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Enhancing performance of multi-temporal tropical river 
landform classification through downscaling approaches
Qing Li a, Brian Barrett a, Richard Williams a, Trevor Hoey b 
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aSchool of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK; bDepartment of Civil and 
Environmental Engineering, Brunel University London, London, UK; cSchool of Geography, Earth & 
Environmental Sciences, University of Birmingham, Birmingham, UK

ABSTRACT
Multi-temporal remote sensing imagery has the potential to classify 
river landforms to reconstruct the evolutionary trajectory of river 
morphologies. Whilst open-access archives of high spatial resolution 
imagery are increasingly available from satellite sensors, such as 
Sentinel-2, there remains a fundamental challenge of maximising 
the utility of information in each band whilst maintaining 
a sufficiently fine resolution to identify landforms. Although image 
fusion and downscaling methods on Sentinel-2 imagery have been 
investigated for many years, there is a need to assess their perfor
mance for multi-temporal object-based river landform classification. 
This investigation first compared three downscaling methods: area to 
point regression kriging (ATPRK), super-resolution based on Sen2Res, 
and nearest neighbour resampling. We assessed performance of the 
three downscaling methods by accuracy, precision, recall and F1- 
score. ATPRK was the optimal downscaling approach, achieving an 
overall accuracy of 0.861. We successively engaged a set of experi
ments to determine an optimal training model, exploring single and 
multi-date scenarios. We find that not only does remote sensing 
imagery with better quality improve river landform classification 
performance, but multi-date datasets for establishing machine learn
ing models should be considered for contributing higher classifica
tion accuracy. This paper presents a workflow for automated river 
landform recognition that could be applied to other tropical rivers 
with similar hydro-geomorphological characteristics.

KEY POLICY HIGHLIGHTS  
● Choice of downscaling approach influences the performance of 

river landform classification from satellite imagery and should be 
considered in river and flood management.

● An efficient and straightforward operating workflow was devel
oped for automated river landform classification with high accu
racy that supports an improved understanding of the use of 
machine learning approaches in river landform recognition.

● Freely available and easy-to-access remote sensing datasets can 
help extend the operating workflow to difficult-to-access or 
remote regions and allow for complete regional and/or national 
coverage.
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1. Introduction

Multi-temporal classification of river landforms is essential to understanding how river 
planform changes through time (Boothroyd et al. 2021) and reconstructing the evolu
tionary trajectory of river morphologies (Spada et al. 2018). Such changes manifest intra- 
annually, for example, as a result of seasonal changes in vegetation cover (Gurnell 2014; 
Serlet et al. 2018) or over longer timescales, as a result of variations in water and sediment 
supply or autogenic adjustments (Hohensinner et al. 2021; Mandarino, Maerker, and Firpo 
2019; Vargas-Luna et al. 2019). Two technological developments offer the potential to 
realise multi-temporal river landform classification at catchment spatial scales, across 
multiple years. First, open-access archives of high spatial resolution imagery are increas
ingly available from satellite sensors, such as Sentinel-2, which offer considerable poten
tial for improving land cover investigations at the regional level (Phiri et al. 2020). Second, 
a variety of machine learning approaches have been developed and applied to achieve 
fast, objective and accurate land-cover mapping (Maxwell, Warner, and Fang 2018). 
Various landscape classifications have been demonstrated using Sentinel-2 over the 
past five years (Korhonen et al. 2017; Phiri et al. 2020; Sonobe et al. 2018; Yang et al. 
2017). However, the potential of Sentinel-2 to classify river landforms using a hierarchical 
object-based workflow has been less explored (Carbonneau et al. 2020; Demarchi, Bizzi, 
and Piegay 2016).

When using data acquired by multi-resolution satellite sensors, such as Sentinel-2, 
a fundamental challenge for fluvial applications is to maximise the utility of information in 
each band whilst maintaining a sufficiently fine resolution to identify landforms. Lanaras 
et al. (2018) reviewed methods of enhancing the spatial resolution of remotely sensed 
multi-resolution images and differentiated these methods into three types: (i) pan- 
sharpening per band (e.g. area to point regression kriging, ATPRK); (ii) inverting an explicit 
imaging model (e.g. super-resolution method); and (iii) supervised machine learning 
based approaches.

