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Abstract: 

This paper presents a modelling strategy that combines Neuro-Fuzzy methods to 

define the material model with Cellular Automata representations of the 

microstructure, all embedded within a Finite Element solver that can deal with the 

large deformations of metal processing technology. We use the acronym nf-CAFE as 

a label for the method. The need for such an approach arises from the twin demands 

of computational speed for quick solutions for efficient material characterisation by 

incorporating metallurgical knowledge for material design models and subsequent 

process control. In this strategy, the cellular automata hold the microstructural 

features in terms of sub-grain size and dislocation density which are modelled by a 

neuro-fuzzy system that predicts the flow stress. The proposed methodology is 

validated on a two dimensional (2D) plane strain compression finite element 

simulation with Al-1% Mg alloy. Results from the simulations show the potential of 

the model for incorporating the effects of the underlying microstructure on the 

evolving flow stress fields. In doing this, the paper highlights the importance of 

understanding the local transition rules that affect the global behaviour during 

deformation.  
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1. Introduction 

Thermo-mechanical simulations of metal-forming operations typically use the finite 

element (FE) method to study the evolution of deformation variables e.g. stress, strain 

and temperature. The relationship between the externally applied deformation and the 

internally evolving variables can be captured by a material model that is expressed by 

physically based equations. Such physically-based relations  [1] [2] use the 

fundamental variables of dislocation density (ρ), sub-grain size (δ) and misorientation 

angle (θ) to capture the local hardening and softening phenomena based on the 

externally applied deformation. The local effects are summed at the global structural 

level to arrive at the structural stress patterns.  

 

Recently, physically-based formulations have utilised the merits of Artificial 

Intelligence (AI) tools, particularly the concept of Neuro-Fuzzy (NF) architectures, to 

define the material model  [3] [4]. NF models work well in situations where the 

experimental data on the evolution rates of ρ, δ and θ are sparse or difficult to obtain 

for the entire workable range of deformation conditions. To carry out simulation 

studies at the structural level, the physically-based formulations need to be coded in-

situ within the finite element solver using user-subroutines.  

 

A particular area of interest is the effect of the initial microstructure on the evolution 

rates of ρ, δ and θ. Experimental evidence shows that the initial distribution of grain 

size, particularly the grain boundaries, play an important role in defining the evolution 

rules. An efficient method of capturing the initial and evolving microstructural 

information is to use a combination of cellular automata (CA) and finite element (FE) 

techniques, a result often termed CAFE  [5] [6] [7]. It uses the scale-invariant spatial 



characteristic of CA to define the micro-feature and it links the CA cells to the 

integration point of a finite element.  

 

The concept of Cellular Automata was introduced by von Neumann  [13]in the early 

1940’s for the simulation of self-reproducing automata and population evolution.  

Early developments in application were to the fields of fluid dynamics and biological 

processes, and recently it has been applied to the simulation of material 

microstructure  [14] [15] [16]. 

 

In the CAFE framework, the material model is defined by the rate of evolution of ρ, δ 

and θ at each time increment. The rate constants used in the evolution equations of ρ, 

δ and θ are based on a neuro-fuzzy model which has been developed using the 

experimental work reported by Sellars and Zang [10].  

 

This paper reports the concept and development of this new combined neuro-fuzzy 

and cellular automata based material model. A schematic illustration of this approach 

is shown in Figure 2 for a single element highlighted in this concept. The material 

model has been encoded in the user subroutine USDFLD within the finite element 

software ABAQUSTM which was used to study the evolution of the stress patterns at 

specific spatial locations in a model of 2D plane strain compression of a Al-1%Mg 

alloy. At each time increment of the solver, the FE integration point provides the 

strain, strain-rate and temperature to the user-subroutine. These variables are 

distributed using simple rules to accommodate the variances of the underlying micro-

features. For the case illustrated in Figure 2, the strains at the grain boundaries and 

interiors are designated as εgb and εin. The strains, their rates and temperature 



variables are passed to the NF material model to calculate the current value of the 

flow stress for each individual CA cell, then the summation of all the stresses from 

each CA cell is obtained to present the final stress of the FE cell. The paper shows 

that subtle changes in the initial distribution of microstructural features affect the 

evolution of the stress patterns and this also varies from point to point within the 

deforming model. 

