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ABSTRACT 31 

Respiratory function has become a global health priority. Not only is chronic respiratory 32 

disease a leading cause of worldwide morbidity and mortality, but the COVID-19 33 

pandemic heightened attention on respiratory health and the means of enhancing it. 34 

Subsequently, and inevitably, the respiratory system has become a target of the multi-35 

trillion-dollar health and wellness industry. Numerous commercial, respiratory-related 36 

interventions are now on sale, coupled to therapeutic and/or ergogenic claims that vary 37 

in their plausibility: from the reasonable to the absurd. Moreover, legitimate and 38 

illegitimate claims are often conflated in a wellness space that lacks regulation. The 39 

abundance of interventions, the range of potential therapeutic targets in the respiratory 40 

system, and the wealth of research that varies in quality, all confound the ability for health 41 

and exercise professionals to make informed risk-to-benefit assessments with their 42 

patients and clients. This review focuses on numerous commercial interventions that 43 

purport to improve respiratory health, including nasal dilators, nasal breathing, 44 

generalized and systematized breathing interventions (such as pursed-lips breathing), 45 

respiratory muscle training, canned oxygen, various nutritional supplements, and inhaled 46 

L-menthol. For each intervention we describe the premise, examine the plausibility, and 47 

systematically contrast commercial claims against the published literature. The 48 

overarching aim is to assist health and exercise professionals to distinguish science from 49 

pseudoscience and make pragmatic and safe risk-to-benefit decisions. 50 

 51 

Key words: asthma; COPD; exercise; disease; lung function; nutrition; pulmonary.  52 
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1.0 INTRODUCTION 53 

The human respiratory system comprises the upper respiratory tract (nasal and 54 

oral cavities, pharynx, and larynx), lower respiratory tract (trachea, and bronchial tree), 55 

lung parenchyma, pulmonary vasculature, and respiratory muscles (e.g., diaphragm, 56 

abdominals, obliques, intercostals). Under neural control from central and peripheral 57 

chemoreceptors and respiratory centers in the brain, the respiratory system transfers 58 

oxygen from the atmosphere to the pulmonary circulation and carbon dioxide in the 59 

opposite direction. With a few notable exceptions (e.g., high-intensity exercise, hypoxic 60 

environments), the healthy respiratory system is unlikely to present a significant limitation 61 

to gas exchange or O2 transport (Dempsey et al. 2020). 62 

 In recent years, the respiratory system has become a target of the multi-trillion-63 

dollar commercial health and wellness industry. Therein, numerous respiratory-related 64 

products and strategies (e.g., respiratory muscle training devices, nasal strips, deep 65 

breathing regimens) are sold to the consumer alongside therapeutic and/or ergogenic 66 

claims that vary in their plausibility: from the reasonable (mitigate stress, improve 67 

perceptions, improve lung and respiratory muscle function); to the questionable (increase 68 

oxygen transport, “boost” immune function); to the absurd (increase “energy flow” and 69 

promote healing). Furthermore, due to lax regulations in the wellness space and little 70 

obligation for marketing to conform to scientific or ethical standards, it is common for 71 

legitimate and illegitimate claims to be conflated (Tiller et al. 2022). The current ‘wellness’ 72 

paradigm thus makes it difficult for health and exercise professionals to make informed 73 

risk-to-benefit assessments with their patients and clients. 74 

 Several factors underpin the accelerating commercial popularity of respiratory-75 

related interventions, the most pertinent being the COVID-19 pandemic which has 76 

heightened attention on respiratory health and potential means of enhancing it. But even 77 

before COVID-19, chronic respiratory disease (such as chronic obstructive pulmonary 78 

disease [COPD]) was a leading cause of morbidity and mortality (World Health 79 

Organization 2022), conferring a considerable and growing economic burden 80 

(Ehteshami-Afshar et al. 2016). Respiratory disease has also received growing coverage 81 

in the media owing to the pressing issue of climate change and worsening air quality 82 

(Barnes et al. 2013). Respiratory function has thus become a global health priority. To 83 
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compound the problem, respiratory physiology is a complex discipline that is poorly 84 

understood by the public, and its mechanisms can thus be easily misappropriated for 85 

commercial gain. 86 

 This review explores a number of commercial interventions that purport to 87 

influence aspects of the respiratory system to improve respiratory function, respiratory 88 

health, and/or exercise responses. The interventions selected for inclusion were nasal 89 

dilators, nasal breathing, generalized and systematized breathing interventions (including 90 

pursed-lips breathing), respiratory muscle training, canned oxygen, various nutritional 91 

supplements, and inhaled L-menthol. For each intervention we describe its premise, 92 

examine its plausibility, and contrast commercial claims against the published literature. 93 

The overarching aim of this paper is to provide an evidence-based guide for health and 94 

exercise professionals—to help them distinguish science from pseudoscience in 95 

respiratory physiology and assist them in making safe and pragmatic risk-to-benefit 96 

decisions. 97 

 98 

1.1 Methods 99 

In January 2022, the first and corresponding authors (CRI and NBT, respectively) 100 

convened a meeting of recognized experts in the fields of respiratory medicine and 101 

exercise physiology. After several rounds of discussion, all authors agreed that the 102 

products/strategies to be included should be non-medical, commercial interventions, 103 

excluded if they were controlled drugs and/or regulated by the FDA as “medical devices”. 104 

The list was not exhaustive but instead limited to the interventions most prevalent in the 105 

health and wellness industry and that were coupled to the most conspicuous claims. A 106 

list of commercial claims was then compiled from websites, press releases, and relevant 107 

media, after which peer-reviewed articles were searched via PubMed (no date restriction). 108 

The literature search-terms comprised the relevant intervention (e.g., nasal dilators, 109 

respiratory muscle training, etc.) alongside various combinations of the following: 110 

breathlessness; dyspnea; lung; lung function; pulmonary; respiratory; respiratory 111 

function; respiratory health; respiratory symptoms; pathophysiology. All article types—112 

meta-analyses, systematic reviews, randomized-controlled trials (RCTs), exploratory 113 

studies, confirmatory studies, and case reports—were included, and the reference lists of 114 
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articles selected for inclusion were manually searched for additional literature. A first draft 115 

of the manuscript was collated, and after several rounds of discussion and refinement, all 116 

authors agreed upon the evidence summaries and recommendations and approved the 117 

final work. Most of the correspondence was carried out virtually/electronically. 118 

  119 
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2.0 EVIDENCE REVIEW 120 

2.1 Nasal dilators 121 

 2.1.1 Premise and plausibility. External nasal dilators (ENDs) are applied 122 

horizontally to the skin of the nasal dorsum whereas internal nasal dilators (INDs) are 123 

placed inside the nostrils. Both purportedly increase nostril patency by preventing the 124 

nasal wings from collapsing during inspiration (Dinardi et al. 2014). The devices were 125 

originally developed to aid with sleep-related issues (e.g., snoring and apnea) but their 126 

widespread use at the Atlanta Olympic Games in 1996 made them popular with 127 

exercisers and athletes (Dinardi et al. 2014). Using magnetic resonance imaging, Bishop 128 

et al. (2016) showed that an END (Breathe Right®) evoked significant enlargement of the 129 

anterior nasal passage when compared to a placebo. Using acoustic rhinometry, Griffin 130 

et al. (1997) observed increased nasal valve area with the same device. Although ENDs 131 

had no effect on plethysmography-derived measures of nasal resistance (Vermoen et al. 132 

1998) or maximum expiratory flows (Di Somma et al. 1999) in healthy individuals, others 133 

have shown that ENDs increased nasal inspiratory flow during normal and forced 134 

breathing (Vermoen et al. 1998; Di Somma et al. 1999). Thus, ENDs likely improve nostril 135 

patency by supporting the lateral nasal vestibular walls, manifesting as a slight increase 136 

in inspiratory nasal flow at rest and during maximal inspiratory maneuvers. The bulk of 137 

literature has focused on whether there is any subsequent clinical or ergogenic benefit. 138 

2.1.2 Literature. Articles were excluded if nasal dilators were simultaneously 139 

applied with other breathing interventions. Most studies on nasal dilators evaluated their 140 

effect on sleep-related issues including sleep quality, snoring, and obstructive sleep 141 

apnea; generally showing subjective (but not objective) outcomes. For example, using 142 

ENDs, Wenzel et al. (1997) reported improved subjective ratings of nose breathing at rest 143 

but no changes in objective (polysomnography-derived) measures of obstructive sleep 144 

apnea. Similarly, several non-placebo-controlled studies showed improved subjective 145 

ratings of sleep quality (e.g., insomnia severity, sleep-disordered breathing) and quality 146 

of life with ENDs (Krakow et al. 2006; Gelardi et al. 2019). When an IND (Nas-Air®) and 147 

an END (Breathe Right®) were compared, the former conferred better subjective ratings 148 

of sleep quality (assessed via visual analogue scale) (Gelardi et al. 2019). One placebo-149 

controlled study in patients with upper-airway resistance syndrome found that 150 
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desaturation time during sleep (the percentage of time that SpO2 was >2% below waking 151 

values) was significantly lower with an END (Breathe Right®) versus placebo (9.1 vs. 152 

12.2%), but there were no other effects on cardiorespiratory variables, sleep architecture, 153 

or sleep latency (Bahammam et al. 1999).  154 

Data on snoring are equivocal. Research by Gelardi et al. (2019) reported that 155 

snoring time was reduced with both an IND and END, whereas Wenzel et al. (1997) 156 

showed that ENDs had no effect on the frequency of snoring events. When healthy 157 

subjects with nasal congestion were randomized to an END group (Breathe Right®) or a 158 

placebo group for two weeks, both devices equally improved subjective ratings of sleep 159 

quality and subjective ratings of nasal congestion, suggesting a potent placebo effect 160 

(Noss et al. 2019). Lastly, Sadan et al. (2005) showed that nasal dilators, when used by 161 

females during childbirth, improved subjective ratings of “ease of breathing” but had no 162 

effect on objective markers of labor progression or recovery. Collectively, the data 163 

suggest that nasal dilators (mainly ENDs) may improve perceptions of nasal breathing 164 

and subjective ratings of sleep quality. However, they are unlikely to influence objective 165 

markers of obstructive sleep apnea (Camacho et al. 2016) and the data on snoring 166 

frequency and duration are equivocal. In fact, several authors have proposed ENDs as 167 

an effective placebo intervention in RCTs that explore treatment options in obstructive 168 

sleep apnea (Amaro et al. 2012; Yagihara et al. 2017). 169 

 On the premise that ENDs increase some measures of nasal patency and nasal 170 

inspiratory flow, their potential to improve exercise capacity has also been explored. 171 

Despite a few reports of favorable outcomes (Griffin et al. 1997; Dinardi et al. 2013, 2017), 172 

a recent systematic review and meta-analysis of 19 articles concluded that ENDs elicited 173 

“no improvement in V̇O2max, HR and RPE outcomes in healthy individuals during 174 

[maximal or submaximal] exercise” (Dinardi et al. 2021). Other studies, using esophageal 175 

balloon catheters, report no effect of ENDs on inspiratory elastic work, inspiratory resistive 176 

work, or expiratory resistive work during submaximal or maximal exercise (O’Kroy et al. 177 

2001). There was also no effect of ENDs on recovery of V̇O2, V̇E, or HR after exercise 178 

when compared to a placebo or a no-intervention control (Thomas et al. 2001); and no 179 

effect of ENDs on blood lactate responses after exercise in sedentary or endurance 180 
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trained women (Boggs et al. 2008). Thus, nasal dilators appear to have no meaningful 181 

influence on exercise performance or physiological variables during or after exercise. 182 

The commercial claims of one specific IND (Turbine™) have been scrutinized by 183 

several studies, all showing no benefit on respiratory mechanics or exercise tolerance. 184 

One such study, a sham-controlled trial using esophageal balloon catheters to measure 185 

respiratory mechanics during incremental cycling, showed that INDs did not reduce the 186 

work of breathing and had no effect on exertional dyspnea or exercise capacity (Schaeffer 187 

et al. 2021). Another RCT tested the effect of the Turbine™ on 20-km cycling time-trial 188 

performance, reporting no influence on mean power output (Adams and Peiffer 2017). 189 

Favorable data from a clinical trial posted on the manufacturer’s website have not been 190 

peer reviewed or published at the time of this writing. 191 

 2.1.3 Evidence Summary and Recommendations. Primary outcomes from the 192 

literature on nasal dilators are summarized in Figure 1. Both ENDs and INDs enlarge and 193 

stabilize the nasal valves thereby mitigating their collapse during high flow inspiration and 194 

increasing inspiratory nasal airflow during maximal inspiratory efforts. Current evidence 195 

suggests that nasal dilators may improve perceptions of nasal breathing and subjective 196 

ratings of sleep quality but are unlikely to influence objective markers of obstructive sleep 197 

apnea. The data on snoring frequency and duration are equivocal. Most studies show no 198 

effect of nasal dilators on cardiorespiratory function or ratings of perceived exertion during 199 

exercise, no effect on exercise capacity, and no effect on physiological variables during 200 

the acute phase of recovery. 201 

 202 

2.2 Nasal breathing  203 

2.2.1 Premise and plausibility. In humans, nitric oxide (NO) is a vasodilator (Morris 204 

and Rich 1997) and mild bronchodilator (Kacmarek et al. 1996), first identified in expired 205 

gas in the 1990s (Gustafsson et al. 1991). Functionally, the two NO isoforms are 206 

“constitutive” and “inducible” NO, with most being produced in the paranasal sinuses 207 

(Ricciardolo 2003). In fact, the paranasal sinuses produce considerably greater amounts 208 

of NO than either the mouth or the trachea (56 vs. 14 vs. 6 ppb, respectively; (Törnberg 209 

et al. 2002)). It has been suggested that nasally-derived NO can evoke airway smooth 210 

muscle relaxation, inhibit smooth muscle proliferation, and protect against excessive 211 
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bronchoconstriction (Ricciardolo 2003). Others suggest that nasal breathing might 212 

attenuate pulmonary hypertension by vasodilating the pulmonary vasculature (Settergren 213 

et al. 1998). Although exogenous (supplementary) NO is known to reduce vascular 214 

resistance and increase pulmonary blood flow in healthy and patient populations 215 

(Settergren et al. 1998; Crespo et al. 2010), the concentration of endogenous (nasally-216 

derived) NO is considerably lower than the concentrations used in NO-enriched air 217 

(Törnberg et al. 2002). Therefore, an important consideration is whether increased NO 218 

uptake via nasal breathing exerts meaningful effects in healthy or patient populations. 219 

2.2.2 Literature. Articles were excluded if they reported on exogenous 220 

(supplementary) NO inhalation as opposed that which was nasally derived, if they studied 221 

exhaled NO as a tool for assessing airway inflammation, or if nasal breathing was studied 222 

in combination with other breathing interventions (e.g., deep/slow breathing). Using single 223 

photon emission computed tomography during separate bouts of upright nasal or oral 224 

breathing in healthy adults, Crespo et al. (2010) found that nasal breathing elicited blood 225 

flow redistribution from caudal and dorsal regions of the lung to the less-perfused cranial 226 

and ventral regions. For the otherwise poorly perfused lung regions, such as the apical 227 

region, this represented a 24% increase in blood flow. Similar effects were observed when 228 

exogenous NO mixtures were inhaled orally, supporting the hypothesis that the 229 

mechanism of blood flow redistribution was mediated by NO. Others showed that nasal 230 

breathing increased oxygen tension across the chest wall (assessed using 231 

transcutaneous  electrodes) in healthy subjects versus oral breathing (Lundberg et al. 232 

1996), although the effects were very small and the clinical significance thus unclear. 233 

Limited data also suggest a possible therapeutic benefit of nasal breathing in 234 

patients with respiratory disease. For example, intubated patients who were unable to 235 

rebreathe their own nasally-derived NO exhibited an 18% increase in PaO2, and an 11% 236 

decrease in pulmonary vascular resistance index, when gas derived from the patient's 237 

nose was aspirated and fed into the inspiration limb of the ventilator (Lundberg et al. 238 

1996). Although the exact mechanism was unclear, the authors postulated that sinus-239 

derived NO may act as an “aerocrine messenger” that selectively dilates vessels 240 

supplying well-ventilated areas of the lung. Pulmonary vascular resistance also 241 

decreased in patients recovering from thoracic surgery when they engaged in nasal 242 
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versus oral breathing, although there was no difference in O2 and CO2 partial pressures 243 

of arterial and mixed venous blood between the two breathing techniques (Settergren et 244 

al. 1998). Pertinently, exogenous NO inhaled orally at “nasal physiologic concentrations” 245 

of 10–100 ppb evoked pulmonary vasodilatation and improved pulmonary gas exchange 246 

in patients with acute respiratory distress syndrome (Mourgeon et al. 1997) and acute 247 

respiratory failure (Gerlach et al. 1993). Collectively, these data support the notion that 248 

nasal breathing, by increasing NO uptake, may provide clinically meaningful benefits in 249 

certain patient populations. 250 

The potential benefit of nasal breathing at rest has led to the suggestion that it may 251 

improve physiological responses to exercise. However, what of the feasibility of nasal-252 

only breathing during exercise? Healthy adults spontaneously switch from nasal to 253 

oronasal breathing at minute ventilations of 35-45 L‧min-1 (Niinimaa et al. 1980; 254 

Becquemin et al. 1991; Bennett et al. 2003), and without prior habituation, healthy adults 255 

even when prompted can only maintain nasal breathing up to ~80% V̇O2max (LaComb et 256 

al. 2017). Nevertheless, when preceded by an extensive training period (>6 months), 257 

nasal breathing may be feasible during high-intensity and even maximal exercise without 258 

compromising V̇O2max (Hostetter et al. 2016; Dallam et al. 2018). Thus, after habituation, 259 

nasal breathing can probably be sustained during maximal exercise. This leads to the 260 

separate question of efficacy: does nasal breathing during exercise provide any 261 

physiological advantage over oral or oronasal breathing? 262 

In a mixed-sex cohort of healthy adults, LaComb et al. (2017) showed that nasal 263 

breathing elicited lower V̇O2, V̇CO2, and V̇E at given submaximal exercise intensities 264 

(50%, 65%, and 80% of treadmill-derived V̇O2max) when compared to oral breathing, 265 

although the physiological mechanism was unclear. A possible flaw of the study was that 266 

exercise bouts lasted only 4 min, whereas a steady state ventilatory response may take 267 

considerably longer, particularly in an untrained cohort with a slow kinetic response. The 268 

authors also concluded that, when all variables were considered together, “it is likely that 269 

oral breathing represents the more efficient mode [of breathing], particularly at higher 270 

exercise intensities”. In another study, 10 healthy subjects who were habituated to nasal 271 

breathing exhibited lower ventilatory equivalents for O2 and CO2 during nasal-only 272 

exercise versus oral-only exercise (differences mediated primarily by significantly lower 273 
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V̇E), without a change in V̇O2max or time to exhaustion (Dallam et al. 2018). It is unclear 274 

from these studies whether the physiological response to nasal breathing was derived 275 

from increased NO uptake or another mechanism. It is possible that healthy subjects will 276 

have a blunted ventilatory response at maximal exercise with nasal breathing owing to 277 

attenuated tidal volumes and respiratory frequencies (Morton et al. 1995). This may partly 278 

explain greater end-tidal CO2 partial pressure (PETCO2) during nasal versus oral 279 

breathing, both at rest and during submaximal exercise (Tanaka et al. 1988; Dallam et al. 280 

