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Abstract: The frequency diversion in hybrid power systems is a major challenge due to the un-
predictable power generation of renewable energies. An automatic generation controller (AGC)
system is utilised in a hybrid power system to correct the frequency when the power generation of
renewable energies and consumers’ load demand are changing rapidly. While a neural network (NN)
model based on a back-propagation (BP) training algorithm is commonly used to design AGCs, it
requires a complicated training methodology and a longer processing time. In this paper, a bacterial
foraging algorithm (BF) was employed to enhance the learning of the NN model for AGCs based on
adequately identifying the initial weights of the model. Hence, the training error of the NN model
was addressed quickly when it was compared with the traditional NN model, resulting in an accurate
signal prediction. To assess the proposed AGC, a power system with a photovoltaic (PV) generation
test model was designed using MATLAB/Simulink. The outcomes of this research demonstrate that
the AGC of the BF-NN-based model was effective in correcting the frequency of the hybrid power
system and minimising its overshoot under various conditions. The BP-NN was compared to a PID,
showing that the former achieved the lowest standard transit time of 5.20 s under the mismatching
power conditions of load disturbance and PV power generation fluctuation.

Keywords: automatic generation controller; neural network model; bacterial foraging algorithm;
hybrid power system; photovoltaic power generation

1. Introduction

Due to the air pollution and energy crisis, renewable energies have become substantial
sources in the power system to replace conventional energy sources. Typically, the power
generation of a hybrid power system consists of classical energy sources and renewable
energy sources applied in a multi-area power system that is connected through power-
lines [1–4]. Owing to the unpredictable power generation of renewable energies and
the variation in load demand, an automatic generation controller (AGC) is designed to
restore the frequency level of a hybrid power system when consumers’ load demand and
renewable energy sources swiftly fluctuate by regulating the speed governor of the classical
generator [5–9]. Additionally, renewable energy sources have less inertia to integrate with
the power system, which makes the power imbalance worse by causing tie-line power
oscillations in multi-area system [10–12].

Recently, several researchers have proposed various AGCs based on classical and
advanced techniques for hybrid power systems. Among these, the authors of [13] utilised a
PID with an H∞ controller to design an AGC for a hybrid micro-grid power system. The
H∞ controller was proposed to regulate the nonlinearity of the hybrid power system when
the load demand and the wind power generation change rapidly. The outcomes of this work
show that the proposed method reduced the frequency deviation in the range of ±10% to
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±30% with respect to the standard value. Furthermore, the authors of [14] tested two types
of AGC for a hybrid mica-grid power system based on H∞ and µ-synthesis techniques. The
hybrid power system was connected to a diesel generator, a wind turbine, and a fuel cell.
The results showed that the µ-synthesis AGC method was better to offset the frequency
diversion of the hybrid power system in comparison to the H∞ method. However, AGCs
based on classical techniques are not able to reset the frequency diversion of hybrid power
systems sufficiently when the renewable energy source is changed suddenly due to a
poor dynamic model [15–18]. Hence, advanced machine learning algorithms have been
proposed to solve this issue since they do not demand high-level mathematics when applied
to complex applications such as AGCs [19–21].

Fuzzy logic control (FLC) has been widely used to design optimal AGCs because of its
nonlinear model [22]. Consequently, the authors of [23] designed a secondary frequency
control using an adaptive neuro-fuzzy inference system (ANFIS) for a hybrid micro-grid
power system. Simulation results demonstrated that the ANFIS control reset the frequency
of the proposed system using several load variations. Similarly, the authors of [24] de-
signed an AGC based on an adaptive fuzzy logic PID controller, which was optimised
using a sine/cosine algorithm to address the high oscillation in the frequency caused by
unpredictable renewable energy generation. The results show that this proposed controller
has a superior improvement compared to the PID controller. Furthermore, the authors
of [25] used FLC with a proportional–integral–derivative technique to design an efficient
AGC for a hybrid power system. A cuckoo search algorithm was used to tune the parame-
ters of the FLC-PID controller. Simulation results based on Lab-View have showed that
the proposed AGC was fit to offset the frequency diversion when the load disturbance
changed rapidly when connected to renewable energy sources. However, this technique
requires good experimental knowledge to tune the FLC model. In addition, it requires a
long processing time to correct the signal when used with unpredictable resources such
as renewable energies. To overcome this unpredictable challenge, an intelligent method
based on training data instead of experimental knowledge has been employed to design an
optimised AGC.

