
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

TR/07/91     April 1991 
 

A numerical method for the computation 
of 

Faber polynomials for starlike domains 
 

N. Papamichael, Maria Joana Soares 
and 

N.S. Stylianopoulos 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 



 
 
A Numerical Method for the Computation of Faber Polynomials 

for Starlike Domains 

N. Papamichael * , Maria Joana Soares † and N.S. Stylianopoulos * 
  
 
 
 
Abstract We describe a simple numerical process (based on the Theodorsen method for conformal 
mapping ) for computing approximations to Faber polynomials for starlike domains. 

Keywords : Faber polynomials, conformal mapping, starlike domains, Theodorsen method. 

 

 

 

 

 

 

 
* Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex UB8 3PH,  
U.K. 
†  Departamento de Matematica, Universidade do Minho, 4700 Braga, Portuga 



 

BRUNEL UNIVERSITY 
SEP 1991 

LIBRARY  



  

1 Introduction 
Faber polynomials have well-known classical applications as basis sets for polynomial and ational 

approximations in the complex plane. In addition, their study has received considerable atten-tion recently, 
in connection with the construction of efficient iterative methods for solving systems of linear algebraic 
equations (see eg. [4]).Thus, the problem of developing numerical methods for com-puting approximations 
to the Faber polynomials for a region in the complex plane is of considerable current interest. This paper is 
concerned with the study of one such numerical method. 

Let г be a Jordan curve in the complex z-plane, and let ψ denote the conformal map of 

 DE := { w : | w І > 1 } onto ΩE := Ext г normalized by the conditions 

.)()( 0ψandψ >∞′∞=∞  

Also, let Ф denote the inverse conformal map Ф:= ψ[-1], from ΩE onto DE, and observe that the                     

Laurent series expansions of   ψ and Ф at infinity are of the form 

...,//)( ++++= 2
210 wcwcccwwψ                (1.1) 

and 

                             Ф(z) = bz + b0 + b1 /z+ b 2/z2 +....    with   b =1/c ,                       (1.2) 

where  is the capacity of the curve г, ie. c:=cap г. Then, the nth Faber polynomial                   )(1 ∞=ψc
pn (n = 0,1,2,...) for the domain Ω1 := Int г is the polynomial part of the Laurent series expansion             
at  infinity of the function Фn. 

Full details of the theory of Faber polynomials and their approximating properties can be found            
in the two books by Gaier [9, Chap.l, §6 ] and Henrici [12, §18.1-18.2 ] and the other important refer-                 
ences cited there. Of particular interest to us here is the relation 

                  ∑
=

−+ =−−=
n

k
nknknn ncnzpczpz

c
zp

0
1 ....,,1,0},)()({1)(     (1.3) 

which can be used to determine recursively the Faber polynomials pn. However, because of the 
pres-ence of the generally unknown mapping coefficients c and cj, the use of (1.3) has received 
very little attention from the computational point of view (see e.g. the remark made by Gaier in 
[9, p.44]). 

As far as we are aware the most recent references on the computation of Faber polynomials are         
the papers by Coleman and Smith [2] and Ellacott [5]. Of these, [2] concerns the computation of         
Faber polynomials in circular sectors, and involves the derivation of an explicit formula for the 
corresponding mapping function ψ. The paper also contains a recurrence formula for determining the     
mapping coefficients cj , but Coleman and Smith do not make use of (1.3) in their computations. They     
choose, instead, to compute the coefficients of the Faber polynomials directly from a standard integral 
representation that makes use of their formula for ψ. ( We note, however, that their recurrence for-            
mula was subsequently used by Ellacott and Saff [6], for computing Faber polynomials in circular          
sectors, by means of (1.3).) In [5], Ellacott suggests computing the coefficients of Faber polynomials,         
from their integral representation in terms of the mapping function Ф, by using the fast Fourier 
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transform (FFT). He also considers the recursive computation of the polynomials by means of 
(1.3), but only for cases where the boundary curve Г is a polygon. For this, he proposes using 
the Schwartz-Christoffel formula for determining the expansion of ψ1 and hence, by termwise 
integration, that of ψ. 

Regarding numerical experiments, all the examples of Faber polynomials that we have 
come across in the literature, including those of [2] and [5], are for regions for which the mapping 
function   Ф, or its inverse ψ, is known exactly. The purpose of the present paper is to consider a 
fully numeri cal technique, based on using the well-known Theodorsen integral equation 
method for computing approximations to the coefficients c and cj of the mapping function ψ, 
and then determining recursively the corresponding approximate Faber polynomials by means of 
(1.3). Our main objective is to show, by means of numerical examples, that this technique is very 
well-suited for computing accurate approximations to the Faber polynomials corresponding to a 
wide class of starlike curves Г. 

