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Abstract: There are many surgical operations performed daily in operation rooms worldwide. Ade-
quate anesthesia is needed during an operation. Besides hypnosis, adequate analgesia is critical to
prevent autonomic reactions. Clinical experience and vital signs are usually used to adjust the dosage
of analgesics. Analgesia nociception index (ANI), which ranges from 0 to 100, is derived from heart
rate variability (HRV) via electrocardiogram (ECG) signals, for pain evaluation in a non-invasive
manner. It represents parasympathetic activity. In this study, we compared the performance of
multilayer perceptron (MLP) and long short-term memory (LSTM) algorithms in predicting expert
assessment of pain score (EAPS) based on patient′s HRV during surgery. The objective of this study
was to analyze how deep learning models differed from the medical doctors′ predictions of EAPS. As
the input and output features of the deep learning models, the opposites of ANI and EAPS were used.
This study included 80 patients who underwent operations at National Taiwan University Hospital.
Using MLP and LSTM, a holdout method was first applied to 60 training patients, 10 validation
patients, and 10 testing patients. As compared to the LSTM model, which had a testing mean ab-
solute error (MAE) of 2.633 ± 0.542, the MLP model had a testing MAE of 2.490 ± 0.522, with a
more appropriate shape of its prediction curves. The model based on MLP was selected as the best.
Using MLP, a seven-fold cross validation method was then applied. The first fold had the lowest
testing MAE of 2.460 ± 0.634, while the overall MAE for the seven-fold cross validation method was
2.848 ± 0.308. In conclusion, HRV analysis using MLP algorithm had a good correlation with EAPS;
therefore, it can play role as a continuous monitor to predict intraoperative pain levels, to assist
physicians in adjusting analgesic agent dosage. Further studies may consider obtaining more input
features, such as photoplethysmography (PPG) and other kinds of continuous variable, to improve
the prediction performance.

Keywords: surgical operation; analgesia nociception index (ANI); expert assessment of pain score
(EAPS); multilayer perceptron (MLP); long short-term memory (LSTM)

1. Introduction

Since the introduction of ether as an anesthetic agent, surgical operations have shown
great progress. Every day there are many surgical operations performed to treat patient
diseases, for damaged tissue repair, or of excision tumors worldwide. Since almost all
surgical procedures are painful, general anesthesia with adequate hypnosis, analgesia,
and muscle relaxation is needed [1]. It is crucial for physicians to assess pain to decide
certain treatment plans and to consider the effects of those plans. The assessment of pain

Sensors 2022, 22, 5496. https://doi.org/10.3390/s22155496 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155496
https://doi.org/10.3390/s22155496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8515-7933
https://doi.org/10.3390/s22155496
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155496?type=check_update&version=2


Sensors 2022, 22, 5496 2 of 19

can be either subjective or objective [2]. Under general anesthesia, surgical patients are
unconscious, so pain will be assessed objectively.

Painful stimulation alters the autonomic nervous system, resulting in sympathetic
activation and parasympathetic deactivation. Sympathetic activation increases heart rate
and blood pressure. In the past, clinical experience and vital signs such as heart rate and
blood pressure, were used to adjust analgesic dosages [3]. Continuously evaluating the
intraoperative pain level of surgical patients in the operation room is crucial for a physician
to determine whether the patients are in adequate anesthesia and analgesia.

Heart rate variability (HRV) is the variation over time of the period between con-
secutive heartbeats. HRV is expressed as the variation of RR interval derived from an
electrocardiogram (ECG). As well as being a good indicator of overall cardiac health and
autonomic nervous system (ANS) status, HRV can reveal how well the heart responds
to certain unpredictable stimuli. ANS is in good health when the sympathetic nervous
system (SNS) and parasympathetic nervous system (PNS) are in balance. In response to
a certain stimulus, such as pain, SNS activity increases and the PNS activity decreases,
causing an increase of the heart rate. HRV will decrease as the heart rate increases. A
relaxed condition, however, results in a decreased SNS activity and an increased PNS
activity. The HRV will increase as a result. Nowadays, there is the analgesia nociception
index (ANI), based on electrocardiogram (ECG) signal measurements of heart rate vari-
ability (HRV). Commercial products for online pain monitoring have already incorporated
this technology for evaluating pain non-invasively [4]. In clinical settings, ANI has been
applied in laparoscopic abdominal surgery [1], spinal stabilization surgery [5], and acute
postoperative pain evaluation [6]. Aside from surgical operations, it has also been used to
assess parasympathetic changes related to emotional states [7].