2018). 281 

Although oral and nasal breathing evoke similar ratings of perceived exertion 282 

during exercise, nasal breathing results in an “unacceptable sensation of air hunger” 283 

(Hostetter et al. 2016; Dallam et al. 2018), perhaps associated with the development of 284 

hypercapnia (Banzett et al. 2021). In turn, this has the potential to alter breathing patterns 285 

and reduce exercise tolerance (Dallam et al. 2018). In patients with COPD, who report 286 

pre-existing sensations of “unsatisfied inspiration” (Philips et al. 2021), such air hunger 287 

during nasal breathing could exacerbate respiratory symptoms. Nasal breathing during 288 

exercise would therefore be inappropriate for COPD patients. Two early studies in 289 

patients with asthma (n=5 and n=12, respectively) reported that nasal breathing during 290 

exercise reduced the incidence and/or severity of post-exercise bronchoconstriction 291 

relative to oral breathing (Shturman-Ellstein et al. 1978; Mangla and Menon 1981), 292 

although it is unclear whether these findings were the result of greater NO intake or also 293 

influenced by an increased humidity of inspired air which has also been shown to mitigate 294 

the severity of exercise-induced bronchoconstriction EIB (Anderson and Kippelen 2012). 295 

In any case, these data support the hypothesis that the nasopharynx and oropharynx play 296 

an important role in mediating exercise-induced bronchoconstriction. 297 

2.2.3 Evidence Summary and Recommendations. Primary outcomes from the 298 

literature on nasal breathing are summarized in Figure 2. Data suggest that nasal 299 

breathing may improve arterial oxygenation and ventilatory efficiency in critically ill 300 

patients at rest, but there is little evidence that such benefits extend to healthy subjects. 301 

Nasal breathing is feasible during submaximal exercise and even maximal exercise after 302 

extensive habituation, but there is little-to-no data supporting a subsequent benefit on 303 

exercise capacity in healthy individuals. There is some evidence of reduced incidence 304 
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and/or severity of post-exercise bronchoconstriction with nasal breathing, but due to 305 

potential hypoventilation and increased perceptions of “air hunger”, nasal breathing 306 

during exercise is not recommended for COPD patients. Its use in patients with other 307 

respiratory diseases should be considered on a case-by-case basis. 308 

 309 

2.3 Generalized and systematized breathing strategies 310 

2.3.1 Premise and plausibility. Breathing interventions generally comprise one-or-311 

more of the following techniques: nasal inspiration, deep/slow breathing, breath-hold at 312 

end-inspiratory lung volume, prolonged expiration, expiration through pursed lips, and 313 

preferential activation of the diaphragm during inspiration. Most breathing interventions 314 

encourage inspiration through the nose. This approach may increase the uptake of NO 315 

(see Section 2.2) and warm/humidify the inspired air (Naclerio et al. 2007). Inspiration 316 

and expiration are usually required to be deep and slow to increase tidal volume and 317 

extend the respiratory cycle (Ubolnuar et al. 2019). A prolonged expiration may also help 318 

decrease expiratory reserve volume, in turn partially mitigate air trapping and dynamic 319 

hyperinflation to reduce respiratory symptoms in certain populations (e.g., COPD). 320 

Deep/slow breathing, particularly interventions with prolonged expiration, have also been 321 

shown to increase heart rate variability and respiratory sinus arrhythmia through 322 

mediating effects on the parasympathetic nervous system (Zaccaro et al. 2018). This is 323 

an expanding area of research. Indeed, using functional magnetic resonance imaging, 324 

deep/slow breathing was shown to increase cortical and subcortical activity (Critchley et 325 

al. 2015), which may partly support improved physical and mental health (Laborde et al. 326 

2022). Pursed-lips breathing typically involves nasal inspiration and prolonged expiration 327 

directed through lips that have a “puckered” or “pursed” appearance (see Figure 3). 328 

Independent of other breathing strategies, expiration through pursed lips may increase 329 

expiratory resistance at the mouth, evoking a small positive end-expiratory pressure of 330 

~5 cmH2O (van der Schans et al. 1997). This can help ameliorate airway compression 331 

and expiratory flow limitation in patients with COPD by  functionally “stenting” the airways 332 

(Marciniuk et al. 2011; Nguyen and Duong 2021). Diaphragmatic breathing comprises 333 

many of the aforementioned techniques but with preferential activation of the diaphragm 334 

during inspiration. From a practical standpoint, diaphragmatic breathing is achieved by 335 
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inspiring with minimal movement of the chest and more pronounced outward abdominal 336 

displacement (Cahalin et al. 2002). 337 

2.3.2 Literature. The literature on breathing interventions employs inconsistent 338 

nomenclature and terms are often used interchangeably. This makes it difficult to discern 339 

the efficacy of each technique. Accordingly, we have grouped the literature on breathing 340 

interventions and discussed their collective outcomes. The exceptions are pursed-lips 341 

breathing (see Section 2.3.3) and the Buteyko Breathing Technique (see Section 2.3.4), 342 

which both have a sufficient body of independent research. Most of the literature on 343 

breathing interventions has focused on the management of respiratory symptoms in 344 

asthma and COPD. Regarding the former, the Cochrane database published a meta-345 

analysis and separate systematic review on breathing exercises in asthmatic adults and 346 

children, respectively, with disparate findings. In adults, yoga (including pranayama), 347 

breathing retraining, the Buteyko Breathing Technique, the Papworth method, and deep 348 

diaphragmatic breathing, all improved quality of life, symptoms and complaints due to 349 

hyperventilation, and lung function (forced expiratory volume in 1 second; [FEV1]). 350 

However, studies were characterized by poor methodologies and a very low-to-moderate 351 

quality of evidence (Santino et al. 2020). The review in children found insufficient data to 352 

support the use of breathing techniques for asthma management, owing primarily to a 353 

low number of studies (n=3, 112 participants) (Macêdo et al. 2016). Another issue 354 

impeding interpretation of the pediatric data is that studies generally combined breathing 355 

exercises with a comprehensive package of care, thereby precluding any evaluation of 356 

breathing exercises alone (Macêdo et al. 2016). As such, due to a low number of studies, 357 

limited reporting of data, and variations in reported outcomes, no firm conclusions can be 358 

drawn regarding the efficacy of breathing interventions for asthma management. More 359 

well-controlled, high-quality studies are needed. 360 

There is a much larger body of work evaluating breathing interventions for 361 

improving respiratory symptoms, lung function, and exercise performance and capacity 362 

in COPD. In general, long-term breathing interventions including deep breathing with or 363 

without preferential activation of the diaphragm, pursed-lips breathing, yoga, singing, and 364 

breathing gymnastics, all appear to improve functional exercise performance (mainly 6-365 

min walk test; [6MWT]) (Hamasaki 2020; Lu et al. 2020; Yang et al. 2022), quality of life 366 
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(St. George’s Respiratory Questionnaire; (Marotta et al. 2020) and stress and anxiety 367 

(Hamasaki 2020) in COPD. Several studies also show that pursed-lips breathing, with or 368 

without preferential activation of the diaphragm, improves pulmonary function (i.e., forced 369 

vital capacity [FVC] and FEV1) (Hamasaki 2020; Lu et al. 2020; see Yang et al. 2022).  370 

The literature on breathing interventions for improving dyspnea in COPD is less 371 

consistent. A review of 13 RCTs (998 patients) found that home-based breathing 372 

exercises (diaphragmatic breathing, yoga breathing, breathing gymnastics, and singing) 373 

improved resting FEV1, 6MWT distance, and ratings of dyspnea (modified Medical 374 

Research Council dyspnea scale and St George Respiratory Questionnaire) across the 375 

range of disease severity (Lu et al. 2020). By contrast, a Cochrane review of 16 studies 376 

(1,233 patients) showed that 15 weeks of breathing retraining (pursed-lips breathing, 377 

diaphragmatic breathing, ventilation feedback training, or yoga breathing, both 378 

supervised and unsupervised) improved 6MWT distance in COPD but had no consistent 379 

effects on dyspnea at rest or health-related quality of life (Holland et al. 2012). Another 380 

systematic review and meta-analysis of 19 studies (745 patients) reported that respiratory 381 

frequency was significantly reduced at rest and during exercise following a period of 382 

dedicated pursed-lips breathing, ventilatory feedback and exercise, diaphragmatic 383 

breathing, or combined techniques that lasted between one day and 24 weeks—384 

nevertheless, breathing interventions did not improve ratings of dyspnea relative to 385 

controls (Ubolnuar et al. 2019). The reason for the discrepancy in dyspnea-related 386 

findings is unclear; however, while Holland et al. (2012) and Ubolnuar et al. (2019) 387 

included studies performed in various environments (including the laboratory and during 388 

pulmonary rehabilitation programs in outpatient settings), the review by (Lu et al. 2020) 389 

focused exclusively on home-based breathing interventions. 390 

2.3.3 Pursed-lips breathing (PLB). This particular technique has received a great 391 

deal of attention as a standalone therapy owing to its effects on dyspnea and exercise 392 

tolerance in patients with COPD. The main benefits include reduced respiratory 393 

frequency, increased (improved) inspiratory and total respiratory time, and increased tidal 394 

volume (Ubolnuar et al. 2019). A bout of PLB has also been shown to reduce resting CO2 395 

retention and increase arterial oxygen tension and oxyhemoglobin saturation in advanced 396 

but stable COPD (Thoman et al. 1966; Breslin 1992; Marciniuk et al. 2011). The primary 397 
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mechanism by which PLB exerts its effects is by increasing intraluminal airway pressure 398 

during exhalation which tends to prevent the airway compression that would otherwise 399 

occur as intrapleural pressure increases. In turn, PLB is likely to ameliorate air trapping. 400 

Since PLB reduces end-expiratory lung volume and lengthens the diaphragm (thereby 401 

improving its tension-generating capacity during inspiration) (Spahija et al. 2005), 402 

increased arterial oxygen saturation is likely the result of a more complete, mechanically-403 

efficient respiratory cycle. Pursed-lips breathing has also been used by COPD patients 404 

during exercise, with generally favorable outcomes on 6MWT (Bhatt et al. 2013), perhaps 405 

mediated by reduced dynamic lung hyperinflation (Cabral et al. 2015), increased arterial 406 

oxygen saturation (Cabral et al. 2015), and possible protection against diaphragmatic 407 

fatigue (Breslin 1992). Notwithstanding, improvements in exercise capacity with PLB are 408 

not a universal finding (Garrod et al. 2005). 409 

Several studies in patients with COPD have tried to distinguish the benefits of PLB 410 

from other respiratory interventions or relaxation techniques. Pivotal research by Tiep et 411 

al. (1986) showed that an acute (15-min) bout of PLB evoked greater increases in SpO2 412 

at rest compared with general relaxation techniques. Others have found that 12 weeks of 413 

daily PLB practice was more effective at reducing exertional dyspnea, and increasing 414 

6MWT performance, than expiratory muscle training or a control group that received an 415 

educational pamphlet but no intervention (Nield et al. 2007). In another study, a 12-week 416 

PLB intervention increased FEV1 and maximal inspiratory pressures by a greater 417 

magnitude than diaphragmatic breathing or a no-intervention control (Jansang et al. 418 

2016). One study assessed the effects of an acute bout of diaphragmatic breathing with 419 

or without PLB on COPD patients during upright, seated rest (Mendes et al. 2019). 420 

Although both interventions increased ribcage and abdominal volumes (measured via 421 

respiratory inductive plethysmography), increased arterial oxygen saturation, and 422 

decreased respiratory frequency, there were greater reductions in respiratory frequency 423 

and longer expiratory times with combined diaphragmatic and pursed-lips breathing. 424 

Conversely, neither intervention reduced dyspnea (Medical research Council scale) or 425 

end-expiratory chest volume. Thus, the combination of breath control (with preferential 426 

activation of the diaphragm) and prolonged expiration through pursed lips may provide 427 

several benefits that are distinct from other breathing techniques. Indeed, as an effective 428 



Science and pseudoscience in respiratory health 

15 
 

means of managing dyspnea in COPD, PLB has been advocated by the Canadian 429 

Thoracic Society in their clinical practice guidelines (Marciniuk et al. 2011) and by the 430 

American Thoracic Society in their patient education materials (Lareau et al. 2020). 431 

2.3.4 The Buteyko Breathing Technique. This (predominantly) commercial 432 

breathing regimen was conceived in the 1950s by Dr Konstantin Pavlovic Buteyko. In its 433 

modern form, Buteyko is an amalgam of several breathing techniques which emphasize 434 

nasal breathing and periods of breath-hold (referred to as “control pause”). In general, the 435 

research on Buteyko is favorable, particularly with respect to asthma management, 436 

showing improved quality of life scores (Burgess et al. 2011; Santino et al. 2020). 437 

Nevertheless, Buteyko breathing does not appear to be superior to other chronic 438 

breathing interventions like yoga, deep/slow breathing, pursed-lips breathing, or 439 

diaphragmatic breathing. In addition, several issues cloud the interpretation of the 440 

Buteyko literature, potentially undermining its validity. 441 

First, Buteyko breathing is usually administered as a comprehensive package of 442 

care that comprises breathing retraining, education, and nutritional advice, making it 443 

difficult to discern the isolated benefits of the respiratory intervention (Bruton and Lewith 444 

2005). Second, proponents of Buteyko breathing often extend the claims beyond those 445 

supported by the scientific literature. For instance, a major premise of the technique is 446 

that breath-hold time predicts alveolar CO2 according to a patented mathematical 447 

formula—a claim that has been empirically disproven (Courtney and Cohen 2008). The 448 

Buteyko technique also advocates mouth taping as a means of obligating nasal breathing 449 

during sleep. However, a randomized, crossover study in patients with symptomatic 450 

asthma showed that mouth taping had no effect on asthma control (Cooper et al. 2009). 451 

Some proponents even suggest, without evidence, that Buteyko breathing can treat 452 

diseases and symptoms (including diabetes, attention-deficit hyperactive disorder, and 453 

dental health), claims which undermine the scientific legitimacy of the intervention. It is 454 

also worth noting that most clinical studies on Buteyko have assessed outcomes in 455 

response to physiotherapy programs that tend to focus on the more conventional, 456 

evidence-based aspects of the technique (e.g., deep breathing through the nose). 457 

Another approach of some Buteyko proponents is to associate the technique with 458 

unrelated, or tenuously related, research. For example, studies have identified a high 459 
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prevalence of allergic rhinitis in children with ADHD (Brawley et al. 2004). By promoting 460 

nasal breathing, Buteyko breathing advocates thus imply that the technique can reduce 461 

the risk of developing ADHD. Lastly, several commercial incarnations of Buteyko promote 462 

long breath holds (>25 s) which may be unsuitable for certain groups (e.g., COPD 463 

patients). Accordingly, while the more conventional aspects of Buteyko breathing (nasal 464 

inspiration, deep/slow breathing, and breath training) may have benefits for respiratory 465 

function, health and exercise professionals should be wary of those claims that are 466 

lacking plausibility, currently unproven, and potentially dangerous. 467 

2.3.5 Additional considerations and conclusions on respiratory interventions. The 468 

literature on breathing techniques for patients with respiratory disease is generally 469 

positive. Still, there are subtle nuances in the data that should be highlighted prior to 470 

interpretation. For example, research suggests that respiratory physiotherapy using 471 

breathing training has the potential to improve inspiratory and expiratory muscle strength 472 

following upper abdominal surgery (Grams et al. 2012), yet this has questionable utility 473 

following general abdominal surgery (Pasquina et al. 2006). Physicians and other 474 

healthcare professionals must also be conscious of instances where breathing training 475 

may be less favorable or even harmful to their patients. Respiratory physiotherapy seems 476 

to have limited benefit on lung volume or mortality risk following lung resection (Larsen et 477 

al. 2020), and PLB specifically has been shown to increase metabolic demands in 478 

patients with interstitial lung disease (Parisien-La Salle et al. 2019). This brings into 479 

question the efficacy of PLB for restrictive disorders. Certain breathing techniques may 480 

also worsen respiratory symptoms; e.g., several studies show that diaphragmatic 481 

breathing may exacerbate dyspnea in patients with severe COPD (Hamasaki 2020), 482 

perhaps due to negative effects on the work of breathing and its mechanical efficiency 483 

(Gosselink et al. 2012). Anecdotally, the technical demands of preferentially activating the 484 

diaphragm during inspiration may render such interventions unsuitable for respiratory 485 

patients. 486 

2.3.6 Evidence Summary and Recommendations. Primary outcomes from the 487 

literature on breathing interventions are summarized in Figure 3. Breathing interventions 488 

such as deep breathing and pursed-lips breathing may elicit favorable changes in tidal 489 

volume, respiratory frequency, respiratory time, and arterial oxygen saturation in patients 490 
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with COPD, particularly those with severe or very severe disease. Long-term breathing 491 

retraining strategies may improve lung function (mainly lung volumes and capacities), 492 

exercise performance, respiratory symptoms, and quality of life in respiratory patients. 493 

Pursed-lips breathing, in particular, is an important standalone therapy that should be 494 

considered as an adjunct to exercise training and pharmaceutical interventions in 495 

pulmonary rehabilitation programs. Breathing interventions should emphasize a deep and 496 

slow nasal inspiration followed by a slow and prolonged expiration through pursed lips. 497 

Because of possible negative outcomes in patients, breathing interventions should be 498 

delivered by experienced therapists with a comprehensive understanding of the benefits 499 

and risks of each technique. Patients must also be managed on a case-by-case basis. 500 

The benefits of deep/slow breathing in healthy subjects (with normal pulmonary function) 501 

are likely limited to changes in parasympathetic activity (and thus heart rate variability) 502 

which may support emotional wellbeing rather than other aspects of cardiopulmonary 503 

function. 504 

 505 

2.4 Respiratory muscle training 506 

2.4.1 Premise and plausibility. The healthy respiratory system has typically been 507 

considered “overbuilt” for the ventilatory demands placed upon it during strenuous 508 

exercise. More recently, however, studies have revealed several respiratory constraints 509 

that may impede exercise performance in healthy subjects, particularly those who are 510 

endurance-trained, and in certain patients with cardiorespiratory disease (Dempsey et al. 511 

2020). When breathing frequency increases during exercise, there is a consequent 512 

increase in the resistive loads placed upon the inspiratory and expiratory muscles. In 513 

patients with COPD, the resistive loads are exacerbated due to narrowing of peripheral 514 

airways. In addition, at lung volumes above relaxation volume, where lung and chest wall 515 

compliance are reduced, the inspiratory muscles must overcome increased elastic recoil 516 

forces. This increase in elastic loading occurs when tidal volume increases with exercise, 517 

and especially in the presence of dynamic lung hyperinflation (i.e., increase in end-518 

expiratory lung volume) consequent to the dynamic compression of airways during forced 519 

expiration. Airway narrowing and loss of elastic recoil in COPD give rise to static lung 520 

hyperinflation, which further increases the elastic loading on the inspiratory muscles. In 521 
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severe COPD, incomplete expiration and inward recoil of the lungs and chest wall result 522 

in progressive air trapping and increased alveolar pressure at the end of expiration (i.e., 523 

intrinsic positive end-expiratory pressure, PEEPi). To initiate inspiratory airflow, the 524 

inspiratory muscles must generate a negative pressure equal in magnitude to PEEPi, 525 

subsequently imposing a threshold load on the inspiratory muscles. When the lung is 526 

acutely inflated, the pressure-generating capacity of the diaphragm is impaired because 527 

the muscle is shortened. At high lung volumes, the pressure-generating capacity of the 528 

diaphragm may be further reduced by an increased radius of muscle curvature. Lung 529 

inflation also impairs the pressure-generating capacity of the inspiratory intercostal 530 

muscles (external intercostals and parasternal intercostals); in contrast to the diaphragm, 531 

however, this impairment has been ascribed to changes in the orientation and motion of 532 

the ribs (De Troyer and Wilson 2009). In COPD, reductions in the pressure-generating 533 

capacity of respiratory muscles may also result from disease-induced changes in 534 

respiratory muscle morphology.  535 

Increased loading of the respiratory muscles and/or decreased capacity of the 536 

respiratory muscles for pressure generation have direct functional consequences. For 537 

instance, an increase in the respiratory muscle load/capacity ratio contributes significantly 538 

to the subjective experience of breathing discomfort (i.e., dyspnea) (McConnell and 539 