2 The numerical method 

Let  αj
(n) denote the coefficients of the Faber polynomial pn, ie. 

∑
=

=
n

0j

j(n)
jn .zα(z)p  (2.1) 

Then, by substituting (2.1) in the recurrence relation (1.3) and comparing coefficients of like 
powers of z, we obtain the following relations for  n≥1: 
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(2.4) 

Since 

/ccα 0
(1)

0 −= and     (2.5) ,1/cα (1)
1 =

the relations (2.2)-(2.5) can be used to determine recursively the coefficients of the Faber 
polynomials pn, n =2,3,..., in terms of the Laurent coefficients c and cj, j = 1,2,..., of the 
mapping function ψ. 

Consider now the " auxiliary " function 

 ,
w

ψ(w)log:Ψ(w) =       

(2.6) 
 

and observe that it has a Laurent expansion of the form 
...,/wγ/wγγΨ(w) 2

210 +++=  (2.7) 
where  .log0 c=γ  Hence 

...},/w2γ/wγ{ψ(w)ψ(w)
w
1(w)ψ 3

2
2

1
1 −−−=−  
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which, by substituting the expansions of ψ and ψ1 and comparing coefficients of like powers of 
w, yields the following relations: 

 ,γcc 10 =                         (2.8) 

                                                           ∑
−

=
−+ ≥−
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1n

0j
jnj1nn 1.n,γj)c(n

1n
1γcc                                     (2.9) 

 
Since 

 ,γexpc 0=                                                     (2.10) 

the relations (2.8)-(2.10) can be used to determine recursively the mapping coefficients c and cj 
from the coefficients γj in the expansion (2.7) of the auxiliary function Ψ. 

The numerical method considered in this section is based on the use of the recurrence 
relations (2.2)-(2.5) and (2.8)-(2.10), and is motivated by the following observation concerning 
the computation of the coefficients γj  by means of the Theodorsen method. 

Assume that the boundary curve Г is starlike with respect to the origin and is given in polar 
coordinates by 

,}2πθ0,eρ(θ)z:z{:Γ iθ ≤≤==        (2.11) 

where ρ is piecewise differentiable in [0,2π]. Also let Θ denote the boundary correspondence 
function associated with the conformal map ψ, ie. 

 
( ) .eρ(Θ(τ)))ψ(e iiτ τΘ=

 
Then, Θ satisfies the Theodorsen integral equation 

 ρ(Θ)(τ))],k[logτΘ(τ) −=        (2.12) 

where K denotes the well-known operator for conjugation on the unit circle ( see e.g. Gaier [8, Kap.       
II] and Henrici [12, §16.8]). 

In the basic Theodorsen method equation (2.12) is solved iteratively for Θ, by using a 
Jacobi type iteration of the form 

                                                                                (2.13a) τ,(ττΘ0 =

                      ,                             (2.13b) ...1,0,k,(ττ))[logρlokτ(ττΘ k1k =−=+

In practice, this iteration is performed in discretized form where, at the k th step, the 
function log ρ(Θk (Τ)) is replaced by its trigonometric interpolating polynomial 
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2
1:(ττT  (2.14) 

of degree N and nodes 

                                               .12,...,1,0,/: −== NrNrr πτ                             (2.15) 

Then, because of the properties of the operator K, the (k+l)th approximation to the 

boundary 
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correspondence function is given, from (2.13), by 

∑
−

=

+ −−+=Θ
1

1

)()()()1( .sin
2
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N

j

k
N

k
j

k
j

k
N Najajb τττττ     

(2.16) 
The resulting discrete iteration can be stated as follows: 
 

— Set Θ0(τ) = τ. 
— Do steps (i) and (ii) with k =0,1,2,..., until convergence: 

(i) Compute the coefficients aj
(k) and bj

(k) of the trigonometric polynomial 
(2.14). 
(ii) Use (2.16) to compute the values   .12...,1,0,)()1( −=Θ + Nrr

k
N τ

The coefficients aj
(k), bj

(k)  in step (i) of the iteration can be computed efficiently in O(N log N) 
opera-    ions by the use of the FFT. Similarly, in step (ii), the computations of the values 

)()1(
r

k
N τ+Θ can be performed by the use of the FFT. That is, the basic Theodorsen method 

involves the application of    two FFTs in each iterative step. 