The ATPRK algorithm was originally developed for downscaling MODIS imagery (Wang 
et al. 2015) and was subsequently applied to Sentinel-2 imagery (Wang et al. 2016). In 
Sentinel-2 image fusion cases, ATPRK was shown to outperform pan-sharpening per band 
approaches such as component substitution (CS) and multi-resolution analysis (MRA) 
(Wang et al. 2016). Sentinel-2 has four bands at fine spatial resolution instead of one 
panchromatic band that covers a wider range of the spectrum. Before applying the ATPRK 
algorithm to Sentinel-2 data, a single ‘panchromatic band’ from the four fine bands of the 
Sentinel-2 acquisition is required. In this case, ‘hyper-sharpening’ was considered to 
extract a single band by two schemes, which are the ‘selected band scheme’ (choose 
one band from four fine bands) and the ‘synthesised band scheme’ (synthesise one band 
using four fine bands), respectively (Selva et al. 2015). Wang et al. (2016) shows that the 
‘synthesised band scheme’ contributes more accurate downscaling results when com
bined with the ATPRK approach. For the case of establishing the synthesised ‘panchro
matic’ band, Wang et al. (2016) calculated weights of each fine band using a regression 
model between the fine band and selected coarse band. A linear combination of four fine 
bands was used to generate the synthesised band. Thereby, ATPRK not only utilises all 
four fine bands to achieve image fusion, but it also preserves the original spectral 
properties of the coarse band data from Sentinel-2 imagery.
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Brodu (2017) developed a geometry-based super-resolution approach, which aimed to 
compensate for the absence of a real panchromatic band. First, information shared by 
natural objects between neighbouring pixels is detected. Then, common aspects of the 
shared geometric information across all bands are extracted. In addition to common 
information, independent geometric information is separated from high-resolution bands 
and then applied to unmix the low-resolution pixels, preserving their overall reflectance. 
The super-resolution approach is available through the Sen2Res plugin in the widely used 
European Space Agency (ESA) SNAP software (Del Rio-Mena et al. 2020; Freitas et al. 2019; 
Kuan et al. 2020; Laso et al. 2020).

The ATPRK and super-resolution approaches incorporate relations between coarse and 
fine bands. In contrast, supervised machine learning approaches (e.g. deep neural net
works) rely on example data. Although the machine learning approach is more adapted to 
complex and general relations, the need for large training datasets and high computing 
resources are obstacles to implementation (Lanaras et al. 2018), especially when applied 
at large spatial-temporal scales. In addition to the downscaling approaches above, the 
nearest neighbour resampling approach has been favoured to detect land cover from 
Sentinel-2 due to its simple computation and fast processing when downscaling coarse 
bands to fine bands (Daryaei et al. 2020; Kuan et al. 2020; Zheng et al. 2017). The nearest 
neighbour resampling approach assigns the value of the nearest coordinate location of 
the input pixel to the corresponding output pixel, and thus is a simple and efficient 
approach. However, nearest neighbour resampling is not suitable for applications that 
consider the textural properties of images because it can lead to pixel level geometric 
discontinuities (Roy and Dikshit 1994). The development of these different approaches 
presents a need to assess the best approach to image downscaling before undertaking 
image segmentation and classification.

This paper aims to compare the three resolution enhancing approaches above, and to 
identify the most accurate method for Sentinel-2 based tropical river landform classifica
tion. Specifically, the paper seeks to address the following questions: (Q1) Which image 
downscaling approach (ATPRK, super-resolution and nearest neighbour resampling) is 
optimal for classifying tropical river landforms? (Q2) For a single river, is multi-temporal 
training data required to classify landforms for multiple periods in a year? (Q3) Is the 
training model for one year transferable to other years? (Q4) Is the training model 
transferable to nearby rivers with similar hydrogeomorphic properties?