Romer 2004a) and predisposes the respiratory muscles to fatigue. Regarding the latter, 540 

decreases in the contractile function of inspiratory and expiratory muscles have been 541 

noted following intense, whole-body exercise in healthy young adults (Johnson et al. 542 

1993; Taylor et al. 2006; Tiller et al. 2017) and in select patients with COPD (Hopkinson 543 

et al. 2010; Bachasson et al. 2013). This exercise-induced decrease in respiratory muscle 544 

capacity further increases the subjective experience of dyspnea. Moreover, the 545 

metabolite accumulation associated with fatiguing respiratory muscle work can elicit a 546 

sympathetically-mediated vasoconstrictor response in locomotor muscles. This so-called 547 

‘respiratory muscle metaboreflex’ may decrease locomotor muscle blood flow in favor of 548 

an increase in blood flow to the respiratory muscles, thereby increasing the fatigability of 549 

limb locomotor muscles and reducing central motor output via feedback effects (Sheel et 550 

al. 2018). In COPD, excessive loading of the respiratory muscles and activation of the 551 
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respiratory muscle metaboreflex may partly contribute to the early development of limb 552 

muscle fatigue (Amann et al. 2010). 553 

Respiratory muscle training (RMT) was developed on the premise that enhancing 554 

the pressure-generating capacity of respiratory muscles would increase fatigue 555 

resistance and/or mechanical efficiency of the respiratory muscles during exercise. Such 556 

changes would be expected to prevent or delay the respiratory muscle metaboreflex, 557 

thereby improving O2 delivery to working limbs and reducing the intensity of perceived 558 

limb discomfort (see Figure 4). An increase in the pressure-generating capacity of the 559 

respiratory muscles with targeted training would also be expected to reduce the intensity 560 

of perceived dyspnea. In health, RMT has been shown to improve the static and dynamic 561 

function of respiratory muscles (Romer and McConnell 2003), attenuate fatigability of 562 

respiratory (Verges et al. 2007, 2009) and locomotor muscles (McConnell and Lomax 563 

2006), blunt the respiratory muscle metaboreflex (Witt et al. 2007), and attenuate 564 

perceptions of respiratory and limb discomfort (McConnell and Romer 2004a). Research 565 

pertaining to the influence of RMT on whole-body exercise performance in athletes and 566 

patients is somewhat contradictory (see Literature). 567 

The three most common approaches to RMT involve flow-resistive loading (high 568 

pressure, low flow), pressure-threshold loading (high pressure, moderate flow), and 569 

isocapnic voluntary hyperpnea (low pressure, high flow). Devices that impose a resistive 570 

or threshold load elicit improvements predominately in respiratory muscle strength, 571 

whereas isocapnic voluntary hyperpnea elicits improvements predominantly in respiratory 572 

muscle endurance (see McConnell and Romer 2004b for review). More recently, a 573 

tapered flow-resistive loading device has been developed to produce a variable load that 574 

matches the pressure-volume relationship of inspiratory muscles (Langer et al. 2013). A 575 

recent development in the RMT literature pertains to external loading of the respiratory 576 

muscles during exercise (in-task). So-called “functional” RMT typically involves flow-577 

resistive loading via facemask (Porcari et al. 2016)1 or nasal restriction (Arnedillo et al. 578 

2020; Gonzalez-Montesinos et al. 2021). Although functional RMT is an attractive 579 

proposition due to its specificity of application, the additional loads imposed on the 580 

respiratory muscles, and hence the potential training stimulus, are difficult to quantify. 581 
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From a practical standpoint, functional RMT may limit the physiological stimulus that can 582 

be obtained by applying RMT and exercise independently (Faghy et al. 2021). 583 

2.4.2 Literature. In 1976, Leith and Bradley showed that the respiratory muscles of 584 

healthy individuals could be trained to increase strength or endurance. Later research 585 

sought to evaluate the efficacy of RMT with respect to whole-body exercise performance 586 

in healthy individuals and in patients with respiratory disease. Unfortunately, many of the 587 

early studies were hampered by methodological shortcomings, including small sample 588 

sizes, absence of sham-control groups, unbalanced baseline characteristics, inadequate 589 

training intensities, and inappropriate outcome measures (McConnell and Romer 2004b). 590 

As such, the ergogenic effect of RMT has been the subject of much debate (e.g., 591 

McConnell 2012; Patel et al. 2012). A systematic review and meta-analysis of 46 studies 592 

on the effects of RMT in healthy individuals revealed an improvement in endurance 593 

performance as assessed using fixed-intensity tests, simulated time-trials, and 594 

intermittent incremental tests (Illi et al. 2012). The analysis also showed that 595 

resistive/threshold and hyperpnea training did not differ in their effects, that combined 596 

inspiratory/expiratory strength training tended to be superior to either intervention alone, 597 

and that the greatest improvements with RMT occurred in less-fit subjects and in sports 598 

of longer duration (Illi et al. 2012). Another systematic review and meta-analysis, this time 599 

on responses in athletes, showed a positive effect of RMT on respiratory muscle function 600 

and sport performance outcomes (HajBhanbari et al. 2013). Although the report also 601 

noted comparable benefits of RMT for “elite” and “recreational athletes”, the authors 602 

classified trained status by whether the subject’s V̇O2max was above or below the 603 

minimum, pre-determined requirements for being considered an “athlete”, but without 604 

specifically defining “elite”. Thus, the question as to whether training status mediates the 605 

efficacy of RMT remains unresolved. More recent studies have shown improvements in 606 

repeated-sprint performance (e.g., shorter recovery between sprints or increased number 607 

of repetitions) as well as reduced effort perceptions and markers of metabolic stress after 608 

resistive RMT (Lorca-Santiago et al. 2020). Collectively, the data show an ergogenic 609 

effect of RMT on endurance and repeated-sprint performance in healthy individuals.  610 

The efficacy of RMT in patients with COPD has been studied extensively. While 611 

whole-body exercise training is a crucial component of pulmonary rehabilitation in this 612 
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population (Casaburi 2008), exercise training does not appear to increase the pressure-613 

generating capacity of the respiratory muscles. Consequently, there has been a great 614 

deal of interest in the potential for RMT to increase the capacity of the respiratory muscles 615 

and alleviate symptoms. Learned societies, including the American College of Chest 616 

Physicians/American Association of Cardiovascular and Pulmonary Rehabilitation (Ries 617 

et al. 2007) and the European Respiratory Society/American Thoracic Society (Spruit et 618 

al. 2013), have recommended RMT for patients who, despite optimal medical therapy, 619 

exhibit dyspnea and reduced respiratory muscle strength. Several systematic reviews and 620 

meta-analyses have shown that RMT, when applied as a standalone intervention with 621 

controlled training loads in patients with COPD, improves respiratory muscle strength and 622 

endurance, exercise capacity, dyspnea, and health-related quality of life (e.g., Gosselink 623 

et al. 2011). Adding RMT to a whole-body exercise training program in COPD was shown 624 

to have no additive effects on exercise performance or quality of life, suggesting that RMT 625 

may only be effective as a standalone treatment in the absence of other interventions 626 

(e.g., Gosselink et al. 2011). This notion is corroborated by a recent systematic review 627 

and meta-analysis which showed that inspiratory pressure-threshold training in patients 628 

with COPD increased inspiratory muscle strength, functional exercise performance, and 629 

dyspnea during activities of daily living, but with no additional effect on the intensity of 630 

exertional dyspnea when used as an adjunct to pulmonary rehabilitation (Beaumont et al. 631 

2018a). Notwithstanding the limitations of meta-analyses (e.g., poor quality of included 632 

studies, heterogeneity, publication bias), recent large-scale RCTs on the effects of RMT 633 

in patients with COPD have confirmed that improvements in inspiratory muscle function 634 

after adjunctive RMT do not translate to additional improvements in functional exercise 635 

capacity, dyspnea, or quality of life (Beaumont et al. 2018b; Schultz et al. 2018; 636 

Charususin et al. 2018a). In patients with inspiratory muscle weakness, however, 637 

adjunctive RMT during a whole-body exercise training intervention elicited a significant 638 

increase in endurance cycling time and a significant reduction in dyspnea intensity at iso-639 

time during the cycling test compared to sham-training (Charususin et al. 2018b).  640 

2.4.3 Additional applications and population subgroups. While most studies have 641 

investigated the influence of RMT on exercise outcomes in healthy individuals (athletes 642 

and non-athletes) and patients with COPD, RMT may also have an application in other 643 
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settings where the loads imposed on the respiratory muscles are elevated or the capacity 644 

to generate force is reduced. For instance, RMT has been considered in the context of 645 

environmental and occupational settings (e.g., altitude and load carriage) (Faghy and 646 

Brown 2015; Chambault et al. 2021), and studied in the context of natural aging (Seixas 647 

et al. 2020; Manifield et al. 2021). In older adults, exertional dyspnea is consistently 648 

elevated at any given intensity of submaximal exercise owing to an increased ventilatory 649 

demand (Jensen et al. 2009). Conceivably, RMT might improve exertional dyspnea in 650 

older adults through a reduction in the load/capacity ratio of respiratory muscles. In 651 

addition to the increase in ventilatory demand, aging is accompanied by a decline in 652 

respiratory muscle function which, through a reduction in postural control, has been 653 

shown to correlate with impairments in balance performance (Rodrigues et al. 2020). In 654 

turn, RMT has been shown to improve balance performance through an increase in the 655 

neuromuscular activity of postural muscles (Ferraro et al. 2019, 2020, 2022; Tounsi et al. 656 

2021).  657 

Recent evidence indicates that females have smaller airways than males, and 658 

subsequently exhibit greater flow-resistive work of breathing (Peters et al. 2021). There 659 

also appears to be a combined influence of age and biological sex on respiratory 660 

mechanics which contributes in part to the increased perception of exertional dyspnea 661 

noted in older women (Molgat-Seon et al. 2018). Thus, RMT could be an effective 662 

intervention to enhance the overall exercise response in young and older women. Other 663 

groups with imbalances in the load/capacity ratio of respiratory muscles, and which might 664 

therefore benefit from RMT, include: exercise-induced laryngeal obstruction (Sandnes et 665 

al. 2022), obstructive sleep apnea (Torres-Castro et al. 2022), cystic fibrosis (Stanford et 666 

al. 2020), interstitial lung disease (Zaki et al. 2022), stroke (Fabero-Garrido et al. 2022), 667 

hypertension (Craighead et al. 2022), chronic heart failure (Azambuja et al. 2020), 668 

pulmonary hypertension (Tran et al. 2021), neurological disorders (He et al. 2021), spinal 669 

cord injury (Woods et al. 2022), pre-operative surgery (Dsouza et al. 2021), weaning from 670 

mechanical ventilation (Worraphan et al. 2020), ventilator-induced diaphragm dysfunction 671 

in the recovery phase (Ahmed et al. 2019), and COVID-19 (e.g., risk reduction, ICU, 672 

recovery, and long-COVID) (McNarry et al. 2022). Evidence of the efficacy of RMT in 673 

these groups requires further prospective study. 674 



Science and pseudoscience in respiratory health 

23 
 

2.4.4 Evidence summary and recommendations. Primary outcomes from the 675 

literature on RMT are summarized in Figure 4. If applied with the appropriate frequency, 676 

intensity, and duration, RMT can improve specific aspects of respiratory muscle function 677 

(e.g., strength and endurance). There is convincing evidence of an ergogenic effect of 678 

RMT in healthy individuals (athletes and non-athletes). As a standalone therapy, RMT 679 

confers multiple benefits for select patients with COPD. However, the effect of adding 680 

RMT to a general exercise program in COPD (including during pulmonary rehabilitation) 681 

appears limited. It is conceivable that RMT may be useful for patients with respiratory 682 

muscle weakness or those with pre-existing comorbidities who are unable to participate 683 

in whole-body exercise training. Further RCTs are needed to ascertain which patients 684 

and groups are likely to benefit from RMT.   685 

 686 

2.5 Canned oxygen 687 

2.5.1 Premise and plausibility. Commercial canned oxygen (intended for non-688 

medical use) is a can of hyperoxic gas (~95% O2) equipped with a mask or inhaler cap. 689 

The suggested protocol for use differs among manufacturers but typically involves several 690 

inhalations, repeated 8-10 times, periodically throughout the day or as needed. Some 691 

vendors recommend their product for use immediately before physical activity and/or 692 

sporting competition. The ergogenic claims include improved reaction time, “improved 693 

breathing” during exposure to heat and pollution, and improved sports performance by 694 

delaying onset of fatigue and improving O2 availability for oxidative metabolism. Some 695 

brands combine eucalyptus and other oils with the gas mixture which they claim can “relax 696 

the nervous system, relax the muscles, and relieve stress”. Despite the extensive claims 697 

and widespread and costly prescription of so-called “short burst oxygen therapy” for 698 

respiratory patients (e.g., COPD), there is no clear mechanism for the purported 699 

physiological benefit. Moreover, in healthy individuals, hemoglobin remains nearly 700 

completely saturated with O2 at rest, and exercise-induced arterial O2 desaturation (i.e., 701 

hypoxemia) rarely occurs in healthy (untrained) individuals at sea-level. Consequently, 702 

there is little plausibility that acute exposure to concentrated O2 (i.e., several breaths) will 703 

influence respiratory outcomes or exercise performance. 704 
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 2.5.3 Literature. The focus of this section is on commercially available canned 705 

oxygen and “short burst oxygen” rather than physician-prescribed supplemental oxygen 706 

therapy. A systematic review on the efficacy of short-burst oxygen to improve 707 

breathlessness, exercise capacity, arterial oxygen saturation, and ventilatory variables in 708 

patients with COPD, concluded that its widespread prescription was not evidence-based 709 

(O’Neill et al. 2006). Due to a lack of peer-reviewed studies on commercial canned oxygen 710 

in particular, most vendors cite clinical literature that is tenuously related (e.g., studies on 711 

hyperbaric oxygen therapy or prolonged inhalation of medically certified gas mixtures). 712 

Thus, the references provided by manufacturers do not support the claims. One 713 

manufacturer published an online press release that mimicked the appearance of a 714 

scientific journal article (Elizondo et al. 2019), presumably in an effort to feign scientific 715 

legitimacy. On the rare occasion that relevant journal articles were obtained through 716 

commercial websites, they were of very low quality and exhibited a high risk of bias. It is 717 

worth noting that although gaseous supplemental oxygen (delivered by inhalation) is not 718 

prohibited by the World Anti-Doping Agency (WADA 2022), some sports authorities 719 

prohibit its use. Athletes should therefore be cognizant of the rules and regulations 720 

regarding O2 therapy that govern their sport. 721 

 2.5.4 Evidence Summary and recommendations. The proposed benefit of acute 722 

inhalation of canned oxygen has low plausibility and there is no valid evidence of 723 

beneficial effects. 724 

 725 

2.6 Nutritional interventions 726 

2.6.1 Premise & plausibility. Nutrition is a modifiable factor that influences the 727 

development and progression of many non-communicable diseases (Cena and Calder 728 

2020; Dominguez et al. 2021). Some nutrients have immunomodulatory, anti-729 

inflammatory, and/or antioxidant effects (Kau et al. 2011; Venter et al. 2020; Gozzi-Silva 730 

et al. 2021). Such nutrients may therefore influence respiratory health and disease 731 

risk/progression in conditions underpinned by airway and/or systemic inflammation 732 

(Berthon and Wood 2015; Hosseini et al. 2017; Parvizian et al. 2020; Heloneida de Araújo 733 

Morais et al. 2021). In addition, supplementation with certain nutrients may provide 734 

prophylactic and/or therapeutic benefits for certain respiratory patients. 735 
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In terms of therapeutic benefits on respiratory health, the bulk of literature focuses 736 

on vitamin D, various antioxidants (most commonly vitamin C), omega-3 polyunsaturated 737 

fatty acids (n-3 PUFAs), probiotics, and prebiotics. The wealth of literature precludes any 738 

detailed discussion of the complex and diverse mechanisms underpinning each nutrient 739 

and their independent effects on respiratory health. Instead, the following summary 740 

focuses on empirical data regarding the purported antioxidant and immunomodulatory 741 

effects and whether they translate to clinically meaningful outcomes. 742 

2.6.2. Literature on Vitamin D3. Circulating concentrations of 25(OH)D—a form of 743 

vitamin D produced in the liver from hydroxylation of vitamin D3—were found to be 744 

inversely associated with the incidence of upper- and/or lower-respiratory tract infection 745 

(RTI) (Pham et al. 2019). The incidence of RTI in the general population peaks in the 746 

winter (Ginde et al. 2009) when vitamin D deficiency is most common owing to low skin 747 

exposure to sunlight ultraviolet B radiation (Farrokhyar et al. 2014; Cashman et al. 2016). 748 

Indeed, insufficient circulating concentrations of vitamin D (baseline serum 25(OH)D <50 749 

nmol·L-1) have been observed in military personnel (Harrison et al. 2021), athletes 750 

(Farrokhyar et al. 2014), and healthy controls (Cashman et al. 2016). 751 

Vitamin D sufficiency can be achieved via oral vitamin D3 supplementation 752 

(Carswell et al. 2018; Harrison et al. 2021) and safe exposure to sunlight or simulated 753 

sunlight. However, evidence of prophylactic and/or therapeutic effects of vitamin D3 754 

supplementation is confounded by heterogeneity across trials (Jolliffe et al. 2021), with 755 

effect-modifiers including dosing regimen and duration, participant age, baseline 756 

25(OH)D, and geographic location (Martineau et al. 2017; Vlieg-Boerstra et al. 2021; 757 

Jolliffe et al. 2021; Cho et al. 2022). A recent meta-analysis of 43 RCTs (n = 48,488 758 

mixed-health cohort of children and adults) revealed a modest but overall decreased risk 759 

of acute respiratory infection with daily vitamin D3 supplementation of 400-1000 IU.d-1 760 

(Jolliffe et al. 2021). A recent RCT reported no change in the incidence of upper-761 

respiratory tract infection following 12 weeks of vitamin D3 supplementation (1,000 IU.d-1 762 

for the first four weeks and 400 IU.d-1 for eight weeks), but found decreased peak severity 763 

and duration of illness (Harrison et al. 2021). Accordingly, irrespective of whether vitamin 764 

D3 supplementation influences the incidence of upper-RTI, it may still attenuate the 765 

severity and/or duration of illness. 766 
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There is a high prevalence of vitamin D deficiency in patients with asthma (Bener 767 

et al. 2014) and COPD (Janssens et al. 2011). In fact, in these patients, higher vitamin D 768 

concentrations are associated with lower risk, severity, and exacerbation of the primary 769 

disease (Gupta et al. 2011; Zhu et al. 2016; Liu et al. 2019). Vitamin D supplementation 770 

in these groups has thus been studied for its prophylactic and therapeutic effects. There 771 

is insufficient evidence that the prophylactic use of vitamin D3 can prevent asthma in 772 

children (Yepes-Nuñez et al. 2018; Luo et al. 2022). In addition, the association between 773 

vitamin D status and adult-onset asthma is unclear (Mai et al. 2012; Cheng et al. 2014; 774 