As the above remarks indicate, the Theodorsen method is based essentially on 
approximating   the coefficients of the trigonometric polynomial 

 ,cos
2
1)sincos(

2
1)(

1

1
0 ττττ NajbjaaT N

N

j
jjN ∑

−

=

+++=            (2.17) 

which interpolates, the function log ρΘ(τ) at the nodes (2.15). The relevance of this observation 
with our work here is that once the approximations jj banda to aj and bj are found, then the 
corresponding approximations to the Laurent coefficients γj , j=0,1,...N, of the auxiliary function Ψ 
are given              quite simply by 

,,...,2,1,
2
1

00 Njbiaanda jjj =+== γγ                                  (2. 

18)   

with bN
 = 0 ( see e.g. [8, p.87] and [12, p.407] ). Thus, the details of the proposed algorithm 

are as follows : 

STEP 1 : Use the Theodorsen method to compute approximations jj ba ,  to the 

coefficients aj., bj. of the trigonometric polynomial (2.17). Hence, use (2.18) to compute the 
approximations   to the Laurent coefficients of the auxiliary function Ψ. ,...,1,0, Njj =γ

STEP 2 : Use the relations (2.8)-(2.10) to compute recursively the approxima-
tions to the mapping coefficients c and cj ,j=0,1,...N. 

STEP 3 : Use the relations (2.2)-(2.5) to compute recursively approximations to the 
coefficients  αj

(n) of the Faber polynomials pn, n = I, 2,... N. 
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We end this section by making the following remarks concerning the convergence of the Theo-       
dorsen method and our implementation of Step 1 of the algorithm outlined above. 

It is well-known that convergence of the iteration (2.13), and of the corresponding discrete 
iteration defined by (2.16), can be guaranteed only if the curve (2.11) satisfies a so-called "ε-
condition ", which requires that 

.1)(/)(sup: 1

20
<=

≤≤
τρτρε

πτ
                                                      (2.19) 

It is also well-known that if (2.19) is violated, then convergence can often be recovered by 
using underrelaxation with appropriate relaxation factor. This approach of using the Jacobi 
iteration (2.16), with underrelaxation if necessary, is sufficient for the purpose of the present 
paper, ie. for illustrating the application of the algorithm outlined above. We note, however, that it 
might be more efficient to perform Step 1 of the algorithm by solving the discrete Theodorsen 
integral equation using one of the several alternative iterative procedures which have been 
proposed in recent years. Full details of   these recent developments can be found in the survey 
paper by Gutknecht [11] and the other references cited there. 

3 Numerical examples 

In this section we present five examples illustrating the use of the numerical algorithm of 
Section 2, for computing approximations to Faber polynomials associated with starlike curves. 
For comparison purposes, in each of our examples we choose a curve Г for which the mapping 
function ψ is known exactly. Then, by using if necessary the symbolic manipulation package 
MAPLE, we determine in rational form the mapping coefficients c, cj and ( whenever   ]1[: −=ψφ
is also available ) the corresponding exact Faber polynomials. 

All our numerical results were computed on a Pyramid 9825 computer, using programs 
written in double precision Fortran. ( Double length working on the Pyramid is between 15 and 
16  significant figures. ) In presenting these results we give in each case the following 
information, regarding the use of the Theodorsen method in Step 1 of the algorithm: 

— The degree N of the trigonometric interpolating polynomial used. 

— The relaxation parameter ω used in the iteration. 

— The number K of iterations needed for convergence. 

3.1 Ellipse  Let z = x + iy and let Г be the ellipse 

          .0,12

2

2

2

>>=+ ba
b
y

a
x  

Then, 

,})()({
2
1)( 1−−++= wbawbawψ  

 and hence 
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})1({1)( 2/1
2

22

z
bazz

ba
z −

−+
+

=φ . 

In particular, if 
a = 1+d    and   b =l-d,   0 <d < 1 

, then 

ψ(w)=w + d /w, 
 and 

    },)41({
2
1)( 2/1

2z
dzzz −+=φ  

 
see e.g. [3, p.225] and [12, p.412]). Thus, in this case, 

     c = l,   c0 = 0,   c1=d ,   c2 = c3 = . . .  = 
0,  

and, for n ≥ 2, the recurrence formula (1.3) simplifies to 

pn+1 (z) = z pn (z) – d pn-1 (z). 
Hence 
        P1(z) = z ,        p2(z) = z2 – 2d , p3(z) = z3 – 3dz, 
       P4(z) = z4 – 4dz2 + 2d2 ,         p5(z) = z5 – 5dz3 + 5d2z, 
 
e.t.c. More generally, it follows easily from the solution of the difference 
equation 
 
          pn+1 – z pn + d pn-1 = 0 
that 

                                        ∑
=

−−
− ≥−⎥

⎦

⎤
⎢
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⎡
=
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222
1 ,1,)4((

22
1)(

j

k

kkjkj
jj jdzzz

k
j

zp                  (3.1) 

where [J] denotes the largest integer ≤ J ( See [3, p.226] and note that due to a printing error the 
factor 2-j+1 in the left hand side of (3.1) is given incorrectly in [3] as 2.) 