 

 

2. Experimental Observations 

During thermomechanical processing of materials such as aluminium alloys, local 

regions deform under conditions that involve continuous change in strain-rate and 

temperature. Decreasing strain-rate and changing straining direction have a significant 

effect on the evolution of deformation microstructure, texture and any subsequent 

recrystallisation behaviour  [1] [8]. Microbands, as a dislocation substructure, form 

during deformation both at room and high temperature in aluminium. The structure is 

created by geometrically-necessary dislocations that form walls leading to in-grain 

lattice curvatures. The microbands are initially evolved at low strains when a single or 

a few slip systems are active, and then become cell blocks or equiaxed subgrains. The 

geometrically-necessary boundaries have higher misorientation angles across them 

than other dislocation sub-boundaries, and have a significant effect on subsequent 

recrystallisation behaviour. During rolling or plane strain compression (PSC) 

deformation, the microbands form parallel plates oriented at an average 35° to the 

surface or the effective rolling direction. 

 



Zhu et al  [1] and Sellars and Zhu  [9] state that the mechanism of the effect arises from 

the different evolution of the geometrically-necessary dislocation during monotonic 

and reversed deformation, or during changes in strain-rate. The dislocation density 

within sub-boundaries ρb increases with strain during monotonic deformation as the 

spacing between the sub-boundaries δ decreases and misorientation θ across the sub-

boundaries increases according to the relationship δθρ bC /b = , where C (≈1-2 

depending on the type of the sub-boundaries) is a geometrical parameter. On the other 

hand, the dislocation density decreases with strain after a change in the straining 

direction or a decrease in the strain-rate.   

 

The dislocation density initially increases with plastic deformation until the stage 

where the increase in dislocation density arising from strain hardening and the 

decrease arising from dynamic recovery become dynamically balanced. Then the 

dislocation density remains constant with further deformation.  When dynamic 

recovery becomes significant, substructures such as dislocation cells/sub-grains or 

micro-bands form. Experimental observations show that the sub-grain size decreases 

but the misorientation between sub-grains increases with plastic deformation.  Figure 

3 shows three typical dislocation substructures (Types 1, 2 and 3) that occur during 

thermomechanical processing. Hansen and Huang  [10] determined that the three 

different dislocation substructures have coherent relationships with the orientation of 

the grains, as shown in Figure 4. The dislocation substructures represented by Type 1 

have grains with orientations to the stress axis concentrated in the region of the lower 

half, close to [100], with Taylor factor less than 3.0; Type 2 have grains with 

orientations concentrated in the region close to [100] with the Taylor factor less than 



2.5; and Type 3 have grains distributed over the remaining area of the triangle (Figure 

4a). 

 

3. Material Characteristics Model 

The neuro-fuzzy model was developed to predict the parameters of the material 

microstructure (ρ, δ and θ) that are used to calculate the stress. The relations are as 

follows. 
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where the constants α1 = 0.38 and α2 = 0.79 for aluminium alloys, the Taylor factor 

for polycrystals is M = 3 , D0  = 1 is the diffusion frequency, G = (29484-13.6T) MPa  

where T is the temperature is the shear modulus, b = 0.286×10-9m is the Burgers 

vector,  ρm is the mobile dislocation density, (which is the same order of magnitude as 

the internal dislocation density ρi for hot deformation at constant strain rate) and B is 

a material constant reflecting solution hardening. 

 

In the NF model, the inputs are the deformation conditions of strain rate, temperature 

and deformation level (i.e. strain for a given material)  [11] [12]. 

