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Abstract—In this paper, intelligent reflecting surface is de-
ployed in simultaneous wireless information and power transfer
(SWIPT) system to improve the energy harvesting performance.
We investigate the robust beamforming design considering the
impact of the imperfect cascaded channels. We maximize the
minimum received energy among all energy receivers to ensure
fairness, while guaranteeing the worst-case information receivers
rate requirement. To address with the coupling effect of multiple
variables in the optimization problem, the alternate optimization
method is utilized to decouple the optimization problem into
two sub-problems, and the successive convex approximation and
the semidefinite relaxation methods are used to solve the sub-
problems. Simulation results reveal that employing IRS into
SWIPT system can enhance the energy harvest performance,
Additionally, our proposed two algorithms converges rapidly and
can guarantee the robustness of the system.

Index Terms—Intelligent reflecting surface, simultaneous wire-
less information and power transfer, max-min energy.

I. INTRODUCTION

It is believed that the next generation wireless commu-
nication will support massive Internet of Things (IoT) de-
vice with restricted energy storage capability. To support the
above vision, energy harvesting technologies utilizing solar
and wind energy have been proposed to enable possible
self-sustainability of power-constrained communication de-
vices. However, these technologies are vulnerable to envi-
ronmental changes. Radio frequency (RF) energy harvesting
has been emerged as a promising supplement, as it can
enable simultaneous wireless information and power trans-
fer (SWIPT) [1]. In [1], a multiuser multiple-input single-
output (MISO) SWIPT system was studied, where weighted
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sum-power was maximized, while guaranteeing the minimum
signal-to-interference-plus-noise ratio (SINR) requirements at
the information receivers (IRs). In [2], the authors revealed
that there exists a tradeoff between information rate attained
and the amount of harvested energy in massive multiple-
input–multiple-output (MIMO) SWIPT systems for maximiz-
ing the efficiency. The efficiencies of SWIPT depends on the
signal attenuation, and the transmit power of IoT devices is
typically in the order of mW. However, the harvested energy
from the SWIPT technology typically ranges from 1µW to
tens of µW [3]. In order to implement SWIPT, the researchers
in [4] proposed a scheme of Unmanned aerial vehicle enabled
SWIPT, where a UAV acts as a wireless charger to deliver
energy to energy receiver. Moreover, various techniques such
as massive MIMO [2], [5], [6], high-order modulation, etc.,
have been proposed to facilitate the energy efficiency, whereas
they usually led to high capital expense [7].

Recently, intelligent reflecting surface (IRS) has been pro-
posed as a promising technology to reconstruct the wireless
channel propagation environment and enhance the perfor-
mance of wireless communication systems [8]. IRS is com-
posed of many reflective elements, and each reflective element
can be programmed to change its phase. Thus, the signals
reflected from the IRS can be coherently superimposed at the
receiver to enhance the desired signal power, or coherently
canceled to suppress the interference signal. The reflecting
elements of IRS are passive and only reflect signals without
amplifying them. It can be implemented with low hardware
and energy cost. Furthermore, IRS can be fabricated very thin
for easy deployment on walls and glass. Deploying IRS may
not change the existing network architecture. In [9], in order
to minimize the transmit power at the BS, the semi-definite
relaxation (SDR) and alternating optimization (AO) methods
were first proposed to jointly optimize the active beamforming
vectors at the base station (BS) and the passive phase shift
matrix of IRS, and the power scaling law of IRS aided wireless
communication was also analyzed, which demonstrated that
IRS can significantly improve communication system per-
formance. In [10], the author explored the potential of IRS
assisted MIMO communication system. In [11], the author
maximized the energy efficiency of IRS-assisted wireless
communication system. Simulation results showed that IRS
can enhance system energy efficiency significantly. Extensive
efforts have been devoted to IRS-aided various wireless com-
munication systems. In [12], IRS was introduced in device-to-
device communications system, and block coordinate descent
(BCD) method was adopted to maximize the throughput. IRS
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was also adopted in multi-cells to improve cell-edge users’ rate
[13]. Mobile edge computing (MEC) can be used to compute
offload services, [14] proposed a collaborative method based
on MEC and cloud computing to offload the service to the
vehicles in the vehicle network, IRS can be deployed in MEC
systems to reduce the systems latency [15]. IRS also can be
implemented improve physical layer security [16]–[19].

Motivated by the success of IRS-aided wireless communi-
cation systems, we aim to deploy an IRS in SWIPT system
to help compensate the severe RF signal attenuation and
enhance the harvested power of energy receivers (ERs). In
[20], an IRS was deployed into MIMO SWIPT system to
enhance the energy harvest power. In order to maximize the
weighted sum rate, a BCD algorithm was used to jointly
optimize the transmit precoding (TPC) matrices of the BS
and phase shift matrix of the IRS. In [21], an IRS was
introduced into the MISO SWIPT system, and the transmit
power at access point (AP) was minimized subject to the
SINR constraints at information receivers (IRs) and energy
harvesting constraints at energy receivers (ERs). Instead of
using exist alternating optimization (AO) approach, a penalty-
based algorithm with better performance was proposed. The
authors in [22] introduced an novel energy efficiency indicator
and maximized the energy efficiency in an IRS-aided MISO
SWIPT system. Moreover, a manifold method was used to
handle the unit-modulus constraints of IRS. The weighted sum
power maximization problem was investigated in an IRS-aided
SWIPT system, and the authors proved that dedicated energy
beam not be needed to serve both ERs and IRs [23], while
the minimum received energy problem consider fairness was
studied in [24]. The intelligent omni-surfaces (IOSs) allows
simultaneous signal reflection and refraction, can achieve full-
dimensional wireless communications for coverage extension.
The introduction of IOS in SWIPT system can achieve power
splitting, thus achieving more flexible scheduling of these
IoT devices [25]. In addition to the passive IRS, the active
IRS [26], which can adjust signal amplitude and phase has
received widespread attention. In [27], an active IRS-aided
SWIPT system was studied, the results demonstrated that
using the active IRS can achieve more significant performance
gains than using passive IRS. The authors of [28] studied
the throughput maximization problem for an active IRS-aided
wireless powered communication system, it was shown that
the active IRS should be deployed close to the receiver, which
different form the passive IRS that should be deployed near
either the transmitter or receiver. In [29], an active or passive
IRS was used to assist communication. The simulation results
demonstrated that when the number of reflecting elements is
sufficiently large or the active-IRS amplification power is too
small, the passive IRS has higher achievable rates than the
active IRS.

All the researches mentioned above assumed the BS know-
ing the accurate channel statement information (CSI). How-
ever, the IRS is passive and does not contain RF chains, so it
may not send pilot signal to assist channel estimation. This will
cause inevitably channel estimation errors, which can induce
serious system performance loss. Hence, the robust beamform-
ing design is crucial in the IRS-aided communication system.

