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Abstract: In this study, the influence of adopting Reinforcement Learning (RL) to predict the channel
parameters for user devices in a Power Domain Multi-Input Single-Output Non-Orthogonal Multiple
Access (MISO-NOMA) system is inspected. In the channel prediction-based RL approach, the Q-
learning algorithm is developed and incorporated into the NOMA system so that the developed
Q-model can be employed to predict the channel coefficients for every user device. The purpose
of adopting the developed Q-learning procedure is to maximize the received downlink sum-rate
and decrease the estimation loss. To satisfy this aim, the developed Q-algorithm is initialized
using different channel statistics and then the algorithm is updated based on the interaction with
the environment in order to approximate the channel coefficients for each device. The predicted
parameters are utilized at the receiver side to recover the desired data. Furthermore, based on
maximizing the sum-rate of the examined user devices, the power factors for each user can be
deduced analytically to allocate the optimal power factor for every user device in the system. In
addition, this work inspects how the channel prediction based on the developed Q-learning model,
and the power allocation policy, can both be incorporated for the purpose of multiuser recognition
in the examined MISO-NOMA system. Simulation results, based on several performance metrics,
have demonstrated that the developed Q-learning algorithm can be a competitive algorithm for
channel estimation when compared to different benchmark schemes such as deep learning-based
long short-term memory (LSTM), RL based actor-critic algorithm, RL based state-action-reward-state-
action (SARSA) algorithm, and standard channel estimation scheme based on minimum mean square
error procedure.

Keywords: RL; Q-learning; MISO-NOMA; KKT conditions

1. Introduction

The Non-Orthogonal Multiple Access (NOMA) system has been characterized as an
inspiring multiple access form for upcoming wireless approaches to enhance the spectral
efficiency and throughput [1]. NOMA system can develop the available resources more
realistically by efficiently, taking into consideration the users’ channel environments and
also giving support to several users with distinctive Quality of Service (QoS) needs [2].
The integration of NOMA and multiple antenna techniques can be exploited to improve
and reinforce system performance [3], therefore, inspecting Multiple Input-Single Output
(MISO) NOMA system can be a good example in the direction of characterizing the expected
upgrade in achievable data rates [4]. In downlink NOMA structure, the receiver device
can receive a multiplexing of signals transmitted to several user terminals in the NOMA
cell, thus eliminating the interference generated by other user devices come to be essential
for coordinated detection. Frequently in power domain NOMA (PD-NOMA), multiuser
detection can be handled via successive interference cancellation (SIC) [5]. In the SIC
procedure, symbols from numerous users are decoded successively on the basis of the
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Channel State Information (CSI) and power percentage designated for each user. A broad
investigation of CSI for various users is demanding because pilot data that can be exploited
in channel prediction, might interfere with symbols from other user terminals, therefore
affecting the performance of a conventional prediction scheme, such as the Minimum Mean
Square Error (MMSE) estimator [6]. Furthermore, power allocation policy is considered an
essential issue for user devices when PD-NOMA is considered [7].

Deep Learning (DL) or Reinforcement Learning (RL) techniques, have the ability to
track the differences in the channels among users and BS, thus, they are recently considered
a powerful tool for upcoming radio systems [8,9]. Hence, allocating the power factors
or estimating the CSI for user devices with the assistance of Machine Learning (ML)
algorithms, triggered the authors for more deep investigations into this field in order to
enhance the performance and detection process.

1.1. Related Works

Different techniques were introduced by authors in [10] to realize the optimal MMSE
channel estimator in the Reconfigurable Intelligent Surfaces (RIS)-based MISO system. In
the first technique, the authors suggest an analytical linear estimator to adjust the phase
shift matrix of the RIS during the training phase, and the estimator based on that technique
is shown to produce sensible accuracy compared to the least-squares method when the
statistical properties of the applied channel and noise are considered. In the other approach,
authors have expressed the channel prediction problem as an image denoising problem,
then they introduce a Convolutional Neural Network (CNN) to achieve the denoising and
predict the optimal MMSE channel parameters. Numerical outcomes have clarified that the
proposed estimator based CNN algorithm can offer improved performance compared to
the linear estimation method and low computational intricacy is preserved.

Toward enhancing the link reliability, a neural network model for a wireless channel
estimator is proposed in [11] to be used with uncoded space-time diversity procedure in
Multi Input Multi Output (MIMO) system. Based on the neural network ML structure,
a channel estimator is suggested, and a mathematical scheme is presented to derive an
optimum power transmission factors that can assist in lessening the channel prediction
bandwidth utilization. Simulation results revealed that the channel estimator based on the
proposed neural network structure can deliver an improvement in Bit Error Rate (BER) and
Mean Square Error (MSE) compared to the standard MMSE channel estimation technique.

In a massive MIMO system and on the basis of a deep autoencoder scheme, authors
in [12] performed experimental verifications on two tasks, one task for channel estimation
modelling for wireless links, and the other task is belonging to a power allocation policy.
The proposed deep learning autoencoder is also used to manage the issue raised from
inadequate training datasets that may cause critical overfitting problems and consequently
affect the model’s reliability. Results based on the autoencoder procedure clarified that the
suggested scheme could successfully enhance performance when the extent of the training
dataset is mainly within a specified threshold selection.

To get over limitations raised when standard iterative power control techniques are
utilized, such as high complexity and unnecessary latency, the work in [13] introduced a
deep learning framework to manage these issues. In the presented structure, the outdated
and partial CSI is exploited, and a Deep Neural Network (DNN) framework is created to
construct an optimization problem to boost the spectral efficiency in device-to-device com-
munication systems. User fairness and energy efficiency constraints were examined, and
simulation outcomes showed that the proposed DNN model can attain better spectral and
energy efficiency compared to the MMSE procedure when numerous channel correlation
factors are considered.

Based on CSI, the position of each user device with respect to BS, and the path loss, a
deep learning framework labelled PowerNet is introduced in [14]. The authors attempt
to prove that it is possible to avoid the time consumption involved with intricate channel
estimation procedures, and at the same time, power control can be managed. Different
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from traditional DNNs that employ a fully connected structure, the presented PowerNet
method utilizes a CNN layers to recognize the interference model through several links in
wireless networks. Simulation outcomes revealed that the suggested PowerNet scheme can
realize a stable performance without explicit channel estimation.

Recently, approximating the channel parameters or predicting the power factors with
the assistance of Reinforcement learning (RL), is investigated by many researchers. The
authors of [15] proposed an end-to-end channel estimation framework for a downlink
multiuser multiple antenna system. The authors presented an RL-based actor-critic scheme
for channel estimation without the assumption of ideal CSI. The authors mainly depend
on the agent to bring and utilize the pilot symbols into the estimation process and then
employ the estimated channel parameters to create downlink beamforming matrices. To
satisfy the purpose of maximizing the sum rate reward, network parameters are adjusted
based on the deep policy gradient method. The results proved that the suggested channel
estimation algorithm can provide convergence and stable performance under various
channel statistics and can perform better than the typical MMSE procedure when the sum
rate metric is examined.

In [16], the authors developed a Deep Reinforcement Learning (DRL) method for
device-to-device pairing to understand the correlation patterns between wireless networks.
The introduced RL algorithm is adopted to explore the joint channel selection and power
control problem for device-to-device pairing and to boost the weighted sum rate. Based
on the suggested DRL learning procedure, each device-to-device pair can make use of
the outdated and local information to understand the network parameters and perform
decisions independently. Results showed that without a global CSI, the suggested DRL
scheme is capable to attain a stable performance close to that achieved using standard
analytical approaches.