 



Sample results for modelling the internal dislocation density, sub-grain size and mis-

orientation for a constant strain rate (2.5/s) and changing strain rates are shown in 

Figure 5. The solid line is the modelled output, while the dotted points are the 

experimental data. 

 

There is no explicit inclusion of the initial spatial grain structure in the approach 

outlined above. The representation is in terms of a mean grain size that is used to 

evaluate the internal state variables in the NF program. This does not deal particularly 

well with important features in material processing, where the evolution of 

microstructural features can be very inhomogeneous. What is more, such 

microstructural variance can affect the local resistance to further deformation. We 

need, therefore, a way of coupling these effects. 

 

 

4. The Cellular Automata / Finite Element (CAFE) Framework 

 The CAFE framework uses cellular automata cells to capture the important 

microstructural details. It embeds this information within the integration point of an 

overlying finite element. The microstructural details are those characterised by the 

material region surrounding the CA cell and are defined in terms of logical states e.g. 

grain interiors and grain boundaries or lumped quantities of average dislocation 

densities. The integration is brought about with the help of user subroutines within 

ABAQUS. A more detailed account of the technique can be found in reference [17]. 

 

The CAFE framework for a plane strain compression model is formulated below. The 

workpiece geometry in plane strain compression is discretised using finite elements of 



the order of millimetres (~0.5-1mm). Figure 6a illustrates one such discretisation 

where the domain is divided into 10 finite elements. 

 

Each finite element is populated with CA cells, the size of which are suitably adjusted 

to the feature of interest. The CA cell associates with itself a material region around 

itself. All properties (intrinsic or extrinsic) are homogenous over this material region. 

 

The simulation of a representative microstructure starts by populating these cells with 

pre-specified numbers of nuclei. Each nucleus is assigned a tag that defines its spatial 

position and its orientation with respect to a fixed global Cartesian coordinate system 

(Figure 6b). The orientation is illustrated in Figure 6c for nuclei N1 and N2 with 

orientation angles t1 and t2 with respect to the X Cartesian axis. All other cells have 

null orientation. The orientation variable varies between zero and 360o.  

 

A suitable neighbourhood is then selected that defines the probable direction of the 

moving fronts emerging from the nuclei. The neighbourhood of a cell is usually taken 

to be the cell itself and the cells sharing an edge or a corner of the centre cell. If the 

cell currently being computed is represented as A (Figure 6d), then using Moore’s 

definition of a CA neighbourhood, the cells represented by tpA, btA, leA, rtA 

influence the moving front. The state of cell A is modified based on the states of the 

surrounding cells. The velocity of the moving front of each nucleus is converted into 

the spatial dimension (dX or dY) moved per unit time. At each step, the nuclei will 

spread over cells that have a null orientation. This is true for both directions. Growth 

is interrupted when the moving fronts of two nuclei meet. This interface forms the 

grain boundary having a misorientation defined by the difference of orientations 



across the boundaries. This is the form of Figure 6e and is the microstructure linked to 

the integration point of an overlying finite element. 

 

Once the grain interiors and grain boundary representation is complete, each CA cell 

is associated with an initial dislocation density that varies between pre-specified upper 

and lower bounds. Theoretically, the lower bound is equal to zero i.e. the material 

region is free from dislocations. Experimentally, however, dislocation densities are of 

the order of 1012 /m2 (=106 /mm2) even in well-annealed materials.  

 

Figure 7a shows the simplest construction of a microstructure consisting of nine 

grains having four different orientations corresponding to (110), (111), (100) and 

(112). At this stage of 2D model formulation, these are numbers that reduce to angles 

of 0, 30, 45 and 90 degrees with the principal straining direction. The constructed 

microstructure is designed to have similar orientations to the experimentally observed 

Al-1%Mg microstructure (Figure 7b) where the different grey levels highlight 

different orientations.  

