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Abstract
Symmetric noise is the prevailing assumption in production analysis, but it is often violated in practice. Not only does
asymmetric noise cause least-squares models to be inefficient, it can hide important features of the data which may be useful
to the firm/policymaker. Here, we outline how to introduce asymmetric noise into a production or cost framework as well as
develop a model to introduce inefficiency into said models. We derive closed-form solutions for the convolution of the noise
and inefficiency distributions, the log-likelihood function, and inefficiency, as well as show how to introduce determinants of
heteroskedasticity, efficiency and skewness to allow for heterogenous results. We perform a Monte Carlo study and profile
analysis to examine the finite sample performance of the proposed estimators. We outline R and Stata packages that we have
developed and apply to three empirical applications to show how our methods lead to improved fit, explain features of the
data hidden by assuming symmetry, and how our approach is still able to estimate efficiency scores when the least-squares
model exhibits the well-known “wrong skewness” problem in production analysis. The proposed models are useful for
modeling risk linked to the outcome variable by allowing error asymmetry with or without inefficiency.

JEL classification C13 ● C21 ● D24 ● I21

Keywords Asymmetry ● Production ● Cost ● Efficiency ● Wrong skewness

1 Introduction

The usage of symmetric noise in econometric models
engraves the assumption that a circumstance, choice, or
behavior of an economic agent is ruled by the normal law
where positive and negative deviations from the “trend”
have the same effect on the outcome variable of an indi-
vidual firm. There is substantial evidence across a wide

array of fields to suggest that in practice, symmetry is not
always a reasonable assumption (e.g., Genton 2004).

Asset Pricing: The probability distribution of asset
returns is often skewed (Adcock 2007). When the dis-
tribution is asymmetric, the mean and variance are not
sufficient statistics for investors to make optimal asset
allocation decisions and ordinary least-squares (OLS) esti-
mation is inefficient. Hence, authors have looked to meth-
ods that exploit the asymmetric nature of the data. For
example, Adcock (2005 2010) employ multivariate skewed
distributions to study the sensitivity of asset returns to return
on the market portfolio. These methods extend the mean-
variance methods for portfolio selection to mean-variance-
skewness which can lead to improvements in performance.

Risk Management: A popular measure of an investment
prospect is Value at Risk (VaR), which measures the risk of
loss for investments. It is obtained by focusing on the the
bottom tail of the returns distribution. For simplicity and
convenience, it is often naively assumed that the distribu-
tion is symmetric. Assuming symmetry can vastly under-
stestimate the risk being taken on by the investor.
Exploiting the asymmetric nature of the data can lead to
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gains. For example, Goh et al. (2012) are able to outperform
mean-variance approaches using half-space statistical
information when asset returns are asymmetric.

Banking: Asymmetric shocks can severely impact banks.
For example, managers may take on excess risk as a con-
sequence of a principal agent problem. These low prob-
ability events emerge as large negative shocks. On the other
side, deposits across large banks and savings institutions or
within a single bank are highly positively skewed (Aubu-
chon and Wheelock 2010). In practice, the direction of the
asymmetry may not be clear a priori.

Supply Shocks: Ball and Mankiw (1995) study the
effects of supply shocks on inflation (i.e., shifts in the short-
run Philips curve) based on relative price changes and
frictions in nominal price adjustments. Price rigidities
typically occur because of a sluggish price adjustment and
costs associated with adjusting nominal prices. Firms typi-
cally adjust to large shocks, but not to small shocks and thus
these large shocks have a disproportional impact on prices.
The authors argue in favor of disproportionate effects of
supply shocks on inflation and find that the inflation-
skewness relationship is stronger than the inflation-variance
relationship.

Interest Rate Parity: Louis et al. (1999) account for
transaction costs in testing interest rate parity (IRP). They
consider the relevant no-arbitrage conditions that in equili-
brium are bounded in one direction. They argue that the
assumption of symmetric noise in an IRP equation would
result in inconsistency and therefore consider skewed
composite errors (convolution of symmetric noise and one-
sided error term) using stochastic frontier analysis. With this
approach, they find that arbitrage margins are sometimes
violated and hence there are possible arbitrage
opportunities.

Educational Outcomes: There is a large literature esti-
mating production functions using educational data (e.g., de
Witte and López-Torres 2017, de Witte et al. 2010, Johnes
et al. 2017, Ruggiero 1996, Thanassoulis et al. 2016 2017
2018, Thanssoulis 1999). Random shocks occur in educa-
tion and some of these can be unpleasant or terrible events
such as bullying, bereavement, unfair treatment, or an
external event such as a school shooting. In practice, it is
common to model these “shocks” as inputs in an educa-
tional production function (Ponzo 2013). Alternatively, we
can allow for these large negative impacts on educational
outcomes (Gershenson and Tekin 2018) to be treated as
shocks. We no longer need to attribute such observations as
outliers, because asymmetric noise distributions can
potentially account for these unfortunate events.

Weather: Asymmetry in weather shocks also plays a role
in production. Floodings, droughts, tornadoes and earth-
quakes are thought of as low probability events, but can
result in huge damages. In agriculture, adverse events play

an important role as they jeopardize the harvest. For
example, Qi et al. (2015) use climactic variables as inputs in
a stochastic production frontier of Wisconsin dairy farms.
Modeling these events via asymmetric shocks may help
determine potential losses which may prove useful for crop
insurance premiums (Shaik 2013).

Measurement Error: Finally, one source of asymmetry
could be measurement error. Consider the case where the
output variable is measured with a one-sided error in a
production function (or in a stochastic production frontier).
This would produce the same type of behavior that we are
attempting to model. For example, Millimet and Parmeter
(2022) argue that one-sided measurement error is common
for outcome variables used in political science as variables
such as casualities are reported via governments which may
have an incentive to skew their values.

1.1 Modeling asymmetry in production

If such asymmetries in preferences and behavior are not
accounted for, we may estimate the wrong model that
eventually leads to incorrect policy prescriptions. For
example, the normality of the crop yield has long been
rejected and was shown to be skewed, and ignoring this lead
to overprediction of field crop yields (Day 1965). Profits
can be driven by asymmetric capacities (Mao et al. 2019).

The main goal of this paper is to model production
uncertainty by allowing for asymmetric noise in production
analysis. The modeling of asymmetric noise is extremely
rare in production economics.1 We propose a set of models
that introduce asymmetric noise in estimation of a produc-
tion relationship in situations where a researcher believes
that the production units may operate with or without
efficiency.

1.2 Inefficiency

In empirical applications, firms or individuals are often
assumed to operate with 100% efficiency. In neoclassical
economics, firms and economic agents can exhibit ineffi-
ciency by being below their production possibilities. The
conceptualization and formulation of inefficiency in

1 Bonanno et al. (2017) consider a generalized logistic distribution for
noise, Wei et al. (2021a) consider a skew-normal distribution, while
Wei et al. (2021b) consider a skew normal copula-based stochastic
frontier model. Horrace et al. (2022) look at asymmetry in production
models using quantile methods. The set of models that we introduce in
this article go a step further by deriving closed-form solutions and
introducing determinants into each of the components. Models that
introduce technical inefficiency into a production process (Dom-
ínguez-Molina et al. 2004), which we discuss next, are also exceptions.
However, as we show below, the latter models are special cases of a
model with a general asymmetric noise.
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production can be traced back to Koopmans (1951) and
Afriat (1972).