The authors of [26] designed an AGC for a three-area hybrid power system using the
grey wolf optimiser PID technique. The proposed system is quite robust in terms of the
transit time, overshoot, and oscillations of the frequency system with or without being
connected to renewable energy sources. Similarly, the authors of [27] used particle swarm
optimisation (PSO) to tune linear matrix inequality to design an AGC for a multi-hybrid
power system. The outcome of this work shows that wind power generation has the highest
fluctuation when compared to other renewable power generation. Similarity, the authors
of [28] also used a PSO algorithm to design an AGC for a power system using wind turbines.
Simulation results of the proposed method show that the frequency stability of the system is
significantly improved when used with and without wind power generation under various
conditions. Furthermore, the authors of [29] utilised a social-spider optimiser (SSO)-PID
to design an AGC for a two-area hybrid power system. The results demonstrated that
the SSO-PID controller reset the frequency diversion of the hybrid power system quickly
compared to the GA-PID controller. Next, the authors of [4] used a neural network (NN)
technique to predict the frequencies of an AGC for a two-area power system. The NN was
optimised using a PSO algorithm to select the number of hidden layers and the connection
weights. The combination of renewable energies with a classical power system network
suffers from frequency diversion due to the changes in load demand and renewable power
generation. Hence, the design of an optimal AGC for a hybrid power system is required to
produce fast and accurate responses to meet the load demand and the unpredictable power
generation of renewable energies.

In this paper, a bacterial foraging (BF) algorithm is employed to design an AGC based
on an NN for a hybrid power system that is connected with a photovoltaic (PV) energy
resource. The novelty of this work is the use of a BF algorithm to optimise the elementary
weights of the NN model, which minimises the NN training error. Consequently, the
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frequency diversion of the hybrid power system is addressed quickly, and its overshoot
is minimised adequately since the BF algorithm has a fast response time. This results in
a low transit time when tested in the mismatching power conditions of load disturbance
and PV power generation. The rest of the work is structured as follows: Section 2 presents
the modelling of the hybrid power system based on an AGC. Section 3 explains the main
concepts of the NN model and the BF algorithm. Then, Section 4 describes the proposed
method. Section 5 discusses the results of the proposed AGC under four case conditions.
Finally, Section 6 concludes with the main findings of this research.

2. Modelling of Hybrid Power System

In this section, a traditional power system with a PV source is modelled, which consists
of a thermal turbine, a generator, and a grid-connected PV system.

2.1. Modelling of Power System

Basically, the thermal turbine produces the mechanical power to generation the electri-
cal power for the customer based on the steam fuel. A governor is a main component of a
steam turbine, as presented in Figure 1.
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Figure 1. A schematic diagram of power generation.

To adjust the power generation with respect to the costumer load, the volume of the
turbine steam is adjusted using the governor. Consequently, the speed of the generator is
regulated, and the frequency response of the power system resets to offset the standard
value of the power system, as proposed in Equation (1):

∆f =
(

1
2H

)
∆Pm −

(
1

2H

)
∆PL −

(
D
2H

)
∆f (1)

The mathematical representation of the generator’s speed depends on Equation (2):

Ω(s) =
1

2Hs
(∆Pm − ∆Pe) (2)

The costumer load is modelled based on Equation (3):

∆Pe = ∆PL + ∆ω (3)

while the mechanical power of turbine is modelled based on Equation (4):

∆Pm(s)
∆Pv(s)

=
1

1 + τg(s)
(4)
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Lastly, the speed error of the governor is modelled based on Equation (5):

∆Pg = ∆Pref. −
∆Ω(s)

R
(5)

To reset the frequency level of the power system, the AGC is designed to adjust the
turbine speed based on the load. The two-area power system is modelled using state-space
equations, as shown in Figure 2.
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The main nomenclatures of the two-area power system are illustrated in Table 1. First,
the input signals of the AGC control are presented in Equations (6) and (7):

.
u1 = G1(e1) = G1(B1x4 + x9) (6)

.
u2 = G2(e2) = G2(B2x8 − x9) (7)

Table 1. Nomenclatures of the two-area power system.