In [30], the authors considered the CSI of IRS to users is
uncertain, and worst case robust beamforming design problem
was proposed. SCA, penalty convex-concave procedure (CCP)
and AO methods were adopted to solve this optimization
problem. Different form [30], the author in [31] considered a
more practical case of imperfect cascaded channel. Moreover,
S-procedure, Bernstein-type inequality were used to handle
the non-convex constraints. In [32], perfect and imperfect CSI
case were considered, and different from [30], which used
an approximations for worst case rate constraints, the authors
proposed an equivalent transformation form of worst case rate
constraints.

To the best of our knowledge, there is a paucity of IRS-
assisted SWIPT system with imperfect CSI contributions in
the literature. [33] studied an IRS-aided MISO SWIPT system
where receivers applied power-splitting (PS) and a nonlinear
energy harvesting model was used. Specifically, the authors
minimized total BS transmit by jointly optimizing the beam-
forming weights of the BS, phase shifts of the IRS and the
PS ratios of receivers. Moreover, the perfect and imperfect
CSI was considered. Reference [34] investigated the robust
beamforming design in an IRS-aided secrecy MISO SWIPT
network. Specifically, the authors considered that the ERs were
potential eavesdroppers and imperfect CSI of the direct and
cascaded channels could be obtained. To ensure fairness, the
transmit precoding (TPC) matrices of the BS and phase shift
matrix of the IRS were jointly optimized to maximize the
minimum robust information rate among the IRs. In addition,
bounded and probabilistic CSI error models were considered,
and AO, SCA methods were used to solve the formulated
optimization problem. In this paper, we study the IRS-aided
SWIPT MISO system with imperfect CSI. Since the lifetime of
a self-sustainment IoT system depends on the working time of
the network node, maximizing the minimum received energy
among all energy receivers (ERs) is important [35]. We aim to
maximize the minimum received energy among all ERs subject
to minimum SINR constraint at each information receiver. Our
main contributions can be summarized as follows:

1) We aim to maximize the minimum received energy
among all ERs by jointly designing the active and passive
beamforming vectors under the worst-case SINR constraints.
To the best of our knowledge, this is the first work to study the
maximization of the minimum received energy in IRS-aided
SWIPT systems with imperfect cascaded channel. [20]–[24]
studied IRS-aided SWIPT systems, but didn’t considered im-
perfect CSI. [33] considered the imperfect CSI, but it assumed
IRS-user channels were imperfect. In contrast, we consider a
more practical case that cascaded BS-IRS-user channels are
imperfect. Additionally, [33], [34] have considered different
optimization problems, which are maximizing the minimum
rate at the IR and minimizing the transmit power at BS,
respectively. Thus, our formulated optimization problem is
novel and has not been considered before. Different from the
robust design under the outage probability constraints [36],
the worst-case robust design we proposed can ensure the
achievable rate of each user is not lower than minimum rate
requirement under all possible channel errors. Moreover, the
formulated optimization problem much more challenging than
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the transmit power minimization problem in [33] since the
latter can be readily transformed into a convex optimization
problem.

2) The formulated optimization problem is challenging to
solve, since the objective function is very complex and the op-
timization variables are highly coupled. Additionally, because
of the uncertainty of CSI, the SINR constraints equivalent
to infinitely non-convex inequality constraints. Moreover, the
existing robust beamforming algorithms developed in [30] and
[33] are not applicable when the imperfect cascaded channel
is considered. To address this optimization problem, firstly,
S-procedure is used to approximate the infinitely inequality
constraints. Then, an AO method is adopted for alternately
optimizing the active and passive beamforming vectors, until
convergence is achieved. Specially, the SCA-based AO algo-
rithm and SDR-based AO algorithms are proposed to solve the
optimization problem. Moreover, an algorithm for selecting
feasible initial points is proposed for the proposed SCA-based
AO algorithm efficiently.

3) Simulation results reveal that deploy IRS in SWIPT
system can enhance the energy harvest performance of ERs.
Furthermore, the simulation results verify that our proposed
two algorithms converge rapidly, and the robustness of the
proposed algorithms are demonstrated.

The remainder of this paper is organized as follows. We
introduce the system model and gives the problem formulation
in Section II. Two robust beamforming design algorithms are
proposed to solve the optimization problem in Section III.
Section IV presents the simulation results and discussions.
Finally, concluding remarks are provided in Section V.

Notations: In this paper, diag(x) returns a square diagonal
matrix with each main diagonal elements being corresponding
the element of vector x. ∥x∥ denotes the ℓ2−norm of vector
x, arg(x) means the phase extraction form the x. [x](1:N)

denotes the vector that contains the first N elements in x.
CN (x,Σ) represents random vector with mean vector x
and covariance matrix Σ.Re{·} denotes the real part. E(·)
denotes the expectation operation. For matrices A and B, the
kronecker product between A and B is denoted by A ⊗ B,
the positive semi-definite of A − B is denoted A ⪰ B. The
symbols A∗, AT , AH , ∥A∥F , Rank(A), Tr(A) and A(i, j)
denote the conjugate, transpose, Hermitian, Frobenius norm,
rank, trace and (i, j)th entry of matrix A, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Signal Transmission Model

As shown in Fig. 1, we consider an IRS-assisted multiuser
MISO SWIPT system composed of a BS with N > 1 antennas,
an IRS with M reflecting elements, KI single antenna IRs and
KE single antenna ERs. We denote KI and KE as the sets
of IRs and ERs, respectively. hH

d,i ∈ C1×N and hH
r,i ∈ C1×M

denote the equivalent channels from the BS to the i-th IR
and the IRS to the i-th IR, respectively. gH

d,j ∈ C1×N and
gH
r,j ∈ C1×M denote the counterpart channels for the j-th

ER. F ∈ CM×N denote the channel matrix from the BS to
the IRS. We denote the phase shift matrix of IRS by Θ =
diag{ejθ1 , ..., ejθm , ..., ejθM }. Here θm ∈ [0, 2π] indicates the

F

,d jg

,r jg ,r ih

,d ih

IRS

BS

Information flow

Energy flow

Information receiversEnergy receivers

Fig. 1. System Model.

phase shift of the m-th reflecting element. Meanwhile, we
assume that the BS transmits energy and information beam to
each ER and IR, respectively, in order to consider the influence
of energy beam on ERs energy harvesting performance. Thus,
the signal transmitted by the BS can be expressed as

x =
∑
i∈KI

wis
I
i +

∑
j∈KE

vjs
E
j , (1)

where wi ∈ CN×1 and vj ∈ CN×1 are the beamforming
weights for the i-th IR and the j-th ER, while sIi and sEj denote
the data symbol designated for IR and ER, respectively. It is
assumed that sIi are independent random variables satisfying
sIi ∼ CN (0, 1),∀i ∈ KI . In addition, since energy-carrying
signals sE,

j s has no useful information, they can be designed
as independent random signals satisfying E(|sEj |2) = 1, ∀j ∈
KE . The transmit power at the BS is expressed as