In their seminal econometric papers, Aigner et al. (1977)
and Meeusen and van den Broeck (1977) formulated sto-
chastic frontier (SF) models, where inefficiency followed a
half-normal and exponential distribution, respectively. Many
extensions of these models exist and include other dis-
tributions for the unobserved inefficiency component. These
include assuming the distribution of inefficiency to be
truncated normal (Stevenson 1980), truncated normal with
determinants (Kumbhakar et al. 1991), jointly estimated
technical and allocative efficiency (Kumbhakar and Tsionas
2005), generalized exponential distribution of inefficiency
(Papadopoulos 2021), semiparametric smooth coefficient
framework (Yao et al. 2019), dealing with endogeneity
(Amsler et al. 2016, Lai and Kumbhakar 2018, Lien et al.
2018) and modeled where noise can follow any (symmetric)
law (Florens et al. 2020). Greene (2008) and Stead et al.
(2019) discuss methodological advances in stochastic fron-
tier modeling and especially distributional specifications.
While in academic papers the convolution of the noise and
inefficiency distributions are overwhelming skewed (Li
1996), each of these models assumes that the noise is term is
symmetrically (overwhelmingly normally) distributed (Hor-
race and Parmeter 2018, Wheat et al. 2019).2

Here we will propose a SF model whereby the skewness
of the composite error (convolution of noise and ineffi-
ciency) may have either sign. We formulate a composite
error that is skew-normal for the noise and has a one-sided
distribution for the inefficiency component. We are able to
derive closed-form solutions for the convolution of the two
distributions as well as the log-likelihood function and its
gradients. Further, we derive closed-form solutions for the
inefficiency estimates as well as discuss how to incorporate
determinants of heteroskedasticity, efficiency and skewness
to allow for heterogenous effects.

It turns out, with our approach, if we take the stance that
“wrong skewness” is an empirical issue (e.g., Simar and
Wilson 2009), we are still able to estimate efficiency scores
when least-squares residuals are of the “wrong skewness”
(Cho and Schmidt 2020, Olson et al. 1980).3 In this case,
the SF model is inconsistent with the data and it is assumed
that there is no inefficiency.

1.3 Finite sample performance

Obviously, all of our parameters are identified by the para-
metric assumptions on the model and the maximum likelihood

principle, however, in practice, it can sometimes be difficult to
estimate parameters via standard maximum likelihood techni-
ques. This seems especially true when we have two forms of
asymmetry and the sign of one of those is potentially unknown.
To understand how our estimators perform in various scenarios
and with various sample sizes, we conduct a Monte Carlo study
and profile analysis. We obtain reliable estimates of the var-
iance parameters in all scenarios and reliable estimates of our
skewness parameter for sample sizes at or above above 200. In
short, our study suggests that our estimators possess desirable
finite sample properties.

1.4 Empirical performance

In order to see how asymmetric noise distributions perform
in practice, we provide three empirical applications. The
first application looks at risk behavior of U.S. Banks. We
re-examine the cost function in Restrepo-Tobón and
Kumbhakar (2014) both with and without assuming sym-
metric noise. Our metrics suggest that the SF model with
skewed noise best fits the data. We further discover that the
most risky banks (as determined by the standard deviation
of return on assets) are more likely to be hit by negative
shocks that have large negative effects on total costs.

In our second example, we look at an educational pro-
duction function. Here we take the data collected by Ger-
shenson and Tekin (2018) to see the impact the “Beltway
Sniper” had on public school student math test scores in
Virginia. As in the previous example, our SF model with
asymmetric noise best fits the data. Here we find that
skewness of the noise distribution is negative and is getting
closer to 0 as a school is further away from a sniper attack.
In other words, for those schools that are close to at least
one sniper attack scene, they have a larger probability to
exhibit poor academic performance.

In these first two examples, we demonstrate the perfor-
mance of the proposed models applied to cost and pro-
duction functions, respectively. We conclude that the model
that takes the skewness of the noise distribution into
account is superior to the model with symmetric noise. In
both applications, we find that the most flexible model that
allows (i) skewed noise where (ii) the parameters of its
distribution vary across observations as well as (iii) ineffi-
ciency with observation-specific determinants performs best
and provides the richest scope for interpretation. We expect
that these methods will prove fruitful in uncovering pre-
viously ignored/misplaced information.

In our final example, we take data from the NBER-CES
Manufacturing Industry Database (Bartelsman and Gray
1996) and examine the efficiency scores of 4-digit textile
industries. For each year (1958–2011), we run separate cross-
sectional regressions and report both the estimated skewness
parameter and average efficiency score for each year. While

2 See Kibara and Kotosz (2019) and/or Kumbhakar et al. (2020) for a
recent summary of some of these and other advances in SF models.
3 "Wrong skewness” is an empirical artifact that occurs when least-
squares residuals have a positive skew in a production function or
negative skew in a cost function.
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most skewness estimates are near zero, many estimates are
significantly above or below zero. In those years where the
model has the “wrong skewness”, the conventional SF model
predicts no inefficiency. This is found to be the case in about
half of the cases. For our SF model, for those years, the
average estimated efficiency scores are below unity.

1.5 Roadmap

The remainder of the paper is organized as follows: Section
2 summarizes the skew-normal distribution. Section 3 pro-
poses to allow for skew-normal noise in a production or cost
function as well as extends the model to allow for ineffi-
ciency. This section further examines the finite sample per-
formance of our estimators and how to implement the
procedures in both R and Stata with packages that we have
created. Section 4 provides our empirical examples and the
fifth section concludes. The appendices include our full set of
derivations (Appendix A), extensions to truncated normal
inefficiency (Appendix B), the results of the simulation study
and profiling analysis (Appendix C) as well as R code to help
replicate our empirical and simulation results (Appendix E).

2 Skew-normal distribution

In what follows, we employ a skew-normal (SN) noise
distribution. While other distributions may be feasible or

more general, we chose this skewed distribution for at least
five reasons. First, it is a well studied skewed distribution
with known properties and inferential aspects. Second, the
standard model with normally distributed noise is a special
case of the SN. Third, we are able to derive closed form
solutions for many objects of interest. Fourth, it can be
skewed in either direction and only requires one additional
parameter to estimate.4 Finally, our analysis can be the basis
for extensions to more complicated skew-elliptical dis-
tributions (Azzalini and Capitanio 2013, Genton 2004).