Confino-Cohen et al. 2014; Cherrie et al. 2017; Manousaki et al. 2017). The therapeutic 775 

effects of vitamin D3 supplementation in children and adults with pre-existing asthma are 776 

also equivocal (Jolliffe et al. 2021; Chen et al. 2021). For instance, a recent systematic 777 

review (Nitzan et al. 2022) and an independent meta-analysis (Kumar et al. 2021) both 778 

concluded that vitamin D3 supplementation did not affect lung function, asthma control, 779 

or exacerbation rates in children. Although these studies were not performed in children 780 

with pre-existing vitamin D deficiency, findings generally concur with recent RCTs in 781 

children with 25(OH)D concentration <50 nmol.L-1 (Jat et al. 2021) and <75 nmol.L-1 782 

(Forno et al. 2020; Han et al. 2021). By contrast, in asthmatic adults with low vitamin D3 783 

concentration, a meta-analysis of three small trials (n = 92) revealed some protection of 784 

vitamin D3 supplementation against exacerbations (Jolliffe et al. 2017). One RCT also 785 

showed improved asthma control in 25(OH)D-deficient adults who were supplemented 786 

with a weekly dose of 16,000 IU (Andújar-Espinosa et al. 2021). 787 

Based on the aforementioned evidence, vitamin D3 supplementation does not 788 

improve lung function in COPD patients (Lehouck et al. 2012; Sluyter et al. 2017; Chen 789 

et al. 2019; Foumani et al. 2019), although it may confer improvements in FEV1 in current 790 

or former smokers with 25(OH)D <50 nmol.L-1 (Sluyter et al. 2017). Data from one meta-791 

analysis of four RCTs (n=560) indicate that vitamin D3 supplementation reduces 792 

exacerbation rates in vitamin D-deficient patients (Jolliffe et al. 2019). Thus, for COPD 793 

patients who are hospitalized for exacerbation, the Global Initiative for Chronic 794 

Obstructive Lung Disease recommends vitamin D screening and subsequent 795 

supplementation for those found to be deficient (Global Initiative for Chronic Obstructive 796 

Lung Disease, 2022). 797 
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2.6.3 Literature on Vitamin C. In healthy populations, the efficacy of regular vitamin 798 

C (ascorbic acid) supplementation on upper-RTI incidence depends on individual physical 799 

stress levels and associated immune perturbations. Broadly speaking, the data show no 800 

benefit of chronic supplementation. A meta-analysis of 24 trials (>10,000 participants) 801 

showed no effect of moderate- or high-dose vitamin C on the incidence of upper-RTI 802 

(Hemilä and Chalker 2013). Accordingly, chronic vitamin C supplementation is not 803 

justified in normal (vitamin C-replete) populations (Hemilä and Chalker 2013; Gómez et 804 

al. 2018). The short-term, therapeutic effects of vitamin C are less conclusive (Hemilä and 805 

Chalker 2013), but several reviews report that supplementation shortened the duration of 806 

upper-RTI symptoms by ~8-18% (Hemilä and Chalker 2013; Abioye et al. 2021). It may 807 

therefore be practical to initiate short-term vitamin C supplementation within 24 h of 808 

symptom onset.  809 

There is also evidence that acute supplementation may benefit individuals 810 

undergoing periods of extreme physical stress. An analysis of five trials comprising 811 

marathon runners, skiers, and soldiers, found that vitamin C supplementation reduced 812 

symptoms of the common cold by ~50% following hard exercise (Hemilä and Chalker 813 

2013). Further to moderating viral-mediated respiratory symptoms, the prophylactic 814 

effects of vitamin C supplementation in some athletes may result from an attenuation of 815 

EIB and associated symptoms (Tecklenburg et al. 2007; Hemilä 2013). Thus, when the 816 

risk of infection in athletes is elevated due to a high training/competitive load (Ruuskanen 817 

et al. 2022) or extensive travel (Walsh 2019), vitamin C supplementation (0.25-1.0 g.d-1) 818 

may reduce the severity and/or duration of upper-RTIs (Walsh 2019; Cerullo et al. 2020). 819 

An important caveat is that chronic, high-dose (~1 g.d-1) vitamin C supplementation may 820 

blunt certain training-induced skeletal muscle adaptations (Mason et al. 2020), and is 821 

therefore discouraged. 822 

Lastly, there is some evidence that vitamin C may help ameliorate asthma 823 

symptoms (Allen et al. 2009; Berthon and Wood 2015). An analysis of three small trials 824 

(n=40) in asthmatics found that vitamin C supplementation, in various dosing regimens 825 

(1.5 g.d-1 for two weeks; 2 g ingested 1 h before exercise; 0.5 g ingested 1.5 h before 826 

exercise), attenuated the post-exercise fall in FEV1 by 48% (Hemilä 2013). 827 

Notwithstanding, there is insufficient evidence to make decisive recommendations 828 
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regarding vitamin C supplementation for asthma management, and more RCTs with 829 

larger samples are needed. 830 

2.6.4 Literature on Omega-3 (n-3) poly-unsaturated fatty acids (PUFAs). 831 

The most abundant PUFA in the Western diet is linoleic acid which is converted to 832 

arachidonic acid—a precursor for pro-inflammatory and bronchoconstrictive signaling. By 833 

contrast, omega-3 (n-3) PUFAs, including eicosapentaenoic acid (EPA) and 834 

docosahexaenoic acid (DHA), derived primarily from fatty fish, may have anti-835 

inflammatory effects. Specifically, EPA inhibits arachidonic acid, blunts pro-inflammatory 836 

signaling, and acts as a precursor for pro-resolving mediators with anti-inflammatory 837 

properties (Brannan et al. 2015). Similarly, DHA has been shown to modify gene 838 

expression and signaling pathways related to inflammatory mediators (Calder 2010). 839 

Dietary supplementation with EPA and DHA has therefore been explored as an adjunct 840 

therapy in certain respiratory conditions (Thien et al. 2002; Yang et al. 2013; Stoodley et 841 

al. 2019). 842 

Studies show that supplementation with high dose n-3 PUFAs for several weeks 843 

mitigates EIB (Mickleborough et al. 2003, 2006; Tecklenburg-Lund et al. 2010; 844 

Mickleborough and Lindley 2014; Kumar et al. 2016). Yet, because high dose n-3 PUFA 845 

is expensive and may cause gastrointestinal complaints, it is worth noting that both high 846 

dose (6.2 g/d) and moderate dose (3.1 g/d) n-3 PUFA appear to exert similar effects on 847 

provocation-induced decreases in FEV1 (Williams et al. 2017). 848 

In COPD, studies with n-3 PUFA supplementation show equivocal results. A meta-849 

analysis of eight RCTs found that supplementation increased body mass, increased low-850 

density lipoproteins, and reduced IL-6, but did not influence lung function or quality of life 851 

(Yu et al. 2021). These results should be interpreted cautiously because, depending on 852 

disease severity and other comorbidities, weight gain may be beneficial for some COPD 853 

patients and harmful for others. Moreover, some RCTs provide limited data regarding 854 

individual doses of EPA and DHA. For example, an observational cohort study of 855 

>120,000 US women and men initially showed that greater consumption of fish (>4 856 

servings per week) was associated with lower risk of newly diagnosed COPD. But 857 

subsequent analysis showed that COPD risk was unrelated to total n-3 PUFA intake 858 

(Varraso et al. 2015). To date, only one observational cohort study in moderate-to-severe 859 
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COPD has shown that high dietary n-3 PUFA reduces risk of severe exacerbations, 860 

decreases the number of respiratory symptoms, improves health-related quality of life, 861 

and reduces overall morbidity (Lemoine et al. 2020). The same study showed the 862 

opposite effects of high dietary n-6 PUFA (linoleic acid) (Lemoine et al. 2020). These data 863 

speak to the importance of distinguishing n-3 from n-6 PUFA in supplementation 864 

interventions, and the importance of the dietary n-3/n-6 PUFA ratio in respiratory health. 865 

More well-controlled RCTs on n-3 PUFA supplementation in current and former smokers 866 

with COPD are warranted. 867 

2.6.5 Literature on Probiotics, Prebiotics, and Synbiotics.  868 

The microbial profile and gut microbiome have a substantial influence on health and 869 

disease (Clemente et al. 2012) and systemic immune function (Roberfroid et al. 2010). 870 

Immune function is particularly important for respiratory health, and the “gut-lung axis” 871 

represents a promising therapeutic target for the non-pharmacological management of 872 

respiratory health and diseases (Marsland et al. 2015). Beneficial changes in the gut 873 

microbiota can be achieved through dietary supplementation with probiotics (live 874 

microorganisms that confer a health benefit on the host when administered in adequate 875 

amounts) (Hill et al. 2014), prebiotics (substrates that are selectively utilized by host 876 

microorganisms, conferring a health benefit) (Gibson et al. 2017), and/or synbiotics (a 877 

combination of pro- and prebiotics). 878 

In terms of the gut microbiota and its effects on respiratory health in subjects 879 

without respiratory disease, the largest body of evidence relates to upper-RTIs, and the 880 

data are largely favorable. For example, a 2015 Cochrane review of 10 trials found that 881 

probiotics reduced the incidence of upper-RTI relative to placebo (Hao et al. 2015). Other 882 

meta-analyses show similar findings in healthy infants, children, and adults after 883 

supplementation with probiotics (six studies, n = 1682) (Rashidi et al. 2021) and synbiotics 884 

(four RCTs, n = 883) (Chan et al. 2020). Probiotics may also decrease upper-RTI risk in 885 

active individuals and athletes (Cox et al. 2010; West et al. 2011, 2014; Haywood et al. 886 

2014; Strasser et al. 2016). 887 

There is also preliminary data indicating that the gut-lung axis may be a suitable 888 

target for managing asthma and related conditions. Prebiotics, probiotics, and synbiotics 889 

each reduced airway inflammation and disease severity in rodent models of allergic 890 
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asthma (Sagar et al. 2014; Verheijden et al. 2015, 2016). Furthermore, a small-scale, 891 

double-blind, placebo-controlled RCT showed potential benefits of prebiotics in adults 892 

with EIB (Williams et al. 2016). Specifically, prebiotics reduced serum markers of airway 893 

inflammation at baseline and completely abolished the 29% provocation-induced 894 

increase in TNF-α (a pro-inflammatory cytokine). Lastly, eight weeks supplementation 895 

with probiotics decreased asthma exacerbations in children when compared to placebo 896 

(Drago et al. 2022). Although more RCTs in humans are warranted, the pre-clinical rodent 897 

data and preliminary human in-vivo studies show potential benefits of pre- and/or 898 

probiotics as a potential adjunct therapy to support respiratory health. 899 

2.6.6 Evidence Summary and Recommendations. Primary outcomes from the 900 

literature on nutritional interventions are summarized in Figure 5. The effects of chronic 901 

vitamin D3 supplementation on the prevalence/severity of upper-RTI are inconsistent. 902 

When supplemented prophylactically, there is no evidence of benefits in asthma 903 

management. In asthmatics and COPD patients with pre-existing deficiency, vitamin D3 904 

supplementation may confer therapeutic benefits. Long-term, daily supplementation of 905 

vitamin C (ascorbic acid) provides little-to-no benefit in those who are vitamin C-replete 906 

but may reduce the severity and/or duration of the common cold and symptoms of general 907 

RTI when supplemented acutely at symptom onset (0.25-1.0 g.d-1), especially in 908 

individuals undergoing periods of extreme physical stress. Nevertheless, there is 909 

insufficient evidence to support vitamin C supplementation for asthma management. 910 

Several weeks of n-3 PUFAs reduce the severity of EIB but similar data in COPD are 911 

equivocal, with only one observational cohort study showing reduced risk of exacerbation 912 

and benefits to respiratory symptoms and overall morbidity. Daily probiotics and/or 913 

prebiotics reduce the incidence of upper-RTI better than placebo in adults, children, active 914 

individuals, and athletes. Prebiotics, probiotics, and synbiotics may also reduce airway 915 

inflammation and disease severity in rodent models of allergic asthma, with preliminary 916 

evidence showing benefits in adults with EIB. 917 

 918 

2.7 Inhaled L-menthol  919 

2.7.1 Premise and plausibility. L-menthol is a cyclic alcohol derived from the oils 920 

of various species of Mentha (mints) that have been used as medicinal plants for 921 
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millennia. There is evidence that inhaled or ingested L-menthol triggers a cooling 922 

sensation by stimulating sensory nerve endings in the nasal vestibule and mucosa that 923 

convey nasal sensation (Aldren and Tolley 1993; Eccles 2003). Because L-menthol has 924 

a significant effect on the sensation of nasal airflow, menthol vendors claim that the oil 925 

can decongest the upper airways (e.g., during colds and allergies), enhance nasal flow, 926 

and improve airway patency. Hence, L-menthol is widely available in lozenges, nasal 927 

sprays, vapor rubs, inhalers, cough syrups, mouthwashes, as a scent in aromatherapy 928 

oils, and as a flavoring in cigarettes and e-cigarettes. However, the plausibility of L-929 

menthol to improve respiratory function is low because it does not possess the amine 930 

group that would be expected of a substance with vasodilator or bronchodilator 931 

properties, nor does it have a chemical structure similar to nasal decongestants (Eccles 932 

et al. 1988; Eccles 1994). Accordingly, any benefit of L-menthol is likely to be indirect—933 

mediated by cooling sensations that stimulate the nasal trigeminal nerve thereby creating 934 

the cognitive illusion of improved inspiratory flow (Kanezaki et al. 2021). 935 

2.7.2 Literature. Articles were excluded if L-menthol was not inhaled, dissolved and 936 

nebulized, ingested orally on a lozenge, rinsed/swilled in the mouth, if the effects of L-937 

menthol could not be distinguished from other substances that were co-administered, or 938 

if the article did not assess respiratory function. It is well-established that healthy adults 939 

(free from respiratory disorders and the common cold) experience increased sensations 940 

of nasal airflow and/or nasal patency after inhaling L-menthol (Eccles et al. 1988; Pereira 941 

et al. 2013). Two randomized, placebo-controlled trials showed that inhaling L-menthol 942 

reduced sensations of respiratory discomfort during flow-resistive and elastic loading at 943 

rest (Nishino et al. 1997) and inspiratory resistive loading during exercise (Kanezaki and 944 

Ebihara 2017). Studies in individuals with the common cold also found that a menthol-945 

containing lozenge evoked marked improvements in sensations of nasal airflow and 946 

decongestion (Eccles et al. 1990; EccleS et al. 1990). Yet, subjective changes in 947 

respiratory perceptions are not reflected in objective changes in breathing patterns (i.e., 948 

respiratory frequency, tidal volume, or inspiratory flow), minute ventilation, or spirometric 949 

indices of lung function (Nishino et al. 1997; Kanezaki and Ebihara 2017). Case in point, 950 

Köteles et al. (2018) showed that nebulized menthol-containing peppermint, rosemary, or 951 

eucalyptus oil, inhaled over 15 minutes, had no effect on FVC, FEV1/FVC, or peak 952 
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expiratory flow (PEF), despite improving the perceptions of spirometric outcomes. 953 

Similarly, the only study to assess upper-airway resistance using rhinometry confirmed 954 

no effect of menthol on nasal/upper-airway resistance, respiratory frequency, or minute 955 

ventilation in healthy adults at rest (Pereira et al. 2013).  956 

In obstructive respiratory disorders, the data tend to follow a similar pattern. During 957 

inspiratory resistive loading in patients with mild-to-severe COPD, L-menthol significantly 958 

improved subjective measures (i.e., physical and mental “breathing effort”, air hunger, 959 

breathing discomfort, and anxiety and fear) relative to a non-L-menthol control, but did 960 

not influence objective measures (i.e., breathing pattern, respiratory duty cycle, and 961 

inspiratory muscle activity) (Kanezaki et al. 2020). Others have observed no difference 962 

between nebulized menthol and placebo on FVC or FEV1 in mild asthmatics (Tamaoki et 963 

al. 1995). A randomized, double-blind trial in patients with chronic cough found that, in 964 

response to a capsaicin provocation test, inhalation of 1 mL nebulized L-menthol (0.5% 965 

and 1% concentration) improved peak inspiratory flow relative to placebo, whereas only 966 

high-dose L-menthol (1%) attenuated the reduction in forced inspiratory flow at 50% of 967 

vital capacity (FIF50) and increased the cough threshold (Millqvist et al. 2013). A single-968 

blind (non-placebo-controlled) study of L-menthol-containing “aromatics” observed 969 

improved mucous clearance in patients with chronic bronchitis when compared to 970 

petroleum jelly, but no effect on lung function (Hasani et al. 2003). Lastly, although studies 971 

have generally failed to observe any direct effect of L-menthol on physiological variables 972 

during exercise, there is a possible indirect effect of L-menthol on exercise performance 973 

in the heat owing to changes in the sensation of oropharyngeal temperature versus 974 

placebo (Mündel and Jones 2010). 975 

2.7.3 Evidence Summary and Recommendations. Primary outcomes from the 976 

literature on inhaled L-menthol are summarized in Figure 6. By stimulating sensory nerve 977 

endings in the nasal vestibule, inhaled L-menthol can augment sensations of nasal 978 

airflow, improve respiratory perceptions in both healthy subjects and patients, and 979 

potentially relieve dyspnea in COPD. Improved respiratory perceptions may translate to 980 

improved exercise performance in the heat. There is some evidence that high-981 

concentration inhaled L-menthol may increase the cough threshold in patients with 982 

chronic cough. Nevertheless, L-menthol does not have vasodilator or bronchodilator 983 



Science and pseudoscience in respiratory health 

33 
 

properties, and there is little-to-no convincing evidence that L-menthol has direct 984 

functional benefits on spirometry-related variables in any population. 985 

 986 

Conclusions 987 

The health and wellness industry is characterized by, and in many cases depends 988 

on, lax consumer regulations regarding the products and services sold therein. As a 989 

result, interventions are often sold on insufficient evidence, baseless claims, and 990 

pseudoscience (Tiller et al. 2022). Not only is there a growing disparity between the 991 

substance of commercial claims and the supporting scientific evidence, thereby violating 992 