The combination between a DNN as a tool for channel prediction and an optimized
power scheme is explored in [17] for the purpose of multiuser detection in the NOMA
system. The DNN based Long Short-Term Memory (LSTM) network is developed for
channel prediction based on complex data processing. The DNN network is trained on the
basis of both the correlation between successive training sequences and the normalised
channel statistics. The efficiency of the suggested DNN based LSTM for channel prediction
is inspected using different fading models and simulation outcomes, in terms of different
performance metrics, have proved that the presented DNN scheme for channel estimation
can provide a consistent performance compared to the MMSE procedure even when cell
capacity is expanded.

1.2. Research Gap and Significance

Based on the preceding works, many of the proposed schemes that consider predicting
the channel parameters task are mainly focused on implementing several deep neural
networks (DNN) while applying RL approaches, which in turn leads to an increase in the
number of hidden layers with a massive number of neurons in each layer. The significance
of this study is to illuminate that we can eliminate the need for such DNN approaches,
and instead, we can adopt the RL based developed Q-learning algorithm to predict the
channel coefficients for each user device in MISO-NOMA cell, and at the same time, a
notable improvement in system performance and network convergence is realized. The
most prominent gain of the developed channel estimator scheme is that it can enhance the
system performance without the need for hidden layers or an external training set.

In addition, several RL algorithms have been proposed to explicitly address the issues
associated with channel state information (CSI), beamforming, and power allocation. To the
best of the authors’ knowledge, there is no study that explores the incorporation between Q-
learning algorithm for channel prediction and the power allocation policy as an integrated
scheme for multiuser detection in downlink MISO-NOMA system in fading channels.

Furthermore, it is worth mentioning that unlike deep learning algorithms, that mainly
depend on learning from a training data set, the proposed Q-learning algorithm in our
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study is developed to dynamically enhance the system performance and adjust to the
variations in the channel based on the feedback from the environment.

1.3. Contributions to Knowledge

The channel prediction problem in downlink NOMA systems was considered in
numerous works. In addition, there have been several works that apply machine learning
(ML) to handle the channel estimation task in wireless communication systems. However,
most of the current research on channel prediction in the NOMA systems based on ML
is introduced via deep neural networks. To the best of the author’s knowledge, currently,
there is no research that manages the channel approximation task in a multiuser multi-input
single-output NOMA system through an RL based Q-learning algorithm. The RL based
Q-learning algorithm is developed based on maximizing the sum rates for all users in the
network such that it can be used efficiently to predict the channel parameters for each user
in the MISO-NOMA cell.

In addition, in this work, a structured mathematical analysis is introduced to formulate
a non-complex analytical form for the power allocation for user devices in the examined
MISO-NOMA system based on boosting the sum rate of the system while considering the
constraints of the total power budget in the system, and the QoS for each user. Furthermore,
the performance of the MISO-NOMA system is investigated when both the developed
Q-learning algorithm for channel estimation and the derived power allocation scheme are
jointly implemented. In this work, the contributions can be summed up as shown:

• In this study, a framework is proposed to illuminate how RL based Q-learning algo-
rithm is developed based on maximizing the sum rates for all users in a MISO-NOMA
system in order that it can be used dynamically to predict the channel parameters for
each user in the MISO-NOMA cell.

• As a reference comparison, four further simulation environments are established.
(1) the standard minimum mean square error (MMSE) based channel prediction
scheme (Neumann et al.); (2) the DNN algorithm based on LSTM network for channel
prediction applied in [17], (3) the RL based actor-critic procedure for channel prediction
applied in [15], (4) the fourth simulation environment is dependent on applying
RL based State-Action-Reward-State-Action (SARSA) procedure (Ahsan et al. and
Mu et al.). The simulation outcomes of these environments are compared with the
results of our proposed RL based Q-learning scheme, and the results emphasized
that dependability can be assured by our developed Q-model for predicting channel
parameters even when the number of devices in the cell is increased.

• To validate the efficacy of the developed Q-learning algorithm for channel prediction,
the developed Q-model is investigated using Rayleigh and Rician fading channels.

• Evaluate the beneficial impact of cooperatively integrating the RL based Q-learning
algorithm for channel prediction and the derived power allocation scheme for the
purpose of multiuser recognition in the power domain MISO-NOMA system.

• The optimized power allocation scheme and the fixed power allocation scheme
are both compared when the developed Q-learning scheme is implemented as a
channel estimator.

The remainder of this paper is structured as follows. Section 2 describes the system
model. Analysis of the optimization problem is presented in Section 3. The optimization
framework and procedure are discussed in Section 4. The RL structure is introduced in
Section 5. Section 6 discusses the Q-learning algorithm-based channel prediction. The RL-
based Q-model architecture and channel estimation algorithm are summarized in Section 7.
The simulation environment is described in Section 8, and simulation results are presented
in Section 9. Lastly, conclusions are shown in Section 10.

Notation: bold lower-case letters denote vectors, bold upper-case letters denote matri-
ces, and lower-case letters denote scalars. The subscript on a lower-case letter xi represent
ith element of vector x. E(·) refers to the expectation and (·)T refers to the transpose of the



Sensors 2023, 23, 1383 5 of 28

vector. For two real numbers a ≤ b, [a, b] is the set for all real numbers in the range from a
to b.

2. System Model
2.1. Multiuser Environment

In this work, a multiuser environment with a single Base Station (BS) and multiple
user devices (UDs) is considered. The BS is supplied with N antennas and all the UDs are
supplied with a single antenna. The network is assumed to work with equal length time
intervals and each time interval includes one transmission, which contains either uplink or
downlink transmissions. The pilot-assisted channel prediction is considered in this work,
where pilot symbols can be identified by BS and UDs [15,17]. Each user device initially
transmits its pilot symbols to BS via an uplink channel. Then, prior to data transmission,
the BS can inspect the pilot symbols and the available network information to facilitate
estimating the downlink CSI. The main aim of this work is to model the channel prediction
task and to manage the power allocation scheme. We can refer to the matrix of downlink
channel coefficients from BS with N antennas to UD i as:

Hi = [h1i; h2i; . . . ; hNi] (1)

where hji represents the vector channel parameters from jth antenna at BS to the ith UD,
with j ∈ [1, 2, . . . , N] and i ∈ [1, 2, . . . , M], where N is the number of antennas at BS and
M is the number of users in MISO-NOMA cell. Furthermore, we can denote the data signal
transmitted to UD i as

si = [si1, si2, . . . , siK] (2)

where K is the length of the signal. Then, the matrix of all the UD’s sequences can be
expressed as

S = [s1; s2; . . . ; sM] (3)

The received kth signal at jth UD can be denoted as:

ykj = ∑N
i=1 hijski + zkj (4)

where zkj denotes the AWGN with zero mean and variance σ2 at jth UD through kth signal
duration. The received kth symbol at all UDs is:

Yk = ∑N
i=1 hiski + zk (5)

where
Yk = [yk1; yk2 ; . . . ; ykM] (6)

zk = [zk1; zk2; . . . ; zkM] (7)

Many of the current works depend on pilot symbols to approximate the uplink channel
parameters and then utilize channel reciprocity to realize the prediction of downlink
channel weights [15,18]. These schemes for CSI prediction may not be reliable, especially
in cases of inadequate channel reciprocity owing to hardware constraints. Furthermore,
this kind of estimator may introduce estimation errors in case the uplink and downlink
channel parameters are not stationary within a certain transmission.