Formally, the SN distribution generalizes the normal
distribution by allowing for non-zero skewness. The prob-
ability density function of the extended SN distribution with
the skewness parameters α0 and α1, the location parameter
ξ 2 R, and the variance σ2ω > 0 is given by

gðω; ξ; σ2ω; α0; α1Þ ¼
ϕ ω�ξ

σω

� �
Φ α0 þ α1

ω�ξ
σω

� �� �
Φ α0ffiffiffiffiffiffiffiffi

1þα21
p
� � ;

where ϕ(⋅) and Φ(⋅) are the density and distribution
functions of a standard normal distribution, respectively.
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Fig. 1 pdf of the skew-normal
random variable

4 This convenience and simplicity comes at a price as the “SN family
does not provide an adequate stochastic model for cases with high
skewness or kurtosis” (Azzalini and Capitanio 2013). That being said,
the SN distribution offers a statistical model that regulates the skew-
ness, is tractable (closed form solutions) and is easily interpretable.
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We say that ω is skew-normally distributed:
ω ~ SN(ξ, σ2, α0, α1).

Azzalini (1985) proposes to set α0= 0 so the skewness is
determined by a single parameter (α≡ α1).

5 The density
becomes

hðω; ξ; σ2ω; αÞ ¼
2
σω

ϕ
ω� ξ

σω

� �
Φ α

ω� ξ

σω

� �
; ð1Þ

where the expected value of ω ~ SN(ξ, σ2, α) is

EðωÞ ¼ ξþ σω

ffiffiffi
2
π

r
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p :

For the case where E ωð Þ ¼ 0, the density in (1) can be
concentrated in terms of ξ and can be written as

h ω; ξ ¼ 0; σ2ω; α
� � ¼ 2

σω
ϕ ωrsð ÞΦ αωrsð Þ; ð2Þ

where the rescaled and shifted ω is given by

ωrs ¼ ω

σω
þ

ffiffiffi
2
π

r
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p :

The shape of the density is determined by the parameter
α. The upper and lower panels of Fig. 1 show densities of a
SN random variable for σω= 0.1 and σω= 5. The two plots
differ only by the scale of the axes. Here we choose only to
show negative values of the skewness parameter (α < 0). For
positive values of α, the density is flipped symmetrically
around 0. As the absolute value of α increases, the skewness
of the distribution is increasing. For α=∞, the skew normal
distribution becomes the truncated normal (Horrace
2005a, b). Figure 1 suggests that the distribution is very
skewed (i.e., approaches the truncated normal distribution)
for an absolute value of α around 10.6

3 Production model

In this section, we describe how to introduce an asymmetric
noise distribution into a production framework. We then
derive the results for this noise distribution in a stochastic
frontier framework. More specifically, we derive closed
form solutions for the convolution of the noise and ineffi-
ciency distributions, the log-likelihood function, and inef-
ficiency, as well show how to introduce determinants of
heteroskedasticity, efficiency and skewness to allow for
heterogenous results. Finally, we discuss finite sample

performance via a Monte Carlo and profile analysis as well
as mention R and Stata packages that we have developed
and will distribute so that our results may be replicated and
for authors to use for their own studies.

Our production function can be written as

y ¼ f ðx; βÞ þ v; ð3Þ
where the outcome variable y is the logarithm of output for
a stochastic production function (or the logarithm of cost for
a stochastic cost function). f x; βð Þ is a log-linear (in
parameters) production or cost function with input row
vector x (a constant, logarithms of the input variables and
possibly other observed covariates that include environment
variables that are not primary inputs, but nonetheless affect
the outcome variable) and the finite parameter vector β (Sun
et al. 2011).

We assume that the noise v is SN distributed with zero
expectation, E(v)= 0,

v � SN �σv

ffiffiffi
2
π

r
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ; σ2v ; α

 !

with a probability density function (pdf) adopted from
equation (2)

f vðvÞ ¼
2
σv

ϕ
v

σv
þ

ffiffiffi
2
π

r
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

 !
Φ α

v

σv
þ

ffiffiffi
2
π

r
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

" # !
:

The log-likelihood function for a log-linear (in para-
meters) conditional expectation production (or cost) func-
tion with SN noise is given as

ln 2� ln σv þ ln ϕ y�f ðx;βÞ
σv

þ
ffiffi
2
π

q
αffiffiffiffiffiffiffiffi
1þα2

p
� �h i

þ ln Φ α y�f ðx;βÞ
σv

þ
ffiffi
2
π

q
α2ffiffiffiffiffiffiffiffi
1þα2

p
� �h i ð4Þ

and the parameters can be estimated via maximum-likelihood
(ML). Note that while least-squares estimation here is
unbiased as it is equivalent to the quasi-maximum likelihood
estimator under the assumption of normally distributed errors,
it is no longer efficient (Yao and Zhao 2013).

Here we note the relationship of what we have just
presented to the model originally proposed by Aigner et al.
(1977), where the error term v in (3) is composed of a
symmetric component that is normally distributed with a
variance ς2 and a non-negative technical inefficiency com-
ponent that is half-normally distributed with variance τ2.
Replacing α in (4) by τ/ς and σv by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ ς2

p
yields the

likelihood function for the model proposed by Aigner et al.
(1977) (see equation (13.2) in Domínguez-Molina et al.
2004 as well as the discussion in Badunenko and Kumb-
hakar 2016). In other words, the popular SF model can be
seen as a special case of the model considered in (3). The

5 See Azzalini and Capitanio (2013, Chapter 2) for details on the
extended skew-normal distribution.
6 See DiCiccio and Monti (2004) for inferential aspects of the para-
meters of the SN distribution.
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inferential aspects of this special case were studied in
Badunenko et al. (2012).

With the exception of Li (1996), SF models employ
asymmetric compound noise. However, those models
assume that the asymmetry that is present in the composite
error term is due to existing technical inefficiencies. We
propose a set of models where we split the asymmetry/
skewness into components attributable to uncertainty
(skewed noise) and technical inefficiency (non-negative
error part). We show that they can be separated. In what
follows, we present a more general model, where ineffi-
ciency exists and the noise can be skewed.