Laplace’s principle that “Extraordinary claims require extraordinary evidence”, but the 993 

legitimate (plausible) and illegitimate (implausible) claims for these interventions are often 994 

conflated, obscuring the translation of science to practice. This is a particular problem in 995 

the field on respiratory physiology and medicine. 996 

This review is intended as an evidence-based guide to help health and exercise 997 

professionals distinguish science from pseudoscience in commercial respiratory 998 

interventions and make informed decisions that optimize patient/client outcomes. In 999 

summarizing the recommendations, there are several caveats that should be noted. First, 1000 

the products/strategies selected for inclusion were commercial interventions (i.e., not 1001 

controlled drugs or products regulated by the FDA as “medical devices”). The list was 1002 

delimited to those interventions most prevalent in the health and wellness industry that 1003 

were coupled to the most conspicuous claims, and there may be prominent, mainstream 1004 

interventions that were not included. 1005 

  A second caveat is that the recommendations herein are based on data from 1006 

controlled laboratory-based studies. The statistical analyses typically used allowed 1007 

researchers to reject, or fail to reject, the null hypotheses, and subsequently discuss the 1008 

existence of effects or lack thereof. Yet, such an approach is dichotomous by design, 1009 

providing little room for nuanced interpretation of differences, potentially overlooking 1010 

practical or clinical implications. For example, some studies in exercise rehabilitation have 1011 

been shown to yield non-significant between-group differences despite moderate-to-large 1012 

effects that would be deemed meaningful in practice (Zemková 2014). Interventions with 1013 

moderate-to-large effects, despite lack of statistical significance, may be especially 1014 
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important for high-performance athletes for whom the margins of success are extremely 1015 

small. The opposite may also be true (i.e., statistical tests may yield highly significant 1016 

outcomes with trivial effects). To improve external validity in exercise-based studies, 1017 

researchers have been encouraged to perform robust statistical analyses (e.g., by using 1018 

appropriate sample sizes, correcting for familywise error rate, etc.) but report them 1019 

alongside confidence intervals and/or effect sizes as a measure of “practical significance” 1020 

(Knudson 2009). This might aid in the interpretation of both “statistically significant” and 1021 

“practically meaningful” outcomes. 1022 

In this comprehensive review of literature and expert consensus, overall it was 1023 

determined that: (1) there is good quality data supporting subjective/perceptual (but not 1024 

objective) benefits of both nasal dilators and L-menthol; (2) there is some evidence that 1025 

nasally-derived nitric oxide may benefit critically ill patients but not healthy subjects; (3) 1026 

there is good evidence that systematized breathing interventions (particularly pursed-lips 1027 

breathing) can improve exercise performance, respiratory symptoms, and quality of life in 1028 

COPD and asthma; (4) there is good evidence that respiratory muscle training can 1029 

improve exercise performance in healthy subjects and respiratory symptoms in some 1030 

patient populations (e.g., COPD), with benefits for patients with COPD who have 1031 

respiratory muscle weakness or pre-existing comorbidities precluding them from whole-1032 

body exercise training; (5) there is evidence that nutritional interventions including vitamin 1033 

D and vitamin C may benefit respiratory health in individuals with pre-existing nutrient 1034 

deficiency and during times of compromised immune function second to increased 1035 

physical stress, and interesting but inconsistent evidence of benefits of polyunsaturated 1036 

fatty acids and pre/probiotics/synbiotics; and (6) no evidence that canned oxygen is 1037 

beneficial for any clinical outcome.  1038 

For the interventions aforenoted, we advocate for greater vigilance in determining 1039 

prior plausibility and evidence for efficacy. We also hope to inspire similar expert reviews 1040 

that scrutinize interventions stemming from other facets of the commercial health and 1041 

wellness industry. 1042 
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 1054 

Footnote, page 17 1055 
1Applied external resistors are intentionally designed to elicit high resistive loads during 1056 

exercise; thus, they impose considerably greater loads than low-resistance face 1057 

coverings (e.g., cloth and surgical masks) that might be used for personal protection 1058 

from airborne pathogens. Indeed, the negative physiological effects of protective face 1059 

masks have been shown to be negligible when used during physical activity in healthy 1060 

individuals (Hopkins et al. 2021).   1061 
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FIGURES 1871 

Figure. 1. Primary outcomes from the literature on internal and external nasal dilators. ↑ 1872 

= evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no change; IND = 1873 

internal nasal dilator; END = external nasal dilator; OSA = obstructive sleep apnea; 1874 

V̇O2max = maximal oxygen uptake; HR = heart rate; RPE = ratings of perceived exertion.  1875 

 1876 

Figure. 2. Primary outcomes from the literature on nasal breathing. ↑ = evidence of 1877 

increase; ↓ = evidence of decrease; ↔ = evidence of no change; NO = nitric oxide; V̇O2 1878 

= oxygen uptake; V̇E = minute ventilation; V̇E/V̇O2 = ventilatory equivalent for oxygen; 1879 

V̇E/V̇CO2 = ventilatory equivalent for carbon dioxide; PETCO2 = end-tidal partial pressure 1880 

of carbon dioxide; fR = respiratory frequency; VT = tidal volume; V̇O2max = maximal 1881 

oxygen uptake.  1882 

 1883 

Figure. 3. Primary outcomes from the literature on systematized breathing 1884 

interventions. ↑ = evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no 1885 

change; FEV1 = forced expiratory volume in 1 second; COPD = chronic obstructive 1886 

pulmonary disease. 1887 

 1888 

Figure. 4. Primary outcomes from the literature on respiratory muscle training 1889 

interventions. One of the putative mechanisms underpinning the effects of respiratory 1890 

muscle training on exercise tolerance and performance is a possible ‘blunting’ of the 1891 

respiratory muscle metaboreflex. ↑ = evidence of increase; ↓ = evidence of decrease; ↔ 1892 

= evidence of no change. COPD = chronic obstructive pulmonary disease. 1893 

 1894 

Figure. 5. Primary outcomes from the literature on nutritional interventions. ↑ = 1895 

evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no change. RTI = 1896 

respiratory tract infection; EIB = exercise-induced bronchoconstriction. 1897 

 1898 

Figure. 6. Primary outcomes from the literature on inhaled L-menthol. ↑ = evidence of 1899 

increase; ↓ = evidence of decrease; ↔ = evidence of no change. FEV1 = forced 1900 
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expiratory volume in 1 second; FVC = forced vital capacity; PEF = peak expiratory flow; 1901 