E(xHx) =
∑
i∈KI

∥wi∥2 +
∑
j∈KE

∥vj∥2. (2)

The received baseband signal can be expressed as

yIi = (hH
r,iΘF + hH

d,i)x+ ni, i ∈ KI , (3)

where ni ∼ CN (0, σ2
i ) represents the received complex

Gaussian noise at the i-th IR.
Since sEj is generated as pseudo-random signals whose

waveforms can be assumed to be known at both the BS and
the IR before data transmission. We assume that each IR can
perfectly cancel the interference from energy signals prior
to decoding the desired signal sIi , which is similar to the
assumption in [1]. Let us define Hi = diag(hH

r,i)F as the
cascaded channel from the BS to IR i via the IRS. The received
SINR at the i-th IR is

SINRi =
|(hH

d,i + eHHi)wi|2

∥(hH
d,i + eHHi)W−i∥22 + σ2

i

, (4)

where W−i = [w1, ...,wi−1,wi+1, ...,wKI
], and e =

[e1, ..., eM ]T ∈ CM×1 denotes the vector that contains the
diagonal elements of IRS phase shift matrix Θ.

On the other hand, each ER can harvest RF power from
both information and energy signals. By ignoring the noise
power, the received RF power at the j-th ER is given by

Qj =
∑
i∈KI

|gH
j wi|2 +

∑
k∈KE

|gH
j vk|2, j ∈ KE , (5)
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where gH
j = gH

d,j + eHGj , Gj = diag(gH
r,j)F denotes the

cascaded channels from the BS to ER j via the IRS.

B. Channel Uncertainty Models

There are two channels in IRS-aided communication sys-
tem, one is the direct channel from the BS to the user, and the
other is the IRS reflection channel, which including BS to IRS
channel and IRS to user channel. The direct channel can be
accurately estimated by the traditional methods. However, the
IRS reflection channel is challenging to estimate because of the
passive nature of IRS. In addition, we observe the cascaded
BS-IRS-user channels are sufficient for system performance
improvement [37], [9], and there are many existing research
studying the cascaded channel estimation, i.e., [38], [39].
Additionally, the accuracy of the CSI has a great impact on
IRS-aided communication system performance. In order to
account for the CSI estimation error, we assume the cascaded
BS-IRS-user channels are imperfect, and a bounded CSI error
model is adopted to formulate the channel estimation error
[30], [40]. Specifically, the CSI of the cascaded BS-IRS-user
channels can be modeled as

Hi = H̄i +∆Hi, (6)
ΩHi

≜ {∆Hi ∈ CM×N : ∥∆Hi∥F ≤ ϵHi
}, i ∈ KI (7)

Gj = Ḡj +∆Gj , (8)
ΩGj ≜ {∆Gj ∈ CM×N : ∥∆Gj∥F ≤ ϵGj}, j ∈ KE(9)

where H̄i and Ḡj are estimated CSIs for the cascaded channel
of the i-th IR and the j-th ER, respectively. ∆Hi and ∆Gj

denote the corresponding CSI estimation errors, where ϵHi

and ϵGj
are the radii of the bounded regions of CSI errors,

which are known at the BS. This bounded CSI error model can
characterize the noisy channel estimation, limited feedback,
and quantization errors of the phase shifts at the IRS [32].

C. Problem Formulation

In this subsection, we consider the worst-case robust be-
forming optimization problem formed by the bounded CSI
error model. In order to balance the performance tradeoff
between IRs and ERs and guarantee the fairness among all
ERs, our goal is to maximize the minimum received power
among all ERs while satisfying the worst-case quality-of-
service (QoS) constraints of the IR. The problem can be
formulated as follows

(P1) : max
{wi},{vj},e

min
j∈KE

Qj (10a)

s.t. min
∆Hi∈ΩHi

SINRi ≥ γi, i ∈ KI , (10b)∑
i∈KI

∥wi∥2 +
∑
j∈KE

∥vj∥2 ≤ Pt, (10c)

|em|2 = 1,∀m = 1, ..,M, (10d)

where γi is the minimum SINR requirements of the i-th IR,
and Pt denotes the maximum transmission power at the BS.
Note that Problem (P1) is non-convex because of the coupled
variables of wi, vj and e. In particular, the SINR constraint
(10b) contains infinite non-convex inequality constraints due

to the continuity of the CSI uncertainty. Therefore, (P1) is
challenging to be solved.

III. ALGORITHM DESIGN FOR IRS-ASSISTED SWIPT
SYSTEMS WITH IMPERFECT CSI

First, we introduce an auxiliary variable u to deal with
the complex objective function, and (P1) can be rewritten as
follows

(P2) : max
{wi},{vj},e,u

u (11a)

s.t. min
∆Gj∈ΩGj

Qj ≥ u,∀j ∈ KE , (11b)

min
∆Hi∈ΩHi

SINRi ≥ γi, i ∈ KI , (11c)∑
i∈KI

∥wi∥2 +
∑
j∈KE

∥vj∥2 ≤ Pt, (11d)

|em|2 = 1,∀m = 1, ..,M. (11e)

Then, two efficient algorithms are proposed to solve (P2).
One is SCA-based alternate optimization algorithm, and the
other is the SDR-based alternate optimization algorithm.

A. Proposed SCA-Based Alternate Optimization Algorithm

In (P2), constraint (11b) is addressed by approximating the
non-convex parts and then use the S-Procedure to deal with
the infinite inequalities. Specifically, the following lemma can
be used to linear approximation of the harvest power in (11b).

Lemma 1. Substituting Gj = Ḡj + ∆Gj into the harvest
power in (11b) and denote w

(n)
i , v(n)

j and e(n) as the optimal
solutions obtained at iteration n, then

∑
i∈KI

|gH
j wi|2 +∑

k∈KE
|gH

j vk|2 is linearly approximated by its lower bound
at (w(n)

1 , ..,w
(n)
KI

,v
(n)
1 , ..,v

(n)
KE

, e(n)) as follows

vecT(∆Gj)Aj vec(∆G∗
j )+2Re{aTj vec(∆G∗

j )}+aj , (12)

where

Aj =c⊗ e∗e(n),T + cH ⊗ e(n),∗eT − c(n) ⊗ e(n),∗e(n),T ,

aj =vec(e(gH
d,j + e(n),HḠj)c

H)

+ vec(e(n)(gH
d,j + eHḠj)c)

− vec(e(n)(gH
d,j + e(n),HḠj)c

(n)),

aj =2Re{(gH
d,j + e(n),HḠj)c

H(gd,j + ḠH
j e)}

− (gH
d,j + e(n),HḠj)c

(n)(gd,j + ḠH
j e(n)),

c =
∑
i∈KI

wiw
(n),H
i +

∑
j∈KE

vjv
(n),H
j .