3.1 Production model with inefficiency

In the presence of inefficiency, (3) becomes

y ¼ f ðx; βÞ þ v� pu ¼ f ðx; βÞ þ ϵ; ð5Þ

where, analogous to before, the outcome variable y is the
logarithm of output for a stochastic production frontier
model or the logarithm of cost for a stochastic cost frontier
model, x is the row vector of a constant, logarithms of the
input variables and possibly other observed covariates that
include environment variables that are not primary inputs
but nonetheless affect the outcome variable. To present this
in a general setting, we introduce the known value p, which
signifies either a production or cost function:

p ¼ 1 for a stochastic production frontier model

�1 for a stochastic cost frontier model :

	

We assume that the noise v is SN distributed with a zero
expectation, E(v)= 0,

v � SN �σv

ffiffiffi
2
π

r
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ; σ2v ; α

 !

with a pdf adopted from equation (2)

f vðvÞ ¼
2
σv

ϕ
v

σv
þ

ffiffiffi
2
π

r
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

 !
Φ α

v

σv
þ

ffiffiffi
2
π

r
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

" # !
:

We assume that the inefficiency term is exponentially
distributed (Jradi et al. 2021), so its density is given by

f uðuÞ ¼ λ expð�λuÞ;

where λ ¼ 1
σu
.7 Denoting ξv ¼ �σv

ffiffi
2
π

q
αffiffiffiffiffiffiffiffi
1þα2

p and noting
from equation (5) that ϵ= v− pu, and v− ξv= ϵ+ pu−

ξv= ϵr+ pu, where ϵr= ϵ− ξv, the joint density of u and ϵ
is given by

f ðϵ; uÞ ¼ 2

σv 1ffiffiffiffi
2π

p exp � 1
2

ϵrþpu
σv

� �2
 �
Φ α ϵrþpu

σv

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f vðvÞ

λ exp �λuð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
f uðuÞ

¼ 2λ
σv

1ffiffiffiffi
2π

p Φ α ϵrþpu
σv

� �
exp � 1

2
ϵrþpu
σv

� �2
þ 2λu

	 
 �
:

ð6Þ

3.1.1 Convolution of the skew normal and exponential
distributions

The marginal density of ϵ is obtained by integrating u out of
f(ϵ, u), noting that u ≥ 0 (i.e., f ðϵÞ ¼ R10 f ðϵ; uÞdu). To do
so, we first rewrite equation (6) as

f ðϵ; uÞ ¼ 2λ
σv

exp pϵrλþ λ2σ2v
2

� �
ϕ

uþ pϵr þ λσ2v
σv

� �
Φ α

ϵr þ pu

σv

� �
:

Then,

f ðϵÞ ¼ R1
0 f ðϵ; uÞdu

¼ R1
0

2λ
σv
exp pϵrλþ λ2σ2v

2

� �
ϕ uþ pϵr þ λσ2v

σv

� �
Φ α ϵr þ pu

σv

� �
du

¼ 2λ
σv
exp pϵrλþ λ2σ2v

2

� � R1
0 ϕ uþ pϵr þ λσ2v

σv

� �
Φ α ϵr þ pu

σv

� �
du:

The integral

Z 1

0
ϕ

uþ pϵr þ λσ2v
σv

� �
Φ α

ϵr þ pu
σv

� �
du ð7Þ

can be obtained in a closed form using Owen’s T-
function (see Owen 1956 1980). The details of the
derivation are given in Appendix A. Denote the solution
to (7) as A:

A ¼ �T u1;
a2
u1

� �
� T a2;

u1
a2

� �
þ T u1; bþ a

u1

� �
þT a2; bþ u1ð1þb2Þ

a

� �
þΦ a2ð ÞΦ �u1ð Þ;

ð8Þ

where a=− αpλσv, b= αp, a2 ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
; u1 ¼

pϵr=σv þ λσv and

Tðh; aÞ ¼ 1
2π

Z a

0

exp �0:5h2 1þ t2ð Þ� �
1þ t2

dt:

Then the marginal density can be given in closed form
as

f ðϵÞ ¼ 2λ exp pϵrλþ λ2σ2v
2

� �
A; ð9Þ7 We also considered the case of truncated normally distributed

inefficiency (u) and these results are provided in Appendix B.
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where examples of this probability density function for a few
choices of the three parameters σv, α and σu are shown in Fig. 2.

Given the above information, the log-likelihood based on
(9) is

ln 2λð Þ þ pϵrλþ λ2σ2v
2

þ lnA: ð10Þ

The full derivation, as well as the gradients of this log-
likelihood function, which are useful for programming
purposes, can be found in Appendix A.

3.1.2 Efficiency estimation

To obtain observation-specific estimates of inefficiency (u),
we follow Jondrow et al. (1982) and first obtain the con-
ditional distribution of u given ϵ:

f ðujϵÞ ¼ f ðu;ϵÞ
f ðϵÞ

¼
2λ
σv
exp pϵrλþ λ2σ2v

2

� �
ϕ

uþ pϵr þ λσ2v
σv

� �
Φ αϵr þ pu

σvð Þ
2λ exp pϵrλþ λ2σ2v

2

� �
A

¼
1
σv
ϕ

uþ pϵr þ λσ2v
σv

� �
Φ αϵr þ pu

σvð Þ
A :

ð11Þ

We then obtain the point estimator for u (observation-
specific) by finding the mean value of the conditional
distribution in (11),

EðujϵÞ ¼
Z þ1

0

u� 1
σv
ϕ uþ pϵr þ λσ2v

σv

� �
Φ α ϵr þ pu

σv

� �
A du: ð12Þ

It can be shown (see Appendix A) that the integral in
(12) has a closed form solution,

EðujϵÞ ¼ �pϵr � λσ2v þ
σv
A �

bffiffiffiffiffiffiffiffi
1þb2

p ϕ affiffiffiffiffiffiffiffi
1þb2

p
� �

�Φ �u1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
� abffiffiffiffiffiffiffiffi

1þb2
p

� �
þϕ u1ð ÞΦ aþ bu1ð Þ

2
666664

3
777775;

ð13Þ

where A is defined in (8) and a, b, and u1 are defined
immediately after. The estimates of efficiency can be obtained
by exponentiating the negation of the quantity in (13).

3.1.3 Comparison to existing approaches

There are at least three differences between existing models
and those proposed here. First, we consider a skew-normal
exponential model. Wei et al. (2021a) use a half-normal
distribution instead of an exponential distribution. Our own
simulations along with the discussion in Papadopoulos and
Parmeter (2021) and Papadopoulos (2022) suggest possible

major identification issues in the skew-normal half-normal
setting (and no issue with a skew-normal exponential set-
ting). An identification problem can occur because a skew-
normal distribution can be obtained via the convolution of a
half-normal and a normal distribution and we apriori do not
know the sign of the noise skewness. Papadopoulos (2022)
shows a similar result when looking at combining an
asymmetric Laplace with exponential inefficiency (even
with a correctly specified model). His solution, assuming
availability, is to include determinants of inefficiency. We
will discuss this possibility in the next section.

Second, we derive the results in closed form, this pre-
cludes non-convergence due to approximations and adds
precision to the estimates of the frontier and efficiencies.
Speed of estimation is also gained which is helpful for the
multistart procedure we discuss later.

Third, we introduce determinants of all error components
along with skewness. While this has been studied for both
variance and inefficiency, none of the aforementioned
papers do so with respect to the skewness parameter.

There has also been some work on incorporating copulas
into efficiency analysis (Bonanno et al. 2017 and Wei et al.
2021b). From a statistical point of view, this appears to be a
generalization of our approach. Conceptually, however, we
are not quite sure why we would want to introduce this
dependence between the error term and inefficiency. That
being said, if it did exist, these estimators would be pre-
ferable. However, if it does not exist (our prior) our model
would exploit this effect and would be more efficient. We
leave the comparison of these methods to future research.