Parameters Definition

∆f Historical change in frequency
∆Ptie Historical change in tie-line power

R Regulations of governor
G Controller gain
Pg Output power of generator

u1 and u2 Control inputs in areas 1 and 2
∆Pg1 and ∆Pg2 Historical change in output power of governor
∆Pt1 and ∆Pt2 Historical change in output power of turbine

∆P1 = D1 Load Disturbances in area 1
∆P2 = D2 Load Disturbances in area 2
K1 and K2 Constants of areas 1 and 2

τP1 and τP2 Time constants of areas 1 and 2
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Table 1. Cont.

Parameters Definition

B1 and B2 Tie-line frequency bias in areas 1 and 2
τg1 and τg2 Time constants of governor for areas 1 and 2
τT1 and τT2 Turbine time constants for areas 1 and 2

The state-space variables of the first area are presented in Equations (8)–(11):

x1 =
∫

e1 dt (8)

x2 = ∆Pg1 (9)

x3 = ∆PT1 (10)

x4 = ∆f1 (11)

while the state-space variables of the second area are presented in Equations (12)–(15):

x5 =
∫

e2 dt (12)

x6 = ∆Pg2 (13)

x7 = ∆PT2 (14)

x8 = ∆f2 (15)

Hence, the tie-line-connected power is represented by Equation (16):

x9 = ∆Ptie (16)

Finally, a single vector matrix is presented to explain the state-space equations of the
two-area power system, as shown in Equation (17):

.
x = Ax + Bu + Cz (17)

where x is the state of the power system; u is the signal control of the AGC, and z is the
load disturbance, while A and B are the parameter matrices of the system for the governor,
turbine, and load with the AGC, as presented in Equations (18)–(20):

A =



0 0 0 B1 0 0 0 0 1
0 −1

τg1
0 −1

τg1R1
0 0 0 0 0

0 K1
τp1

−K1
τp1

0 0 0 0 0 0

0 0 1
τT1

−1
τT1

0 0 0 0 1
τT1

0 0 0 0 0 0 0 B2 1
0 0 0 0 0 −1

τg2
0 −1

τg2R2
0

0 0 0 0 0 1
Tt2

−1
Tt2

0 0
0 0 0 0 0 0 K1

τp2

−K1
τp2

0
0 0 0 2πσ 0 0 0 2πσ 0


(18)
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B =



0 0
1

τg1
0

0 0
0 0
0 0
0 1

τg2

0 0
0 0
0 0


(19)

z =



0 0
0 0
0 0
−K1
τp1

0
0 0
0 0
0 0
0 −K2

τp2

0 0


(20)

2.2. Modelling of PV Generation

In this section, the modelling of a PV system is proposed, which consists of a PV
cell that is converting the irradiance of sunlight into power based on a photon-voltage
effect. The ideal cell is connected with series and shunt resistances to present the factors of
magnitude resistance and the non-optimal PN junction diode of the PV semiconductor, as
shown in Figure 3. Kirchhoff’s current law is used to find its current generation, as shown
in Equation (21):

IPV = IL − Id − Ish (21)
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The current load of the PV diode is given in Equation (22):

IL = G{ISC[1 + ka(T− TSTC)]} (22)

while the reviser current of the PV diode is given by Shockley’s equation (Equation (23)):

Id = I0

{
exp

(
qVd
nkT

)
− 1

}
(23)
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Finally, a general equation of the PV cell circuit is presented in Equation (24):

IPV = IL − I0

[
exp

(
q(VPV + I RS)

nkT

)
− 1

]
−
[

VPV + I RS
Rsh

]
(24)

A PV module is created by connecting many PV cells in series and parallel to generate
the required current and voltage from a PV system. The output power of a PV system
totally depends on the irradiance of the sun and the temperature. To model a PV system
with a hybrid power grid, the transfer function of a PV model with a derivative state-space
equation is represented by Equation (10) [25]:

GPV(S) =
KPV

TPVS + 1
(25)

where KPV is the gain of PV generation and TPV is the time constant of the PV system. The
main nomenclatures of PV generation are presented in Table 2.

Table 2. Nomenclatures of PV generation.