2. Study area

The study area in northwest Luzon, the Philippines, experiences frequent tropical storms 
and cyclones, which bring heavy precipitation causing landslides and flooding in the 
region (Faustino-Eslava et al. 2013). The area is dominated by a sub-tropical East Asian 
monsoon climate (Liu et al. 2009). In the northwest Philippines, the wet season begins 
with increased rainfall around May to June and continues until rainfall decreases around 
October to November (Kubota et al. 2017).

Our investigation focused upon three watercourses in Luzon: the Bislak, Laoag and 
Abra Rivers (Figure 1). These gravel-bed rivers are all characterised by planforms that 
include water, unvegetated bars and vegetated bars/islands. Relating to the spatial 
resolution of the satellite imagery available for analysis, image processing focused on 
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sufficiently wide sections of the rivers that their morphology could be adequately 
resolved (Gilvear and Bryant 2016). The 39-km-long section of the Bislak River has 
a mean width (MW) of 375 m; it is the shortest of the three rivers and has relatively 
small tributary inputs compared to the other two rivers. The 47-km-long section of the 
Laoag River has a MW of 580 m and has three approximately equally sized tributaries, 
whose MW varies from 237 m to 424 m. The Abra River (MW: 2441 m, 82 km section 
length) has three main tributaries; one large tributary has a MW of 1804 m and has 
extensive agricultural development within the active channel.

3. Datasets and methods

3.1. Sentinel-2 imagery and ground truth digitisation

Sentinel-2 provides imagery with 13 multispectral bands varying from 10 m to 60 m 
resolution and data availability since 23 June 2015. In this study, Sentinel-2 imagery 
acquired between January 2017 and December 2019 were analysed. Data were accessed 
through the USGS Earth Explorer Portal (https://earthexplorer.usgs.gov/; Table 1). A cloud- 
free Sentinel-2 image (with very small proportion of haze clouds) acquired on 
1 January 2018, under growing vegetation and low water flow conditions, was initially 
used to develop a manually digitised ground truth map of landforms in the Bislak River 

Figure 1. (a) Study area showing locations of the (b) Bislak, (c) Laoag and (d) Abra Rivers in northwest 
Luzon, the Philippines.

6448 Q. LI ET AL.

https://earthexplorer.usgs.gov/


(water: 1.93 km2, unvegetated bars: 6.28 km2, vegetated bars: 6.15 km2). The ground truth 
map was used to assess the results from the three approaches to downscaling. To train 
and validate a multi-temporal model, Sentinel-2 acquisitions of the Bislak River for six 
dates in 2018 were selected for digitisation. To test the transferability of the multi- 
temporal Bislak training model to other years, Sentinel-2 acquisitions on six dates in 
both 2017 and 2019 were used. To test the transferability of the training model to other 
nearby rivers, Sentinel-2 acquisitions of the Laoag River on six dates in 2018 and of the 
Abra River on six dates in 2019 were used.

3.2. Image pre-processing

The L1C image datasets were atmospherically corrected using Sen2Cor within the ESA SNAP 
software. Bands with 10 m and 20 m resolution were used to build the machine learning 
model. In this case, bands at 20 m resolution were processed to 10 m resolution using three 
downscaling approaches: super-resolution (Brodu 2017), ATPRK (Wang et al. 2016) and 
nearest neighbour resampling. The super-resolution approach used in this study was 
directly achieved by the Sen2Res tool in SNAP (version 7.0). The nearest neighbour resam
pling was also performed in SNAP while the ATPRK approach was run in MATLAB R2019a.

In addition to the Sentinel-2 bands, five environmental indices (Table 2) were gen
erated and incorporated into the machine learning model, resulting in a total of 15 
features (10 multi-spectral bands and 5 environmental indices) for the river landform 
classification.