Proof: See Appendix A. ■
By linear approximation the harvest power Qj in (11b) with

(12), constraint (11b) can be reformulated as

vecT(∆Gj)Aj vec(∆G∗
j ) + 2Re{aTj vec(∆G∗

j )}
+ aj ≥ u,∀j ∈ KE .

(13)

Constraint (13) still contains infinite inequality constraints
due to the channel uncertainty ∆Gj . To address this difficulty,
we use the following lemma to tackle the CSI uncertainty.
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Lemma 2. (S-Procedure [41]) Let gi, i ∈ {1, 2} be a real-
valued function of vector x that is given by

gi(x) = xHAix+ 2ℜ(aHi x) + ai,

where ai ∈ R. Then, g1(x) ≤ 0 ⇒ g2(x) ≤ 0 holds if and
only if there exists a variable w ≥ 0 such that

w

[
A1 a1
aH1 a1

]
−
[
A2 a2
aH2 a2

]
⪰ 0.

Then, constraint (13) can be rewritten by applying Lemma
2 as follows[

qjIMN +Aj aj
aTj aj − u− qjϵ

2
Gj

]
⪰ 0,∀j ∈ KE , (14)

where qj ≥ 0 are slack variables.
Next, by defining an auxiliary variable βi = ∥(hH

d,i +

eHHi)W−i∥22 + σ2
i . Then constraints (11c) are rewritten as

|(hH
d,i + eHHi)wi|2 ≥ βiγi,∀i ∈ KI , (15)

∥(hH
d,i + eHHi)W−i∥22 + σ2

i ≥ βi,∀i ∈ KI . (16)

Specifically, we notice that (15) is similar to (11b). By
replacing the channel associated with the ER by the channel
associated with the IR (i.e., gd,j = hd,j , Ḡj = H̄i), and
setting c = wiw

(n),H
i , constraint (15) can also be transformed

into the equivalent LMIs constraint, as follows[
ϖiIMN +Aj aj

aTj aj − βiγi −ϖiϵ
2
Hi

]
⪰ 0,∀i ∈ KI . (17)

Next, we consider the uncertainty of {∆Hi} in (16),
the Schur’s complement Lemma [42] is used to rewrite the
inequalities in (16) as follows.[

βi − σ2
i dH

i

di I

]
⪰ 0,∀i ∈ KI , (18)

where di = ((hH
d,i+eHHi)W−i)

H . Substituting Hi = H̄i+
∆Hi into (18), it can be rewritten as[

βi − σ2
i d̂H

i

d̂i I

]
⪰ −

[
0

WH
−i

]
∆HH

i

[
e 0

]
−
[
eH

0

]
∆Hi

[
0 W−i

]
,∀i ∈ KI ,

(19)

where d̂i = ((hH
d,i + eHHi)W−i)

H . Then we convert this
constraint by leveraging the following lemma [43].

Lemma 3. (Sign-definiteness) For matrices F = FH ,A,B,
the following inequality satisfies

F ⪰ AHXB+BHXHA,∀∥X∥F ≤ ξ,

if and only if there exist µ ≥ 0 such that[
F− µBHB −ξAH

−ξA µI

]
⪰ 0.

The following parameters for each constraint in (19) can be
chosen to use Lemma 3

F =

[
βi − σ2

i d̂H
i

d̂i I

]
,A = −

[
0 W−i

]
,

B =
[
e 0

]
, X = ∆HH

i .

Next, we have the equivalent constraints of (16) as followsβi − σ2
i − νiM d̂H

i 01×N

d̂i I(KI−1) ϵHiW
H
−i

0N×1 ϵHi
W−i νiIN

 ⪰ 0,∀i ∈ KI , (20)

where νi ≥ 0 are slack variables.
Hence, the original problem (P2) is rewritten as

(P3) : max
{wi},{vj},e,u,β,q,ϖ,ν

u (21a)

s.t. (14), (17), (20), (11d), (11e), (21b)
q ≥ 0, ϖ ≥ 0, ν ≥ 0, (21c)

where q = [q1, .., qKE
], ϖ = [ϖ1, .., ϖKI

], ν = [ν1, .., νKI
],

β = [β1, .., βKI
]. Due to the coupling effect of {wi} and e, it

is difficult to optimize {wi} and e simultaneously. Hence, the
alternating optimization method is used to solve this problem.
In particular, by fixing the phase shift vector e, the optimized
active beamforming vectors {wi}, {vj} are obtained, then
fixing the active beamforming vectors, the optimized phase
shift vectors e are obtained. Finally, the optimal value of {wi},
{vj} and e can be obtained through iterations. We can get the
subproblem of {wi}, {vj} as follows

(P4) : max
{wi},{vj},u,β,q,ϖ,ν

u (22a)

s.t. (14), (17), (20), (11d), (21c). (22b)

(P4) is an SDP problem, which can be solved by using CVX.
Then, we optimize the phase shift vectors e for given

{wi}, {vj}. The optimization problem can be expressed as

(P5) : max
e,u,β,q,ϖ,ν

u (23a)

s.t. (14), (17), (20), (11e), (21c). (23b)

(P5) is still non-convex because of the unit-modulus con-
straint (11e). Next, a penalty convex-concave procedure (CCP)
method is used to obtain a sub-optimal solution. Specifically,
constraint |em|2 = 1,∀m = 1, ..,M , can be equivalently
transformed into 1 ≤ |em|2 ≤ 1,∀m = 1, ..,M . Notice that
constraint 1 ≤ |em|2 is non-convex, hence, we linearize it as
|e(n)m |2 − 2Re(e∗me

(n)
m ) ≤ −1,∀m = 1, ..,M , at fixed e

(n)
m .

Then, we can reformulate (P5) as follows

(P5.1) : max
e,u,β,q,ϖ,ν

u− 1

ρ

2M∑
m=1

τm (24a)

s.t. (14), (17), (20), (21c), τ ≥ 0, (24b)

|e(n)m |2 − 2Re(e∗me(n)m ) ≤ −1 + τM+m, (24c)

|em|2 ≤ 1 + τm,∀m = 1, ..,M, (24d)

where τ = [τ1, ..., τ2M ]T are the slack variables, 1/ρ is a
regularization factor to scale the penalty item ||τ ||1, and it
can control the feasibility of the unit-modulus constraints.
Specifically, when the value of 1/ρ is too large, a feasible
solution may not be found. However, a smaller value of 1/ρ
may cause dissatification on unit-modulus constraints. Hence,
we gradually increase the value of the penalty coefficient 1/ρ,
until satisfying predefined accuracy. (P5.1) is an SDP problem
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and can be solved by the CVX tool. Finally, the problem
(P1) can be solved iteratively by employing (P4) and (P5.1).
The SCA based alternate optimization algorithm is given in
Algorithm 1.