Parameters Definition

IPV Output PV current
IL Current generator
I0 Saturation current
q Electrical charge
n PV diode factor
k Boltzmann’s constant
T Ambient temperature

VPV Output PV voltage
Rs Series resistance
Rsh Shunt resistance

A diagram of a hybrid power system is presented in Figure 4. In the simulation of a
hybrid power system, the PV generation is connected with a classical power system as a
second source because it has more unpredictable power generation when compared with
other renewable energies.
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3. Materials and Methods
3.1. Neural Network Technique

An NN technique is usually used in industrial applications to predict a precise indica-
tion based on handling mechanisation data regarding the practical variables of an operation
system [30,31]. There are two types of NN models, feedforward NN and feedback NN,
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which are classified based on the topology of NN nodes. The first type is considered more
often since it requires less memory and training data [32]. In addition, it has a strong
capacity to identify the ideal weighting layer [33]. The structure of an NN model consists of
three layers, the input layer, hidden layer, and output layer, as shown in Figure 5. They are
connected through the weights and biases of nodes, which are calculated mathematically
using Equation (26):

sj =
n

∑
i=1

wijxj + bj (26)

where xj is the input signal, wij is the weights, bj is the biases, and n represents the number
of input signals. To learn the values of these nodes, a back-propagation (BP) algorithm is
frequently used by changing the values based on Equation (27):

wl
ji(t) = ηwl

ji(t− 1) + µ ∆wl
ji(t) (27)

where wl
ji(t) is the present training weight and wl

ji(t− 1) is the antecedent training weight,
while η is the learning rate and µ is the grading vector. A sigmoid activation function is
utilised as a threshed signal, which is presented mathematically in Equation (28):

f(s) =
1

1 + e−sj (28)
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This learning continues until the nodes of the NN model are distributed according to
the training data. In each step, the predicting signal of the NN (Tj(i)) and actual value of
the training data (Yj(i)) are calculated mathematically based on the equation of the mean
squared error (MSE), as depicted in Equation (29):

MSE =
1
n

n

∑
i=1

m

∑
j=1

[
Yj(i)− Tj(i)

]2 (29)

where m is the number of output signals. Identifying the most exemplary weights for the
learning nodes is the important step to enhance the prediction of the NN model since it
finds a low MSE value quickly.
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3.2. Bacterial Foraging Algorithm

The BF algorithm was evaluated by Passino in 2002 based on the movement of bacteria
when they search for a good location with food [34]. It is usually used in industrial
applications to find the accurate parameters of an optimal design with the minimum total
solution space, achieving a faster convergence when compared with the classical research
algorithms such as PSO, BP, and the genetic algorithm (GA) [35–40]. In a process system,
the technique divides into four parts, chemotaxis, swarming, reproduction, and elimination
and dispersal, as explained in Figure 6.

A. Chemotaxis Step
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In this stage, the bacteria search for food by swimming and tumbling using flagella.
The flagellum of each bacterium moves in one direction to swim or in different directions,
which results in swanning or tumbling movements, to research the best location for food.
These movements are modelled mathematically using Equation (30):

θi(j + 1, k, l) = θi(j, k, l) + C(i)∅(j) (30)

where θi(j + 1, k, l) represents the bacterium size at the chemotactic step, which is taken
in the random direction specified by the tumble loop, while C(i) and ∅(j) represent the
forward swimming step size and the unit direction vector, respectively.

B. Swarming Step



Energies 2023, 16, 2802 10 of 19

In the second step, bacteria try to find the best location for food by searching the
optimal way when they signal to other bacteria to swarm together in the right position.
Hence, they crowd into different groups based on the accurate path of the food location.
This process is represented mathematically by Equation (31):

JC(θ, P(j, k, l)) =
s

∑
i=1

Ji
c

(
θ, θi(j, k, l)

)
(31)

where JC(θ, P(j, k, l)) represents a time-varying cost function that is presented by adding
the cost function value to the real cost function, which must be reduced, while “S” is the
total number of bacteria and “p” is the quantity of variables in each bacterium that need to
be improved.