In the case d = 0.4, the Theodorsen method with N =32 and ω= 0.5 gives the following 
results, after K = 54 iterations: 

• The approximations to c = 1 and c1 = 0.4 are respectively 

1.000 000 000 002 4     and     0.400 000 000 0010 . 

• The maximum error in the approximations to the coefficients 

C0 = C2 = C3 = ---=C64 = 0 

is less than 7.9x10-11. 
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• The corresponding approximations to the nonzero coefficients 

α0
(10) = -0.020 48, α2

(10) = 0.64,    α4
(10)= -3.2, 

and 

α6
(10)= 56,    α8

(10)= - 4,     α10
(10)=1, 

of the Faber polynomial p10 are respectively 

-0.020479 999 97,   - 0.639 999 999 98,   -3.200 000 000 12, 

and 

5.600 000 000 01 ,   - 3.999 999 999 92 ,   0.999 999 999 98 . 

• The maximum error in the approximations to the coefficients 

α1
(10) = α3

(10) = α5
(10) = α7

(10) = α9
(10)=0, 

is less than 2.9xl0-15 . 

3.2 Two intersecting circles  Let  Ω1 be the domain bounded by the two intersecting circles 

 | z - 1.6 | = 2.0   and    |z-0.9| = 1.5. 

That is Ω1, is bounded by the curve 

Г:={ z : z = ρ(θ)eiθ, 0 ≤θ ≤ 2π } , 

where 

 

        
⎪⎩

⎪
⎨
⎧

≤<−+−

≤≤−+
=

πθπ/2,θ}sin2.564.00{cosθ1.6
π/2,θ0,θ}sin0.81{2.25θcos0.9

ρ(θ)
2/12

1/22

With 
 
   ( ) ( ) 2πθπ,θ2πρθρ ≤<−=  

Then 

),
5
8)(

10
9(

5
2)( +−= zz
z

zφ       (3.2)  

and hence 
 

           ,}11
25
141{

4
5

20
7

4
5)( 2/1

2ww
www +−+−=ψ    (3.3) 

(see e.g. [13, p.48]). Thus, from (3.3), 

    .,..,....
125
72,

10
7,

2
5

1 cteccc o =−==  

and, from (3.2), the first four Faber polynomials are :
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    ,
125,3
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625
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84

125
8)( 23

3 −−+= zzzzp  

   .
125,78
429,8

125,78
448,21

625,15
128,1

125,3
224

625
16)( 234

4 +−−+= zzzzzp  

The Theodorsen method with N = 1,024 and ω  = 0.4 gives, after K = 86 iterations, the approxi- 
mation 

2.49999999957 

to the capacity c = 2.5 of the curve Г. The corresponding approximations to the coefficients 

jc ,j = 0,1,..., 20 of the mapping function ψ  and the coefficients , k = 0,1,..., 20 of the }20{
kα

Faber 
polynomial   are listed in Tables 3.1 and 3.2 respectively. In each of the tables we also )(20 zp
include the corresponding exact values which were obtained by rounding, if necessary, the rational 
MAPLE values to 10 significant figures. 
 

3.3 Oval of Cassini   Let Г be the oval of Cassini 

Г:={ z 

:z= }, πθθρ θ 20,)( ≤≤ie

where  

1aπ,θ0,}1]a2θ[cos{cos2θ:ρ(θ) 1/21/242 ≥≤≤−++= , 

and 
2πθπθ),ρ(2πρ(θ) ≤<−=

. 
Then, 

 ,}11{)( 2/1
22wa

aww +=ψ  

          ,}11{)( 2/1
2za

zz −=φ  

and the exact value of c := cap Г is c =a. 