Algorithm 1 SCA-Based Alternate Optimization Algorithm

Input: Initialize w
(0)
i , v(0)

j for ∀i ∈ KI , j ∈ KE , and e(0),
set maximum number of iterations Tmax, error tolerance
ζ, 0 ≤ c ≤ 1

Output: the optimal solution w∗
i , v∗

j , e∗ and u∗.
1: Initialize: t = 0;
2: repeat
3: Given e(t),w

(t)
i ,v

(t)
j , calculate w

(t+1)
i ,v

(t+1)
j by solv-

ing Problem (P4) ;
4: Set: n = 0;
5: repeat
6: Given e(t),w

(t)
i ,v

(t)
j and ρ(n), calculate e(n+1) by

solving Problem (P5.1);
7: ρ(n+1) = max{cρ(n), ρmin};
8: until ∥ τ (n+1) ∥1≤ ε1 and ∥ e(n+1) − e(n) ∥1≤ ε2;
9: e(t+1) = e(n+1);

10: until t ≥ Tmax or u(t+1)−u(t)

u(t+1) ≤ ζ.
11: return u∗ = u(t+1),w∗

i = w
(t+1)
i ,v∗

j = v
(t+1)
j , e∗ =

e(t+1).

Notice that it is non-trivial to initialize w
(0)
i , v(0)

j , and e(0).
An unsuitable initial point will make the optimization problem
infeasible. An algorithm is designed to find a feasible point of
(P2). Considering that the optimization problem is infeasible
mainly because of the fact that the minimum SINR constraint
(11c) is not satisfied. Therefore, we simplified (P2) without
considering the channel uncertainty and energy receivers.
Specifically, we maximize the minimize SINR among all IRs,
and the initial point can be guaranteed to satisfy the SINR
constraint (11c). Finally, the optimal solution of the following
optimization problem can be used as the initial point of
Problem (P3):

(P6) : max
{wi},e,u

u (25a)

s.t. |(hH
d,i + eHHi)wi|2 ≥ βiγi + u,∀i ∈ KI ,

(25b)

∥(hH
d,i + eHHi)W−i∥22 + σ2

i ≥ βi,∀i ∈ KI ,
(25c)∑

i∈KI

∥wi∥2 ≤ Pt, (25d)

|em|2 = 1. (25e)

By leveraging the Lemma 1, and set ∆Gj = ∆Hi = 0,
gd,j = hd,j , Ḡj = H̄i, c = wiw

(n),H
i , (25b) can be

equivalently rewritten as

2Re{(hH
d,i + e(n),HHi)w

(n)
i wH

i (hd,i +HH
i e)}−

(hH
d,i + e(n),HHi)w

(n)
i w

(n),H
i (hd,i +HH

i e(n)) ≥ βiγi + u.
(26)

Next, the inequalities in (25c) can be equivalently converted
as follows by using the Schur’s complement lemma[

βi − σ2
i dH

i

di I

]
⪰ 0,∀i ∈ KI , (27)

where di = ((hH
d,i + eHHi)W−i)

H . Therefore, (P6) can be
reformulated as follows

(P6.1) : max
{wi},e,u

u (28a)

s.t. (26), (27), (25d), (25e). (28b)

AO method can be adopted to solve the Problem (P6.1),
which is similar to (P2). Denote the optimal solution of (P6.1)
as w∗

i and e∗, then the initial point of Algorithm 1 can be set
as w

(0)
i = w∗

i , e(0) = e∗ and v
(0)
i = 0.

B. Proposed SDR-Based Alternate Optimization Algorithm

Since SCA method uses a linear approximation of the worst-
case rate constraint, this may result in performance loss. We
propose another novel algorithm to solve Problem (P2) by
leveraging the SDR and AO technique. The numerator of the
SINR in (4) is equivalently reformulated as

|(hH
d,i + eHHi)wi|2

= 2ℜ(eHHiWihd,i) + eHHiWiH
H
i e+ hH

d,iWihd,i

= ϕHEH
i WiEiϕ = Tr(ΦEH

i WiEi),

(29)

where Wi = wiw
H
i , Ei = [HH

i hd,i] denote an channel
matrix including both the direct channel and the IRS reflection
channel, ϕ = [eH , 1]H , and Φ = ϕϕH . The denominator can
be equivalently reformulated in a similar manner. Hence, we
can reformulate (P2) as follows

(P7) : max
{Wi},{Vj},Φ,u

u (30a)

s.t. min
∆Gj∈ΩGj

Tr(ΦΞH
j BΞj) ≥ u,∀j ∈ KE , (30b)

max
∆Hi∈ΩHi

Tr(ΦEH
i W̄iEi) + γiσ

2
i ≤ 0, ∀i ∈ KI ,

(30c)∑
i∈KI

Tr(Wi) +
∑
j∈KE

Tr(Vj) ≤ Pt, (30d)

Φmm = 1,∀m = 1, ..,M + 1, (30e)
Rank(Wi) = 1, ∀i ∈ KI , (30f)
Rank(Vj) = 1,∀j ∈ KE , (30g)
Rank(Φ) = 1, (30h)

where Ξj = [GH
j gd,j ], B = (

∑
i∈KI

Wi +
∑

j∈KE
Vj),

W̄i = γi
∑

k∈KI\{i} Wk −Wi.
First, we use the S-Procedure to deal with the semi-infinite

inequalities (30c). Specifically, we have

Ei = [HH
i hd,i] = [H̄i +∆Hi hd,i]

= Ēi +∆Ei,
(31)

where Ēi = [H̄H
i hd,i] and ∆Ei = [∆HH

i 0N×1]. Ac-
cording to (6), we have

∥∆Ei∥F =
√

∥∆Hi∥2F ≤
√

ϵ2Hi
= ϵHi

. (32)
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By using transformations Tr(AHBCD) =
vecH(A)

(
DT ⊗B

)
vec(C), constraint (30c) can be

equivalently rewritten as follows

Tr(ΦEH
i W̄iEi) + γiσ

2
i

= hH
i (ΦT ⊗ W̄i)hi + γiσ

2
i ≤ 0,∀∥∆Ei∥F ≤ ϵHi ,

(33)

where hi = vec(Ei). We can define

hi = h̄i +∆hi, (34)

where h̄i = vec(Ēi), ∆hi = vec(∆Ei). Hence, ∥∆hi∥2 =
∥∆Ei∥F ≤ ϵHi

. By substituting (34) into (33), constraint (33)
can be further rewritten as follows

∆hH
i (ΦT ⊗ W̄i)∆hi + h̄H

i (ΦT ⊗ W̄i)h̄i

+ 2ℜ(h̄H
i (ΦT ⊗ W̄i)∆hi)

+ γiσ
2
i ≤ 0,∀∥∆hi∥2 ≤ ϵHi

.