C. Reproduction Step

In this step, the groups of bacteria divide into two major groups based on healthy
bacteria and the healthiest bacteria, which have the minimum standard error. The first
group of bacteria die, while the second group of bacteria grow in the same location.
Therefore, the population size of the bacteria becomes constant duration this step. The
number of bacteria in this step is calculated using Equation (32):

Ji
health =

NC

∑
j=1

J(i, j, k, l) (32)

where Nc represents the number of chemotactic steps.

D. Elimination and Dispersal Step

In real life, a small group of bacteria lives due to the surrounding environment.
Therefore, they start to gradually change their location based on the consumption of
nutrients. During this process, the chemotactic progress of living bacteria is eliminated.
Conversely, the chemotaxis of bacteria assists in dispersing living bacteria to a nearby
location that has a good food source. These new positions of the healthiest bacteria are
adjusted as the current best positions. This process is continued for each of the healthiest
bacteria until completing the life cycles of bacteria to determine the best value among them,
which is considered the best solution.

4. Proposed Method

As mentioned earlier, identifying the primary weights for the learning nodes is an
important step to regulate the performance of the NN model since it finds a low MSE
value quickly. However, the BP algorithm usually fails to address the ideal initial weights
based on Equation (27). This happens when the value of ∆W is large and may lead to swift
learning with a large step, resulting in a non-converged ideal enhancement. In contrast,
small step weights may lead to belated learning with a low step, resulting in stopping
the enhancement of the NN model before it identifies the minimum error. In this work,
the ideal initial weights were identified based on the BF algorithm because it strongly
converges with research on the right solutions with the minimum time compared to the
classical research algorithms.

Initially, the training data for the historical change in the frequency response and the
type of power disturbance were collected from the standard Simulink of a power system.
Ten thousand samples were collected from the standard power system to train the PF-NN
model, as proposed in Figure 7. Then, the training data were optimised using the hybrid
BF-NN algorithm, as shown in Figure 8. Its main parameters are explained in Table 3. It
printed out the ideal initial weights after it trained the NN model for several steps. In
each step, it checked the value of MSE until the ideal initial weights were addressed. Next,
the NN model was trained using the “nn-tool” command of MATLAB. Hence, the MSE
of the BF-NN model reached a minimum value of 3 × 10−4 in epoch 11, while the MSE
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of the BP-NN model reached about 9 × 10−4 in epoch 40, as shown in Figure 9. Finally,
the proposed model was employed with an AGC for a two-area power system with grid-
connected PV generation. The input of the AGC was the error in the historical change in
the frequency response with tie-line power, while the output was the signal of the governor.
The AGC optimisation base on the PF algorithm aimed to find the accurate parameters of
the optimal design with the minimum total solution space, achieving a faster convergence
when compared with the classical research algorithms, such as the BP algorithm.
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Table 3. Parameters of BF-NN algorithm.

Parameters Value

Dimension of search space 93
Bacterial size (S) 50

Number of chemotactic steps (Nc) 5
Number of reproduction steps (Nre) 50

Number of elimination/dispersal events (Ned) 4
Probability of eliminated/dispersed 0.25
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5. Results and Discussion

To assess the proposed PF-ANN method, a hybrid power system was designed with
a grid-connected PV source based on an AGC for two areas. It was compared with the
conventional BP-NN and PID approaches. The main parameters of the Simulink model
for the hybrid power system were the 100 MW output power of the two areas; the 0.5 pu.
and 0.6 pu. speed regulation of the governors for areas 1 and 2, respectively; the 0.2 s and
0.3 s time constants of the governors for areas 1 and 2, respectively; the 4 s and 5 s inertia
constants of generators for areas 1 and 2, respectively; the 0.6 and 0.9 frequencies of the
sensitive load coefficient for areas 1 and 2, respectively; the 20 Hz and 16.9 Hz frequency
base factors for areas 1 and 2, respectively; and the 0.5 s time constant of PV generation. The
proposed AGC was tested according to four cases as follows: an initial operation condition
with and without PV generation, a load-changing disturbance for various times with and
without PV generation, a fault condition with and without PV generation, and an operation
condition for the two-area hybrid power system. The PV generation was considered during
variable conditions such as partial shading, variable irradiance, and variable temperature,
which impact the output power of a PV system.