Artificial intelligence (AI) is defined as “a field of computer science and engineering
concerned with the computational understanding of what is commonly called intelligent
behavior, and with the creation of artifacts that exhibit such behavior” [8]. Deep learning is a
type of AI that has been widely applied in clinical fields. Applying it in the case of surgical
operations, to assess surgical pain, is also possible. Surgical pain is usually evaluated
according to medical doctors′ clinical knowledge and experience, and it usually takes a
longer time. Although there are several commercialized tools, such as ANI monitoring
devices, all clinical needs regarding pain prediction have not yet been fulfilled. The presence
of deep learning algorithms with the ability to acquire, analyze, and apply a great deal of
knowledge [9] will assist medical doctors in evaluating pain, so that any clinical decisions
can be made earlier, based on the predicted expert assessment of pain score (EAPS) during
surgical operation.

Multilayer perceptron (MLP) was developed based on biological nervous systems,
especially the human brain, and has the ability to receive information, transmit it, process
it, and finally output responses based on the information received. MLP consists of input,
hidden, and output layers. The ability of MLP to deal with nonlinearity is one of its most
important characteristics [10].

Long short-term memory (LSTM) is an algorithm that addresses the problem of the
vanishing gradients in traditional recurrent neural network (RNN), thus enabling it to
handle long-term dependencies. Recurrent connections in LSTM yield outputs that are
mapped from both the current input and the input from the previous time steps [11,12].
LSTM consists of three gates: a forget gate, input gate, and output gate, which regulate the
flow of information in the cell [13].

The evaluation of pain during surgical operations has been demonstrated in several
previous studies. M. Jeanne et al. [1] evaluated the effect of ANI on heart rate (HR) and
systolic blood pressure (SBP) under various noxious stimuli during laparoscopic abdominal
surgery. Researchers found that ANI decreased significantly in the painful stimulus group,
but HR and SBP did not change significantly, indicating that ANI was more sensitive for
evaluating pain in propofol-anesthetized patients. M. Gruenewald et al. [3] examined
several variables, including ANI, surgical pleth index (SPI), bispectral index (BIS), HR,
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and non-invasive mean arterial blood pressure (MAP) in patients undergoing elective
surgery. ANI and SPI were significantly changed at all steps of tetanic stimulation. In
propofol-remifentanil anesthesia, these two variables detected stimulation better than BIS,
HR, and MAP. In a study conducted by Hans et al. [14], intravascular volume status was
modified through a fluid challenge (FC) during neurosurgery. In this study, SPI responded
differently to FC, depending on the intravascular volume status and propofol concentration.
When FC occurred, SPI changes correlated with pulse wave amplitude, not heart rate.

There have been previous applications of deep learning algorithms in the medical field,
including MLP and LSTM. Using fifteen types of vital signs, Hu et al. [15] developed an
MLP model to predict clinical deterioration in hospitalized adult patients with hematologic
malignancies. With an 82% positive predictive value, that MLP model outperformed
VitalPac Early Warning Score (ViEWS) with a 24% positive predictive value. An MLP
model was developed by Sadrawi et al. [16] using the sample entropy of continuous
electroencephalogram (EEG) signals, electromyography (EMG), heart rate, pulse, systolic
and diastolic blood pressure, and signal quality index (SQI) as the input features for
predicting consciousness level which was scored by five medical doctors. With 10-fold
cross validation, the MLP model showed a mean absolute error (MAE) of 6.61 ± 0.15 and
outperformed the BIS value, which had an MAE of 12.31 ± 13.06. Sharifi and Alizadeh [17]
developed an MLP model using twelve factors to predict chronic kidney disease. The
proposed MLP model achieved a 98% accuracy. For predicting cardiac arrest and respiratory
failure, Kim et al. [18] used vital signs, treatment history, recent surgical history, and current
health status as the input features. For cardiac arrest and respiratory failure, the areas
under the receiver operating characteristic curve of the LSTM model were 0.886 and 0.869,
respectively. Through LSTM, Sideris et al. [19] predicted continuous arterial blood pressure
(ABP) signals from the photoplethysmograms (PPGs) of intensive care unit (ICU) patients.
The LSTM model resulted in an accurate estimation of SBP, with a root mean square error
of 2.58 ± 1.23.