For the case a = 2, the Theodorsen method with N = 64 and ω = 1 gives, after K = 18 itera- 
tions, the capacity c = 2 correct to 14 significant figures. The corresponding approximations to the 
non-zero Laurent coefficients c2j-1, j= 1,2,..., 10 of the mapping function ψ  and the non-
zero coefficients , k = 0,1,... ,10, of the Faber polynomial p}20{

2kα 20 are listed in Tables 3.3 and 
3.4. The tables also include the corresponding exact values which were obtained by rounding, if 

necessary, the rational MAPLE values to 12 significant figures. 

Similarly, in the case a =1.2, the Theodorsen method with N =64 and ω  = 0.6 gives, 
after K = 62 iterations, the capacity c = 1.2 correct to 13 significant figures. The corresponding 
approxima- tions to the non-zero coefficients c2j-1 , j = 1,2,..., 10 and  , k = 0,1,..., 10 }20{

2kα
are listed together with the exact values in Tables 3.5 and 3.6. 
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J Exact cj Approximate cj J Exart cj Approximate cj

0 -7.0(-1) -7.000 000 003 (-1) 11 2.496 089 277 (-2) 2.496 089 397 (-2) 
1  5.76 (-1) 5.760 000 008 (-1) 12 8.569 622 489 (-3) 8.569 623 452 (-3) 
2  1.612 8 (-1) 1.612 800 008(-1) 13 -1.532 731 879 (-2) -1.532 731 942 (-2) 
3 -8.755 2 (-2) -8.755 200 040 (-2) 14 -1.458 066 666 (-2) -1.458 066 803 (-2) 
4 -9.883 238 4 (-2) -9.883 238 511 (-2) 15 5.053 758 185 (-3) 5.053 757 968 (-3) 
5   2.266 398 72 (-3) 2.266 398 481 (-3) 16 1.458 799 731 (-2) 1.458 799 856 (-2) 
6   5.747 286 344 (-2) 5.747 286 449 (-2) 17 3.277 040 132 (-3) 3.277 041 137 (-3) 
7  2.473 365 366 (-2) 2.473 365 457 (-2) 18 -1.059 436 651 (-2) -1.059 436 713 (-2) 
8 -2.677 287 058 (-2) -2.677 287 114 (-2) 19 -8.273 365 964 (-3) -8.273 367 367 (-3) 
9 -3.005 744 396 (-2) -3.005 744 525 (-2) 20 4.778 735 278 (-3) 4.778 735 005 (-3) 
10  4.934 305 707 (-3) 4.934 305 491 (-3)    

Table 3.1 (Laurent coefs for 2 intersecting circles.) 

 

 
K Exart  }20{

kα Approximate  }20{
kα K Exart  }20{

kα Approximate  }20{
kα

0 1.608 445 417 (-1) 1. 608 445 650 (-1) 11 -1.165 648 426 (-3) -1.165 648 442 (-3) 
1 6.637 133 211 (-2) 6. 637 132 432 (-2) 12 -1.339 408 792 (-5) -1.339 408 918 (-5) 
2 -1.000 767 335 (-1) -1.000 767 435 (-1) 13 2.183 991 056 (-4) 2.183 991 076 (-4) 
3 -4.230 563 949 (-2) -4.230 563 472 (-2) 14 4.278 154 752 (-5) 4.278 154 797 (-5) 
4 4.955 265 047 (-2) 4.955 264 757 (-2) 15 -2.201 457 486 (-5) -2.201 457 499 (-5) 
5 2.383 175 181 (-2) 2.383 175 556 (-2) 16 -9.410 538 603 (-6) -9.410 538 664 (-6) 
6 -1.894 848 188 (-2) -1.894 848 299 (-2) 17 8.774 102 790 (-8) 8.774 102 583 (-8) 
7 -1.124 125 419 (-2) -1.124 125 409 (-2) 18 7.069 859 767 (-7) 7.069 859 795 (-7) 
8 5.213 209 722 (-3) 5.213 209 672 (-3) 19 1.539 316 279 (-7) 1.539 316 285 (-7) 
9 4.198 521 885 (-3) 4.198 521 940 (-3) 20 1.099 511 628 (-8) 1.099 511 632 (-8) 
10 -8.358 293 364 (-4) -8.358 293 397 (-4)    

Table 3.2 (Faber poly. for 220 intersecting 
circles 
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J   Exact cj Approximate cj

1  2.5 (-1) 2.500 000 000 00 (-1) 

3 -1.562 5 (-2) -1.562 500 000 00 (-2) 

5  1.953 125 (-3) 1.953 125 000 04 (-3) 

7 -3.051 757 812 5 (-4) -3.051 757 811 94 (-4) 

9  5.340 576 171 88 (-5) 5.340 576 165 58 (-5) 