Table 1. Sentinel-2 acquisition dates for each river from 2017 to 2019.
River 2017 (DD/MM) 2018 (DD/MM) 2019 (DD/MM)

Bislak 16/01, 16/04, 15/06, 
03/09, 28/10, 07/12

01/01, 07/03, 01/05, 
10/07, 20/07, 18/09, 

07/11

10/02/, 11/04, 30/06, 
29/08, 13/10,07/12

Laoag - 01/01, 07/03, 01/05, 
10/07, 18/09, 07/11

-

Abra - - 11/01, 27/03, 16/05, 
25/07, 

13/09, 22/11

Table 2. Selected indices for classification.

Features Description
Resolution 

(m) Formula Reference

NDVI Normalised Difference Vegetation Index 10 (band 8- band 4)/(band 8+ 
band 4)

Carlson and 
Ripley 
(1997)

NDMI Normalised Difference Moisture Index 
(Change in water content of leaves)

10 (band 8-band 11)/(band 8+band 
11)

Bangira et al. 
(2019)

NDWI Normalised Difference Water Index 
(Water content in water bodies)

10 (band 3-band 8)/(band 3 
+band 8)

Gao (1996)

EVI Enhanced vegetation index 10 2.5× (band 8A-band 4)/(band 
8A + 6×band 4–7.5×band 2 +  

10a)

Huete et al. 
(2002)

EVI 2 Enhanced vegetation 
index

10 2.5× (band 8-band 4)/(band 8 +  
2.4×band 4 + 10a)

Jiang et al. 
(2008)

INTERNATIONAL JOURNAL OF REMOTE SENSING 6449



3.3. Geographic Object Based Image Analysis (GEOBIA)

GEOBIA was employed for image segmentation and classification. The Large-Scale Mean 
Shift (LSMS) algorithm in Orfeo Toolbox (version 6.6.1) was used for the segmentation of 
objects within the river channel. Three landforms within the river were defined by 
manually digitising water, unvegetated bars and vegetated bars. The objects were trained 
together with the manually digitised ground truth map and input into the Support Vector 
Machine (SVM) model and subsequently evaluated, following the workflow described in 
Figure 2. For the SVM model, a regularisation parameter of 1.0 and a scale radial basis 
function kernel were used and implemented using scikit-learn in Python 3.7.

3.4. Downscaling choice

Sentinel-2 images for the Bislak River on 1 January 2018 were used to compare the three 
downscaling approaches. In this case, the Bislak River was firstly divided into 10 blocks, 
using a 7:3 split for training and testing blocks. The numbers of training and testing 
objects are given in Table A1. Image processing efficiency and classification performance 
were assessed for all of the three approaches (Figure 2). The classification accuracy of each 
dataset was evaluated using the overall accuracy, precision, recall and F1-score. Per-class 
accuracies (water accuracy (WA), unvegetated bar accuracy (BA) and vegetated bar 
accuracy (VA)) were also considered.

3.5. Optimal training model

To investigate an optimal machine learning model, both the training and testing data 
selections were considered. This study started landform classification using a single-date 
model (for both training and testing datasets) and a six-date model (for both training and 
testing datasets). In this case, the training model (Figure 3) generated on 1 January 2018 
was initially set (Table A2), and then tested on the whole reach (red extent of Figure 3) for 
the remaining five dates in 2018. In this experiment, the ‘unknown units’ (e.g. urban 
structures, cloud and shadows), were named as ‘others’ and incorporated in the training 
model. To gain a better understanding of the classification performance of unknown 

Figure 2. Workflow for river landform classification.
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units, the testing site from 10 July 2018, which is partly covered by clouds, was extended 
by 20 m outside the active channel boundary to incorporate urban pixels. In this way, 
a mixed group of ‘others’ was prepared for testing.

Consequently, a modified approach was conducted on a new group of training and 
testing datasets. Firstly, a 19 km reach of the Bislak River (Figure 3) was selected as the 
experimental area within which 10 sub-reaches were established, given serial numbers 
and allocated to either training or testing datasets (Figure 4).