 

This concept was extended to form coarse (Figure 8a) and fine (Figure 8b) 

microstructures containing approximately 100 and 300 grains respectively. For these 

grains, the orientation distributions are shown in Figure 9a. For the simulations that 

follow, these orientation distributions can be classified into biased and non-biased 

regions (shaded portions in Figure 9b). The intention was to demonstrate the potential 

of the modelling strategy to account for differences in internal response to the applied 

strain direction. The biased regions offer a greater resistance to applied strain and 

therefore harden faster than the non-biased regions. 



 

A similar approach was used for the CA cells that form part of the grain boundary and 

those that form part of the grain interior. Those CA cells forming part of the grain 

boundary were allocated a higher strain (as is consistent with the assumption that 

grain boundaries act as dislocation sinks) and those within the grain boundary were 

ascribed the same values as the macroscopic strain at the integration point of the 

element. The NF program was then called to evaluate the stress in terms of the 

internal variables of strain, strain-rate and temperature at each CA cell.  

 

5. Model Assembly 

Figure 10 shows the PSC finite element model where both the specimen and tool are 

modelled using 4-noded quadrilateral elements. All the stock elements were initialised 

with a starting temperature of 400oC and the tool elements at 390oC. Friction at the 

tool-stock interface was modelled using the Amonton-Coulomb law with a constant 

coefficient of friction of 0.1. The heat transfer coefficient at the interface was 80 

kW/m2K. The instantaneous tool velocity changes with the instantaneous specimen 

height and was controlled to achieve a constant nominal strain-rate of 3 /s. The stock 

thickness was reduced by 50% during the deformation.  

 

The simulation began with the introduction of a representative microstructure into 

each finite element. The first simulation set is one in which each finite element 

constituting the element set A is populated with the simplified microstructure of 

Figure 7a in which only 4 orientations are permitted. 

 



The second simulation set is one in which each element constituting the element set A 

is populated with the representative microstructure of Figure 8.  

 

6. Results and Discussions 

6.1. Qualitative Shape Changes 

Figure 11a shows the deformation pattern of the nine grains constituting the 

simplified microstructure of Figure 7. The grains are elongated along the compression 

direction. The reasonableness of the combined modelling approach is evident from a 

qualitative comparison between the simulated deformed microstructure of Figure 11a 

and the experimentally observed microstructure of Al-1%Mg alloy of Figure 11b. 

 

Figure 12 shows the grain structure in element number 3 located at the bottom-left 

hand corner of the specimen (third from bottom of element set A (shaded)). The 

element was 100 mm by 100 mm in size before deformation, and it changed to 200 

mm by 56 mm. The grain structure at the end of the test as simulated using the nf-

CAFE model is shown by the grey dots. Comparing the grain structures before and 

after deformation shows a qualitatively reasonable change in grain shape. This change 

in grain shape is associated with evolution of dislocation structures and increase in 

volume fraction of grain boundary surface.  

6.2. Effect of biasing grain boundaries 

In the above simulation, the nf-CAFE formulation was called at each CA cell and 

assumed the same integration point strain at both grain interiors and grain boundaries. 

Changing this distribution affects the predictions. Figure 13 displays the effect of 

biasing the strain distribution towards the grain boundaries, using bias features of 1.5 

and 3.0. With a 1.5 bias, the difference is less than 1MPa. This rises to around 3~4 



MPa with a bias of 3.0.  This is because the underlying microstructural feature at each 

CA cell forms the basis to initialise and evolve its local dislocation density. In other 

words, if a CA cell belongs to a grain boundary, a biasing factor increases its 

dislocation storage in terms of CA strain. Results show that a variance of around 50% 

does not affect the global stress patterns. It is only after a biasing of more than 150% 

that a noticeable change is observed. 

6.3. Effect of grain sizes 

Figure 14 displays the stress predictions for a change in the initial grain sizes, one 

with large grains and the other with small grains. There is an insignificant difference 

of about 0.5 MPa. The distributions are for the two initial microstructures of Figure 8a 

and 8b.  