11 -1.001 358 032 23 (-5) -1. 001 358 034 97 (-5) 

13  1.966 953 277 59 (-6) 1.966 953 338 67 (-6) 

15 -3.995 373 845 10 (-7) -3.995 373 893 14 (-7) 

17  8.323 695 510 63 (-8) 8.323 691 995 13 (-8) 

19 -1.768 785 296 01 (-8) -1.768 783 710 48 (-8) 
 

 Table 3.3 (Laurent coefs for oval of Cassini 

a=2.0) 

 

k Exact . }20{
kα Approximate  }20{

kα

0  9.536 743 164 (-7) 9.536 741 181 35 (-7) 

2 -9.536 743 164 (-6) -9.536 743 099 12(-6) 

4  4.291 534 423 8 (-5) 4.291 534 426 49 (-5) 

6 -1.144 409 179 68 (-4) -1.144 409 179 76 (-4) 

8  2.002 716 064 44 (-4) 2.002 716 064 43 (-4) 

10 -2.403 259 277 33 (-4) -2.403 259 277 33 (-4) 

12  2. 002 716 064 44 (-4) 2. 002 716 064 45 (-4) 

14 -1.144 409 179 68 (-4) -1.144 409 179 69 (-4) 

16 4.291 534 423 8 (-5) 4.291 534 423 83 (-5) 

18 -9. 536 743 164 06(-6) -9. 536 743 164 06 (-6) 

20  9. 536 743 164 06(-7)  9. 536 743 164 06 (-7) 

Table 3.4 (Faber poly. p20 for oval of Cassini 
a=2.0) 
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j Exact cj Approximate cj

1 4.166 666 666 67 (-1) 4.166 666 666 66 (-1) 

3 -7.233 796 296 29 (-2) -7. 233 796 296 32 (-2) 

5 2.511 734 825 10 (-2) 2.511 734 825 19 (-2) 

7 -1.090 162 684 51 (-2) -1.090 162 684 58 (-2) 

9 5.299 401 938 57 (-3) 5.299 401 938 41 (-3) 

11 -2.760 105 176 34 (-3) -2.760 105 175 09 (-3) 

13 1.506 009 768 84 (-3) 1.506 009 767 08 (-3) 

15 -8.497 450 952 63 (-4) -8.497 450 952 34 (-4) 

17 4.917 506 338 33 (-4) 4.917 506 335 46 (-4) 

19 -2.902 694 713 60 (-4) -2.902 694 719 28 (-4) 

   

Table 3.5 (Laurent coefs for oval of Cassini a=l .2 
) 

 

K Exact  
}20{

kα Approximate  
}20{

kα

0 2.608 405 331 (-2) 2.608 405 330 44 (-2) 

2 -2.608 405 331 (-1) -2.608 405 330 03 (-1) 

4  1. 173 782 398 95  1. 173 782 398 67 (-1) 

6 -3.130 086 397 2 -3.130 086 396 56 

8   5.477 651 195 1 5.477 651 193 98 

10 -6.573 181 434 12 -6.573 181 432 75 

12   5.477 651 195 10 5.477 651 193 95 

14 -3.130 086 397 20 -3.130 086 396 54 

16  1.173 782 398 95 1.173 782 398 70 

18 -2.608 405 331 (-1) -2.608 405 330 45 (-1) 

20  2.608 405 331 (-2) 2.608 405 330 45 (-2) 

Table 3.6 (Faber poly. p20 for oval of Cassini  a=1.2) 
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3.4 Circular sectors Let Ω1 be a circular sector of the form 

2/0},arg,1:{ πααζζζ <<<<  

For the application of the Theodorsen method we translate Ω1 along the real axis ( so that the 
vertex at ζ  = 0 goes to the point z = 0.5 ) and express the boundary Г in polar form: 

Г:={ z -.z = ( ) 2πθ0,eθρ iθ ≤≤ }, 

where 

( ) [ ]{ }
( )⎪⎩

⎪
⎨
⎧

≤<−−
−≤<++−=

,,sin/sin5.0
,0,3coscos5.0:

2/12

πθβπαθα
βπθθθθρ  

with 

   ( ) ( ) 2ππθπ,θ2πρθρ ≤<−=   

And 

.
2cosα1

2sinαtanarc:β
⎭
⎬
⎫

⎩
⎨
⎧
−

=  

 
 A formula for the conformal mapping \|/ and a recurrence relation for the coefficients 
of its Laurent expansion have been derived recently by Coleman and Smith in [2]. In particular, it 
is shown in [2] that the capacity of F is given by 