The training dataset (Table A3) was combined by objects from blocks 1, 2, 4, 6, 7 and 10 
for six dates in 2018 (1 January, 7 March, 1 May, 20 July, 18 September, 7 November). In 
this case, we added the class ‘others’, which incorporate unknown objects (occupying 
1.1% of the data). With the SVM algorithm, the training model was established and 
validated on the objects from blocks 3, 5, 8 and 9 (Figure 4; partly shown in Figure 1b) 
of the same dates. Furthermore, imagery observations indicate that three landform types 
(water, unvegetated bar and vegetated bar) are always present and change locations 
within blocks 3 and 5 in different seasons. To assess the general performance of the 
machine learning model for different years, the training model was tested on the objects 
from blocks 3 and 5 of the Bislak River in 2017 and 2019 (Table A3). We avoided blocks that 
were obscured by clouds.

3.6. Optimal testing dataset

To investigate the performance of different testing datasets, three combinations of seg
mented objects were explored: (i) river objects from one single date; (ii) river objects from 
six dates in a year, including heavy cloud cover dates (over 30% cloud covering the studied 
river); and (iii) river objects from four less cloudy (under 30%) dates in a year. Thus, in this 
section, the training dataset consisted of 7458 objects from the 10 Bislak sub-reaches of 

Figure 3. Selected imagery extent for building optimal training model in the Bislak River. Background 
is the true colour Sentinel-2 image dated 1 January 2018.
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every two months (6 months in total) in 2018, including ‘water’, ‘unvegetated bar’, ‘vege
tated bar’ and ‘others’. To identify an optimal testing dataset, three forms of data tests were 
designed and applied to the machine learning model. Firstly, the training model was tested 
on channel objects from single dates in 2017 and testing accuracies were calculated. 
Secondly, the training model was tested on all channel objects of six dates in 2017, 
including days with heavy cloud cover (≥30%) acquisitions. Lastly, the training model was 
tested on all channel objects from four dates in 2017, representing the less cloudy (<30%) 
acquisitions. Blocks 3 and 5 in Figure 4 (see Table A3) were extracted for the accuracy 
assessment. The classification performance was compared between the three testing 
scenarios and an optimal testing dataset was selected for further landform classification 
analysis. The machine learning model was then applied to the Laoag and Abra Rivers to 
investigate the transferability of the model. The testing sub-reaches of these rivers are 
shown in Figures 1c,d.

4. Results and discussion

4.1. Comparison of downscaling approaches

Figure 5 shows a sample of the segmentation results. The 20 m resolution bands of 
Sentinel-2 were downscaled to 10 m resolution using the Sen2Res based super- 
resolution approach, ATPRK, and nearest neighbour resampling. The LSMS segmentation 
algorithm was subsequently employed to segment the composite bands processed by 
each approach into objects. The range radius and minimum segment size for the super- 
resolution approach shows a large difference compared to both resampling and ATPRK 
methods. Specifically, the super-resolution approach requests only 1 minimum segment 
size for delineating the channel landforms well, while the resampling and ATPRK methods 

Figure 4. Ten sub-reaches of the Bislak River experimental area with serial number. Background is the 
true colour Sentinel-2 image dated 1 January 2018.

6452 Q. LI ET AL.



use 42 minimum segment sizes to differentiate the objects within the channel. The 
minimum segment size refers to the criterion that is set for merging adjacent small 
segments with the closest spectral signature after segmentation. Thus, different choices 
of parameters lead to different sizes of segmented objects. Moreover, the different 
segmentation procedures result in datasets of varying sizes at the same spatial extent, 
with super-resolution capturing 154,841 objects after segmentation, resampling retriev
ing 1077 objects, and ATPRK retrieving 1068 objects.