3.1.4 Determinants of heteroskedasticity, efficiency, and
skewness

It is feasible to modify our approach to allow for determi-
nants of all parameters of error components (Kumbhakar
et al. 1991, Lien et al. 2018). In other words, assuming data
are available, we can model each component (variance,
inefficiency and skewness) with both a deterministic and a
stochastic component. We can attempt to explain the per-
formance of firms based on exogenous variables within the
firm’s production environment.8 Examples of naturally
occurring environment variables include, but are not limited
to, human capital levels of managers, input and output
quality measures, market share and/or climactic variables.

The noise term can be made heteroskedastic by allowing
the variance to depend upon a set of exogenous environ-
ment variables (zv). To ensure that the variance is positive,

8 It is important to note that we will estimate all of these parameters,
as well as those in the production or cost function, jointly (Schmidt
2011, Wang and Schmidt 2002).
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we adopt the following specification

ln σ2v ¼ zvγv; ð14Þ

where the parameter vector γv may include an intercept
term. Since noise in a production relationship can be viewed
as production risk, the typically employed determinant of
noise variance is the size of the unit of observation (e.g.,
total assets in banking).

Similarly, the variance of inefficiency, and hence the
inefficiency itself, can be modeled to depend upon a set
of exogenous environment variables (zu). Again, to
ensure that the variance is positive, we adopt the

specification

ln σ2u ¼ zuγu; ð15Þ

where the parameter vector γu may include an
intercept term.

The first two approaches exist in the literature (Caudill
et al. 1995), and here we suggest they analogously be
extended for the skewness parameter to allow for hetero-
genous effects. Our skewness parameter can be made
observation specific via

α ¼ zsγs; ð16Þ
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where again, the parameter vector γs may include an
intercept term. Allowing for heterogeneity in skewness may
be particularly useful as we may be able to determine that
some firms are more susceptible to negative shocks than
others. Note that this formulation allows for the skewness to
take either sign and heterogeneity (as we will see later in our
empirical applications) allows for both signs within a given
dataset.

3.2 Finite sample performance

The parameters of (3) and (5) are obtained using maximum
likelihood estimation (MLE) based on (4) and (10), respec-
tively. The theoretical properties of MLE are well-known and
all our parameters are identified by the parametric assumptions
on the model. However, it can sometimes be difficult to obtain
reliable estimates for some datasets in practice. The finite
sample properties of the MLE estimator for (4) for different
parameter constellations has been studied by Azzalini and
Capitanio (1999) and Badunenko et al. (2012). If one considers
(5) to be a generic statistical model with two skewed dis-
tributions, Badunenko and Kumbhakar (2016) studied the finite
sample properties of a special case of this model.

For completeness, we have performed a small Monte
Carlo study and profile analysis (Ritter and Bates 1996).
Tables with estimated bias and MSE as well as likelihood
profiles are available in Appendix C. The plots of the
medians of the likelihood ratio statistics show the effect the
sample size has on the finite sample performance of the
estimator. As expected, the parameters are more precisely
estimated with larger samples. We find some evidence that
α may be difficult to estimate precisely for sample sizes
below 200. Further, some profiles suggest the possibility of
local maxima for α (Azzalini and Capitanio 2013, Chap-
ter 3). To avoid this issue in practice, we suggest using a
multistart procedure for optimization when using Broyden-
Fletcher-Goldfarb-Shanno (BFGS) or Newton-Raphson
(NR) methods.9 The variance parameters in both (3) and
(5) are precisely estimated in all scenarios.

Out of curiosity, we also wanted to see how estimates
fared versus those which assume symmetry. To study this,
for each production function, we generate the noise from
either a Skew Normal (Appendix D.1) or a Normal dis-
tribution (Appendix D.2). The results are primarily as

expected. This holds true for the parameters of the model
and the efficiency scores (Appendix D). The traditional
model wins out when the true distribution is symmetric and
our approach tends to dominate when the noise is asym-
metric. The R code for this can be found in Appendix E.5.

Overall, our Monte Carlo studies suggests that our esti-
mators possess desirable finite sample properties.

3.3 Stata and R packages

All the analysis above can be performed using packages we
have created in R (the snreg R package) and Stata statistical
softwares. The R package and the Stata command can be
obtained from the authors’ websites. Both softwares are
accompanied by help and example files. In both softwares the
names of the commands are snreg and snsf. Different
from the selm command from the R package sn, the snreg
command allows for determinants of heteroskedasticity as in
(14) and skewness as in (16). Appendix E presents R code to
help replicate our empirical results, which we discuss next.

4 Empirical illustration

In this section, we demonstrate the usefulness of our pro-
posed methodology in three separate applications. We will
look at both cost and production functions with symmetric
and asymmetric noise. We will further introduce ineffi-
ciency of production units into our models. Finally, we will
highlight our most flexible model that allows asymmetric
noise and inefficiency, as well as determinants of (i) het-
eroskedasticity, (ii) inefficiency, and (iii) skewness.

We will showcase such comparisons by modeling risk in
the U.S. banking industry, the effect of extreme adverse
events on educational outcomes, and finally, annual data
from the U.S. textile sector.

4.1 U.S. Banks

For our first application, we use a random subset of the
firms employed in Restrepo-Tobón and Kumbhakar (2014).
We chose a random sample of 500 banks observed in 2007
and whose total assets were between the 10th and 90th
percentiles of the total assets distribution, and whose total
costs were between the 10th and 90th percentiles of the total
costs distribution. The code to obtain our random sample is
shown in Appendix E.2.1.10

Our goal is to estimate and compare the following
models: (N0) symmetric noise with no inefficiency, (SN0)
asymmetric noise with no inefficiency, (SF0) symmetric

9 Both BFGS and NR optimization methods are available as options in
our R and Stata procedures. The starting values for the vector of
parameters to maximize (10) are chosen as follows. We use the method
of moments values for the normal-exponential model to define starting
values of all parameters except the skewness part. If zs in (16) contains
only a constant, the multistart procedure goes over values from− 2 to
2 with an interval of 0.1 as starting values for α; ± 0.01 are used
instead of 0. If zs contains also variables, the starting values for the
slopes in (16) are set to 0. Using multistarts proved to work well both
in our simulations and empirical examples.

10 We repeated this experiment several times to ensure that the general
conclusions were not dependent upon this particular sample of banks.
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noise with inefficiency, (SF1) asymmetric noise with inef-
ficiency and (SF2) asymmetric noise with inefficiency and
determinants. These models go from the most restrictive to
the most general. If the noise is asymmetric, inefficiency
exists and our determinants are significant, we expect SF2
to perform best. However, if none of those events are true,
N0 represents the most efficient model.