       =c π/α.:α̂Where,
1)α̂(2
α̂

α̂1/2

2

=
− −  

Our numerical results are for the three cases α  = π /2, π /4 and π /12. The values of the degree 
N of the interpolating polynomial, the relaxation parameter ω  and the number of iterations K 
used, in each case, are given below together with the value of c := cap Г and the computed 
approximation  c̃ ֿ. (Here, for each a, the relaxation parameter co was determined as indicated 
by Gutknecht [10, p.412], by estimating the value of e in (2.19) and taking ω = 1 /(1 +ε2 ).) The 
corresponding approximations to the Laurent coefficients  cj,   j = 0, 1,... , 10,  of the mapping 
function ψ, and the coefficients , j =0,1,..., 10, of the Faber polynomial p,}10{

jα 0, are listed in 
Tables 3.7 - 3.12. 

 

(i)  πα = /2 

N =2,048,     ω = 0.2,    K =114,  

c= 0.769 800 359 ,    c̃ = 0.769 800 296 . 

 

(ii)  α= π/4 

N=2,048,    ω = 0.23,    

K=100, c= 0.531127 041,     c̃ = 

0.531127 014.
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(iv) α = π/12 

N = 2,048 ,     ω = 0.05895 ,    K = 288 , 

 c =0.353495704,    c̃ =0.353495718 . 

For comparison purposes, in each of the Tables 3.7, 3.9, and 3.11 we include the exact values 
of the Laurent coefficients cj,j =0,1,..., 10, rounded to eight decimal places. These were obtained 
by means of MAPLE from the formula for ψ given in [2, p.232]. Similarly, in each of the 
Tables 3.8, 
3.10, and 3.12 we give the exact values of , j = 0,1 ........10. These were obtained by }10{

jα
rounding to 
eight significant figures the appropriately normalized values given in the supplement of [2]. ( For 
the case  = n/2 the exact  can also be determined, by means of MAPLE, from the exact }10{

jα
formula for the mapping function φ  which is given in [7, p.138].) 

3.5 Square  Let   be the square 1Ω

1Ω : = { z = , x + i y  : | x | < l , | y  | < 1 } .  

Then, 

( ) ∫ += dw
w

cw 2/1
4 }11{ψ  

 19151173

1
864,4
71

384
11

176
11

56
11

6
1{

wwwww
wc −+−+−=  

,....}1
296,55

331
552,23

21
2723 ww

−+        (3.4a) 

where to 11 decimal places the exact value of cap Г is 

      c=1.18034059902,       (3.4b) 

( see e.g. [1], [5, p.582] and [7, p.114] ). 

In this case the Theodorsen method with N = 2,048 and ω = 0.5 gives, after K = 46 
iterations, the approximation 

1.18034071 

to the capacity c =1.18034060. The corresponding approximations to the non-zero 
coefficients cj ; j=3 (4)23 of ψ are listed in Table 3.13 and are compared with the exact values 
obtained from (3.4). In Table 3.14 we list the approximations to the non-zero coefficients , k }18{

kα
= 2 (4) 18 of the Faber polynomial p. These are compared with the corresponding exact values, 
which were obtained by means of MAPLE from the exact formula for φ  given by Elliot in [7, p. 
142]. 
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j      Exact cj Appromimate ci j 
 

     Exact cj Approximate cj

0 0.384 900 18 0.384 900 24 6 -0.006 577 88 -0.006 577 85 
1 -0.240 562 61 -0.240 562 57 7 -0.000 716 52 -0.000 716 51 
2 0.120 281 31 0.120 281 22 8 0.003 729 41 0.003 729 38 
3 -0.039 091 42 -0.039 091 37 9 -0.002 342 02 -0.002 341 87 
4 -0.001 503 52 -0.001 503 50 10 -0.000 375 55 -0.000 373 67 
5 0.011 652 25 0.011 652 20    

Table 3.7 ( Laurent coefs for sector; α = π/2 ) 

 
K Extrat  }10{

kα Approximate  
}10{

kα K Extrat  }10{
kα Approximate  

}10{
kα

0 1.022 800 4 1.022 800 1 6 2.133 343 6 (+2) 2.133 345 6 (+2) 
1 -7.701 740 04 -7.701 741 5 7 -1.814 204 4(+2) -1.814 206 1 (+2) 
2 2.960 669 5 (+1) 2.960 670 5 (+1) 8 1.165 689 8(+2) 1.165 690 9 (+2) 