The subsequent classification performances for the three approaches designed in section 
3.4 are displayed in Table 3. The ATPRK classification performed best among the three 
methods. However, in this case, the methods were compared at different object scales 
(minimum segment sizes are varying between the three approaches, see Figure 5). To fit a 
common ground truthing to the segmented objects well, the minimum segment size of image 
objects with ATPRK and resampling approaches were chosen as much larger than that from 
the super-resolution approach. This means that segments from ATPRK and resampling images 
preserved more spatial geometric information since it is easier to find similar adjacent 
segments to represent spatial features. This might be explained by prior geometric interrup
tions of the super-resolution method, which was introduced in section 1. Classification of water 
areas based on resampling implied that the misclassified water bodies always occur in narrow 
channels, whilst ATPRK performed well in these narrow channels. This result is expected, given 
the difference between the expected spatial detail interpretation from ATPRK and the resam
pling methods, explained in section 1. This initial experiment provided a first overall compar
ison of the three downscaling approaches for classification of the Bislak River’s landforms. The 
results indicate that the image downscaling approaches can be essential to process object- 
based classification using Sentinel-2 imagery. The results show that the ATPRK method can 

Figure 5. Sample of segmentation results for (a) super-resolution, (b) resampling and (c) ATPRK. 
Segmented Objects are categorized by red boundaries. Background images are the composite of band 
5 (central wavelength: 704.1 nm), band 6 (central wavelength: 740.5 nm) and band 7 (central 
wavelength: 782.8 nm) of downscaled Sentinel-2 images dated 1 January 2018.

Table 3. Accuracy assessments for resampling, ATPRK and super-resolution approaches. (All values 
range between 0–1, whereby 0 indicates the lowest accuracy and 1 indicates the highest accuracy).

Accuracy Precision Recall F1-score WA BA VA

Resampling 0.785 0.832 0.785 0.771 0.435 0.971 0.693
ATPRK 0.861 0.871 0.861 0.859 0.871 0.950 0.690
Super-resolution 0.681 0.707 0.681 0.676 0.484 0.842 0.596
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outperform the other approaches in rivers of the type found in this region. While resampling 
performs slightly better than ATPRK for the unvegetated bar and vegetated bar classification 
accuracies, when it comes to spatial details, the water accuracy is only approximately half that 
of ATPRK. Thus, the ATPRK approach was used to address research questions 2 to 4.

4.2. Training model investigation

To determine the robustness of the training model based on 1 January 2018 data, the objects 
of the whole reach were used as a training dataset (Figure 6a red extent) and the model tested 
on a different reach (Figure 6a white extent), located farther upstream in the catchment with 
fewer unknown objects (e.g. clouds and urban units). The cross-validation accuracy of the 
model was 0.91 and the test accuracy for this upstream reach was 0.929. The accuracy of water 

Figure 6. Classification on an upstream reach of the Bislak River; (a) is the true colour Sentinel-2 image 
with training and testing area, (b) is the manually digitised ground truth representing white extent in 
(a), and (c) is the output classification. Background image is the true colour Sentinel-2 image dated 
1 January 2018.
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classification was 0.891, unvegetated bars was 0.941 and vegetated bars was 0.940. Generally, 
the whole test accuracy is close to the validation accuracy, and the classifier performed well for 
classifying the landforms in the upstream reach on 1 January 2018.

To investigate the training model (red extent in Figure 6a) performance across a broader 
temporal scale, five acquisitions over the Bislak River between 7 March 2018 and 
7 November 2018 were selected for testing. Table 4 displays the accuracies across all dates. 
It can be seen from Table 4 that the 1 January 2018 training model does not perform well for all 
dates in 2018. The training model developed in the dry season fitted March and November 
images very well, both of which are in the dry season. The testing result was good (overall 
accuracy is 0.85) on 1 May 2018, which is a transition period between the dry and wet seasons. 
The 18 September had the poorest performance, which is at the end of the wet season. At this 
time in the year, it is likely that vegetation growth and suspended sediment load contribute to 
changes in the spectral properties of vegetated bars and water (Welber, Bertoldi, and Tubino 
2012). In addition to water, unvegetated bars and vegetated bars, we incorporated a very small 
proportion (2%) of unknown units, which were named ‘others’, into the training model in this 
experiment. We tested performance using objects from 10 July 2018, including 308 objects 
defined as ‘others’. Most objects in this category are urban structures aligned with the active 
channel of the river, and some are clouds or cloud shadows. The results showed that only 7 
objects were misclassified (accuracy is 0.98), which implies the ‘unknown units’ are not the 
cause of low accuracies on 10 July 2018. Rather, these low accuracies are probably caused by 
the lack of a seasonal consideration in the training model. Thus, establishing an optimal 
training model for the research area should incorporate acquisitions across different periods 
during both the dry and wet seasons.