4.1.1 Translog cost function

We assume a full translog specification of the technology
where 2 outputs are produced by 3 inputs. To ensure the
necessary condition that the cost function is homogeneous
of degree 1, we divide the total costs and prices of the first
two inputs by the price of the third input.11 More formally,
our translog cost function is given as

lnðTC=W3Þ ¼ β0 þ β1 lnðY1Þ þ β2 lnðY2Þ þ β3 lnðW1=W3Þ þ β4 lnðW2=W3Þ
þ 0:5β5 ln ðY1Þ2 þ 0:5β6 ln ðY2Þ2 þ 0:5β7 ln ðW1=W3Þ2
þ 0:5β8 ln ðW2=W3Þ2 þ β9 lnðY1Þ lnðY2Þ þ β10 lnðY1Þ lnðW1=W3Þ
þ β11 lnðY1Þ lnðW2=W3Þ þ β12 lnðY2Þ lnðW1=W3Þ
þ β13 lnðY2Þ lnðW2=W3Þ þ β14 lnðW1=W3Þ lnðW2=W3Þ þ ϵ

where TC represents total costs of the bank, Y1 and Y2 are
their outputs (total securities of the bank and total loans,
respectively) andW1,W2 andW3 are their inputs (cost of fixed
assets, cost of labor and cost of borrowed funds, respec-
tively).12 Each of the β represent parameters to be estimated
and the form of ϵ will depend upon the model chosen.

Table 1 presents the results of our translog cost function for
each of the above specifications. Recall that Model N0 is the
traditional cost function where the noise is homoskedastic and
symmetric, i.e., vi ~N(0, σv) in (3).13 Model SN0 allows the
noise to be SN, where the skewness parameter α is the same
for all observations. Model SF0 is the standard SF model
where noise is normally distributed with a constant variance
and inefficiency is exponentially distributed. Model SF1
extends model SF0 by allowing noise to be SN.

Following the above discussion, we suggest a model
where risk influences total costs of production through the
noise. More specifically, for each bank, the shape/skewness
of the distribution of the noise14 depends upon the risk level
of that bank. Thus, risk affects the total costs of a bank, not
directly, but rather through the expected shock that a bank
experiences due to being risky. Therefore, model SF2
allows the skewness parameter to be bank-specific as in
(16). Here we employ a commonly used risk measure in the

banking literature (Koetter et al. 2012), standard deviation
of return on assets (sdroa).15 It can be viewed as the
variability in returns.

Model SF2 also adds explanatory variables for hetero-
skedasticity and inefficiency (Equations (14) and (15), respec-
tively). For the variance, we look at the total assets (TA) of the
bank and for inefficiency, we use a scope variable, which is the
Hirschman-Herfindahl index across five loan categories (i.e.,
how focused a bank is in terms of loans).16

4.1.2 Results

Our most basic comparison is between the first two models: N0
and SN0 (symmetric and asymmetric noise without ineffi-
ciency, respectively). The estimated skewness coefficient is
1.38, which is significant at conventional levels. The noise
distribution is close to the pink density shown in Fig. 1, mir-
rored around 0. The N0 model is rejected by the LR test in
favor of the SN0 model (p-value of the LR test is 0.0036).
Although OLS is unbiased, it is no longer efficient in the
presence of asymmetric noise.

We now move to introducing inefficiency into our cost
function.17 Table 1 shows that the symmetric SF model SF0
exhibits better fit than SN0 with the same number of para-
meters. We should be careful here however as SF0 and SN0
are non-nested and hence the LR-test is not necessarily infor-
mative. When we allow both skewed noise and inefficiency
(model SF1), the LR test clearly rejects SN0 in favor of SF1 (p-
value of the LR test is 6.13e-05)18 and also for SF1 in favor of

11 The choice of which input price is a numeraire does not affect the
estimation.
12 For a more detailed description of the data, see Koetter et al. (2012).
13 Model N0 is essentially OLS, however it is fit by the ML estimator
under the assumption that the noise is normally distributed.
14 The variance of noise is sometimes thought of as production risk
(Chavas et al. 2010, Just and Pope 1978).

15 We also tried Z-score of a bank. These results are similar and are
available upon request.
16 The five categories of loans are listed as agricultural, commercial
and industrial, individual, real estate, and other.
17 Recall that with a symmetric noise such as in SF0, ϵ in (5) is
negatively skewed for a production function and positively skewed for
a cost function.
18 The careful reader will have noticed that the signs of the skewness
parameters in SN0 and SF1 are flipped. Note that they are not expected
to have the same sign, as the noise in SF1 is only a part of the
compound error term. The cumulant of noise in an SN model is

KvSN0ðtÞ ¼ ln 2� σvSN0

ffiffiffi
2
π

r
αSN0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2SN0

p t þ σ2vSN0 t
2

2
þ ln Φ σvSN0

αSN0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2SN0

p t

 !" #
;

while the cumulant of noise in an SN-Exp model is

KϵSF1ðtÞ ¼ ln 2� σvSF1

ffiffi
2
π

q
αSF1ffiffiffiffiffiffiffiffiffiffiffi
1þα2SF1

p t þ σ2vSF1 t
2

2

þ ln Φ σvSF1
αSF1ffiffiffiffiffiffiffiffiffiffiffi
1þα2SF1

p t

� �
 �
þ p ln 1� σutð Þ;8σu<1=t:

ð17Þ
Even if the noise in both SN0 and SF1 have (roughly) the
same third moment (t= 3), the α parameters are likely to be
different due to presence of σu.
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Table 1 Dependent variable lnðTC=W3Þ
Variable N0 SN0 SF0 SF1 SF2

Intercept −1.5833 −1.6923 −2.3203 −3.2175 −3.7655

(−0.73) (−0.80) (−1.11) (−1.54) (−1.83)

ln(Y1) 0.3729 0.3753 0.3613 0.3271 0.2914

(2.65) (2.60) (2.45) (2.25) (1.99)

ln(Y2) 0.4935 0.5738 0.7050 0.8497 0.9413

(1.60) (1.90) (2.36) (2.89) (3.21)

ln(W1/W3) 0.3415 0.3292 0.3291 0.3133 0.3175

(1.36) (1.32) (1.35) (1.33) (1.36)

ln(W2/W3) −1.1573 −1.4004 −1.5193 −1.3617 −1.2350

(−1.68) (−2.10) (−2.33) (−2.07) (−1.88)

0.5*ln(Y1)2 0.0631 0.0586 0.0574 0.0598 0.0621

(9.10) (8.66) (8.31) (8.16) (7.85)

0.5*ln(Y2)2 0.0997 0.0890 0.0799 0.0730 0.0689

(3.91) (3.52) (3.14) (2.91) (2.79)

0.5*ln(W1/W3)2 −0.0577 −0.0561 −0.0561 −0.0567 −0.0507

(−1.90) (−1.87) (−1.92) (−1.94) (−1.83)