In the developed Q-learning procedure, we plan to get assistance from the pilot
symbols, and network information to explicitly predict the downlink channel parameters.
The set of estimated channel coefficients among BS and M UDs can be indicated as

Ĥ =
[
Ĥ1; Ĥ2; . . . ; ĤM

]
(8)
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where Ĥi is the predicted matrix channel coefficients between BS that contains N antennas
and ith UD, and can be expressed as follows:

Ĥi =
[
ĥ1i; ĥ2i; . . . ; ĥNi

]
(9)

where ĥji represents the predicted channel parameters between jth antenna at BS and the
ith UD.

2.2. MISO-NOMA Environment

The fundamental idea of NOMA is to achieve non-orthogonal resource allocation
between users while increasing the processing at the receiver side [19]. With non-orthogonal
resource allocation, NOMA can attain massive connectivity and accomplish higher spectral
efficiency. Existing research on the NOMA system mainly focuses on the code domain and
power domain. In the code domain NOMA, distinct spread-spectrum codes are designated
to different users and then multiplexed over the same time-frequency resource block.
In the power domain NOMA (PD-NOMA) [19], the transmitter superimposes signals
with different power levels to be sent to several users on the shared spectrum. At the
receiver, each user can decode his own desired signal by means of successive interference
cancellation (SIC).

In this subsection, the downlink MISO-NOMA system is explored where user devices
and BS are linked by different fading channels. NOMA cell is assumed where one BS with
two antennas is implemented to assist user devices (UDs), and each device terminal has
one antenna. In PD-NOMA [19], user devices receive the superimposed signal sent from
BS which involves target and interfering signals sent through the same resources. Thus,
combining different signals supported by unique power portions is critical to distinguish
signals and strengthen the successive interference cancellation (SIC) technique. The system
structure for the basic components implemented in the examined MISO-NOMA system is
shown in Figure 1.
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In our observed MISO-NOMA cell, three user devices are considered in the cell, and
the examined user devices are identified corresponding to their fading channels and the
distances from BS. Fading channels with Rayleigh distribution are adopted to characterize
the channel model for every user. The user terminal at the boundary of the cell is realized
as a far user, while the nearest user equipment is designated as a near user terminal. The
examined cell contains three user devices and the fading path can be distinguished for
every user as follows [3]: hn ∼

(
0, d−k

n

)
for near users, hm ∼

(
0, d−k

m

)
for the middle user,

and h f ∼
(

0, d−k
f

)
for the user at the edge of the cell, where hi implies a vector represents

the fading path coefficients among BS and user i. Path loss exponent is represented by k,
and AWGN is considered with noise power indicated as σ2. In terms of channel gains, the

relation between user devices can be indicated as |hn|2 > |hm|2 >
∣∣∣h f

∣∣∣2 [20] and overall
power transmitted from BS to all users in the cell is labelled as Pt. Every user device
contains a receiving element that can activate the SIC process to get rid of signals related to
other devices with bad channel environments. In contrast, signals related to user devices
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with good link conditions may not be separated and regarded as interference. According
to the aforementioned assumptions, the superposition-coded signal x sent from BS can be
stated as follows [3,17]:

x =
√

Pt

(√
ηnxn +

√
ηmxm +

√
η f x f

)
(10)

where η f , ηm and ηn represent power factors given for a far device, middle device, and
near device separately. Furthermore, x f , xm and xn refer to the signal vectors related to far,
middle, and near users respectively. The received downlink signal at a far device in the
MISO-NOMA cell can be shown as:

y f = xh f 1 + xh f 2 + z f (11)

where h f 1 represents the channel coefficients among a far device and the 1st antenna at BS,
h f 2 represents the channel coefficients among the far device and 2nd antenna at BS and z f

is AWGN noise component at the far device with mean zero and variance σ2. The far user
is signified by weak link condition, and signal x f is usually given further power percentage
by BS where η f > ηm > ηn. The obtained signal at a far device can be formulated as:

y f =
√

Ptη f x f

(
h f 1 + h f 2

)
+
(√

Ptηmxm +
√

Ptηnxn

)(
h f 1 + h f 2

)
+ z f (12)

The 1st term in (12) implies the target signal for far device and the 2nd term indicates
the interference term from other user devices. The possible bit rate for a far device could be
shown as [3,21]:

R f = log2

1 +

∣∣∣h f 1 + h f 2

∣∣∣2Ptη f∣∣∣h f 1 + h f 2

∣∣∣2Pt(ηn + ηm) + σ2

 (13)

Typically, the near user device has a good link status alongside BS, therefore, a low
power factor can be assigned to xn, and the near user received signal can be stated as

yn =
√

Ptηnxn(hn1 + hn2) +
(√

Ptηmxm +
√

Ptη f x f

)
(hn1 + hn2) + zn (14)

In Equation (14), the 1st term represents the anticipated signal, and the 2nd term
implies interference from other devices. It can be noted from Equation (14), that the
interference can be principal since the far user may be assigned a further power percentage.
Thus, at a near device, SIC is accomplished, where direct decoding for the far user signal
x f is implemented first, then eliminated from the aggregate signal. After that, the middle
device signal xm is decoded and gets rid of it from the resultant signal and the possible rate
for a near user Rn can be shown as:

Rn = log2

(
1 +
|hn1 + hn2|2Ptηn

σ2

)
(15)

3. Optimization Problem Characterization

The key objective here is to maximize the sum rates for user devices in the MISO-
NOMA cell. Sum rate maximization is considered based on optimizing the power coeffi-
cients for each user terminal in compliance with the status of the channel between each
user and the BS. In downlink MISO-NOMA, the objective function or the sum rates for M
user devices can be formulated as [3,22]:

Rsum =
M

∑
i=1

log2

1 +
|hi1 + hi2|2Ptηi

|hi1 + hi2|2Pt ∑i−1
j=1 ηj + σ2

 (16)
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In the optimization problem, the constraints can be presented as follows:

3.1. Power Constraint

The power designated for every user device in the cell is a fraction of the whole power
Pt sent from BS, therefore the power percentage for each device must conform with [22]:

M

∑
i=1

ηi ≤ 1 (17)

where ηi is the power percentage allocated for the ith user.

3.2. QoS Constraints

In our analysis, we consider that all the user devices in the examined MISO-NOMA
cell need to satisfy a QoS requirement where the minimum rate Rmin is required to be
realised in the system [22,23], this constraint can be expressed as follows:

Log2(1 + SINRi) ≥ Rmin (18)

where SINRn is the signal-to-interference plus noise ratio for ith user and Rmin is the
minimum required transmission rate in the examined MISO-NOMA cell. The expression in
(18) can be redeveloped as follows [24]:

|hi1 + hi2|2ρ

(
ηi − (2Rmin − 1)

i−1

∑
j=1

ηj

)
> (2Rmin − 1) (19)

where ρ represents the SNR and ηj is the power percentage given for jth user device.

