close attention to the
ecisions taken at the COP meetings and their implementation by
ational governments with the aim of constructing profitable asset
ortfolios. Finally, it should be acknowledged that the present study has
ome limitations. In particular, alternative model specifications, such
s multivariate GARCH models, could be considered as a robustness
heck. Further, policy announcements, other than those made during
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Table 13
Benchmark model including ECO (Volatility).

Variables Whole sample

MAC ISE.Wind Crude Oil Coal Gas ECO From

MAC 60.65 1.07 0.39 0.05 0.02 37.83 39.35
ISE.Wind 1.13 97.00 0.06 0.00 0.01 1.81 3.00
Crude Oil 3.35 0.27 87.86 0.09 0.06 8.37 12.14
Coal 0.05 0.00 0.39 98.83 0.73 0.00 1.17
Gas 0.05 0.04 0.46 0.28 98.89 0.28 1.11
ECO 35.90 1.65 1.12 0.00 0.01 61.32 38.68
Directional to others 40.47 3.04 2.41 0.42 0.83 48.28 95.45
Net Directional Con. 1.12 0.03 −9.73 −0.75 −0.27 9.60 15.91

First Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ECO From

MAC 49.78 14.68 6.28 0.01 0.14 29.10 50.22
ISE.Wind 15.25 56.32 8.73 0.05 0.28 19.37 43.68
Crude Oil 4.51 14.23 70.42 0.02 0.08 10.73 29.58
Coal 0.15 0.09 0.44 93.01 6.19 0.13 6.99
Gas 0.05 1.93 0.62 0.53 96.42 0.44 3.58
ECO 22.46 19.96 9.33 0.02 0.16 48.07 51.93
Directional to others 42.43 50.90 25.39 0.63 6.84 59.77 185.97
Net Directional Con. −7.78 7.22 −4.18 −6.35 3.26 7.84 30.99

Second Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ECO From

MAC 44.26 0.40 18.72 0.04 0.04 36.53 55.74
ISE.Wind 1.69 94.16 2.02 0.02 0.01 2.09 5.84
Crude Oil 15.17 0.93 55.86 0.02 0.04 27.98 44.14
Coal 0.27 0.01 0.02 98.84 0.74 0.12 1.16
Gas 0.03 0.04 0.24 0.19 99.43 0.07 0.57
ECO 28.13 1.10 26.36 0.02 0.05 44.34 55.66
Directional to others 45.28 2.49 47.36 0.30 0.89 66.80 163.11
Net Directional Con. −10.45 −3.35 3.22 −0.87 0.32 11.13 27.18

Third Sub-sample

MAC ISE.Wind Crude Oil Coal Gas ECO From

MAC 54.67 9.34 0.15 0.64 0.77 34.43 45.33
ISE.Wind 20.86 57.23 0.24 0.02 0.02 21.63 42.77
Crude Oil 0.14 0.08 98.73 0.37 0.52 0.16 1.27
Coal 0.42 0.01 1.63 93.69 4.18 0.07 6.31
Gas 1.63 0.04 0.56 0.94 96.67 0.16 3.33
ECO 34.03 11.17 0.14 0.07 0.07 54.51 45.49
Directional to others 57.09 20.63 2.73 2.03 5.56 56.45 144.49
Net Directional Con. 11.76 −22.14 1.47 −4.28 2.23 10.97 24.08

Note: The table reports in each case the contributions from i to j. The row ‘‘Directional to others’’ shows the spillover effects
from each variable to all others, while the last column, ‘‘From’’, reports the total spillover received by each variable from all
others. The total connectedness is in bold.
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OP meetings, could be included since they could also affect the degree
f connectedness between the stock indices and volatilities considered.
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