0.5*ln(W2/W3)2 0.8407 0.8471 0.8572 0.8530 0.8802

(3.94) (4.13) (4.28) (4.17) (4.33)

ln(Y1)*ln(Y2) −0.0720 −0.0704 −0.0713 −0.0724 −0.0719

(−5.58) (−5.41) (−5.37) (−5.58) (−5.48)

ln(Y1)*ln(W1/W3) −0.0239 −0.0265 −0.0277 −0.0290 −0.0290

(−1.72) (−1.88) (−1.94) (−2.13) (−2.14)

ln(Y1)*ln(W2/W3) 0.0183 0.0289 0.0435 0.0526 0.0551

(0.52) (0.81) (1.24) (1.58) (1.61)

ln(Y2)*ln(W1/W3) 0.0105 0.0129 0.0133 0.0142 0.0157

(0.60) (0.75) (0.77) (0.85) (0.94)

ln(Y2)*ln(W2/W3) −0.0723 −0.0634 −0.0692 −0.0900 −0.1073

(−1.54) (−1.36) (−1.50) (−1.97) (−2.36)

ln(W1/W3)
*ln(W2/W3)

−0.0376 −0.0361 −0.0332 −0.0257 −0.0369

(−0.63) (−0.61) (−0.58) (−0.46) (−0.67)

ln σ2v
Intercept −3.3997 −2.8624 −3.8485 −3.2090 0.1264

(−53.75) (−22.01) (−33.09) (−22.36) (0.08)

ln(TA) −0.2802

(−2.14)

α(z)

Intercept 1.3822 −2.6274 −3.7828

(4.90) (−2.40) (−2.59)

sdroa 3.9765

(2.25)

ln σ2u
Intercept −4.4483 −4.1864 −3.5314

(−17.11) (−19.34) (−6.71)

scope −1.6177

(−1.94)

Log-likelihood 140.447 144.692 149.188 152.723 162.212

z-values in parentheses
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SF0 (p-value of the LR test is 0.0078). However, note that SF1
restricts the shapes of the noise and inefficiency distributions to
be the same for all banks. The most flexible model, SF2, best
fits the data among all those considered in Table 1. The LR test
gives preference to SF2 over SF1 (the p-value of the LR test is
7.57e-05).19

Figure 3 shows the kernel estimated density of the pre-
dicted skewness (α̂ðzÞ) for our preferred model, SF2. The
probability mass of a negatively skewed distribution with a
zero mean implies that the majority of banks are expected to
have a slight negative shock to their operations. Another
property of this distribution is that the left tail is thicker than
the right. In other words, large positive shocks are more
frequent than large negative shocks.

Figure 4 plots the predicted skewness against a skewness
determinant. There are only a few very risky banks (i.e., sdroa
is very large). At low risk levels, the skewness is quite low
(approximately− 4 for sdroa). A shock of a low risk bank
comes from a very skewed distribution and therefore such a
bank is likely to be hit by a negative shock that has a detri-
mental effect on total costs. At the mean level of sdroa (0.32),
the estimated skewness is− 2.5, the value of the estimated
skewness in SF1 (where skewness is assumed constant). The
skewness remains negative until sdroa reaches 0.95, which is
the 96th percentile of the sdroa distribution. For the 4 percent
(of the most) risky banks in our sample, the skewness is
positive, implying a thicker right tail of the noise distribution.

It is worth noting that in SF2, the inefficiency determi-
nant scope, is statistically significant. The negative coeffi-
cient means that as scope increases, bank inefficiency is
decreasing. Further, the determinant of heteroskedasticity
(total assets) is also statistically significant. The negative
coefficient here suggests that the variance decreases with
the size of total assets. Finally, Fig. 5 shows estimated

densities of efficiency scores from all of our SF models.
There are no marked differences in the distributions.

4.2 Beltway sniper

Here we investigate the effects of the 2002 “Beltway Sniper”
mass shootings on student achievement in Virginia’s public
elementary schools (Gershenson and Tekin 2018). Traumatic
events, especially those which are ‘close to home’, can have
serious impacts on student outcomes. However, different from
past research (Ponzo 2013), we attempt to model these low
probability events in the noise distribution.20

We follow Levin (1974) and Hanushek (1979) and
consider an educational production function as a process of
converting inputs (i.e., school resources) into outputs (i.e.,
student achievement). We go a step further and account for
inefficiency in educational production as it has been argued
that estimating educational production functions accounting
for inefficiency is a proper approach for examining educa-
tional outcomes (Ruggiero 2006 2019, Thanassoulis et al.
2016 2018).

4.2.1 Educational production function

Our (school level) educational production function is given
as

lnðmathÞ ¼ β0 þ β1 lnðratioÞ þ β2 lnðfteÞ þ 0:5β3 ln ðratioÞ2
þ0:5β4 ln ðfteÞ2 þ β5 lnðratioÞ lnðfteÞ
þβ6 lnðblackÞ þ β7 lnðhispanicÞ þ ϵ;
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Fig. 3 Kernel estimated densities of skewness (Model SF2). The
vertical dash-dotted line is 0. The solid vertical line is the mean
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Fig. 4 The estimate of skewness (fitted values) plotted against the
determinant (Model SF2). The rug plot on each axis essentially shows
a one-dimensional heatmap

19 In all LR tests, we consider a standard χ2 distribution for the LR
statistic as the tested parameters are not bounded.

20 It would be interesting to see our estimator applied to studies about
the effect of bullying on educational outcomes (e.g., Lacey and Cornell
2013).
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where the βs represent parameters to be estimated and the
composition of ϵ follows the same models in the previous
sub-section. math is our output variable measured in logs
(school-level proficiency in the Standards of Learning
standardized test given each spring in Virginia public
schools). Our input variables are student-teacher ratios
(ratio), full-time equivalent teachers (fte), percent Black
(black), and percent Hispanic (hispanic).

Similar to before, we estimate five different models (N0,
SN0, SF0, SF1, and SF2). In this context, “production
inefficiency” represents student underachievement. We will
use total enrollment (enroll) as a measure of size, percent
free lunch (frp), and closeness (closeness) to a sniper attack
as determinants of our noise components.21closeness is the
primary determinant of interest and measures the distance
(in miles) the school is from the closest sniper attack.

4.2.2 Results

Table 2 provides the regression results for our familiar set of
models. Note that in the previous sub-section we analyzed a
cost function (i.e., p=−1) and the smaller outcome vari-
able was preferable. Here, we analyzing a production
function (i.e., p= 1) and larger outcome values are prefer-
able (i.e., higher levels of proficiency). The results here
represent 5th grade students in the year 2003 (same aca-
demic year as the attacks).

It is clear that the SN0 model fits the data far better than
N0 (the LR statistic is 136.53 while the critical value of the
χ21 at the 1% level of significance is 6.63), and thus there is a
good reason to believe the skewness of the noise term is not
0. Based on the LR test, including inefficiency (SF0) pro-
vides a better fit than simply allowing for asymmetric noise
(the LR statistic is 40.97). When we consider the model that
contains both inefficiency and skewness, restricting the
shape of the noise distribution for all schools to be the same
(model SF1), the constant skewness parameter is not

statistically insignificant. The likelihood increased by only
0.4, which is not enough to conclude that SF1 is preferred to
SF0. Note that when we do not account for possible
skewness in the noise, we overestimate the effect of the
proportion of Black or Hispanic students on educational
outcome.