4. Optimization Framework

The main aims in this part include the following: (1) present the objective function
and the constraints in a standard form, (2) find a general expression for the 1st and 2nd
derivative of the objective function, (3) based on the mathematical analysis and the derived

formulas, we can inspect that ∂2RSum
∂ηi

2 is a negative function, which validates that the objective
function is a concave with distinctive global maximum, and (4) finally, we deduce the
optimal power factors for each user based on applying the Lagrange function and the KKT
necessary conditions.

On the basis of the objective function in (16) and the constraints in (17) & (19) and
the fact that there are two antennas at the BS and one antenna at each user terminal, the
standard optimization problem can be generally reformulated as follows [24,25]:

max
η

Rsum =
M

∑
i=1

log2

 |hi1 + hi2|2Pt ∑i−1
j=1 ηj + σ2 + |hi1 + hi2|2Ptηi

|hi1 + hi2|2Pt ∑i−1
j=1 ηj + σ2

 (20)

such that
M
∑

j=1
ηj ≤ 1

(2Rmin − 1)− ρ|hi1 + hi2|2
(

ηi − (2Rmin − 1)
i−1
∑

j=1
ηj

)
≤ 0

ηi ≥ 0 ∀i = 1, 2, . . . , M

In this part, the power optimisation framework is accomplished with regards to
three user devices in the MISO-NOMA cell, therefore, the examined constraints can be
represented as shown [25,26]:

ψ1(η) = ηn + ηm + η f − 1 (21)
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ψ2(η) = (2Rmin − 1)− ρ
∣∣∣h f 1 + h f 2

∣∣∣2(η f − (2Rmin − 1)(ηm + ηn)
)

(22)

ψ3(η) = (2Rmin − 1)− ρ|hm1 + hm2|2
(

ηm − (2Rmin − 1)(ηn)
)

(23)

Since the constraints ψ1(η), ψ2(η) & ψ3(η) are linear in terms of η, they are considered
convex.

Typically, to prove that the objective function RSum is concave with a distinctive global

maximum, we need to find the first derivative ∂RSum
∂ηi

and the second derivative ∂2RSum
∂ηi

2 of
the objective function [3,24]. The first derivative of the objective function can be deuced in
general form as follows [23]:

∂RSum
∂ηi

= 1
ln2

 |hi1+hi2|2Pt∣∣∣∣hi1+hi2

∣∣∣∣2Pt∑i
j=1 η

j
+σ2


− 1

ln2

M−i
∑

k=1


 (|h(i+k)1+h(i+k)2|2Pt)

2ηi+k

(

∣∣∣∣h(i+k)1+h(i+k)2

∣∣∣∣2Pt∑i+k
j=1 η

j
+σ2)


×

 1

(

∣∣∣∣h(i+k)1+h(i+k)2

∣∣∣∣2Pt∑i+k−1
j=1 η

j
+σ2)


(24)

Similarly, the second derivative of the objective function can be derived in general
form as follows [23,24]:

∂2RSum
∂ηi

2 = − 1
ln2


 (|hi1+hi2|2Pt)

2

(

∣∣∣∣hi1+hi2

∣∣∣∣2Pt∑i
j=1 η

j
+σ2)

2


−

M−i
∑

k=1

{(∣∣∣h(i+k)1 + h(i+k)2

∣∣∣2Pt

)3
ηi+k

×

 [2(
∣∣∣h(i+k)1+h(i+k)2

∣∣∣2Pt∑k+i−1
j=1 ηj+σ2)+

∣∣∣h(i+k)1+h(i+k)2

∣∣∣2Ptηi+k ]

(

∣∣∣∣h(i+k)1+h(i+k)2

∣∣∣∣2Pt∑i+k
j=1 η

j
+σ2)

2


×

 1

(

∣∣∣∣h(i+k)1+h(i+k)2

∣∣∣∣2Pt∑i+k−1
j=1 η

j
+σ2)

2





(25)

Based on the above mathematical analysis and the derived formulas, we can inspect

that ∂2RSum
∂ηi

2 is a negative function, which verifies that the objective function is a concave
with a distinctive global maximum [3,24,27]. To derive the optimal power factors, the
Lagrange function and the KKT necessary conditions can be applied [28].

L
(

ηn, ηm, η f , µ1, µ2,, µ3

)
= RSum − µ1ψ1(η)− µ2ψ2(η)− µ3ψ3(η) (26)

where µ1 , µ2, and µ3 represent Lagrange multipliers for the 3 users’ scenario.

• Optimality conditions can be written as follows [3,24,27]:

∂RSum
∂ηn

− µ1
∂ψ1(η)

∂ηn
− µ2

∂ψ2(η)

∂ηn
− µ3

∂ψ3(η)

∂ηn
= 0 (27)

∂RSum
∂ηm

− µ1
∂ψ1(η)

∂ηm
− µ2

∂ψ2(η)

∂ηm
− µ3

∂ψ3(η)

∂ηm
= 0 (28)

∂RSum
∂η f

− µ1
∂ψ1(η)

∂η f
− µ2

∂ψ2(η)

∂η f
− µ3

∂ψ3(η)

∂η f
= 0 (29)
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Given the fact that |hn|2 > |hm|2 >
∣∣∣h f

∣∣∣2, we can demonstrate that the analyzed
constraints are feasible [3] and after a few mathematical manipulations the closed form for
the power factors η f , ηm, and ηn can be deduced as follows [27]:

η f =

(
(2Rmin − 1)

2Rmin

)1 +
1

ρ
∣∣∣h f 1 + h f 2

∣∣∣2
 (30)

ηm =

((
(2Rmin−1)

2Rmin

)(
1 + 1

ρ|hm1+hm2|2

)
−
(

2Rmin−1
2Rmin

)2
(

1 + 1
ρ|h f 1+h f 2|2

))
(31)

ηn = 1−
(

ηm + η f

)
ηn = 1

(2Rmin )

((
1+ρ|h f 1+h f 2|2

(2Rmin )ρ|h f 1+h f 2|2
)
+

(
(2Rmin−1)

ρ|hm1+hm2|2
− 1

ρ|h f 1+h f 2|2
)) (32)

5. Reinforcement Learning Framework

Typically, RL is developed on the basis of a Markov Decision Process (MDP) design,
that contains basic elements [29,30]: a state space ‘S’, which is the set of states or observa-
tions in the environment and these states can be observed by the agent. An action space ‘A’,
which is the set of actions that can be selected by the agent at each state. An instantaneous
reward ‘R’, which is the direct reward that is given to the agent after selecting an action
a ∈ A to transfer to a state s ∈ S . Policy ‘P’ represents the mapping criteria to move from
the current observed state to a new state based on the action that will be taken by an agent.
Another important element in the RL process is the State-action value function Q(s, a),
which is formally described as the expectation or the average of cumulative discounted
rewards when an action a ∈ A is selected by an agent in the state s ∈ S when a certain
policy is considered. Furthermore, RL can be considered a method of understanding the
agent’s interaction in a stochastic environment by successively selecting actions during a
sequence of time periods. Therefore, the main aim of reinforcement learning is to train an
agent to carry out a certain task within an uncertain environment [30].

The interaction between the agent and the environment can be described as follows:
at each time period, the agent can recognize the observations or states in the environment,
and based on the current observation, the agent can identify and carry out a specific action.
Then, an immediate reward will be sent from the environment to the agent. The reward is a
measure of how effective the action is, when the agent performs a certain action to achieve
a specific goal [31]. Basically, at each learning time interval, the RL agent interacts with
the environment by following a particular policy that controls the transition between state
space to action space.