(35)

Then, Lemma 2 can be used to deal with the channel uncer-
tainty in constraints (35). Specifically, (35) can be rewritten
as follows

µi

[
IN(M+1) 0

0 −ϵ2Hi

]
−
[

ΦT ⊗ W̄i (ΦT ⊗ W̄i)h̄i

h̄H
i (ΦT ⊗ W̄i) h̄H

i (ΦT ⊗ W̄i)h̄i + γiσ
2
i

]
⪰ 0

⇔ Ui −PH
i (ΦT ⊗ W̄i)Pi ⪰ 0,∀i ∈ KI ,

(36)

where

Ui =

[
µiIN(M+1) 0

0 −µiϵ
2
Hi

− γiσ
2
i

]
,

Pi =
[
IN(M+1) h̄i

]
,

(37)

and µ = [µ1, ..., µKI
]T ≥ 0 are slack variables. Hence, the

infinite inequalities in (30c) are transformed into LMIs in (37),
which are readily to be solved.

The constraint (30b) also contains the channel uncertainty.
Firstly, constraint (30b) is rewritten as follows

max
∆Gj∈ΩGj

Tr(ΦΞH
j CΞj) + u ≤ 0,∀j ∈ KE , (38)

where C = −(
∑

i∈KI
Wi +

∑
j∈KE

Vj). Then, we find that
the above constraint (38) is similar to (30c). Hence, by using
similar derivations as in (31)-(37), we have an equivalent form
of (30b) as follows

Xj − ZH
j (ΦT ⊗C)Zj ⪰ 0,∀j ∈ KE , (39)

where

Xj =

[
φjIN(M+1) 0

0 −φjϵ
2
Gj

− u

]
,

Zj =
[
IN(M+1) ḡj

]
,

(40)

where ḡj = vec(Ξ̄j). Hence, the original robust beforming
design problem (P7) can be rewritten as follows

(P8) : max
{Wi},{Vj},Φ,u

u (41a)

s.t.(36), (39), (30d)− (30h). (41b)

However, (P8) is still non-convex. Furthermore, (30f)-(30h)
are rank-one constraints, which are non-convex. Next, we use

the method of AO and SDR to solve this problem. Specifically,
for given Φ, the subproblem of Wi, Vj is given by

(P8.1) : max
{Wi},{Vj},u

u (42a)

s.t.(36), (39), (30d), (30f), (30g). (42b)

The rank-one constraint (30f), (30g) can be relaxed by
using SDR method. This problem becomes an SDP problem,
which can be solved by convex optimization tool, i.e., CVX.
We denote the optimal solution of this relaxed problem as
W ∗

i ,∀i ∈ KI and V ∗
j ,∀j ∈ KE . Then, we have the following

lemma.

Lemma 4. The optimal solution of Problem (P8.1) always
satisfies the rank-one condition: rank (W ∗

i ) = 1, ∀i ∈
KI , rank

(
V ∗
j

)
= 1,∀j ∈ KE .

Proof: See Appendix B. ■
On the other hand, we optimize the phase shift matrix Φ,

when Wi,Vj are given. The optimization problem becomes

(P8.2) :max
Φ,u

u (43a)

s.t.(36), (39), (30e), (30h). (43b)

By relaxing the rank-one constraint (30h), Problem (P8.2)
is an SDP problem, and can be solved by CVX. We denote the
optimal solution of (P8.2) as Φ∗ and u∗, if rank(Φ∗) = 1, u∗

is the optimal solution. Otherwise, the Gaussian randomization
method can be used to construct a rank-one solution, which
can find an optimal rank-one feasible solution Φ around Φ∗.
Specifically, we first perform the eigenvalue decomposition
over the Φ∗ as Φ∗ = UΣUH . Then, we set ϕ = UΣ

1
2 r,

where r ∼ CN (0, I) is a random CSCG vector. With
independently generated a large number of Gaussian random
vectors r, the optimal solution ϕ∗ = ej arg(ϕ/ϕN+1) is the one
to achieve the maximum objective value of (P8.2). Finally, the
IRS phase shift θ can be recovered as θ = ϕ∗

[1:N ].
The SDR based AO algorithm is given in Algorithm 2.

Algorithm 2 SDR-Based Alternate Optimization Algorithm

Input: Initialize the phase shifts as Φ = Φ(0).
Output: the optimal solution W ∗

i , V ∗
j , Φ∗ and u∗.

1: Initialize: t = 0;
2: repeat
3: Given Φ(t), calculate W

(t+1)
i ,V

(t+1)
j by solving

(P8.1);
4: Given W

(t+1)
i ,V

(t+1)
j , calculate Φ(t+1), u(t+1) by

solving (P8.2). If Φ(t+1) is not rank-one, The Gaussian
randomization step need be used to construct a feasible
rank-one solution.

5: until t ≥ Tmax or u(t+1)−u(t)

u(t+1) ≤ ζ.
6: return u∗ = u(t+1),W ∗

i = W
(t+1)
i ,V ∗

j =

V
(t+1)
j ,Φ∗ = Φ(t+1).

C. Computational Complexity

In this subsection, we provide the complexity analysis
of the proposed two worst-case robust beamforming design
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algorithms. Note that all the resulting convex problems only
contains LMI constraints and second-order cone (SOC) con-
straints. The problems are solved by the interior point method
[44], and the number of iterations required to obtain the
optimal solution is

β =

√√√√ p∑
i=1

ai + 2m, (44)

where p denotes the number of LMI constraints, ai represents
the dimension corresponding to the constraint, and m repre-
sents the number of SOC constraints. The complexity of each
iteration is

C = n

p∑
i=1

a3i + n2

p∑
i=1

a2i + n
m∑
i=1

k2i + n3, (45)

where n represents the total number of variables, p and m rep-
resent the number of LMI and SOC constraints, respectively.
Finally, the general expression of total complexity is O(βC).
Based on this expression, the computational complexity per
iteration of the proposed algorithms are given as follows

1) SCA-Based AO algorithm. The approximate complexity
of the subproblem (P4) for optimizing the beamforming
vectors is oF = O([(KI+KE)(MN+1)+KI(KI+N+
3)+KE +4N ]1/2n1[n

2
1 + n1((KI +KE)(MN +1)2 +

KI(KI + N)2) + (KI + KE)(MN + 1)3 + KI(KI +
N)3]), where n1 = N(KI + KE) + 3KI + KE + 1.
The approximate complexity of the subproblem (P5.1)
for optimizing the phase shift vectors is oe = O([(KI +
KE)(MN+1)+KI(KI+N+3)+KE+2M ]1/2)n2[n

2
2+

n2((KI + KE)(MN + 1)2 + KI(KI + N)2) + (KI +
KE)(MN + 1)3 + KI(KI + N)3 + M ]), where n2 =
M +KE +3KI +1. The approximate complexity of the
SCA-Based AO Algorithm per iteration is oF + oe.