The most flexible model (SF2) allows the skewness
parameter to vary depending on how close the school is
from a shooting scene. We find a significant increase in the
log-likelihood (the LR statistic of the LR test between SF2
and SF1 is 118.4 whereas the critical value of the χ23 at the
1% level of significance is 11.34). As for the determinants
of the error components, we find that as the proportion of
pupils who are eligible for free or reduced-price lunch is
increasing, underachievement is increasing. The skewness
of the noise distribution is increasing as a school is further
away from a sniper attack (as shown in Fig. 6).22 The noise
for those schools that are close to at least one sniper attack
scene, have large negative skewness, implying that the left
tail is much thicker than the right tail. In other words, as risk
is increasing, schools have a larger probability to exhibit
poor, rather than good test results. Figure 7 shows that
negative skewness is a feature of the noise distribution for
all public schools in our sample.

4.3 NBER data: textile industries

Our final application uses data from the well studied
(Bonanno et al. 2017) NBER-CES Manufacturing Industry
Database (Bartelsman and Gray 1996). For each available
year (1958–2011), we focus on the textile industry (SIC
4-digit industry: 2200–2399) because these particular sam-
ples are known to exhibit the “wrong skewness” of OLS
residuals (Hafner et al. 2018).

We estimate SF models where noise is either assumed to
normal or SN and the distribution of the inefficiency term is

0.41 0.50 0.60 0.69 0.78 0.88 0.97

0.00

3.46

6.91

10.37

13.83

SF0
SF1
SF2

Fig. 5 Kernel estimated
densities of efficiencies. Vertical
lines are respective means

21 Estimating different specifications of an educational production
function and noise components led to the same conclusions.

22 As in the previous application, we find a positive relationship
between the determinant and skewness parameter. However, in this
application, a larger determinant implies a lower risk.
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assumed to be exponentially distributed. In the case of a SN
distribution, we omit determinants and therefore have a con-
stant skewness parameter for each year. In each setting, we use
a translog production function where the output (total value
added) is produced by capital (total real capital stock), labor
(total employment) and materials (total cost of materials).

Figure 8 plots the estimated skewness parameter for each
year. The blue circles represent coefficients that are statis-
tically insignificant, while the red triangles represent sta-
tistically significant estimates of α. We do not observe
uniformity of coefficient magnitudes; they range from
roughly −2.5 to approximately 6. Although we see both
signs for skewness, most estimates are close to 0. With

regards to the magnitude, there is no clustering, trend, or
situation where the estimates appear to be persistent over
time. The skewness coefficient can be negative in 1 year
and positive the year after. Finally, there appears to be no
clustering or trend with respect to significance of the esti-
mated coefficients.

Figure 9 dissects Fig. 8 to differentiate between years
where the skewness of the OLS residuals are negative
(‘correct’ skewness) or positive (‘wrong’ skewness). In
years where the SN-Exp model results in a large positive
significant skewness parameter, the skewness of OLS resi-
duals is ‘wrong’. Where the skewness of OLS residuals is
‘correct’, the skewness parameter is only rarely significant.

Table 2 Dependent variable is
log of percent proficient of the
Math test

Dep. var is logðmathÞ
Variable N0 SN0 SF0 SF1 SF2

Intercept 4.0145 4.0140 4.3207 4.3029 3.9931

(5.17) (4.16) (10.62) (11.69) (6.90)

ln(fte) 0.1850 0.1516 0.1204 0.1219 0.2576

(0.74) (0.52) (0.88) (0.96) (1.47)

ln(ratio) 0.2056 0.1579 0.1344 0.1453 0.2415

(0.69) (0.42) (0.85) (1.01) (1.08)

ln(fte)2 −0.0184 −0.0110 −0.0124 −0.0130 −0.0274

(−0.90) (−0.53) (−1.10) (−1.20) (−2.07)

ln(ratio)2 −0.0209 −0.0135 −0.0144 −0.0162 −0.0253

(−0.65) (−0.35) (−0.84) (−1.00) (−1.12)

ln(fte)*ln(ratio) −0.0389 −0.0368 −0.0264 −0.0261 −0.0544

(−0.86) (−0.65) (−1.05) (−1.12) (−1.63)

black −0.4519 −0.2373 −0.2291 −0.2299 −0.1330

(−13.21) (−9.08) (−9.63) (−9.66) (−5.01)

hispanic −0.4240 −0.3376 −0.3569 −0.3627 −0.1872

(−6.05) (−5.68) (−7.53) (−7.63) (−3.33)

ln σ2v
Intercept −3.3138 −2.4067 −5.5637 −5.1480 −4.7220

(−53.18) (−44.16) (−24.87) (−16.86) (−12.59)

enroll 0.0016

(3.12)

α(z)

Intercept −6.4106 1.4828 −11.3756

(−5.67) (1.24) (−2.38)

ln(closeness) 2.7476

(2.07)

ln σ2u
Intercept −3.3859 −3.3468 −6.1308

(−27.37) (−25.72) (−14.70)

frp 5.7394

(8.71)

N 515 515 515 515 515

Log-likelihood 122.544 190.810 211.297 211.679 270.878

z-values in parentheses
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Finally, Fig. 10 shows average efficiency scores by year for
both the asymmetric and symmetric noise models. In years
where the OLS residuals are of the ‘wrong skewness’, the
conventional SF model predicts no inefficiency (i.e., the aver-
age efficiency score is 1). We observe this in about half of the
cases. In each of those years, our model estimates inefficiency
(the average efficiency score is around 0.975). In about 10% of
the years, the average efficiencies from both models are the
same. This happens in years when the skewness of the OLS
residuals is ‘correct’ and the estimated skewness coefficient in
our model is indistinguishable from 0 and is statistically
insignificant (red circles in Fig. 9). Considering both what we
have seen here and our simulations, there is evidence that our
approach can identify inefficiency in each year of our sample.

5 Conclusions

In this paper, we propose to model asymmetric noise in
production analysis. We discussed how to estimate a pro-
duction or cost function with asymmetric noise and extended
this model for a skew-normal noise distribution for stochastic
frontier analysis. Our methods result in closed form solutions
for the log-likelihood function and inefficiency. We are able
to incorporate determinants of these components (hetero-
skedasticity, inefficiency and skewness) in an estimation
procedure that jointly estimates all parameters of interest. The
set of the proposed models will be instrumental to researchers
who wish, for example, to model risk associated with the
outcome variable by allowing for asymmetry in the error term
with or without inefficiency.

We showcased these methods in simulations as well as in
three separate empirical applications, including one that
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Fig. 6 The estimate of skewness (fitted values) plotted against the
respective determinant. The rug plot on each axis essentially shows a
one-dimensional heatmap
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showed that our approach is able to estimate efficiency scores
when OLS residuals are of the “wrong skewness”. Given that
we have produced user-friendly R and Stata packages, we
believe that these techniques can easily be applied across a
wide range of fields within production analysis.
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