Based on the aforementioned discussion and as shown in Figure 2, the RL agent can be
essentially represented by two elements: a policy and a learning algorithm [32]. The policy
is the mapping criterion that chooses actions on the basis of the observations or status
observed in the environment. Usually, the policy can be represented as a function with
tunable parameters, such as DNN, while the learning algorithm constantly improves the
parameters of the policy based on observations, actions, and rewards [33]. In general, the
objective of the learning algorithm is to realize the best possible policy that can maximize
the expected cumulative long-term reward received during the task.
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6. Channel Estimation Based Q-Learning Algorithm

In the considered channel prediction scheme, it is assumed that the action spaces
are discrete, therefore, we manage to use an RL-based Q-learning procedure as one of
the candidates of RL schemes for parameters update in our examined cell [34,35]. The
Q-learning algorithm is categorized as a model-free, and off-policy reinforcement learning
procedure, also a Q-learning agent is characterized as a value-based RL agent that has
the role of updating a specific critic value function to enhance the future rewards. At a
certain state, the agent can inspect and select the action for which the expected reward is
maximized. In this section, RL based Q-learning is employed for channel prediction tasks
in the MISO-NOMA cells where pilot symbols are also adopted to assist in the channel
estimation process [36]. Therefore, it is assumed that there is coordination between BS and
user devices such that the pilot symbols can be recognized at the BS and user terminals.
In our work, we have considered the BS as the Q-learning agent, and we assume that the
BS will start estimating the channel parameters for each user after user devices complete
sending the pilot signals [37]. Therefore, in our developed RL based Q-learning algorithm
can be utilized to estimate the CSI after the BS receives the pilot signals.

The scenario for the channel prediction process based on the developed Q-learning
model can be outlined in this way [38]. Firstly, at the start of each transmission time slot,
user devices can send pilot symbols to BS across the uplink channel. Secondly, on the basis
of the developed RL based Q-learning algorithm and availability of network information
such as user’s distance and path loss, BS (agent) can predict the downlink CSI for user
devices. Thirdly, BS will generate the superposition coding signal and performs downlink
data transmission. Finally, the receiver of each user terminal will receive the downlink
transmitted data and the estimated channel parameters based on Q-learning algorithm will
be utilized to decode the desired signal. In addition, each user device can feedback the
signal-to-interference plus noise ratio (SINR) or the achieved rate to the BS to enhance the
detection process.

In this study, the main objective of the developed RL based Q-learning algorithm is
to maximize the downlink sum rate and reduce the estimation loss. Instead of estimating
the received signal, we primarily concentrate on incorporating the developed Q-learning
model in the NOMA system for the purpose of channel estimation [39]. The RL-based
Q-agent is designed to estimate the channel parameters by interacting with the environ-
ment, hence strict orthogonal pilot symbols are not required as shown in the standard
procedures. Throughout the learning iteration, the Q-learning agent decides on the ac-
tion that can enhance the approximated state-action value function Q(s, a) therefore, the
expected long-term reward can be also maximized in the neural networks. It is worth
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mentioning that when increasing the number of learning iterations, updating Q-values
becomes more sufficient, and an improved channel approximation and sum rate reward
can also be achieved [34,36,40].

In the proposed Q-learning scheme, the sum rate is presented at the learning time interval
t as Rt, hence, the instantaneous sum rate at time instant t can be shown as follows [15,34]

Rt =
M

∑
i=1

log(1 + SINRit) (33)

where SINRit is the signal-to-interference plus noise ratio of user i at time instant t and
M is the number of users in the MISO-NOMA cell. In this work, the optimum goal of the
developed Q-learning algorithm is to maximize the total discounted reward Rγ starting
from time instant t, which can be denoted as

Rγ
t =

∞

∑
k=t

γk−tRk+1 (34)

where Rγ
t is the discounted reward at time slot t, and γ is the discount factor. Substituting

the sum rate from (33) into (34), the discounted sum rate reward, can be expressed as [41]:

Rγ
t =

∞

∑
l=t

γl−t
M

∑
i=1

log
(

1 + SINRi(l+1)

)
(35)

As previously stated, the Q-learning agent is the BS, whose aim is to boost the accu-
mulative transmission sum rate. Therefore, two value functions can be inspected while con-
sidering the RL maximization problem [34,36,42], the first one is the state value function V(s)

V(s) = E[Rγ/(St = s)] (36)

and the other one is the state-action value function Q(s, a)

Q(s, a) = E[Rγ/(St = s, At = a)] (37)

where E denotes the expected value given that the agent follows a certain policy within the
applied procedure. Due to unspecified transition probabilities and limited observed states,
an optimal policy is difficult to achieve. Therefore, the Q-learning procedure is developed
to approximately achieve the best possible policy. In the developed Q-learning procedure,
the state-action value function Q(s, a) values are learned via trial and error and are updated
according to the following formula [15,34,36,42]:

Q(s, a)← (1− α)Q(s, a) + α

[
R(s, a) + γmax

a′∈A
Q
(
s′, a′

)]
(38)

where α is the learning rate, s′ denotes the new state, and a′ is the new action that will be
considered by the agent from the action space A to maximize the new state-action value
function Q(s′, a′).

7. Q-Learning Network Architecture

Basically, in data transmission, the frame transmitted includes data and pilot symbols.
It is supposed that the implemented channel model is stationary throughout one frame
transmission of data and pilot signals and the channel parameters are varying from one
frame to another. The basic architecture of the channel prediction scenario based on the
developed Q-learning procedure employed in our examined network is illustrated in
Figure 3, which primarily consists of several stages [17,43].
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algorithm.

In the first stage, initial channel parameters will be created based on a distinct Rayleigh
channel models. In the second stage, we initialize the Q table and initialize the reward
matrix R with zero values. The signal-to-interference plus noise ratio (SINR), and the
minimum required rate Rt, can be calculated for every user device in the MISO-NOMA cell
with the aid of the availability of the network information such as the initial assigned power
percentage for each user terminal, and the entire power transmitted from BS PT . Primarily,
the Q-values can be adjusted based on the difference between the assigned target rate RT
and the initial generated user rate for each device. In the third stage, the best action will be
explored and implemented by the Q agent, and then updating the values for the Q-table
that represent the observation action pair Q(s, a). Furthermore, the values for the reward
matrix R will be dynamically assigned according to the actions executed by the Q-agent.

In the fourth stage, the state action value function Q(s, a) that represent the values
for the Q-table will be modified according to a Q-learning procedure with the aid of the
following parameters, the discount factor γ, the assigned immediate reward matrix R, and
the learning rate α. Throughout the learning phase, the generated state action values Q(s, a)
will be sampled to calculate the new channel rate and at the same time update the Q-table
until the optimum rate or the terminal state is achieved.

Dataset Preparation

Essentially, path loss and the distance between every user terminal and the BS need
to be specified in the dataset to facilitate the random generation of the channel weights
for every user device in the examined MISO-NOMA network [43]. In the beginning,
pilot symbols are created, transmitted, and identified at the BS and at the receiver of
every device. Additionally, power factors for every device in the cell need to be initially
assigned. The channel weights for every device in the cell are initialized to set up the
Q-table values, and during the algorithm iterations, the Q-values are modified according to
a Q-learning procedure [34–36].