6.4. Effect of Orientation Biasing 

The effect of orientation biasing on the evolving von Mises stress fields is shown in 

Figure 15. In Figure 15a, no biasing is allowed. In Figure 15b, all regions falling 

outside the shaded area of Figure 9b are biased with a factor of 20%. This means that 

these regions with these orientations should harden faster and this is evident in the 

higher stress levels of Figure 15b.  

 

Additionally, there are two regions that are of interest. The letters A and B denote 

regions compressed by the centre of the tool and by the edge, respectively. A 

superscript star (*) denotes the model with biasing, whilst an absence indicates none. 

In region A, near the centreline, the stress changes by about 4 MPa with biasing. It  

has a value of 54 MPa in Region A*, but only in 50 MPa in Region A. In the edge-

region, B, biasing affects not only the value of the stress, but also its distribution, as 

should be clear from Figure 15.  



 

7. Conclusions 

The paper has presented a generic method for representing the microstructure of 

deformed metals within the continuum formulation of finite element structural 

modelling. The nf-CAFE framework was applied to model the behaviour of the 

materials during hot deformation using a hybrid modelling technique. Sensitivity 

studies of the initial grain size of the material were conducted. The nf-CAFE model is 

based on the internal states and predicts the deformed material properties. The results 

of the nf-CAFE numerical models generally compare well with those of models 

generated using empirical equations, and their predictions are more accurate in 

characterising deformation at the initial and final stages of the deformation.  

 

The material behaviour using the nf-CAFE approach was based on the physically-

based relations that relate the stress evolution to the total dislocation density and the 

sub-grain size. A major benefit of this modelling technique is the modelling of the 

dynamic evolution of the internal states, while still providing accurate final material 

properties in terms of stress/strain relationships. A second advantage is the ability of 

the model to predict the material properties at a micro-scale without the need for the 

high computational burden that would be imposed by reducing the mesh size of a 

straightforward macro-micro finite element model.  

 

The CA technique can analyse the FE cell further into finer cellular structures without 

changing the meshing scale. Furthermore, one of the advantages of the neuro-fuzzy 

model as used here is the ability to predict the recrystallisation behaviour based on the 



material microstructure (ρ and δ) at a CA level. This latter feature is currently under 

development. 
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Al-1%Mg material. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: The three domains of the present CAFE model. (a) The structure domain divided 
into a number of finite elements; one element is shown with its expected array of cells. (b) A 
population of nuclei in a CA array from which the grain will grow. (c) Definition of 
orientations with respect to the loading direction. (d) Moore’s definition of a CA 
neighbourhood. (e) A grain structure that emerges from the nuclei of (b). 
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(a) simulated microstructure.   (b) experimental microstructure. 

 
Figure 7: Simple microstructure with 4 orientations. 
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Figure 8: Representative microstructures with (a) 100 grains forming a coarse 
microstructure. (b) 300 grains forming a fine microstructure. 



 
 

 
Figure 9: (a) Orientation distributions for each nucleus used to generate the microstructure 
of Figure 7. (b) Highlighted region shows biasing of specific orientations with respect to a 
particular loading direction. 



 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Finite element model assembly for the PSC tests. 
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(a) simulated microstructure.    (b) experimental microstructure. 

 
 
Figure 11: The simple microstructure of figure 3 after deformation. 



 
 
 
 

 
 
Figure 12: Change in microstructure shape for element no. 3, before and after 
deformation. 
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(a) comparison of von Mises stress for 1.5 bias. 
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(b) comparison of von Mises stress for 3.0 bias. 
 
 
Figure 13: von Mises stress distribution to show the effect of strain biasing at grain 
boundaries using the nf-CAFE methodology  
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Figure 14: Comparison of nf-CAFE model prediction with a change in the grain size. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Comparison of nf-CAFE model prediction with introduction of orientation 
biasing. (a) No Biasing. (b) With a biasing of 20%. 
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