COPD = chronic obstructive pulmonary disease. 1902 
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	Respiratory function has become a global health priority. Not only is chronic respiratory disease a leading cause of worldwide morbidity and mortality, but the COVID-19 pandemic heightened attention on respiratory health and the means of enhancing it. Subsequently, and inevitably, the respiratory system has become a target of the multi-trillion-dollar health and wellness industry. Numerous commercial, respiratory-related interventions are now on sale, coupled to therapeutic and/or ergogenic claims that vary in their plausibility: from the reasonable to the absurd. Moreover, legitimate and illegitimate claims are often conflated in a wellness space that lacks regulation. The abundance of interventions, the range of potential therapeutic targets in the respiratory system, and the wealth of research that varies in quality, all confound the ability for health and exercise professionals to make informed risk-to-benefit assessments with their patients and clients. This review focuses on numerous commercial interventions that purport to improve respiratory health, including nasal dilators, nasal breathing, generalized and systematized breathing interventions (such as pursed-lips breathing), respiratory muscle training, canned oxygen, various nutritional supplements, and inhaled L-menthol. For each intervention we describe the premise, examine the plausibility, and systematically contrast commercial claims against the published literature. The overarching aim is to assist health and exercise professionals to distinguish science from pseudoscience and make pragmatic and safe risk-to-benefit decisions.
	Key words: asthma; COPD; exercise; disease; lung function; nutrition; pulmonary.
	1.0 INTRODUCTION
	The human respiratory system comprises the upper respiratory tract (nasal and oral cavities, pharynx, and larynx), lower respiratory tract (trachea, and bronchial tree), lung parenchyma, pulmonary vasculature, and respiratory muscles (e.g., diaphragm, abdominals, obliques, intercostals). Under neural control from central and peripheral chemoreceptors and respiratory centers in the brain, the respiratory system transfers oxygen from the atmosphere to the pulmonary circulation and carbon dioxide in the opposite direction. With a few notable exceptions (e.g., high-intensity exercise, hypoxic environments), the healthy respiratory system is unlikely to present a significant limitation to gas exchange or O2 transport (Dempsey et al. 2020).
	 In recent years, the respiratory system has become a target of the multi-trillion-dollar commercial health and wellness industry. Therein, numerous respiratory-related products and strategies (e.g., respiratory muscle training devices, nasal strips, deep breathing regimens) are sold to the consumer alongside therapeutic and/or ergogenic claims that vary in their plausibility: from the reasonable (mitigate stress, improve perceptions, improve lung and respiratory muscle function); to the questionable (increase oxygen transport, “boost” immune function); to the absurd (increase “energy flow” and promote healing). Furthermore, due to lax regulations in the wellness space and little obligation for marketing to conform to scientific or ethical standards, it is common for legitimate and illegitimate claims to be conflated (Tiller et al. 2022). The current ‘wellness’ paradigm thus makes it difficult for health and exercise professionals to make informed risk-to-benefit assessments with their patients and clients.
	 Several factors underpin the accelerating commercial popularity of respiratory-related interventions, the most pertinent being the COVID-19 pandemic which has heightened attention on respiratory health and potential means of enhancing it. But even before COVID-19, chronic respiratory disease (such as chronic obstructive pulmonary disease [COPD]) was a leading cause of morbidity and mortality (World Health Organization 2022), conferring a considerable and growing economic burden (Ehteshami-Afshar et al. 2016). Respiratory disease has also received growing coverage in the media owing to the pressing issue of climate change and worsening air quality (Barnes et al. 2013). Respiratory function has thus become a global health priority. To compound the problem, respiratory physiology is a complex discipline that is poorly understood by the public, and its mechanisms can thus be easily misappropriated for commercial gain.
	 This review explores a number of commercial interventions that purport to influence aspects of the respiratory system to improve respiratory function, respiratory health, and/or exercise responses. The interventions selected for inclusion were nasal dilators, nasal breathing, generalized and systematized breathing interventions (including pursed-lips breathing), respiratory muscle training, canned oxygen, various nutritional supplements, and inhaled L-menthol. For each intervention we describe its premise, examine its plausibility, and contrast commercial claims against the published literature. The overarching aim of this paper is to provide an evidence-based guide for health and exercise professionals—to help them distinguish science from pseudoscience in respiratory physiology and assist them in making safe and pragmatic risk-to-benefit decisions.
	1.1 Methods
	In January 2022, the first and corresponding authors (CRI and NBT, respectively) convened a meeting of recognized experts in the fields of respiratory medicine and exercise physiology. After several rounds of discussion, all authors agreed that the products/strategies to be included should be non-medical, commercial interventions, excluded if they were controlled drugs and/or regulated by the FDA as “medical devices”. The list was not exhaustive but instead limited to the interventions most prevalent in the health and wellness industry and that were coupled to the most conspicuous claims. A list of commercial claims was then compiled from websites, press releases, and relevant media, after which peer-reviewed articles were searched via PubMed (no date restriction). The literature search-terms comprised the relevant intervention (e.g., nasal dilators, respiratory muscle training, etc.) alongside various combinations of the following: breathlessness; dyspnea; lung; lung function; pulmonary; respiratory; respiratory function; respiratory health; respiratory symptoms; pathophysiology. All article types—meta-analyses, systematic reviews, randomized-controlled trials (RCTs), exploratory studies, confirmatory studies, and case reports—were included, and the reference lists of articles selected for inclusion were manually searched for additional literature. A first draft of the manuscript was collated, and after several rounds of discussion and refinement, all authors agreed upon the evidence summaries and recommendations and approved the final work. Most of the correspondence was carried out virtually/electronically.
	2.0 EVIDENCE REVIEW
	2.1 Nasal dilators
	 2.1.1 Premise and plausibility. External nasal dilators (ENDs) are applied horizontally to the skin of the nasal dorsum whereas internal nasal dilators (INDs) are placed inside the nostrils. Both purportedly increase nostril patency by preventing the nasal wings from collapsing during inspiration (Dinardi et al. 2014). The devices were originally developed to aid with sleep-related issues (e.g., snoring and apnea) but their widespread use at the Atlanta Olympic Games in 1996 made them popular with exercisers and athletes (Dinardi et al. 2014). Using magnetic resonance imaging, Bishop et al. (2016) showed that an END (Breathe Right®) evoked significant enlargement of the anterior nasal passage when compared to a placebo. Using acoustic rhinometry, Griffin et al. (1997) observed increased nasal valve area with the same device. Although ENDs had no effect on plethysmography-derived measures of nasal resistance (Vermoen et al. 1998) or maximum expiratory flows (Di Somma et al. 1999) in healthy individuals, others have shown that ENDs increased nasal inspiratory flow during normal and forced breathing (Vermoen et al. 1998; Di Somma et al. 1999). Thus, ENDs likely improve nostril patency by supporting the lateral nasal vestibular walls, manifesting as a slight increase in inspiratory nasal flow at rest and during maximal inspiratory maneuvers. The bulk of literature has focused on whether there is any subsequent clinical or ergogenic benefit.
	2.1.2 Literature. Articles were excluded if nasal dilators were simultaneously applied with other breathing interventions. Most studies on nasal dilators evaluated their effect on sleep-related issues including sleep quality, snoring, and obstructive sleep apnea; generally showing subjective (but not objective) outcomes. For example, using ENDs, Wenzel et al. (1997) reported improved subjective ratings of nose breathing at rest but no changes in objective (polysomnography-derived) measures of obstructive sleep apnea. Similarly, several non-placebo-controlled studies showed improved subjective ratings of sleep quality (e.g., insomnia severity, sleep-disordered breathing) and quality of life with ENDs (Krakow et al. 2006; Gelardi et al. 2019). When an IND (Nas-Air®) and an END (Breathe Right®) were compared, the former conferred better subjective ratings of sleep quality (assessed via visual analogue scale) (Gelardi et al. 2019). One placebo-controlled study in patients with upper-airway resistance syndrome found that desaturation time during sleep (the percentage of time that SpO2 was >2% below waking values) was significantly lower with an END (Breathe Right®) versus placebo (9.1 vs. 12.2%), but there were no other effects on cardiorespiratory variables, sleep architecture, or sleep latency (Bahammam et al. 1999). 
	Data on snoring are equivocal. Research by Gelardi et al. (2019) reported that snoring time was reduced with both an IND and END, whereas Wenzel et al. (1997) showed that ENDs had no effect on the frequency of snoring events. When healthy subjects with nasal congestion were randomized to an END group (Breathe Right®) or a placebo group for two weeks, both devices equally improved subjective ratings of sleep quality and subjective ratings of nasal congestion, suggesting a potent placebo effect (Noss et al. 2019). Lastly, Sadan et al. (2005) showed that nasal dilators, when used by females during childbirth, improved subjective ratings of “ease of breathing” but had no effect on objective markers of labor progression or recovery. Collectively, the data suggest that nasal dilators (mainly ENDs) may improve perceptions of nasal breathing and subjective ratings of sleep quality. However, they are unlikely to influence objective markers of obstructive sleep apnea (Camacho et al. 2016) and the data on snoring frequency and duration are equivocal. In fact, several authors have proposed ENDs as an effective placebo intervention in RCTs that explore treatment options in obstructive sleep apnea (Amaro et al. 2012; Yagihara et al. 2017).
	 On the premise that ENDs increase some measures of nasal patency and nasal inspiratory flow, their potential to improve exercise capacity has also been explored. Despite a few reports of favorable outcomes (Griffin et al. 1997; Dinardi et al. 2013, 2017), a recent systematic review and meta-analysis of 19 articles concluded that ENDs elicited “no improvement in V̇O2max, HR and RPE outcomes in healthy individuals during [maximal or submaximal] exercise” (Dinardi et al. 2021). Other studies, using esophageal balloon catheters, report no effect of ENDs on inspiratory elastic work, inspiratory resistive work, or expiratory resistive work during submaximal or maximal exercise (O’Kroy et al. 2001). There was also no effect of ENDs on recovery of V̇O2, V̇E, or HR after exercise when compared to a placebo or a no-intervention control (Thomas et al. 2001); and no effect of ENDs on blood lactate responses after exercise in sedentary or endurance trained women (Boggs et al. 2008). Thus, nasal dilators appear to have no meaningful influence on exercise performance or physiological variables during or after exercise.
	The commercial claims of one specific IND (Turbine™) have been scrutinized by several studies, all showing no benefit on respiratory mechanics or exercise tolerance. One such study, a sham-controlled trial using esophageal balloon catheters to measure respiratory mechanics during incremental cycling, showed that INDs did not reduce the work of breathing and had no effect on exertional dyspnea or exercise capacity (Schaeffer et al. 2021). Another RCT tested the effect of the Turbine™ on 20-km cycling time-trial performance, reporting no influence on mean power output (Adams and Peiffer 2017). Favorable data from a clinical trial posted on the manufacturer’s website have not been peer reviewed or published at the time of this writing.
	 2.1.3 Evidence Summary and Recommendations. Primary outcomes from the literature on nasal dilators are summarized in Figure 1. Both ENDs and INDs enlarge and stabilize the nasal valves thereby mitigating their collapse during high flow inspiration and increasing inspiratory nasal airflow during maximal inspiratory efforts. Current evidence suggests that nasal dilators may improve perceptions of nasal breathing and subjective ratings of sleep quality but are unlikely to influence objective markers of obstructive sleep apnea. The data on snoring frequency and duration are equivocal. Most studies show no effect of nasal dilators on cardiorespiratory function or ratings of perceived exertion during exercise, no effect on exercise capacity, and no effect on physiological variables during the acute phase of recovery.
	2.2 Nasal breathing 
	2.2.1 Premise and plausibility. In humans, nitric oxide (NO) is a vasodilator (Morris and Rich 1997) and mild bronchodilator (Kacmarek et al. 1996), first identified in expired gas in the 1990s (Gustafsson et al. 1991). Functionally, the two NO isoforms are “constitutive” and “inducible” NO, with most being produced in the paranasal sinuses (Ricciardolo 2003). In fact, the paranasal sinuses produce considerably greater amounts of NO than either the mouth or the trachea (56 vs. 14 vs. 6 ppb, respectively; (Törnberg et al. 2002)). It has been suggested that nasally-derived NO can evoke airway smooth muscle relaxation, inhibit smooth muscle proliferation, and protect against excessive bronchoconstriction (Ricciardolo 2003). Others suggest that nasal breathing might attenuate pulmonary hypertension by vasodilating the pulmonary vasculature (Settergren et al. 1998). Although exogenous (supplementary) NO is known to reduce vascular resistance and increase pulmonary blood flow in healthy and patient populations (Settergren et al. 1998; Crespo et al. 2010), the concentration of endogenous (nasally-derived) NO is considerably lower than the concentrations used in NO-enriched air (Törnberg et al. 2002). Therefore, an important consideration is whether increased NO uptake via nasal breathing exerts meaningful effects in healthy or patient populations.
	2.2.2 Literature. Articles were excluded if they reported on exogenous (supplementary) NO inhalation as opposed that which was nasally derived, if they studied exhaled NO as a tool for assessing airway inflammation, or if nasal breathing was studied in combination with other breathing interventions (e.g., deep/slow breathing). Using single photon emission computed tomography during separate bouts of upright nasal or oral breathing in healthy adults, Crespo et al. (2010) found that nasal breathing elicited blood flow redistribution from caudal and dorsal regions of the lung to the less-perfused cranial and ventral regions. For the otherwise poorly perfused lung regions, such as the apical region, this represented a 24% increase in blood flow. Similar effects were observed when exogenous NO mixtures were inhaled orally, supporting the hypothesis that the mechanism of blood flow redistribution was mediated by NO. Others showed that nasal breathing increased oxygen tension across the chest wall (assessed using transcutaneous  electrodes) in healthy subjects versus oral breathing (Lundberg et al. 1996), although the effects were very small and the clinical significance thus unclear.
	Limited data also suggest a possible therapeutic benefit of nasal breathing in patients with respiratory disease. For example, intubated patients who were unable to rebreathe their own nasally-derived NO exhibited an 18% increase in PaO2, and an 11% decrease in pulmonary vascular resistance index, when gas derived from the patient's nose was aspirated and fed into the inspiration limb of the ventilator (Lundberg et al. 1996). Although the exact mechanism was unclear, the authors postulated that sinus-derived NO may act as an “aerocrine messenger” that selectively dilates vessels supplying well-ventilated areas of the lung. Pulmonary vascular resistance also decreased in patients recovering from thoracic surgery when they engaged in nasal versus oral breathing, although there was no difference in O2 and CO2 partial pressures of arterial and mixed venous blood between the two breathing techniques (Settergren et al. 1998). Pertinently, exogenous NO inhaled orally at “nasal physiologic concentrations” of 10–100 ppb evoked pulmonary vasodilatation and improved pulmonary gas exchange in patients with acute respiratory distress syndrome (Mourgeon et al. 1997) and acute respiratory failure (Gerlach et al. 1993). Collectively, these data support the notion that nasal breathing, by increasing NO uptake, may provide clinically meaningful benefits in certain patient populations.
	The potential benefit of nasal breathing at rest has led to the suggestion that it may improve physiological responses to exercise. However, what of the feasibility of nasal-only breathing during exercise? Healthy adults spontaneously switch from nasal to oronasal breathing at minute ventilations of 35-45 L‧min-1 (Niinimaa et al. 1980; Becquemin et al. 1991; Bennett et al. 2003), and without prior habituation, healthy adults even when prompted can only maintain nasal breathing up to ~80% V̇O2max (LaComb et al. 2017). Nevertheless, when preceded by an extensive training period (>6 months), nasal breathing may be feasible during high-intensity and even maximal exercise without compromising V̇O2max (Hostetter et al. 2016; Dallam et al. 2018). Thus, after habituation, nasal breathing can probably be sustained during maximal exercise. This leads to the separate question of efficacy: does nasal breathing during exercise provide any physiological advantage over oral or oronasal breathing?
	In a mixed-sex cohort of healthy adults, LaComb et al. (2017) showed that nasal breathing elicited lower V̇O2, V̇CO2, and V̇E at given submaximal exercise intensities (50%, 65%, and 80% of treadmill-derived V̇O2max) when compared to oral breathing, although the physiological mechanism was unclear. A possible flaw of the study was that exercise bouts lasted only 4 min, whereas a steady state ventilatory response may take considerably longer, particularly in an untrained cohort with a slow kinetic response. The authors also concluded that, when all variables were considered together, “it is likely that oral breathing represents the more efficient mode [of breathing], particularly at higher exercise intensities”. In another study, 10 healthy subjects who were habituated to nasal breathing exhibited lower ventilatory equivalents for O2 and CO2 during nasal-only exercise versus oral-only exercise (differences mediated primarily by significantly lower V̇E), without a change in V̇O2max or time to exhaustion (Dallam et al. 2018). It is unclear from these studies whether the physiological response to nasal breathing was derived from increased NO uptake or another mechanism. It is possible that healthy subjects will have a blunted ventilatory response at maximal exercise with nasal breathing owing to attenuated tidal volumes and respiratory frequencies (Morton et al. 1995). This may partly explain greater end-tidal CO2 partial pressure (PETCO2) during nasal versus oral breathing, both at rest and during submaximal exercise (Tanaka et al. 1988; Dallam et al. 2018).
	Although oral and nasal breathing evoke similar ratings of perceived exertion during exercise, nasal breathing results in an “unacceptable sensation of air hunger” (Hostetter et al. 2016; Dallam et al. 2018), perhaps associated with the development of hypercapnia (Banzett et al. 2021). In turn, this has the potential to alter breathing patterns and reduce exercise tolerance (Dallam et al. 2018). In patients with COPD, who report pre-existing sensations of “unsatisfied inspiration” (Philips et al. 2021), such air hunger during nasal breathing could exacerbate respiratory symptoms. Nasal breathing during exercise would therefore be inappropriate for COPD patients. Two early studies in patients with asthma (n=5 and n=12, respectively) reported that nasal breathing during exercise reduced the incidence and/or severity of post-exercise bronchoconstriction relative to oral breathing (Shturman-Ellstein et al. 1978; Mangla and Menon 1981), although it is unclear whether these findings were the result of greater NO intake or also influenced by an increased humidity of inspired air which has also been shown to mitigate the severity of exercise-induced bronchoconstriction EIB (Anderson and Kippelen 2012). In any case, these data support the hypothesis that the nasopharynx and oropharynx play an important role in mediating exercise-induced bronchoconstriction.
	2.2.3 Evidence Summary and Recommendations. Primary outcomes from the literature on nasal breathing are summarized in Figure 2. Data suggest that nasal breathing may improve arterial oxygenation and ventilatory efficiency in critically ill patients at rest, but there is little evidence that such benefits extend to healthy subjects. Nasal breathing is feasible during submaximal exercise and even maximal exercise after extensive habituation, but there is little-to-no data supporting a subsequent benefit on exercise capacity in healthy individuals. There is some evidence of reduced incidence and/or severity of post-exercise bronchoconstriction with nasal breathing, but due to potential hypoventilation and increased perceptions of “air hunger”, nasal breathing during exercise is not recommended for COPD patients. Its use in patients with other respiratory diseases should be considered on a case-by-case basis.
	2.3 Generalized and systematized breathing strategies
	2.3.1 Premise and plausibility. Breathing interventions generally comprise one-or-more of the following techniques: nasal inspiration, deep/slow breathing, breath-hold at end-inspiratory lung volume, prolonged expiration, expiration through pursed lips, and preferential activation of the diaphragm during inspiration. Most breathing interventions encourage inspiration through the nose. This approach may increase the uptake of NO (see Section 2.2) and warm/humidify the inspired air (Naclerio et al. 2007). Inspiration and expiration are usually required to be deep and slow to increase tidal volume and extend the respiratory cycle (Ubolnuar et al. 2019). A prolonged expiration may also help decrease expiratory reserve volume, in turn partially mitigate air trapping and dynamic hyperinflation to reduce respiratory symptoms in certain populations (e.g., COPD). Deep/slow breathing, particularly interventions with prolonged expiration, have also been shown to increase heart rate variability and respiratory sinus arrhythmia through mediating effects on the parasympathetic nervous system (Zaccaro et al. 2018). This is an expanding area of research. Indeed, using functional magnetic resonance imaging, deep/slow breathing was shown to increase cortical and subcortical activity (Critchley et al. 2015), which may partly support improved physical and mental health (Laborde et al. 2022). Pursed-lips breathing typically involves nasal inspiration and prolonged expiration directed through lips that have a “puckered” or “pursed” appearance (see Figure 3). Independent of other breathing strategies, expiration through pursed lips may increase expiratory resistance at the mouth, evoking a small positive end-expiratory pressure of ~5 cmH2O (van der Schans et al. 1997). This can help ameliorate airway compression and expiratory flow limitation in patients with COPD by  functionally “stenting” the airways (Marciniuk et al. 2011; Nguyen and Duong 2021). Diaphragmatic breathing comprises many of the aforementioned techniques but with preferential activation of the diaphragm during inspiration. From a practical standpoint, diaphragmatic breathing is achieved by inspiring with minimal movement of the chest and more pronounced outward abdominal displacement (Cahalin et al. 2002).
	2.3.2 Literature. The literature on breathing interventions employs inconsistent nomenclature and terms are often used interchangeably. This makes it difficult to discern the efficacy of each technique. Accordingly, we have grouped the literature on breathing interventions and discussed their collective outcomes. The exceptions are pursed-lips breathing (see Section 2.3.3) and the Buteyko Breathing Technique (see Section 2.3.4), which both have a sufficient body of independent research. Most of the literature on breathing interventions has focused on the management of respiratory symptoms in asthma and COPD. Regarding the former, the Cochrane database published a meta-analysis and separate systematic review on breathing exercises in asthmatic adults and children, respectively, with disparate findings. In adults, yoga (including pranayama), breathing retraining, the Buteyko Breathing Technique, the Papworth method, and deep diaphragmatic breathing, all improved quality of life, symptoms and complaints due to hyperventilation, and lung function (forced expiratory volume in 1 second; [FEV1]). However, studies were characterized by poor methodologies and a very low-to-moderate quality of evidence (Santino et al. 2020). The review in children found insufficient data to support the use of breathing techniques for asthma management, owing primarily to a low number of studies (n=3, 112 participants) (Macêdo et al. 2016). Another issue impeding interpretation of the pediatric data is that studies generally combined breathing exercises with a comprehensive package of care, thereby precluding any evaluation of breathing exercises alone (Macêdo et al. 2016). As such, due to a low number of studies, limited reporting of data, and variations in reported outcomes, no firm conclusions can be drawn regarding the efficacy of breathing interventions for asthma management. More well-controlled, high-quality studies are needed.
	There is a much larger body of work evaluating breathing interventions for improving respiratory symptoms, lung function, and exercise performance and capacity in COPD. In general, long-term breathing interventions including deep breathing with or without preferential activation of the diaphragm, pursed-lips breathing, yoga, singing, and breathing gymnastics, all appear to improve functional exercise performance (mainly 6-min walk test; [6MWT]) (Hamasaki 2020; Lu et al. 2020; Yang et al. 2022), quality of life (St. George’s Respiratory Questionnaire; (Marotta et al. 2020) and stress and anxiety (Hamasaki 2020) in COPD. Several studies also show that pursed-lips breathing, with or without preferential activation of the diaphragm, improves pulmonary function (i.e., forced vital capacity [FVC] and FEV1) (Hamasaki 2020; Lu et al. 2020; see Yang et al. 2022). 