Throughout the learning process and for the sake of updating the Q-table, the discount
factor γ, learning rate α, the target rate RT , current state, and the terminal state should be
identified. In our developed Q-learning algorithm, the Q-agent will choose the next state
at random and set it as the next state, then the Q-learning agent will inspect all possible
actions available to move to the next state. Next, the Q-learning agent will carefully identify
the best action a, that satisfies the maximum value for Q(s, a) to move to the new state.
After moving to the new state, a reward value will be assigned to the agent as a measure
of how successful this transition was in order to move to the new state [44]. During the
update phase, we compute ∆Q, which represents the difference between the new generated
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value function and the preceding value function of Q(s, a). Then, update the resultant
Q(s, a) value in the Q-table according to the following formula.

Q(s, a) = Q(s, a) + α·∆Q (39)

Based on the updated Q-values in Q-table and the updated channel gain, a new
achieved rate can be calculated and compared to the target rate for each user device in
the cell. In the developed Q-learning algorithm, once the optimum rate or the terminal
state is reached, the developed Q-matrix will be employed to compose the channel taps for
each user device. The developed Q-learning procedure for channel approximation can be
summarized as presented in Algorithm 1.

Algorithm 1: Developed Q-learning Channel Prediction Structure.

1. Initialize the Q table values and initialize the reward matrix R with zeroes.

Inputs

2. Number of Iterations and the size for the channel parameters for every user device.
3. Initial distance “di” of every user device from the BS.
4. Path loss parameter “ϑ”.
5. Design random pilot symbols.
6. Initialize the random channel parameters for each user “hij” based on fading model,

j ∈ [1, 2, . . . , N] and i ∈ [1, 2, . . . , M]. N is the number of antennas at BS and M is the
number of devices in the cell.

7. Designate the power percentage “ηi” for each user.
8. Determine system bandwidth “B”, Total transmit power “PT”, and noise spectral density

“No”
9. Assign the desired channel parameters “hid” and the target rate “RT”

Procedure

10. Based on the channel gain
∣∣∣hij

∣∣∣2, total transmit power “PT”, and initial power factor for each
user “ηi”, signal to interference noise ratio “SINRi”, minimum required rate “Ri” can be
calculated for each device.

11. At each iteration, compare the initial generated rate “Ri” with the target rate “RT”.
12. Update the values for the Q-table that represent the current state and action pair Q(s, a).

Q-algorithm

13. identify discount factor “γ”, learning rate “α”, the current state, and the terminal state.
14. Choose the next state at random and set it as the next new state.
15. Inspect all possible actions “ai” to move to the new state.
16. Select the best action ai ∈ A, which satisfies the maximum value for the Q-value function

argmax Q(s, a) to move to the new state.
17 Identify the immediate Reward “R”, based on the action implemented to move to the new

state.
18. Based on the following: (1) maximum Q-value Q(s, a) obtained in (16), (2) the

corresponding reward “R”, (3) the discount factor “γ”, then Q(s, a) can be updated based
on bellman’s equation

Q(s, a)← R + γ argmax Q(s, a)
Outputs

19. Based on the updated Q(s, a) values in Q-table, the channel coefficients “hij” and channel

gain
∣∣∣hij

∣∣∣2 can be updated and a new user rate can be calculated and compared to the target
rate “RT”.

20. Compute the difference “∆Q” between the updated value function Qnew(s, a) and the
previous Q(s, a).

21. Based on (20), Q(s, a) value in the Q-table can be further updated according to
Q(s, a)← Q(s, a) + α·∆Q

22. Check whether the terminal state has been reached or the episode has been completed.
23. Compose predicted channel taps ĥi
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8. Simulation Environment

Characterization of the simulation parameters and settings is discussed in this section.
The examined downlink MISO-NOMA system contains three distinct user devices and
one BS in which the BS is supplied with two antennas and every user device in the cell is
provided with a single antenna. In the examined NOMA structure, the modulated signals
in downlink transmission are superimposed and transferred by BS to user devices via
independent Rayleigh or Rician fading channels that are influenced by AWGN with noise
power density assigned as N0 = −174 dBm/Hz and the path loss is set to 3.5. MATLAB
software is utilized as a simulation tool to satisfy the following aims, (1) inspect, character-
ize, and evaluate the performance of the developed RL based Q-learning algorithm when
implemented as a channel estimator in the considered MISO-NOMA system, (2) investigate
the reliability of incorporating the developed Q-algorithm as channel estimator scheme
with the optimized power scheme in the examined MISO-NOMA network, and perfor-
mance metrics are considered to explore the impact of this integration. (3) optimized
power allocation scheme and fixed power allocation scheme are both compared when the
developed Q-learning scheme is utilized as a channel estimator in the cell. Monte-Carlo
simulations are performed with N = 105 iterations, and at the outset of each iteration, pilot
symbols are randomly generated and recognized at the BS and each device. The main
simulation parameters are summarized in Table 1.

Table 1. Summary of Simulation Parameters.

Parameter Value

Simulation Tool MATLAB

Modulation type QPSK

Number of Users 3, [2–10]

System Bandwidth B 1000 kHz

Fading channel (Rayleigh, Rician)

Path loss exponent 3.5

Number of Iterations 105

Noise PSD N0 −174 dBm/Hz

Learning Rate α 0.1

Discount factor γ 0.9

The presented Simulation figures are generated based on the assumption that the
channel coefficients are not available at each user device. Thus, in order to examine
the effectuality of the developed RL based Q-learning procedure, and for the sake of
comparison, four further simulation environments are established, (1) standard minimum
mean square error (MMSE) based channel prediction scheme [45]; (2) DL algorithm based
on LSTM network for channel prediction applied in [17], (3) RL based actor-critic procedure
for channel prediction applied in [15], (4) the fourth simulation environment is dependent
on applying RL based State-Action-Reward-State-Action (SARSA) procedure (Ahsan et al.,
Mu et al. and Jiang et al.). Throughout the simulations, we point out to MMSE technique
as conventional NOMA, to denote that user devices are applying the MMSE technique for
predicting the channel state information (CSI) prior to reconstructing the desired signal.

In the simulation environment, NOMA parameters are generated on the basis of the
LTE standard [46,47], and channel parameters are created to initially model the Rayleigh
fading channels based on the ITU models. In our developed Q-learning algorithm, at
the end of the training episode, or if the terminal state is reached, the updated Q(s, a)
values in the Q-table will be employed as a practical channel coefficients for the user
devices. Different power percentages are initially assigned for every user device according
to channel gain and based on the existing distance from the BS. Power factors ηn, ηm, and
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η f are specified for near, middle, and far users respectively. In a fixed power allocation
setup, we designate η f = 0.65, ηm = 0.25, and ηn = 0.1. In the optimized power structure
(OPS), power factors are allocate d for user devices in proportion to the analytical formula
concluded previously for every device in Section 4. In the simulation files, the transmission
distance for each user device with respect to BS is assigned as follows: d f = 900 m,
dm = 400 m, and dn = 100 m. Data and pilot symbols are modulated using Quadrature
phase shift keying (QPSK) as the modulation format and the applied transferred power is
mostly varying from 0 to 30 dBm.