Case 1: In the first case, the load changed from 0% to 30% in the initial operation,
while the PV generation changed from 40% to 20% at 30 s, as shown in Figure 10a. It can
be seen that the proposed AGC was the most reliable to reset the frequency response of
the power system to zero with PV generation and without PV generation compared to the
NN-AGC and PID-AGC, as seen in Figure 10b. In addition, it minimised the overshoot of
the frequency response when the PV generation changed at 30 s, as depicted in Figure 10c.
However, the transient time in the hybrid power system was greater compared with the
transient time of the conventional power system due to the unpredictable power of the
PV source.
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Case 2: In the second case, the AGC based on the hybrid PF-NN method was tested un-
der variable load disturbances at different times without and with the same PV generation
as in case one, as illustrated in Figure 11a. During this time, the proposed method offset the
frequency deviation to zero for the entire periodical test, although the oscillation continued
more than in case one, as shown in Figure 11b. Moreover, it was the better dynamic to
address the decrease in the load demand at 40 s when the PV generation decreased since
the overshoot of the frequency was minimised and it reduced the transient time compared
with the BP-NN and PID controllers, as presented in Figure 11c.
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Case 3: In the third case, a fault condition test was designed to adequately assess the
validation of the proposed method. The fault condition was designed based on the random
value of the power amplitude of 0.05 pu. and the scale variation of the frequency response
of 50 rad/second, while the PV generation changed from 40% to 25% at 40 s. In comparison
to the BP-NN and PID approaches under various state conditions, the AGC based on the
BF-NN was the most precise for finding the frequency level of the hybrid power system.
It was relatively close to zero error deviation, as shown in the Figure 12, and its zoom
point was clearer. However, the frequency response did not reach zero, specifically on the
negative side, due to an unbalanced state.
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Case 4: Finally, the proposed method was tested for the two-area power system in the
same condition state as in case 1, which was the case with PV generation. It was noticed
that the frequency responses of area 1 and area 2 of the hybrid power system were able to
avoid mismatching in the load demand when they were changed nonlinearly at various
times, as presented in Figure 13a,b. Moreover, the power of the tie-line system for the
proposed AGC was mostly stable, while the tie-line power of the BP-NN-AGC and the
PID-AGC drifted from the zero point, as shown in Figure 13c.
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Lastly, an integral of time-multiplied absolute error (ITAE) formula was used to test
the proposed AGC method numerically (33) [16]:

ITAE =
∫ tsim

0
(|∆f1|+ |∆f2|+ |∆Ptie|.t.dt (33)

where ∆ f1 and ∆ f2 are the historical change in the frequencies of area 1 and area 2, respec-
tively, and ∆Ptie is the total power of the two-area hybrid power system. Based on this
determination, the proposed method reached a steady-state error at 5.20 s under various
condition states, while the BP-NN and PID of the AGC achieved the ITAE at 8.79 s and
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13.25 s, respectively, as illustrated in Table 4. This was due to the proposed method’s
reduced MSE to accurately predict the signal in a condensed processing time.

Table 4. ITAE for BF-NN, BP-NN, and PID approaches.

Approaches ITAE

BF-NN 5.20 s
BP-NN 8.79 s

PID 13.25 s

6. Conclusions

A BF algorithm was applied to enhance the learning of a neural network model for
the automatic generation controller of a hybrid power system. It addressed the identical
initial weights of the NN quickly. To sum up, ten thousand samples of training data were
collected for the hybrid power system. Then, they were learned by the BF-NN model for
several tests. Hence, the training error of the BF-NN model reached a minimum value
of about 3 × 10−4 in 11 epochs, compared to the training error of the BP-NN algorithm,
which stopped at about 9 × 10−4 after 40 epochs. Next, the proposed AGC was tested
according to four cases: an initial operation condition with and without PV generation,
a load-changing disturbance for various times with and without PV generation, a fault
condition with and without PV generation, and an operation condition for the two-area
hybrid power system. The results showed that the algorithm offset the frequency diversion,
minimised the overshoot, and reduced the transit time of the hybrid power system in the
four condition states. Moreover, it achieved the lowest standard transit time of about 5.20 s,
while the BP-NN and PID approaches were extended to 8.79 s and 13.25 s, respectively. In
future work, an experimental hybrid power system network will be tested.
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