	The literature on breathing interventions for improving dyspnea in COPD is less consistent. A review of 13 RCTs (998 patients) found that home-based breathing exercises (diaphragmatic breathing, yoga breathing, breathing gymnastics, and singing) improved resting FEV1, 6MWT distance, and ratings of dyspnea (modified Medical Research Council dyspnea scale and St George Respiratory Questionnaire) across the range of disease severity (Lu et al. 2020). By contrast, a Cochrane review of 16 studies (1,233 patients) showed that 15 weeks of breathing retraining (pursed-lips breathing, diaphragmatic breathing, ventilation feedback training, or yoga breathing, both supervised and unsupervised) improved 6MWT distance in COPD but had no consistent effects on dyspnea at rest or health-related quality of life (Holland et al. 2012). Another systematic review and meta-analysis of 19 studies (745 patients) reported that respiratory frequency was significantly reduced at rest and during exercise following a period of dedicated pursed-lips breathing, ventilatory feedback and exercise, diaphragmatic breathing, or combined techniques that lasted between one day and 24 weeks—nevertheless, breathing interventions did not improve ratings of dyspnea relative to controls (Ubolnuar et al. 2019). The reason for the discrepancy in dyspnea-related findings is unclear; however, while Holland et al. (2012) and Ubolnuar et al. (2019) included studies performed in various environments (including the laboratory and during pulmonary rehabilitation programs in outpatient settings), the review by (Lu et al. 2020) focused exclusively on home-based breathing interventions.
	2.3.3 Pursed-lips breathing (PLB). This particular technique has received a great deal of attention as a standalone therapy owing to its effects on dyspnea and exercise tolerance in patients with COPD. The main benefits include reduced respiratory frequency, increased (improved) inspiratory and total respiratory time, and increased tidal volume (Ubolnuar et al. 2019). A bout of PLB has also been shown to reduce resting CO2 retention and increase arterial oxygen tension and oxyhemoglobin saturation in advanced but stable COPD (Thoman et al. 1966; Breslin 1992; Marciniuk et al. 2011). The primary mechanism by which PLB exerts its effects is by increasing intraluminal airway pressure during exhalation which tends to prevent the airway compression that would otherwise occur as intrapleural pressure increases. In turn, PLB is likely to ameliorate air trapping. Since PLB reduces end-expiratory lung volume and lengthens the diaphragm (thereby improving its tension-generating capacity during inspiration) (Spahija et al. 2005), increased arterial oxygen saturation is likely the result of a more complete, mechanically-efficient respiratory cycle. Pursed-lips breathing has also been used by COPD patients during exercise, with generally favorable outcomes on 6MWT (Bhatt et al. 2013), perhaps mediated by reduced dynamic lung hyperinflation (Cabral et al. 2015), increased arterial oxygen saturation (Cabral et al. 2015), and possible protection against diaphragmatic fatigue (Breslin 1992). Notwithstanding, improvements in exercise capacity with PLB are not a universal finding (Garrod et al. 2005).
	Several studies in patients with COPD have tried to distinguish the benefits of PLB from other respiratory interventions or relaxation techniques. Pivotal research by Tiep et al. (1986) showed that an acute (15-min) bout of PLB evoked greater increases in SpO2 at rest compared with general relaxation techniques. Others have found that 12 weeks of daily PLB practice was more effective at reducing exertional dyspnea, and increasing 6MWT performance, than expiratory muscle training or a control group that received an educational pamphlet but no intervention (Nield et al. 2007). In another study, a 12-week PLB intervention increased FEV1 and maximal inspiratory pressures by a greater magnitude than diaphragmatic breathing or a no-intervention control (Jansang et al. 2016). One study assessed the effects of an acute bout of diaphragmatic breathing with or without PLB on COPD patients during upright, seated rest (Mendes et al. 2019). Although both interventions increased ribcage and abdominal volumes (measured via respiratory inductive plethysmography), increased arterial oxygen saturation, and decreased respiratory frequency, there were greater reductions in respiratory frequency and longer expiratory times with combined diaphragmatic and pursed-lips breathing. Conversely, neither intervention reduced dyspnea (Medical research Council scale) or end-expiratory chest volume. Thus, the combination of breath control (with preferential activation of the diaphragm) and prolonged expiration through pursed lips may provide several benefits that are distinct from other breathing techniques. Indeed, as an effective means of managing dyspnea in COPD, PLB has been advocated by the Canadian Thoracic Society in their clinical practice guidelines (Marciniuk et al. 2011) and by the American Thoracic Society in their patient education materials (Lareau et al. 2020).
	2.3.4 The Buteyko Breathing Technique. This (predominantly) commercial breathing regimen was conceived in the 1950s by Dr Konstantin Pavlovic Buteyko. In its modern form, Buteyko is an amalgam of several breathing techniques which emphasize nasal breathing and periods of breath-hold (referred to as “control pause”). In general, the research on Buteyko is favorable, particularly with respect to asthma management, showing improved quality of life scores (Burgess et al. 2011; Santino et al. 2020). Nevertheless, Buteyko breathing does not appear to be superior to other chronic breathing interventions like yoga, deep/slow breathing, pursed-lips breathing, or diaphragmatic breathing. In addition, several issues cloud the interpretation of the Buteyko literature, potentially undermining its validity.
	First, Buteyko breathing is usually administered as a comprehensive package of care that comprises breathing retraining, education, and nutritional advice, making it difficult to discern the isolated benefits of the respiratory intervention (Bruton and Lewith 2005). Second, proponents of Buteyko breathing often extend the claims beyond those supported by the scientific literature. For instance, a major premise of the technique is that breath-hold time predicts alveolar CO2 according to a patented mathematical formula—a claim that has been empirically disproven (Courtney and Cohen 2008). The Buteyko technique also advocates mouth taping as a means of obligating nasal breathing during sleep. However, a randomized, crossover study in patients with symptomatic asthma showed that mouth taping had no effect on asthma control (Cooper et al. 2009). Some proponents even suggest, without evidence, that Buteyko breathing can treat diseases and symptoms (including diabetes, attention-deficit hyperactive disorder, and dental health), claims which undermine the scientific legitimacy of the intervention. It is also worth noting that most clinical studies on Buteyko have assessed outcomes in response to physiotherapy programs that tend to focus on the more conventional, evidence-based aspects of the technique (e.g., deep breathing through the nose).
	Another approach of some Buteyko proponents is to associate the technique with unrelated, or tenuously related, research. For example, studies have identified a high prevalence of allergic rhinitis in children with ADHD (Brawley et al. 2004). By promoting nasal breathing, Buteyko breathing advocates thus imply that the technique can reduce the risk of developing ADHD. Lastly, several commercial incarnations of Buteyko promote long breath holds (>25 s) which may be unsuitable for certain groups (e.g., COPD patients). Accordingly, while the more conventional aspects of Buteyko breathing (nasal inspiration, deep/slow breathing, and breath training) may have benefits for respiratory function, health and exercise professionals should be wary of those claims that are lacking plausibility, currently unproven, and potentially dangerous.
	2.3.5 Additional considerations and conclusions on respiratory interventions. The literature on breathing techniques for patients with respiratory disease is generally positive. Still, there are subtle nuances in the data that should be highlighted prior to interpretation. For example, research suggests that respiratory physiotherapy using breathing training has the potential to improve inspiratory and expiratory muscle strength following upper abdominal surgery (Grams et al. 2012), yet this has questionable utility following general abdominal surgery (Pasquina et al. 2006). Physicians and other healthcare professionals must also be conscious of instances where breathing training may be less favorable or even harmful to their patients. Respiratory physiotherapy seems to have limited benefit on lung volume or mortality risk following lung resection (Larsen et al. 2020), and PLB specifically has been shown to increase metabolic demands in patients with interstitial lung disease (Parisien-La Salle et al. 2019). This brings into question the efficacy of PLB for restrictive disorders. Certain breathing techniques may also worsen respiratory symptoms; e.g., several studies show that diaphragmatic breathing may exacerbate dyspnea in patients with severe COPD (Hamasaki 2020), perhaps due to negative effects on the work of breathing and its mechanical efficiency (Gosselink et al. 2012). Anecdotally, the technical demands of preferentially activating the diaphragm during inspiration may render such interventions unsuitable for respiratory patients.
	2.3.6 Evidence Summary and Recommendations. Primary outcomes from the literature on breathing interventions are summarized in Figure 3. Breathing interventions such as deep breathing and pursed-lips breathing may elicit favorable changes in tidal volume, respiratory frequency, respiratory time, and arterial oxygen saturation in patients with COPD, particularly those with severe or very severe disease. Long-term breathing retraining strategies may improve lung function (mainly lung volumes and capacities), exercise performance, respiratory symptoms, and quality of life in respiratory patients. Pursed-lips breathing, in particular, is an important standalone therapy that should be considered as an adjunct to exercise training and pharmaceutical interventions in pulmonary rehabilitation programs. Breathing interventions should emphasize a deep and slow nasal inspiration followed by a slow and prolonged expiration through pursed lips. Because of possible negative outcomes in patients, breathing interventions should be delivered by experienced therapists with a comprehensive understanding of the benefits and risks of each technique. Patients must also be managed on a case-by-case basis. The benefits of deep/slow breathing in healthy subjects (with normal pulmonary function) are likely limited to changes in parasympathetic activity (and thus heart rate variability) which may support emotional wellbeing rather than other aspects of cardiopulmonary function.
	2.4 Respiratory muscle training
	2.4.1 Premise and plausibility. The healthy respiratory system has typically been considered “overbuilt” for the ventilatory demands placed upon it during strenuous exercise. More recently, however, studies have revealed several respiratory constraints that may impede exercise performance in healthy subjects, particularly those who are endurance-trained, and in certain patients with cardiorespiratory disease (Dempsey et al. 2020). When breathing frequency increases during exercise, there is a consequent increase in the resistive loads placed upon the inspiratory and expiratory muscles. In patients with COPD, the resistive loads are exacerbated due to narrowing of peripheral airways. In addition, at lung volumes above relaxation volume, where lung and chest wall compliance are reduced, the inspiratory muscles must overcome increased elastic recoil forces. This increase in elastic loading occurs when tidal volume increases with exercise, and especially in the presence of dynamic lung hyperinflation (i.e., increase in end-expiratory lung volume) consequent to the dynamic compression of airways during forced expiration. Airway narrowing and loss of elastic recoil in COPD give rise to static lung hyperinflation, which further increases the elastic loading on the inspiratory muscles. In severe COPD, incomplete expiration and inward recoil of the lungs and chest wall result in progressive air trapping and increased alveolar pressure at the end of expiration (i.e., intrinsic positive end-expiratory pressure, PEEPi). To initiate inspiratory airflow, the inspiratory muscles must generate a negative pressure equal in magnitude to PEEPi, subsequently imposing a threshold load on the inspiratory muscles. When the lung is acutely inflated, the pressure-generating capacity of the diaphragm is impaired because the muscle is shortened. At high lung volumes, the pressure-generating capacity of the diaphragm may be further reduced by an increased radius of muscle curvature. Lung inflation also impairs the pressure-generating capacity of the inspiratory intercostal muscles (external intercostals and parasternal intercostals); in contrast to the diaphragm, however, this impairment has been ascribed to changes in the orientation and motion of the ribs (De Troyer and Wilson 2009). In COPD, reductions in the pressure-generating capacity of respiratory muscles may also result from disease-induced changes in respiratory muscle morphology. 
	Increased loading of the respiratory muscles and/or decreased capacity of the respiratory muscles for pressure generation have direct functional consequences. For instance, an increase in the respiratory muscle load/capacity ratio contributes significantly to the subjective experience of breathing discomfort (i.e., dyspnea) (McConnell and Romer 2004a) and predisposes the respiratory muscles to fatigue. Regarding the latter, decreases in the contractile function of inspiratory and expiratory muscles have been noted following intense, whole-body exercise in healthy young adults (Johnson et al. 1993; Taylor et al. 2006; Tiller et al. 2017) and in select patients with COPD (Hopkinson et al. 2010; Bachasson et al. 2013). This exercise-induced decrease in respiratory muscle capacity further increases the subjective experience of dyspnea. Moreover, the metabolite accumulation associated with fatiguing respiratory muscle work can elicit a sympathetically-mediated vasoconstrictor response in locomotor muscles. This so-called ‘respiratory muscle metaboreflex’ may decrease locomotor muscle blood flow in favor of an increase in blood flow to the respiratory muscles, thereby increasing the fatigability of limb locomotor muscles and reducing central motor output via feedback effects (Sheel et al. 2018). In COPD, excessive loading of the respiratory muscles and activation of the respiratory muscle metaboreflex may partly contribute to the early development of limb muscle fatigue (Amann et al. 2010).
	Respiratory muscle training (RMT) was developed on the premise that enhancing the pressure-generating capacity of respiratory muscles would increase fatigue resistance and/or mechanical efficiency of the respiratory muscles during exercise. Such changes would be expected to prevent or delay the respiratory muscle metaboreflex, thereby improving O2 delivery to working limbs and reducing the intensity of perceived limb discomfort (see Figure 4). An increase in the pressure-generating capacity of the respiratory muscles with targeted training would also be expected to reduce the intensity of perceived dyspnea. In health, RMT has been shown to improve the static and dynamic function of respiratory muscles (Romer and McConnell 2003), attenuate fatigability of respiratory (Verges et al. 2007, 2009) and locomotor muscles (McConnell and Lomax 2006), blunt the respiratory muscle metaboreflex (Witt et al. 2007), and attenuate perceptions of respiratory and limb discomfort (McConnell and Romer 2004a). Research pertaining to the influence of RMT on whole-body exercise performance in athletes and patients is somewhat contradictory (see Literature).
	The three most common approaches to RMT involve flow-resistive loading (high pressure, low flow), pressure-threshold loading (high pressure, moderate flow), and isocapnic voluntary hyperpnea (low pressure, high flow). Devices that impose a resistive or threshold load elicit improvements predominately in respiratory muscle strength, whereas isocapnic voluntary hyperpnea elicits improvements predominantly in respiratory muscle endurance (see McConnell and Romer 2004b for review). More recently, a tapered flow-resistive loading device has been developed to produce a variable load that matches the pressure-volume relationship of inspiratory muscles (Langer et al. 2013). A recent development in the RMT literature pertains to external loading of the respiratory muscles during exercise (in-task). So-called “functional” RMT typically involves flow-resistive loading via facemask (Porcari et al. 2016)1 or nasal restriction (Arnedillo et al. 2020; Gonzalez-Montesinos et al. 2021). Although functional RMT is an attractive proposition due to its specificity of application, the additional loads imposed on the respiratory muscles, and hence the potential training stimulus, are difficult to quantify. From a practical standpoint, functional RMT may limit the physiological stimulus that can be obtained by applying RMT and exercise independently (Faghy et al. 2021).
	2.4.2 Literature. In 1976, Leith and Bradley showed that the respiratory muscles of healthy individuals could be trained to increase strength or endurance. Later research sought to evaluate the efficacy of RMT with respect to whole-body exercise performance in healthy individuals and in patients with respiratory disease. Unfortunately, many of the early studies were hampered by methodological shortcomings, including small sample sizes, absence of sham-control groups, unbalanced baseline characteristics, inadequate training intensities, and inappropriate outcome measures (McConnell and Romer 2004b). As such, the ergogenic effect of RMT has been the subject of much debate (e.g., McConnell 2012; Patel et al. 2012). A systematic review and meta-analysis of 46 studies on the effects of RMT in healthy individuals revealed an improvement in endurance performance as assessed using fixed-intensity tests, simulated time-trials, and intermittent incremental tests (Illi et al. 2012). The analysis also showed that resistive/threshold and hyperpnea training did not differ in their effects, that combined inspiratory/expiratory strength training tended to be superior to either intervention alone, and that the greatest improvements with RMT occurred in less-fit subjects and in sports of longer duration (Illi et al. 2012). Another systematic review and meta-analysis, this time on responses in athletes, showed a positive effect of RMT on respiratory muscle function and sport performance outcomes (HajBhanbari et al. 2013). Although the report also noted comparable benefits of RMT for “elite” and “recreational athletes”, the authors classified trained status by whether the subject’s V̇O2max was above or below the minimum, pre-determined requirements for being considered an “athlete”, but without specifically defining “elite”. Thus, the question as to whether training status mediates the efficacy of RMT remains unresolved. More recent studies have shown improvements in repeated-sprint performance (e.g., shorter recovery between sprints or increased number of repetitions) as well as reduced effort perceptions and markers of metabolic stress after resistive RMT (Lorca-Santiago et al. 2020). Collectively, the data show an ergogenic effect of RMT on endurance and repeated-sprint performance in healthy individuals. 
	The efficacy of RMT in patients with COPD has been studied extensively. While whole-body exercise training is a crucial component of pulmonary rehabilitation in this population (Casaburi 2008), exercise training does not appear to increase the pressure-generating capacity of the respiratory muscles. Consequently, there has been a great deal of interest in the potential for RMT to increase the capacity of the respiratory muscles and alleviate symptoms. Learned societies, including the American College of Chest Physicians/American Association of Cardiovascular and Pulmonary Rehabilitation (Ries et al. 2007) and the European Respiratory Society/American Thoracic Society (Spruit et al. 2013), have recommended RMT for patients who, despite optimal medical therapy, exhibit dyspnea and reduced respiratory muscle strength. Several systematic reviews and meta-analyses have shown that RMT, when applied as a standalone intervention with controlled training loads in patients with COPD, improves respiratory muscle strength and endurance, exercise capacity, dyspnea, and health-related quality of life (e.g., Gosselink et al. 2011). Adding RMT to a whole-body exercise training program in COPD was shown to have no additive effects on exercise performance or quality of life, suggesting that RMT may only be effective as a standalone treatment in the absence of other interventions (e.g., Gosselink et al. 2011). This notion is corroborated by a recent systematic review and meta-analysis which showed that inspiratory pressure-threshold training in patients with COPD increased inspiratory muscle strength, functional exercise performance, and dyspnea during activities of daily living, but with no additional effect on the intensity of exertional dyspnea when used as an adjunct to pulmonary rehabilitation (Beaumont et al. 2018a). Notwithstanding the limitations of meta-analyses (e.g., poor quality of included studies, heterogeneity, publication bias), recent large-scale RCTs on the effects of RMT in patients with COPD have confirmed that improvements in inspiratory muscle function after adjunctive RMT do not translate to additional improvements in functional exercise capacity, dyspnea, or quality of life (Beaumont et al. 2018b; Schultz et al. 2018; Charususin et al. 2018a). In patients with inspiratory muscle weakness, however, adjunctive RMT during a whole-body exercise training intervention elicited a significant increase in endurance cycling time and a significant reduction in dyspnea intensity at iso-time during the cycling test compared to sham-training (Charususin et al. 2018b). 
	2.4.3 Additional applications and population subgroups. While most studies have investigated the influence of RMT on exercise outcomes in healthy individuals (athletes and non-athletes) and patients with COPD, RMT may also have an application in other settings where the loads imposed on the respiratory muscles are elevated or the capacity to generate force is reduced. For instance, RMT has been considered in the context of environmental and occupational settings (e.g., altitude and load carriage) (Faghy and Brown 2015; Chambault et al. 2021), and studied in the context of natural aging (Seixas et al. 2020; Manifield et al. 2021). In older adults, exertional dyspnea is consistently elevated at any given intensity of submaximal exercise owing to an increased ventilatory demand (Jensen et al. 2009). Conceivably, RMT might improve exertional dyspnea in older adults through a reduction in the load/capacity ratio of respiratory muscles. In addition to the increase in ventilatory demand, aging is accompanied by a decline in respiratory muscle function which, through a reduction in postural control, has been shown to correlate with impairments in balance performance (Rodrigues et al. 2020). In turn, RMT has been shown to improve balance performance through an increase in the neuromuscular activity of postural muscles (Ferraro et al. 2019, 2020, 2022; Tounsi et al. 2021). 
	Recent evidence indicates that females have smaller airways than males, and subsequently exhibit greater flow-resistive work of breathing (Peters et al. 2021). There also appears to be a combined influence of age and biological sex on respiratory mechanics which contributes in part to the increased perception of exertional dyspnea noted in older women (Molgat-Seon et al. 2018). Thus, RMT could be an effective intervention to enhance the overall exercise response in young and older women. Other groups with imbalances in the load/capacity ratio of respiratory muscles, and which might therefore benefit from RMT, include: exercise-induced laryngeal obstruction (Sandnes et al. 2022), obstructive sleep apnea (Torres-Castro et al. 2022), cystic fibrosis (Stanford et al. 2020), interstitial lung disease (Zaki et al. 2022), stroke (Fabero-Garrido et al. 2022), hypertension (Craighead et al. 2022), chronic heart failure (Azambuja et al. 2020), pulmonary hypertension (Tran et al. 2021), neurological disorders (He et al. 2021), spinal cord injury (Woods et al. 2022), pre-operative surgery (Dsouza et al. 2021), weaning from mechanical ventilation (Worraphan et al. 2020), ventilator-induced diaphragm dysfunction in the recovery phase (Ahmed et al. 2019), and COVID-19 (e.g., risk reduction, ICU, recovery, and long-COVID) (McNarry et al. 2022). Evidence of the efficacy of RMT in these groups requires further prospective study.
	2.4.4 Evidence summary and recommendations. Primary outcomes from the literature on RMT are summarized in Figure 4. If applied with the appropriate frequency, intensity, and duration, RMT can improve specific aspects of respiratory muscle function (e.g., strength and endurance). There is convincing evidence of an ergogenic effect of RMT in healthy individuals (athletes and non-athletes). As a standalone therapy, RMT confers multiple benefits for select patients with COPD. However, the effect of adding RMT to a general exercise program in COPD (including during pulmonary rehabilitation) appears limited. It is conceivable that RMT may be useful for patients with respiratory muscle weakness or those with pre-existing comorbidities who are unable to participate in whole-body exercise training. Further RCTs are needed to ascertain which patients and groups are likely to benefit from RMT.  
	2.5 Canned oxygen
	2.5.1 Premise and plausibility. Commercial canned oxygen (intended for non-medical use) is a can of hyperoxic gas (~95% O2) equipped with a mask or inhaler cap. The suggested protocol for use differs among manufacturers but typically involves several inhalations, repeated 8-10 times, periodically throughout the day or as needed. Some vendors recommend their product for use immediately before physical activity and/or sporting competition. The ergogenic claims include improved reaction time, “improved breathing” during exposure to heat and pollution, and improved sports performance by delaying onset of fatigue and improving O2 availability for oxidative metabolism. Some brands combine eucalyptus and other oils with the gas mixture which they claim can “relax the nervous system, relax the muscles, and relieve stress”. Despite the extensive claims and widespread and costly prescription of so-called “short burst oxygen therapy” for respiratory patients (e.g., COPD), there is no clear mechanism for the purported physiological benefit. Moreover, in healthy individuals, hemoglobin remains nearly completely saturated with O2 at rest, and exercise-induced arterial O2 desaturation (i.e., hypoxemia) rarely occurs in healthy (untrained) individuals at sea-level. Consequently, there is little plausibility that acute exposure to concentrated O2 (i.e., several breaths) will influence respiratory outcomes or exercise performance.
	 2.5.3 Literature. The focus of this section is on commercially available canned oxygen and “short burst oxygen” rather than physician-prescribed supplemental oxygen therapy. A systematic review on the efficacy of short-burst oxygen to improve breathlessness, exercise capacity, arterial oxygen saturation, and ventilatory variables in patients with COPD, concluded that its widespread prescription was not evidence-based (O’Neill et al. 2006). Due to a lack of peer-reviewed studies on commercial canned oxygen in particular, most vendors cite clinical literature that is tenuously related (e.g., studies on hyperbaric oxygen therapy or prolonged inhalation of medically certified gas mixtures). Thus, the references provided by manufacturers do not support the claims. One manufacturer published an online press release that mimicked the appearance of a scientific journal article (Elizondo et al. 2019), presumably in an effort to feign scientific legitimacy. On the rare occasion that relevant journal articles were obtained through commercial websites, they were of very low quality and exhibited a high risk of bias. It is worth noting that although gaseous supplemental oxygen (delivered by inhalation) is not prohibited by the World Anti-Doping Agency (WADA 2022), some sports authorities prohibit its use. Athletes should therefore be cognizant of the rules and regulations regarding O2 therapy that govern their sport.