9. Simulation Results and Discussion

Simulation outcomes that clarify the comparison between the developed RL based
Q-learning algorithm and the conventional NOMA scheme that applies MMSE method to
predict the channel coefficients for each device are shown in Figure 4 in terms of BER versus
power transmitted. The predicted channel parameters using both schemes are employed
for the signal detection for each user device and the simulated results are shown where
fixed power allocation (FPA) is considered. When the developed Q-algorithm is applied
for channel estimation, each user device in the examined MISO-NOMA cell provides
a noticeable improvement in lowering the BER compared to the MMSE procedure. At
particular BER values such as 10−2, the attained power saving by the Q-learning algorithm
is within 2 dBm for far and middle user devices, while a power reduction within 1 dBm is
recorded for the near user.
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In terms of the outage probability against applied power, Figure 5 illustrates the results
for the inspected user devices in the MISO-NOMA cell when the developed Q-learning and
standard MMSE are considered as a channel estimator schemes. Far, and middle devices
simulation outcomes indicate about 2 dBm enhancement in saving power to realize 10−2

outage probability when the developed Q-learning algorithm scenario is applied compared
to the MMSE procedure. Similarly, a near user with the developed Q-learning algorithm
displays a 1 dBm improvement in power saving with respect to the MMSE scheme. This
enhancement in power saving verifies the advantage of the developed Q-model as a channel
estimator compared to the MMSE technique.
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In Figure 6, we implement three baselines for comparisons: (1) standard minimum
mean square error (MMSE) based channel prediction scheme [45]; (2) DL algorithm based on
LSTM network for channel prediction applied in [17]; and RL based actor-critic procedure
for channel prediction applied in [15]. This figure shows simulation results for the sum
rate for all the user devices in the MISO-NOMA network versus applied power. Based on
the simulation outcomes, it is evidently shown that the developed RL based Q-learning
algorithm reveals superiority over standard MMSE procedure by 12 b/s/Hz approximately.
Furthermore, the developed Q-learning scheme performs an enhancement over the DL
based LSTM procedure presented in [17] by 2 b/s/Hz. For the third benchmark in [15],
we generate the simulation environment according to the following: the actor and critic
networks are both composed of two hidden layers with 400 and 300 nodes, respectively.
The learning rate for actor and critic networks are 10−4 and 10−3 respectively. The discount
factor γ is set to be 0.9 and has a buffer size of 105 [15]. Our developed RL based Q-learning
procedure, shows superiority over the RL based actor-critic procedure at low power levels
while starting from 23 dBm the actor-critic procedure starts showing some enhancement
in terms of sum rates compared to the Q-learning process. These findings can validate
that the developed Q-learning algorithm can be a competitive scheme compared to other
algorithms that mainly depend on hidden layers to predict channel parameters.

Simulation outcomes for the sum rate against different number of users in the applied
MISO-NOMA cell are illustrated in Figure 7, where the reference power is chosen to be 1
dBm. In addition to our proposed Q-learning algorithm, three distinct channel prediction
methods are investigated as a benchmark comparison: (1) standard minimum mean square
error (MMSE) based channel prediction scheme [45]; (2) DL algorithm based on LSTM
network for channel prediction applied in [17]; and RL based actor-critic technique for
channel estimation applied in [15]. As revealed from the results, our developed RL based
Q-learning algorithm can achieve a substantial greater sum rate with respect to standard
MMSE procedure, by at least 2 b/s/Hz. It can be observed that as the number of user
devices in the cell is increasing, the suggested RL based Q-learning algorithm still shows
dominance in accomplishing higher rates with respect to MMSE and DL based LSTM
channel estimation methods. Similar to Figure 6, the RL actor-critic procedure applied
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in [15] is created in our MISO-NOMA environment with the following parameters: the
actor and critic networks are both composed of two hidden layers with 400 and 300 nodes,
respectively. The learning rate for actor and critic networks are 10−4 and 10−3 respectively.
The discount factor γ is set to be 0.9 and has a buffer size of 105 [15]. As shown in the
results, the developed Q-learning scheme is showing an advantage over the actor-critic
scheme with up to 6 users in the cell. Then, the hidden layers feature in the actor-critic
procedure starts producing some sort of improvement in the sum rates compared to the
Q-learning algorithm while the number of user terminals in the cell is increasing. Overall,
these outcomes reveal that dependability can be assured by the suggested Q-learning
algorithm even when the user devices in the cell are increased. In addition, it is worth
saying that while increasing the user devices in the system, the interference will also grow
up, thus the sum rate could be degraded.

Figure 8 illustrates simulation outcomes for the achievable capacity for every device
in the examined MISO-NOMA system when both the developed Q-learning algorithm and
MMSE channel estimation procedures are implemented. The attained rate for near devices
reveals substantial improvement by 10 b/s/Hz over far and middle users’ rates. The
superiority of the near user in terms of the achievable rate is anticipated, due to the stable
channel situation for the near user compared to other devices in the system. Additionally,
the suggested Q-learning algorithm still can deliver few visible improvements compared
to the MMSE technique for far and middle users’ environments, this slight improvement is
associated with the interference and inadequate link conditions for far and middle devices.

In addition to the three baselines comparisons implemented in Figures 6 and 7, we also
create and implement RL based State-Action-Reward-State-Action (SARSA) algorithm [48–50]
in Figures 9–11 for the purpose of more investigations and benchmark comparisons. The
features and parameters of the SARSA algorithm are adapted in order that the SARSA
procedure can be used as a channel estimator and compare the results of SARSA algorithm
with the results obtained based on our developed Q-learning algorithm.
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The Q-learning algorithm and SARSA algorithm are two efficient RL algorithms, they
are both table-based procedures with a Q-table to record equivalent Q-values of each state-
action pair. However, when the size of state space increases, it will need a considerable
amount of memory. Similar to the Q-learning algorithm, the SARSA algorithm also has
exploration and exploitation processes, and it also needs a Q-table to record Q(st, at)
value corresponding to state st and action at. Differently, the running steps of the SARSA
algorithm are as follows. First, according to the action selection scheme, the gent at the
current state st, will select the action at. Then, the agent gets an immediate reward R
based on the corresponding Q(st, at) value. Finally, st will transfer to st+1 and the agent
will choose the next action at+1. Hence, the SARSA algorithm is a bit different from the
Q-learning procedure, where the Q-value in the SARSA method is updated based on the
action at implemented by the agent at the state st. While in the Q-learning algorithm, the
action with the greatest Q-value in the next state st+1 is employed to update Q-table.

In Figures 9 and 10, where BER and outage probability metrics are simulated against
transmitted power, both our developed Q-learning and SARSA algorithms show compara-
ble performance. However, at high power levels, the suggested Q-learning algorithm shows
little improvement compared to the SARSA algorithm, which may be justified that the Q
agent deciding the greedy action, which is the action that provides the maximum Q-value
for the state. More investigations for the comparison between SARSA and the developed Q-
learning algorithms are shown in Figure 11. Sum rates versus applied power are simulated
in Figure 11, and it is noticed that the suggested Q-learning scheme provides an advantage
over the SARSA algorithm, and a power saving is recorded by 1–2 dB approximately.