2) SDR-Based AO algorithm. The approximate complexity
of the subproblem (P8.1) for optimizing the beamforming
vectors is oF = O([(KI + KE)(MN + N + 1) +
1]1/2n3[n

2
3++n3(KI+KE)(MN+N+1)2+n3+(KI+

KE)(MN+N+1)3+1]), where n3 = (KI+KE)N
2+1.

The approximate complexity of the subproblem (P8.2)
for optimizing the phase shift vectors is oe = O([(KI +
KE)(MN + N + 1) + M + 1]1/2)n4[n

2
4 + n4((KI +

KE)(MN + N + 1)2 + (n4 + 1)(M + 1) + (KI +
KE)(MN +N + 1)3]), where n4 = (M + 1)2 + 1. The
approximate complexity of the SCA-Based AO Algorithm
per iteration is oF + oe.

IV. SIMULATION RESULTS

In this section, simulation setup and numerical results are
provided to demonstrate the benefits of IRS-aid SWIPT sys-
tem, and evaluate the performance of the proposed algorithms.

A. Simulation Setup

 !"! !"!#

$%

&'

#$%!
()%

"!
# &'% 

"!()*+,-./
 !()*+,-./

#$% 

Fig. 2. Simulation setup

As seen in Fig.2, where an IRS is deployed to assist
the SWIPT system. The BS is located at (0, 0) and the
IRS is placed at (xER, 3). The IRs and ERs are uniformly
and randomly scattered in a circle centered at (xIR, 0) and
(xER, 0) with radius of 4 m and 1 m, respectively. The
distance-dependent path loss model is given by

PL = PL0(
D

D0
)−α, (46)

where PL0 = (λ/4π)2 is the path loss at the reference
distance D0 = 1 m. D denotes the length of the link in meters,
and α is the path loss exponent. The path loss exponents
of the BS-IRS links are set to be 2.2, while the path loss
exponent of BS-IRs and BS-ERs links are set to 3.6. The
path loss exponents of IRS-IR and IRS-ER are set to 2.4
and 2, respectively. The small scale fading channel can be
expressed as Gaussian random variables with zero mean and
unit variance.

The CSI error bounds are defined as ϵHi
= δh

∥∥vec (H̄i

)∥∥
2

and ϵGj = δg
∥∥vec (Ḡj

)∥∥
2
, respectively. δg ∈ [0, 1) and δh ∈

[0, 1) are the channel estimation error coefficients. Without
loss of generality, we assume that the channel estimation error
coefficient δh = δg = δ, and all IRs have the same SINR target
and noise power, i.e., γi = γ0, σ

2
i = σ2,∀i ∈ KI , the other

parameters are set as follows: δ = 0.02, PL0 = −30 dB,
σ2 = −80 dBm, N = 6, γ0 = 1 bit/s/Hz, M = 40, Pt = 10
W, xER = 3 m, xIR = 50 m, KI = 2, KE = 2 (if not
specified otherwise).

In the following, a pair of benchmark schemes are proposed
to compare with our proposed algorithms: 1)‘No-IRS’: in this
scheme, we consider the problem in the traditional SWIPT
system. 2)‘No Robust’: the channel estimation error is ignored.
3)‘Rand Phase’: only the active beamforming vectors at the BS
are optimized via solving the corresponding sub-problem.

B. Convergence of the Proposed Algorithms
In Fig. 3, we study the convergence behaviour of the pro-

posed SCA-based AO algorithm and SDR-based AO algorithm
for different numbers of reflecting elements at IRS M is
investigated. It is observed from Fig. 3 that both the two
proposed algorithms can converge in several iterations. In
addition, the SDR-based AO algorithm requires much smaller
number of iterations to converge than the SCA-based AO algo-
rithm. However, both the proposed algorithms converge within
5 iterations on average, which shows the low complexity of
the proposed two algorithms.
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C. Minimum Received Power Versus Number of Reflecting
Elements

In Fig. 4, we compare the ER’s minimum received power
of various algorithms versus the number of reflecting ele-
ments M . The minimum received power at ER achieved by
two algorithms increases with M , since the IRS can create
additional links and improve the channel environment by
properly adjusting the phase shifts. By deploying the IRS in
the SWIPT system, the received power at ER obtained by
our proposed two algorithms becomes higher than the scheme
which does not consider IRS. Additionally, we can observe
that the SCA-based AO algorithm is better than the SDR-based
AO algorithm, and the gap becomes large with the increase
of M . This can be explained as follows. When the number
of the reflecting elements M is small, the rank-one feasible
solution region is large. As a result, for a given number of
random times, the Gaussian randomization method may find
the optimal solution. However, when M is too large, the rank-
one feasible solution region is small, so in given number of
random times, the Gaussian randomization method can only
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achieve a sub-optimal solution.

D. Minimum Received Power Versus Transmit Power

In Fig. 5, we investigate the impact of transmit power at the
BS on the EH performance of ERs. The minimum received
power achieved by all schemes monotonically increases with
the increase of the transmit power at the BS. Additionally,
we observe that the minimum received power of the robust
beamforming design scheme is lower than no-robust beam-
forming scheme. This is because the robust beamforming
design considers the worst channel condition and it is the price
to pay for the robust design. Finally, we also find that the
transmit power at the BS has a great impact on the received
power.

E. Minimum Received Power Versus The Distance From BS
To Energy Receivers

In Fig. 6, we investigate the impact of the distance between
BS and ERs on the received power. We can see the received
power decreases gradually with the increase of distance from
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Fig. 7. The minimum received power versus channel estimate error coefficient δ.

the BS to the ERs. This is because when the distance increases,
the path loss increases, and causes the decrease of the received
power. We also find that the received power of ERs is greatly
affected by the distance from the BS to ERs, which shows
that the ERs should be placed close to the BS. Additionally,
we note that deploying IRS can increase the received power
compared to no IRS. Finally, it can be seen from Fig. 6
that compared with random phase, where the phase shift
matrix of the IRS has not been optimized, the received power
is improved after we optimize the phase shift matrix. This
illustrates the importance of optimizing the phase shift matrix
of the IRS.

F. Minimum Received Power Versus Channel Estimate Error

In Fig. 7, the impact of channel estimation error coefficient
δ is studied. Note that the received power gleaned by robust
beamforming schemes decreases with the increase of the
channel estimate error. This is expected since more beams
need to be directed towards the information receiver to ensure
the minimum rate requirements of the IRs and the robustness
of the system. Therefore, the receiving power of the energy
receivers are reduced. It is also observed from Fig. 7 that the
received power of robust beamforming design scheme is lower
than that of no-robust, this is because the robust beamforming
scheme considers the worst channel case, and thus leading
to lower received power than no-robust. However, it is still
higher than the ‘No IRS’ setup. In addition, we note that the
performance of the SDR-based algorithm is better than that of
the SCA-based algorithm when the channel estimation error
coefficient δ is small, however, this result is just the opposite
when δ is large. This typical value is 0.01. This enlightens us
that we can choose the best algorithm according to the channel
estimation error value.