	 2.5.4 Evidence Summary and recommendations. The proposed benefit of acute inhalation of canned oxygen has low plausibility and there is no valid evidence of beneficial effects.
	2.6 Nutritional interventions
	2.6.1 Premise & plausibility. Nutrition is a modifiable factor that influences the development and progression of many non-communicable diseases (Cena and Calder 2020; Dominguez et al. 2021). Some nutrients have immunomodulatory, anti-inflammatory, and/or antioxidant effects (Kau et al. 2011; Venter et al. 2020; Gozzi-Silva et al. 2021). Such nutrients may therefore influence respiratory health and disease risk/progression in conditions underpinned by airway and/or systemic inflammation (Berthon and Wood 2015; Hosseini et al. 2017; Parvizian et al. 2020; Heloneida de Araújo Morais et al. 2021). In addition, supplementation with certain nutrients may provide prophylactic and/or therapeutic benefits for certain respiratory patients.
	2.6.2. Literature on Vitamin D3. Circulating concentrations of 25(OH)D—a form of vitamin D produced in the liver from hydroxylation of vitamin D3—were found to be inversely associated with the incidence of upper- and/or lower-respiratory tract infection (RTI) (Pham et al. 2019). The incidence of RTI in the general population peaks in the winter (Ginde et al. 2009) when vitamin D deficiency is most common owing to low skin exposure to sunlight ultraviolet B radiation (Farrokhyar et al. 2014; Cashman et al. 2016). Indeed, insufficient circulating concentrations of vitamin D (baseline serum 25(OH)D <50 nmol·L-1) have been observed in military personnel (Harrison et al. 2021), athletes (Farrokhyar et al. 2014), and healthy controls (Cashman et al. 2016).
	Vitamin D sufficiency can be achieved via oral vitamin D3 supplementation (Carswell et al. 2018; Harrison et al. 2021) and safe exposure to sunlight or simulated sunlight. However, evidence of prophylactic and/or therapeutic effects of vitamin D3 supplementation is confounded by heterogeneity across trials (Jolliffe et al. 2021), with effect-modifiers including dosing regimen and duration, participant age, baseline 25(OH)D, and geographic location (Martineau et al. 2017; Vlieg-Boerstra et al. 2021; Jolliffe et al. 2021; Cho et al. 2022). A recent meta-analysis of 43 RCTs (n = 48,488 mixed-health cohort of children and adults) revealed a modest but overall decreased risk of acute respiratory infection with daily vitamin D3 supplementation of 400-1000 IU.d-1 (Jolliffe et al. 2021). A recent RCT reported no change in the incidence of upper-respiratory tract infection following 12 weeks of vitamin D3 supplementation (1,000 IU.d-1 for the first four weeks and 400 IU.d-1 for eight weeks), but found decreased peak severity and duration of illness (Harrison et al. 2021). Accordingly, irrespective of whether vitamin D3 supplementation influences the incidence of upper-RTI, it may still attenuate the severity and/or duration of illness.
	There is a high prevalence of vitamin D deficiency in patients with asthma (Bener et al. 2014) and COPD (Janssens et al. 2011). In fact, in these patients, higher vitamin D concentrations are associated with lower risk, severity, and exacerbation of the primary disease (Gupta et al. 2011; Zhu et al. 2016; Liu et al. 2019). Vitamin D supplementation in these groups has thus been studied for its prophylactic and therapeutic effects. There is insufficient evidence that the prophylactic use of vitamin D3 can prevent asthma in children (Yepes-Nuñez et al. 2018; Luo et al. 2022). In addition, the association between vitamin D status and adult-onset asthma is unclear (Mai et al. 2012; Cheng et al. 2014; Confino-Cohen et al. 2014; Cherrie et al. 2017; Manousaki et al. 2017). The therapeutic effects of vitamin D3 supplementation in children and adults with pre-existing asthma are also equivocal (Jolliffe et al. 2021; Chen et al. 2021). For instance, a recent systematic review (Nitzan et al. 2022) and an independent meta-analysis (Kumar et al. 2021) both concluded that vitamin D3 supplementation did not affect lung function, asthma control, or exacerbation rates in children. Although these studies were not performed in children with pre-existing vitamin D deficiency, findings generally concur with recent RCTs in children with 25(OH)D concentration <50 nmol.L-1 (Jat et al. 2021) and <75 nmol.L-1 (Forno et al. 2020; Han et al. 2021). By contrast, in asthmatic adults with low vitamin D3 concentration, a meta-analysis of three small trials (n = 92) revealed some protection of vitamin D3 supplementation against exacerbations (Jolliffe et al. 2017). One RCT also showed improved asthma control in 25(OH)D-deficient adults who were supplemented with a weekly dose of 16,000 IU (Andújar-Espinosa et al. 2021).
	Based on the aforementioned evidence, vitamin D3 supplementation does not improve lung function in COPD patients (Lehouck et al. 2012; Sluyter et al. 2017; Chen et al. 2019; Foumani et al. 2019), although it may confer improvements in FEV1 in current or former smokers with 25(OH)D <50 nmol.L-1 (Sluyter et al. 2017). Data from one meta-analysis of four RCTs (n=560) indicate that vitamin D3 supplementation reduces exacerbation rates in vitamin D-deficient patients (Jolliffe et al. 2019). Thus, for COPD patients who are hospitalized for exacerbation, the Global Initiative for Chronic Obstructive Lung Disease recommends vitamin D screening and subsequent supplementation for those found to be deficient (Global Initiative for Chronic Obstructive Lung Disease, 2022).
	2.6.3 Literature on Vitamin C. In healthy populations, the efficacy of regular vitamin C (ascorbic acid) supplementation on upper-RTI incidence depends on individual physical stress levels and associated immune perturbations. Broadly speaking, the data show no benefit of chronic supplementation. A meta-analysis of 24 trials (>10,000 participants) showed no effect of moderate- or high-dose vitamin C on the incidence of upper-RTI (Hemilä and Chalker 2013). Accordingly, chronic vitamin C supplementation is not justified in normal (vitamin C-replete) populations (Hemilä and Chalker 2013; Gómez et al. 2018). The short-term, therapeutic effects of vitamin C are less conclusive (Hemilä and Chalker 2013), but several reviews report that supplementation shortened the duration of upper-RTI symptoms by ~8-18% (Hemilä and Chalker 2013; Abioye et al. 2021). It may therefore be practical to initiate short-term vitamin C supplementation within 24 h of symptom onset. 
	There is also evidence that acute supplementation may benefit individuals undergoing periods of extreme physical stress. An analysis of five trials comprising marathon runners, skiers, and soldiers, found that vitamin C supplementation reduced symptoms of the common cold by ~50% following hard exercise (Hemilä and Chalker 2013). Further to moderating viral-mediated respiratory symptoms, the prophylactic effects of vitamin C supplementation in some athletes may result from an attenuation of EIB and associated symptoms (Tecklenburg et al. 2007; Hemilä 2013). Thus, when the risk of infection in athletes is elevated due to a high training/competitive load (Ruuskanen et al. 2022) or extensive travel (Walsh 2019), vitamin C supplementation (0.25-1.0 g.d-1) may reduce the severity and/or duration of upper-RTIs (Walsh 2019; Cerullo et al. 2020). An important caveat is that chronic, high-dose (~1 g.d-1) vitamin C supplementation may blunt certain training-induced skeletal muscle adaptations (Mason et al. 2020), and is therefore discouraged.
	Lastly, there is some evidence that vitamin C may help ameliorate asthma symptoms (Allen et al. 2009; Berthon and Wood 2015). An analysis of three small trials (n=40) in asthmatics found that vitamin C supplementation, in various dosing regimens (1.5 g.d-1 for two weeks; 2 g ingested 1 h before exercise; 0.5 g ingested 1.5 h before exercise), attenuated the post-exercise fall in FEV1 by 48% (Hemilä 2013). Notwithstanding, there is insufficient evidence to make decisive recommendations regarding vitamin C supplementation for asthma management, and more RCTs with larger samples are needed.
	2.6.4 Literature on Omega-3 (n-3) poly-unsaturated fatty acids (PUFAs).
	The most abundant PUFA in the Western diet is linoleic acid which is converted to arachidonic acid—a precursor for pro-inflammatory and bronchoconstrictive signaling. By contrast, omega-3 (n-3) PUFAs, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), derived primarily from fatty fish, may have anti-inflammatory effects. Specifically, EPA inhibits arachidonic acid, blunts pro-inflammatory signaling, and acts as a precursor for pro-resolving mediators with anti-inflammatory properties (Brannan et al. 2015). Similarly, DHA has been shown to modify gene expression and signaling pathways related to inflammatory mediators (Calder 2010). Dietary supplementation with EPA and DHA has therefore been explored as an adjunct therapy in certain respiratory conditions (Thien et al. 2002; Yang et al. 2013; Stoodley et al. 2019).
	Studies show that supplementation with high dose n-3 PUFAs for several weeks mitigates EIB (Mickleborough et al. 2003, 2006; Tecklenburg-Lund et al. 2010; Mickleborough and Lindley 2014; Kumar et al. 2016). Yet, because high dose n-3 PUFA is expensive and may cause gastrointestinal complaints, it is worth noting that both high dose (6.2 g/d) and moderate dose (3.1 g/d) n-3 PUFA appear to exert similar effects on provocation-induced decreases in FEV1 (Williams et al. 2017).
	In COPD, studies with n-3 PUFA supplementation show equivocal results. A meta-analysis of eight RCTs found that supplementation increased body mass, increased low-density lipoproteins, and reduced IL-6, but did not influence lung function or quality of life (Yu et al. 2021). These results should be interpreted cautiously because, depending on disease severity and other comorbidities, weight gain may be beneficial for some COPD patients and harmful for others. Moreover, some RCTs provide limited data regarding individual doses of EPA and DHA. For example, an observational cohort study of >120,000 US women and men initially showed that greater consumption of fish (>4 servings per week) was associated with lower risk of newly diagnosed COPD. But subsequent analysis showed that COPD risk was unrelated to total n-3 PUFA intake (Varraso et al. 2015). To date, only one observational cohort study in moderate-to-severe COPD has shown that high dietary n-3 PUFA reduces risk of severe exacerbations, decreases the number of respiratory symptoms, improves health-related quality of life, and reduces overall morbidity (Lemoine et al. 2020). The same study showed the opposite effects of high dietary n-6 PUFA (linoleic acid) (Lemoine et al. 2020). These data speak to the importance of distinguishing n-3 from n-6 PUFA in supplementation interventions, and the importance of the dietary n-3/n-6 PUFA ratio in respiratory health. More well-controlled RCTs on n-3 PUFA supplementation in current and former smokers with COPD are warranted.
	2.6.5 Literature on Probiotics, Prebiotics, and Synbiotics. 
	The microbial profile and gut microbiome have a substantial influence on health and disease (Clemente et al. 2012) and systemic immune function (Roberfroid et al. 2010). Immune function is particularly important for respiratory health, and the “gut-lung axis” represents a promising therapeutic target for the non-pharmacological management of respiratory health and diseases (Marsland et al. 2015). Beneficial changes in the gut microbiota can be achieved through dietary supplementation with probiotics (live microorganisms that confer a health benefit on the host when administered in adequate amounts) (Hill et al. 2014), prebiotics (substrates that are selectively utilized by host microorganisms, conferring a health benefit) (Gibson et al. 2017), and/or synbiotics (a combination of pro- and prebiotics).
	In terms of the gut microbiota and its effects on respiratory health in subjects without respiratory disease, the largest body of evidence relates to upper-RTIs, and the data are largely favorable. For example, a 2015 Cochrane review of 10 trials found that probiotics reduced the incidence of upper-RTI relative to placebo (Hao et al. 2015). Other meta-analyses show similar findings in healthy infants, children, and adults after supplementation with probiotics (six studies, n = 1682) (Rashidi et al. 2021) and synbiotics (four RCTs, n = 883) (Chan et al. 2020). Probiotics may also decrease upper-RTI risk in active individuals and athletes (Cox et al. 2010; West et al. 2011, 2014; Haywood et al. 2014; Strasser et al. 2016).
	There is also preliminary data indicating that the gut-lung axis may be a suitable target for managing asthma and related conditions. Prebiotics, probiotics, and synbiotics each reduced airway inflammation and disease severity in rodent models of allergic asthma (Sagar et al. 2014; Verheijden et al. 2015, 2016). Furthermore, a small-scale, double-blind, placebo-controlled RCT showed potential benefits of prebiotics in adults with EIB (Williams et al. 2016). Specifically, prebiotics reduced serum markers of airway inflammation at baseline and completely abolished the 29% provocation-induced increase in TNF-α (a pro-inflammatory cytokine). Lastly, eight weeks supplementation with probiotics decreased asthma exacerbations in children when compared to placebo (Drago et al. 2022). Although more RCTs in humans are warranted, the pre-clinical rodent data and preliminary human in-vivo studies show potential benefits of pre- and/or probiotics as a potential adjunct therapy to support respiratory health.
	2.6.6 Evidence Summary and Recommendations. Primary outcomes from the literature on nutritional interventions are summarized in Figure 5. The effects of chronic vitamin D3 supplementation on the prevalence/severity of upper-RTI are inconsistent. When supplemented prophylactically, there is no evidence of benefits in asthma management. In asthmatics and COPD patients with pre-existing deficiency, vitamin D3 supplementation may confer therapeutic benefits. Long-term, daily supplementation of vitamin C (ascorbic acid) provides little-to-no benefit in those who are vitamin C-replete but may reduce the severity and/or duration of the common cold and symptoms of general RTI when supplemented acutely at symptom onset (0.25-1.0 g.d-1), especially in individuals undergoing periods of extreme physical stress. Nevertheless, there is insufficient evidence to support vitamin C supplementation for asthma management. Several weeks of n-3 PUFAs reduce the severity of EIB but similar data in COPD are equivocal, with only one observational cohort study showing reduced risk of exacerbation and benefits to respiratory symptoms and overall morbidity. Daily probiotics and/or prebiotics reduce the incidence of upper-RTI better than placebo in adults, children, active individuals, and athletes. Prebiotics, probiotics, and synbiotics may also reduce airway inflammation and disease severity in rodent models of allergic asthma, with preliminary evidence showing benefits in adults with EIB.
	2.7 Inhaled L-menthol 
	2.7.1 Premise and plausibility. L-menthol is a cyclic alcohol derived from the oils of various species of Mentha (mints) that have been used as medicinal plants for millennia. There is evidence that inhaled or ingested L-menthol triggers a cooling sensation by stimulating sensory nerve endings in the nasal vestibule and mucosa that convey nasal sensation (Aldren and Tolley 1993; Eccles 2003). Because L-menthol has a significant effect on the sensation of nasal airflow, menthol vendors claim that the oil can decongest the upper airways (e.g., during colds and allergies), enhance nasal flow, and improve airway patency. Hence, L-menthol is widely available in lozenges, nasal sprays, vapor rubs, inhalers, cough syrups, mouthwashes, as a scent in aromatherapy oils, and as a flavoring in cigarettes and e-cigarettes. However, the plausibility of L-menthol to improve respiratory function is low because it does not possess the amine group that would be expected of a substance with vasodilator or bronchodilator properties, nor does it have a chemical structure similar to nasal decongestants (Eccles et al. 1988; Eccles 1994). Accordingly, any benefit of L-menthol is likely to be indirect—mediated by cooling sensations that stimulate the nasal trigeminal nerve thereby creating the cognitive illusion of improved inspiratory flow (Kanezaki et al. 2021).
	2.7.2 Literature. Articles were excluded if L-menthol was not inhaled, dissolved and nebulized, ingested orally on a lozenge, rinsed/swilled in the mouth, if the effects of L-menthol could not be distinguished from other substances that were co-administered, or if the article did not assess respiratory function. It is well-established that healthy adults (free from respiratory disorders and the common cold) experience increased sensations of nasal airflow and/or nasal patency after inhaling L-menthol (Eccles et al. 1988; Pereira et al. 2013). Two randomized, placebo-controlled trials showed that inhaling L-menthol reduced sensations of respiratory discomfort during flow-resistive and elastic loading at rest (Nishino et al. 1997) and inspiratory resistive loading during exercise (Kanezaki and Ebihara 2017). Studies in individuals with the common cold also found that a menthol-containing lozenge evoked marked improvements in sensations of nasal airflow and decongestion (Eccles et al. 1990; EccleS et al. 1990). Yet, subjective changes in respiratory perceptions are not reflected in objective changes in breathing patterns (i.e., respiratory frequency, tidal volume, or inspiratory flow), minute ventilation, or spirometric indices of lung function (Nishino et al. 1997; Kanezaki and Ebihara 2017). Case in point, Köteles et al. (2018) showed that nebulized menthol-containing peppermint, rosemary, or eucalyptus oil, inhaled over 15 minutes, had no effect on FVC, FEV1/FVC, or peak expiratory flow (PEF), despite improving the perceptions of spirometric outcomes. Similarly, the only study to assess upper-airway resistance using rhinometry confirmed no effect of menthol on nasal/upper-airway resistance, respiratory frequency, or minute ventilation in healthy adults at rest (Pereira et al. 2013). 
	In obstructive respiratory disorders, the data tend to follow a similar pattern. During inspiratory resistive loading in patients with mild-to-severe COPD, L-menthol significantly improved subjective measures (i.e., physical and mental “breathing effort”, air hunger, breathing discomfort, and anxiety and fear) relative to a non-L-menthol control, but did not influence objective measures (i.e., breathing pattern, respiratory duty cycle, and inspiratory muscle activity) (Kanezaki et al. 2020). Others have observed no difference between nebulized menthol and placebo on FVC or FEV1 in mild asthmatics (Tamaoki et al. 1995). A randomized, double-blind trial in patients with chronic cough found that, in response to a capsaicin provocation test, inhalation of 1 mL nebulized L-menthol (0.5% and 1% concentration) improved peak inspiratory flow relative to placebo, whereas only high-dose L-menthol (1%) attenuated the reduction in forced inspiratory flow at 50% of vital capacity (FIF50) and increased the cough threshold (Millqvist et al. 2013). A single-blind (non-placebo-controlled) study of L-menthol-containing “aromatics” observed improved mucous clearance in patients with chronic bronchitis when compared to petroleum jelly, but no effect on lung function (Hasani et al. 2003). Lastly, although studies have generally failed to observe any direct effect of L-menthol on physiological variables during exercise, there is a possible indirect effect of L-menthol on exercise performance in the heat owing to changes in the sensation of oropharyngeal temperature versus placebo (Mündel and Jones 2010).
	2.7.3 Evidence Summary and Recommendations. Primary outcomes from the literature on inhaled L-menthol are summarized in Figure 6. By stimulating sensory nerve endings in the nasal vestibule, inhaled L-menthol can augment sensations of nasal airflow, improve respiratory perceptions in both healthy subjects and patients, and potentially relieve dyspnea in COPD. Improved respiratory perceptions may translate to improved exercise performance in the heat. There is some evidence that high-concentration inhaled L-menthol may increase the cough threshold in patients with chronic cough. Nevertheless, L-menthol does not have vasodilator or bronchodilator properties, and there is little-to-no convincing evidence that L-menthol has direct functional benefits on spirometry-related variables in any population.
	Conclusions
	The health and wellness industry is characterized by, and in many cases depends on, lax consumer regulations regarding the products and services sold therein. As a result, interventions are often sold on insufficient evidence, baseless claims, and pseudoscience (Tiller et al. 2022). Not only is there a growing disparity between the substance of commercial claims and the supporting scientific evidence, thereby violating Laplace’s principle that “Extraordinary claims require extraordinary evidence”, but the legitimate (plausible) and illegitimate (implausible) claims for these interventions are often conflated, obscuring the translation of science to practice. This is a particular problem in the field on respiratory physiology and medicine.
	This review is intended as an evidence-based guide to help health and exercise professionals distinguish science from pseudoscience in commercial respiratory interventions and make informed decisions that optimize patient/client outcomes. In summarizing the recommendations, there are several caveats that should be noted. First, the products/strategies selected for inclusion were commercial interventions (i.e., not controlled drugs or products regulated by the FDA as “medical devices”). The list was delimited to those interventions most prevalent in the health and wellness industry that were coupled to the most conspicuous claims, and there may be prominent, mainstream interventions that were not included.
	  A second caveat is that the recommendations herein are based on data from controlled laboratory-based studies. The statistical analyses typically used allowed researchers to reject, or fail to reject, the null hypotheses, and subsequently discuss the existence of effects or lack thereof. Yet, such an approach is dichotomous by design, providing little room for nuanced interpretation of differences, potentially overlooking practical or clinical implications. For example, some studies in exercise rehabilitation have been shown to yield non-significant between-group differences despite moderate-to-large effects that would be deemed meaningful in practice (Zemková 2014). Interventions with moderate-to-large effects, despite lack of statistical significance, may be especially important for high-performance athletes for whom the margins of success are extremely small. The opposite may also be true (i.e., statistical tests may yield highly significant outcomes with trivial effects). To improve external validity in exercise-based studies, researchers have been encouraged to perform robust statistical analyses (e.g., by using appropriate sample sizes, correcting for familywise error rate, etc.) but report them alongside confidence intervals and/or effect sizes as a measure of “practical significance” (Knudson 2009). This might aid in the interpretation of both “statistically significant” and “practically meaningful” outcomes.
	In this comprehensive review of literature and expert consensus, overall it was determined that: (1) there is good quality data supporting subjective/perceptual (but not objective) benefits of both nasal dilators and L-menthol; (2) there is some evidence that nasally-derived nitric oxide may benefit critically ill patients but not healthy subjects; (3) there is good evidence that systematized breathing interventions (particularly pursed-lips breathing) can improve exercise performance, respiratory symptoms, and quality of life in COPD and asthma; (4) there is good evidence that respiratory muscle training can improve exercise performance in healthy subjects and respiratory symptoms in some patient populations (e.g., COPD), with benefits for patients with COPD who have respiratory muscle weakness or pre-existing comorbidities precluding them from whole-body exercise training; (5) there is evidence that nutritional interventions including vitamin D and vitamin C may benefit respiratory health in individuals with pre-existing nutrient deficiency and during times of compromised immune function second to increased physical stress, and interesting but inconsistent evidence of benefits of polyunsaturated fatty acids and pre/probiotics/synbiotics; and (6) no evidence that canned oxygen is beneficial for any clinical outcome. 
	For the interventions aforenoted, we advocate for greater vigilance in determining prior plausibility and evidence for efficacy. We also hope to inspire similar expert reviews that scrutinize interventions stemming from other facets of the commercial health and wellness industry.
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	1Applied external resistors are intentionally designed to elicit high resistive loads during exercise; thus, they impose considerably greater loads than low-resistance face coverings (e.g., cloth and surgical masks) that might be used for personal protection from airborne pathogens. Indeed, the negative physiological effects of protective face masks have been shown to be negligible when used during physical activity in healthy individuals (Hopkins et al. 2021). 
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	FIGURES
	Figure. 1. Primary outcomes from the literature on internal and external nasal dilators. ↑ = evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no change; IND = internal nasal dilator; END = external nasal dilator; OSA = obstructive sleep apnea; V̇O2max = maximal oxygen uptake; HR = heart rate; RPE = ratings of perceived exertion. 
	Figure. 2. Primary outcomes from the literature on nasal breathing. ↑ = evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no change; NO = nitric oxide; V̇O2 = oxygen uptake; V̇E = minute ventilation; V̇E/V̇O2 = ventilatory equivalent for oxygen; V̇E/V̇CO2 = ventilatory equivalent for carbon dioxide; PETCO2 = end-tidal partial pressure of carbon dioxide; fR = respiratory frequency; VT = tidal volume; V̇O2max = maximal oxygen uptake. 
	Figure. 3. Primary outcomes from the literature on systematized breathing interventions. ↑ = evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no change; FEV1 = forced expiratory volume in 1 second; COPD = chronic obstructive pulmonary disease.
	Figure. 4. Primary outcomes from the literature on respiratory muscle training interventions. One of the putative mechanisms underpinning the effects of respiratory muscle training on exercise tolerance and performance is a possible ‘blunting’ of the respiratory muscle metaboreflex. ↑ = evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no change. COPD = chronic obstructive pulmonary disease.
	Figure. 5. Primary outcomes from the literature on nutritional interventions. ↑ = evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no change. RTI = respiratory tract infection; EIB = exercise-induced bronchoconstriction.
	Figure. 6. Primary outcomes from the literature on inhaled L-menthol. ↑ = evidence of increase; ↓ = evidence of decrease; ↔ = evidence of no change. FEV1 = forced expiratory volume in 1 second; FVC = forced vital capacity; PEF = peak expiratory flow; COPD = chronic obstructive pulmonary disease.
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