Consequently, the new modified training model established on sub-reaches across differ
ent seasons in 2018 was designed and tested on objects of different dates from 2017 to 2019 
(Table A3). Figure 7 combines the testing accuracies based on dates across the three years. The 
overall accuracy for the model is mostly between 0.80 and 0.90. The best classified unit is 
unvegetated bar (most accuracies ≥0.90) and the poorest classified unit is vegetated bar 
(accuracies vary between 0.54 and 0.91). Water can generally be well classified (accuracies 
mostly above 0.80) except for a few dates. These observations demonstrated that using data 
from multiple dates in constructing the training model can lead to performance that is superior 
to a single-date training model.

4.3. Testing dataset selection

We investigated testing datasets for establishing an optimum machine learning model for river 
landform classification in the region. From the results presented in section 4.2, a multi-date 
training model is more favourable for local channel landform classification. Thus, we used 

Table 4. Accuracies on different dates in 2018 using training model 
from single date. (All values range between 0 and 1, whereby 0 
indicates the lowest accuracy and 1 indicates the highest accuracy.).

Date in 2018 OA WA BA VA

07 March 0.90 0.96 0.91 0.87
01 May 0.85 0.41 0.94 0.93
10 July 0.61 0.40 0.86 0.48
18 September 0.57 0.23 0.48 1.00
07 November 0.92 0.94 0.89 0.99
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a multi-date training model (section 3.5) to run testing to define an optimal testing dataset. The 
method has been described in section 3.6 and the test experiment accuracies are displayed in 
Figure 8. In general, the training model on 10 blocks in Figure 4 and tested on objects of four 
cloud-free dates (Train_10_test_4) contributes the best performance for the river landform 
classification. This model performed best for water and vegetated bars except in April 2017, 

Figure 7. Time series for the testing accuracy of the multi-temporal training model across three years 
(2017–2019).

Figure 8. Comparisons of three testing datasets evaluated by overall accuracy (OA), water accuracy 
(WA), unvegetated bar accuracy (BA) and vegetated bar accuracy (VA). Train_10_test_1 refers to the 
training model based on ten blocks in Figure 4 and tested on single dates in 2017. Train_10_test_4 
refers to the training model based on ten blocks in Figure 4 and tested on four dates in 2017, 
representing less cloudy acquisitions. Train_10_test_6 refers to the training model based on ten 
blocks in Figure 4 and tested on six dates in 2017, including dates with heavy cloud cover.
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when a single date testing dataset provided higher accuracies. However, for unvegetated bar 
units, the single date testing dataset obtained much lower accuracies compared to the multi- 
date testing dataset (including both heavy clouds and less clouds datasets) in April and 
September 2017. However, in the case of unvegetated bar units, the heavy cloud-based 
testing dataset performs slightly better than the dataset with less cloud. The testing results 
for unvegetated bars may be explained by the low water extent and high sediment exposure 
in the dry season. Additionally, most mis-classified vegetation objects were classified as 
unvegetated bars (see Table 4), which is likely related to there being sparse vegetation in 
these objects. From results in this section, we suggest that considering the format of the 
testing dataset could help when deriving different objective classification results. To pursue an 
overall high accuracy classification when unvegetated bars are the dominant river landform, 
we recommend using a multi-date, low cloud cover dataset to define the classification. 
Moreover, to study landform change in a season which is very short or that shows difference 
from the whole year, such as April in this case, a testing dataset from a single date might be 
more effective.