3 -7.497 972 8 (+1) -7.497 976 4 (+1) 9 -5.267 044 9 (+1) -5.267 050 1 (+1) 

4 1.382 948 7 (+2) 1.382 949 6 (+2) 10 1.368 418 (+1) 1.368 419 5 (+1) 
5 -1.947 289 4 (+2) -1.947 290 9 (+2)    

Table 3.8 ( Faber poly. p10 for sector; α = π/2 ) 

 
j      Exact cj Appromimate ci j 

 
     Exact cj Approximate cj

0 0.597 517 92 0.597 517 88 6 -0.007 179 60 -0.007 179 59 
1 -0.093 362 18 -0.093 362 08 7 0.005 285 46 0.005 285 42 
2 -0.081 691 90 -0.081 691 91 8 0.000 585 69 0.000 210 39 
3 -0.055 652 61 -0.055 652 58 9 0.000 211 06 0.000 210 39 
4 -0.004 531 35 -0.004 531 38 10 -0.002 514 03 -0.002 525 44 
5 -0.002 421 24 -0.002 421 20     

Table3.9 (Laurent coefs sector ; α = π/4) 
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k       Extra  }10{

kα Approximate }10{
kα K       Extra  }10{

kα Approximate  }10{
kα

0 1.515 342 7 1.515 335 1 6 1.722 120 8 (+4) 1.722 121 0 (+4) 
1 -4.924 891 1(+1) -4.924 881 9(+1) 7 -1.552 798 6 (+4) -1.552 799 0(+4) 
2 4.734 517 4(+2) -4.734 512 5(+2) 8 9.271 109 6(+3) 9.271 112 8 (+4) 
3 -2.296 669 7(+3) -2.296 668 3(+3) 9 -3.344 774 2(+3) -3.344 775 7 (+3) 
4 6.750 601 4 (+3) 6.750 599 3 (+3) 10 5.597 780 6 (+3) 5.597 783 4 (+4) 
5 -1.305 799 6(+4) -1.305 799 (+4)    

Table 3.10 (Faber poly. P10 for sector ; α = π 4 ) 

 
j Extras cj Approximate cj j     Extras cj Approximate cj

0 0.594 069 17 0.594 069 17 6 0.003 435 77 0.003 435 76 
1 0.154 705 51 0.154 705 52 7 0.002 796 11 0.002 795 96 
2 -0.091 15211 0.091 152 13 8 -0.000 001 69 -0.000 002 15 
3 -0.015 24769 -0.015 247 70 9 -0.000 724 77 -0.000 728 16 
4 -0.04 957 97 -0.004 957 97 10 -0.001 339 83 -0.001 332 63 
5 0.004 765 05 0.004 765 06    

Table 3.11 (Laurent coefs for sector ; α = π /12 ) 

 
k Extra  }10{

kα Approximate }10{
kα k Extra  }10{

kα Approximate }10{
kα

0 1.844 379 0 1.844 373 5 6 6.692 1180 6.692 115 3 (+5) 
1 -1.832 133 4 (+2) -1.832 131 (+2) 7 -7.367 107 1(+5) -7.367 104 2 (+5) 
2 3.668 461 5 (+3) 3.668 458 9 (+3) 8 5.032 995 5 (+5) 5.032 993 5 (+5) 
3 -3.108 707 4 (+4) -3.108 705 7 (+4) 9 -1.949 824 9(+5) -1.949 824 1 (+5) 
4 1.417 392 8 (+5) 1.417 392 1 (+5) 10 3.282 151 3 (+4) 3.282 150 (+4) 
5 -3.877 779 (+5) -3.877 777 9 (+5)    

 

Table 3.12 (Faber poly. p10 for sector; a = it /12) 
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j Exact cj Approximate cj j Exact cj Approximate cj

3 -0.196 723 43 -0.196 723 61 15 0.003 073 80 0.003 073 87
7 0.021 077 51 0.021 077 61 19 -0.001 698 68 -0.001 698 74

11 -0.006 706 48 -0.006 706 56 23 0.001 052 44 0.001 052 50

Table 3.13 (Laurent coefs for square ) 

 

K Exact αk
{18} Approximate αk

{18} k Exact αk
{18} Approximate αk

{18}

2 -0.004 290 94 -0.004 291 32 14 0.294 454 65 0.294 454 48 

6 0.186 762 96 0.186 763 21 18 0.050 567 07 0.050 566 98 

10 0.462 676 49 0.462 676 57    

Table 3.14 ( Faber poly. p18 for square ) 
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