The proposed Q-learning method and traditional MMSE technique will be further
examined when the Rician channel is applied for the path between BS and each user device.
Rician channel is a stochastic model for wireless transmission where the signal reaches the
receiver device via various scattered paths. Figure 12, illustrate simulation outcomes for
BER against power transmitted when the Rician fading channel is applied. In the Rician
simulation environment, we assign parameter K = 10, where K is described as the fraction
of the signal power of the line-of-sight path to the signal power of the remaining scattered
components. In addition, maximum doppler shift = 100 and sample rate = 9600 Hz are
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used. Results for the Rician channel indicate that the Q-learning algorithm still can provide
some sort of enhancement in decreasing the BER compared to the MMSE procedure. This
slight improvement can be explained by the existence of a line of site component among BS
and user terminal which can enhance the work of the MMSE procedure.
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In Figure 13, two separate simulation setups are accomplished here to produce these
results. In the first setup, the Fixed Power Allocation (FPA) structure is assigned for every
user terminal in the MISO-NOMA cell. The second setup depends on the Optimized Power
Structure (OPS) applied in accordance with the analytical power scheme that previously
concluded in Section 4. FPA or OPS will be applied in conjunction with the suggested
Q-learning algorithm as a channel estimator. Simulation outcomes in terms of BER indicate
that far and middle users show the dominance of the OPS over the FPA. It can be noted
that at specific BER values such as 10−2, the achieved power saving by OPS policy is about
5 dBm for the far user, and 1–2 dBm approximately for the middle user. For near user
results, the developed Q-learning algorithm jointly with the FPA scheme provide evident
improvement in terms of BER over OPS, this could be clarified that for near device scenario,
the stable channel condition provides more advantageous for the performance than the
assigned power.

Outage probability results versus power are shown in Figure 14, where OPS and FPA
schemes are also implemented. Both arrangements of OPS and FPA are implemented in
conjunction with the proposed Q-learning algorithm as a channel estimator in the MISO-
NOMA cell. Both far user and middle user results reveal an improvement in outage
probability where a power reduction can be observed within 1–2 dBm when OPS is applied
compared to the FPA scheme. On the other hand, near user with a Q-learning algorithm
and FPA scenario shows a considerable outage improvement compared to the OPS case. A
power reduction within 5 dBm is achieved when the FPA scheme is applied. These findings
verify the results obtained for BER in Figure 13, which indicate that the FPA scheme is more
adequate for user devices with high channel gains.



Sensors 2023, 23, 1383 23 of 28

Sensors 2023, 23, 1383  24  of  28 
 

 

 

Figure 12. BER vs. Power (Q‐learning, Conventional NOMA (MMSE) – Rician channel). 

 

Figure 13. BER vs. Power (Q‐learning, Optimization, FPA). Figure 13. BER vs. Power (Q-learning, Optimization, FPA).

Sensors 2023, 23, 1383  25  of  28 
 

 

 

Figure 14. Outage Prob. vs. Power (Q‐learning, Optimization, FPA). 

 

Figure 15. Individual rate vs. Power (Q‐learning, Optimization, FPA). 

10. Conclusions 

In this study, the influence of adopting a developed RL based Q‐learning algorithm 

to distinctly predict  the channel parameters for every user device  in  the MISO‐NOMA 

system is analyzed. In the developed Q‐learning algorithm, the Q‐model is created on the 

basis of the initialized channel statistics then updated based on the interaction between 

Figure 14. Outage Prob. vs. Power (Q-learning, Optimization, FPA).

In Figure 15, attainable rates for user devices are simulated against power transmitted
when OPS and FPA schemes are applied in conjunction with the proposed Q-learning
algorithm that is applied as a channel estimator. Results for far and middle devices point
out that OPS provides 1 b/s/Hz improvement compared to the FPA scheme. This limited
improvement might be clarified where the management of the power allocation for devices
is not necessarily sufficient enough to alleviate the influence of interference particularly for
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far and middle devices that mainly experience unstable links environments. As expected,
results for near user device reveal superiority in achieved rate with respect to middle and
far devices with at least 10 b/s/Hz. Furthermore, the results for the near user with FPA
indicate a noticeable improvement compared to OPS, which validates the results obtained
in Figures 13 and 14.
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In the end, we can further provide the analysis of the computational complexity
as follows: The complexity of the reinforcement learning algorithm mainly depends on
the size of the state space and the size of the action space [51]. According to [51], we
can approximate the computational complexity of the Q-learning algorithm as O(SAH)
per iteration, where S is the number of states, A is the number of actions, and H is the
number of steps per episode. According to the state space and action space defined in
our simulation environment, the amount of work per iteration can be approximated as
O(NMK) [51,52], where N represents a number of antennas in BS, M represent a number
of user devices in the cell, and K represents the size of channel coefficients. On the other
hand, the computational complexity for the benchmark scheme implemented in [15], is
described as follows: the sizes of the input layer, the first hidden layer, the second hidden
layer, and the output layer for each network implemented in [15] is denoted as I, h1, h2,
and U respectively. Thus, the total number of parameters in each network can be denoted
as θ = I + h1 + h2 + U, therefore, the complexity of this scheme regarding the channel
estimation task can be approximated asO(MNA(I + h1 + h2 + U) [15], where M represents
the number of user terminals and NA represent the number of antennas at BS. According
to [53], the corresponding computational complexity for the traditional channel estimation
method based MMSE can achieve a relatively low complexity, O

(
M2.37) [45,53], but, at

the cost of performance degradation. Based on the aforementioned analysis, it can be
shown that the complexity of the developed RL based Q-learning algorithm is competitive
compared to other procedures.
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10. Conclusions

In this study, the influence of adopting a developed RL based Q-learning algorithm
to distinctly predict the channel parameters for every user device in the MISO-NOMA
system is analyzed. In the developed Q-learning algorithm, the Q-model is created on the
basis of the initialized channel statistics then updated based on the interaction between the
Q-agent and the environment to maximize the received downlink sum rate and minimize
the estimation loss. The efficacy of the developed Q-learning procedure is investigated
by inspecting the performance of the proposed algorithm against different benchmark
channel estimation schemes. The first benchmark scheme is based on standard MMSE
procedure, the second approach is applying DL based LSTM network, the third scheme
is implementing RL based actor-critic algorithm, and the fourth benchmark scheme is
using RL based SARSA algorithm. In addition, the reliability of the proposed Q-learning
procedure is validated by analyzing the behavior of the developed Q-learning algorithm
in different fading channels. Furthermore, we provided a scenario that explores how the
proposed channel prediction method based on Q-learning algorithm and the derived power
allocation structure are both cooperatively employed for multiuser recognition in the MISO-
NOMA network. Simulation results emphasized that dependability can be ensured by the
developed Q-model even when the number of users in the cell is increased. Furthermore,
the simulation outcomes in terms of BER, Outage probability, and individual user rate have
demonstrated that the developed Q-learning algorithm for channel estimation jointly with
an optimized power scheme can both realize consistent performance.
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Abbreviations
The following abbreviations are used in this manuscript:

AWGN Additive White Gaussian Noise
BER bit error rate
BS Base Station
CSI Channel state information
DL Deep Learning
DNN Deep Neural Network
FPA Fixed Power Allocation
OPS Optimized Power structure
KKT Karush-Kuhn–Tucker
LSTM Long Short-Term Memory
LTE Long Term Evolution
ML Machine Learning
MSE Mean Square Error
MMSE Minimum Mean Square Error
MUD Multiuser detection
PD-NOMA Power Domain Non-Orthogonal Multiple Access
QoS Quality of Service
SIC Successive interference cancellation
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MISO Multi-input single-output
SARSA State-Action-Reward-State-Action
RL Reinforcement Learning
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