4.4. Model performance in nearby rivers

To explore the transferability of the developed machine learning model, further testing was 
performed in two nearby rivers: the Laoag and Abra Rivers. For the Laoag River, object samples 
from six cloud-free acquisitions in 2018 (Figure 1c) were collected for model testing. The total 
number of testing samples in the Laoag River is 2037 (training: testing ≈10:3). For the Abra 
River, object samples from six cloud-free acquisitions in 2019 (Figure 1d) had 2424 testing 
samples in total (training: testing ≈10:4). Tables 5 and Table 6. show the test accuracies for the 

Table 5. Test accuracies of the Laoag River in 2018. (All values range 
between 0 and 1, whereby 0 indicates the lowest accuracy and 1 indicates 
the highest accuracy).

Date OA WA BA VA

01/01/2018 0.893 0.933 0.897 0.806
07/03/2018 0.840 0.895 0.812 1.000
01/05/2018 0.862 0.778 0.905 0.750
10/07/2018 0.834 0.946 0.862 0.510
18/09/2018 0.883 0.951 0.834 0.679
07/11/2018 0.878 0.976 0.835 0.833
2018 (whole year) 0.866 0.937 0.860 0.735

Table 6. Test accuracies of the Abra River in 2019. (All values range 
between 0 and 1, whereby 0 indicates the lowest accuracy and 1 indicates 
the highest accuracy).

Date OA WA BA VA

11/01/2019 0.852 0.879 0.955 0.573
27/03/2019 0.892 0.875 0.955 0.770
16/05/2019 0.878 0.831 0.978 0.674
25/07/2019 0.859 0.861 0.965 0.765
13/09/2019 0.892 0.979 0.915 0.815
22/11/2019 0.864 0.946 0.978 0.662
2019 (whole year) 0.872 0.901 0.959 0.721
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Laoag River in 2018 and Abra River in 2019, respectively. Here, we used a multi-date testing 
dataset to run the classification.

Figure 9. Subset classification results of the Bislak, Laoag and Abra Rivers across different times of different 
years. Complete classification coverages can be accessed from the link in the Data Availability section.
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These results indicate that, for the whole year, the overall accuracies, water accuracies, 
and unvegetated bar accuracies within nearby rivers are equal or above 0.86, while 
vegetated bar accuracies are equal or below 0.735. Specifically, the vegetation accuracies 
of 10 July 2018 on the Laoag River, and 11 January 2019 on the Abra River are lower than 
0.600. This lower accuracy is related to the low proportion of vegetated objects within the 
testing sub-reaches, which enhance the misclassification. Finer resolution remote sensing 
data might help to improve the vegetation accuracy for low or sparsely vegetated areas 
(Huylenbroeck et al. 2020). Most mis-classified vegetation objects were classified as 
unvegetated bars, and notably, the unvegetated bar classification performance is good 
(>0.812) across all dates of both rivers. The machine learning model can be regarded as 
reasonably robust across the different rivers and is subsequently applied to further 
Sentinel-2 images to generate a dataset of river patterns within the region (Figure 9).

5. Conclusions

This investigation shows the ATPRK approach to downscaling outperforms the alterna
tives of nearest neighbour resampling and super-resolution for river landform classifica
tion. A new image processing workflow for the purpose of river landform classification 
was developed and tested across tropical rivers in the Philippines. We also demonstrated 
that using a multi-temporal dataset across seasons to build a training model is superior to 
single-date and single-season models. We recommend using testing data at similar 
temporal ranges to train data and achieve higher classification accuracy. Whilst the 
scale between ground truth mapping and image segmented objects could impact 
classification accuracy, our set of experiments (during image pre-processing, downscal
ing, segmentation, classification) demonstrate optimal data/image processing and river 
landform classification modes to improve the classification performance. The results show 
that the proposed workflow can be used for river landform classification across three 
neighbouring catchments, and it is possible that the training model could successfully be 
applied to other tropical rivers in the Philippines and beyond with similar hydro- 
geomorphological characteristics.
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