G. Outage Probability of Rate Versus Channel Estimate Error

In Fig. 8, we investigate the impact of channel estimation
error coefficient δ on the outage probability of the rate.
Specifically, we define the probability that the IR rate is
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Fig. 8. Outage probability of rate versus channel estimate error coefficient δ.

lower than the minimum rate as the outage probability. It
is observed that no-robust scheme often has outage, and the
outage probability monotonically increases with the increase
of the channel estimate error coefficient δ and minimum
rate requirement. Our proposed robust beamforming design
algorithm can guarantee to have zero probability of outage.

V. CONCLUSION

In this paper, we have studied robust beamforming de-
signs under imperfect cascaded channel for the IRS-aided
MISO SWIPT system. In order to ensure fairness, our aim
was to maximize the minimum received energy among all
ERs, subject to the worst-case rate constraints. Two novel
algorithms, which use SCA or SDR methods are proposed
to jointly optimize the active beamforming vectors at the
BS and passive phase shift matrix at the IRS, respectively.
Specially, the CSI uncertainties were addressed by using
transformation techniques and S-procedure, the SCA, penalty
CCP and SDR methods were used to deal with the non-convex
constraints. Numerical results demonstrated that deploy IRS
in SWIPT system can enhance the harvested power of ERs.
Our proposed algorithms can guarantee system robustness with
rapid convergence.

APPENDIX A
PROOF OF THE LEMMA 1

According to Lemma 3 in [31], the linear approximation of
|gH

d,j + eH(Ḡj +∆Gj)wi|2 at (w(n)
i , e(n)) can be expressed

as

vecT(∆Gj)Bi vec(∆G∗
j )+2Re{bT

i vec(∆G∗
j )}+di, (47)
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where

Bi =wiw
(n),H
i ⊗ e∗e(n),T +w

(n)
i wH

i ⊗ e(n),∗eT

−w
(n)
i w

(n),H
i ⊗ e(n),∗e(n),T ,

bi =vec(e(gH
d,j + e(n),HḠj)w

(n)
i wH

i )

+ vec(e(n)(gH
d,j + eHḠj)wiw

(n),H
i )

− vec(e(n)(gH
d,j + e(n),HḠj)w

(n)
i w

(n),H
i ),

di =2Re{(gH
d,j + e(n),HḠj)w

(n)
i wH

i (gd,j + ḠH
j e)}

− (gH
d,j + e(n),HḠj)w

(n)
i w

(n),H
i (gd,j + ḠH

j e(n)).

Then, according to the addition rule for derivatives,
the linear approximation of

∑
i∈KI

|(gH
d,j +

eHGj)wi)|2 +
∑

k∈KE
|(gH

d,j + eHGj)vk|2 at
(w

(n)
1 , ...,w

(n)
KI

,v
(n)
1 , ...,v

(n)
KE

, en) can be expressed as∑
(vecT(∆Gj)Bi vec(∆G∗

j ) + 2Re{bT
i vec(∆G∗

j )}+ di)

= vecT(∆Gj)(
∑

Bi) vec(∆G∗
j )

+ 2Re{(
∑

bi)
T vec(∆G∗

j )}+
∑

di.

By defining

Aj =
∑

Bi

= (
∑
i∈KI

wiw
(n),H
i +

∑
j∈KE

vjv
(n),H
j )⊗ e∗e(n),T

+ (
∑
i∈KI

w
(n)
i wH

i +
∑
j∈KE

v
(n)
j vH

j )⊗ e(n),∗eT

− (
∑
i∈KI

w
(n)
i w

(n),H
i +

∑
j∈KE

v
(n)
j v

(n),H
j )⊗ e(n),∗e(n),T ,

c =
∑
i∈KI

wiw
(n),H
i +

∑
j∈KE

vjv
(n),H
j ,

we can obtained (12), the proof is completed.

APPENDIX B
PROOF OF THE LEMMA 4

By relaxing the rank-one constraint in Problem (P8.1), the
remaining problem is an SDP problem, which is convex. This
problem satisfies the Slater’s constraint qualification. There is a
zero duality gap, and thus strong duality holds. The Lagrangian
function expressed as

L =−
∑
i∈KI

[Tr (YiWi)

− Tr
(
BiP

H
i

(
ΦT ⊗ W̄i

)
Pi

)
− β Tr (Wi)]

−
∑
j∈KE

[Tr (AjVj)− Tr
(
DjZ

H
j

(
ΦT ⊗C

)
Zj

)
− β Tr (Vj)] + c,

(48)

where Yi,Aj are the dual variables associated with constraints
Wi ⪰ 0 and Vj ⪰ 0, respectively. Bi and Dj are the
dual variables associated with (36) and (39), respectively. c
represents the collection of terms that do not depend on Wi

and Vj . Then, the complementary slackness conditions for
problem (P8.1) without rank-one constraint are given by

K1 : Yopt
i ⪰ 0,Bopt

i ⪰ 0,Aopt
j ⪰ 0,Dopt

j ⪰ 0,

K2 : Yopt
i Wopt

i = 0,Aopt
j Vopt

j = 0,

K3 : ∇Wi
L
(
Wopt

i

)
= 0,

K4 : ∇Vj
L
(
Vopt

j

)
= 0,∀i ∈ KI , j ∈ KE .

(49)

Firstly, we prove Rank(Wi) = 1. Noted that complemen-
tary slackness conditions K3 can be rewritten as

Yopt
i = βIN −Υopt

i , (50)

where Υopt
i = Topt

i −
∑

k∈KI\{i} γiT
opt
i , and the matrix Topt

i

is given by

Topt
i =

M+1∑
i=1

M+1∑
j=1

aijU
opt
ij , (51)

where aij is the (i, j)-th element of Φ and Uopt
ij ∈ CN×N is

the (i, j)-th submatrix of PiB
opt
i PH

i ,

PiB
opt
i PH

i =


Uopt

11 Uopt
12 · · · Uopt

1(M+1)

Uopt
21
...

. . .
Uopt

(M+1)1 Uopt
(M+1)(M+1)

 .

(52)
Due to user channels are distributed independently, the prob-

ability of having multiple identical eigenvalues λmax

(
Υopt

i

)
is zero. For (50), if λmax

(
Υopt

i

)
> β, then Yopt

i ⪰ 0
does not hold, which contradicts to K1. Additionally, if
λmax

(
Υopt

i

)
≤ β , then Yopt

i is a positive semidefinite matrix
with Rank(Yopt

i ) ≥ N −1, which leads to Rank(Wopt
i ) ≤ 1

because of K2. In addition, due to the SINR constraints, it
must hold that Wopt

i ̸= 0. Therefore, Rank(Wopt
i ) = 1. By

applying similar analysis, Rank(Vopt
j ) ≤ 1 can be obtained,

the proof is completed.
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