ANI, which is derived from HRV as the representation of parasympathetic activity, is
a commercialized tool for evaluating pain. Although painful stimulation, in a theoretical
context, will activate sympathetic activity and reduce parasympathetic activity, in reality,
not only painful stimulation results in the activation of sympathetic activity. Other factors
are also able to influence the sympathetic–parasympathetic balance, so in real applications
at the hospital, evaluating pain only based on patient’s HRV is not enough. In this case,
medical doctors also consider other factors besides HRV to determine EAPS, which is
the true gold standard of pain scoring, and to adjust anesthetic dosage in the operation
room. Therefore, considering their excellent performance in pattern recognition, which
is required by medical doctors in the operation room to obtain a better prediction model,
in our current research, we applied deep learning algorithms, such as MLP and LSTM,
to predict the gold standard of pain score, instead of directly using ANI for evaluating
pain level. These algorithms are the most suitable for application on the input features,
which are in the form of time series data; whereas another type of deep learning algorithm,
a convolutional neural network (CNN), is more suitable for application on image data.
Moreover, a deep learning algorithm, with its activation function, is capable of dealing with
non-linearity, so it is suitable for the regression task in the prediction of EAPS. Compared to
deep learning algorithms, traditional machine learning algorithms are more suitable for use
in classification and linear regression tasks. Since it does not support nonlinear regression,
the prediction results only appeared in the form of a flat horizontal line and could not
fluctuate at all when traditional machine learning algorithms were used in our research.

2. Materials and Method
2.1. Patients and ECG Signal

In 2015, 142 patients underwent surgical operations at National Taiwan University
Hospital (NTUH). ECG signals were recorded using a Philips IntelliVue MP60 physiological
signal monitoring device, at a 512-Hz sampling rate. A computer is used to store the
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recorded data from that device. In total, 62 patients were excluded: 35 patients′ surgical
time was less than 60 min, 15 patients had improper shape of ECG signal, and 12 patients
had incomplete or missing ECG signal and EAPS label data. Finally, 80 patients were
included in this research. The surgical duration varied from one to five hours.

2.2. Expert Assessment of Pain Score (EAPS)

The nurses observed the entire surgical process and took notes regarding clinical
events and signs, such as HR and ABP measurements, types of hypnotics and analgesics,
patient′s movements, and unusual responses. The expert assessment of pain score (EAPS)
was calculated separately after the surgical operation was finished by five medical doctors
(Doctors A, B, C, D, and E) with professional experience in surgical operations. A higher
EAPS indicates a more painful surgery. Based on their clinical knowledge and experience,
these five doctors interpreted the notes or recordings provided by the nurses to determine
the EAPS. The patients were not in contact with them in this case. EAPS curves were
plotted on recording papers by hand. These papers were then scanned and digitized into
numerical data, with one data point of EAPS for every second [20].

2.3. Calculation of ANI

The flowchart shown in Figure 1 summarizes the steps for calculating ANI. As the first
step, the R peaks of the ECG signal were detected, in order to obtain the RR interval data
(RR series). An ECG signal is often disturbed, causing sudden changes in the measured
heartbeat, either extremely fast or extremely slow. When this kind of artifact occurs, the
RR series produces incorrect values. Thus, the RR series must be filtered using an efficient
algorithm for filtering the RR interval series [21]. RR series were filtered using auto-adaptive
thresholds in a moving window, with a window size of 5 samples, to detect artifacts. Lower
and upper thresholds (m− 2σ and m + 2σ) were set for the first through fifth samples in
the RR series, with m and σ denoting the mean and standard deviation of the entire series,
respectively. Any samples from the first five samples below the lower threshold or above
the upper threshold were substituted with the mean of the whole RR series. Then, the
following thresholds were applied from the sixth sample until one sample before the last.

1. RRi < m5 − 2σ5 and RRi+1 > m5 + 2σ5
2. RRi < 0.75RRi−1 or RRi+1 < 0.75RRi−1
3. RRi > 1.25RRi−1

where

RRi: the i-th sample of the RR series
m5: the mean of the previous five samples
σ5: the standard deviation of the previous five samples

Samples that satisfied one of the above conditions were marked as disturbances and
replaced by the mean of the previous five samples of the RR series. To detect the disturbance
in the last sample, we applied the following conditions:

1. RRi < 0.75RRi−1
2. RRi > 1.25RRi−1

The last sample was replaced by the mean of the previous five samples if it met one of
the conditions above. Figures 2 and 3 compare the RR series before and after filtering.
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After filtering, the RR series data were resampled to 8 Hz using linear interpolation,
resulting in an equidistant RR series. We then isolated the RR series into 64-s moving
windows, with 512 samples per window and a 1-s moving period. Using Equation (1), the
mean of the RR series in each window was calculated.

M =
1
N

N

∑
i=1

RRi (1)

where M is the mean of the RR series in the window and N is the number of samples in the
window. To form the mean-centered RR series, Equation (2) was applied to each sample in
the window, to subtract its mean.

RRi = RRi −M (2)
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After that, the norm value S in every window was calculated by applying Equation (3)
with the mean-centered RR series [22,23].

S =

√√√√ N

∑
i=1

RRi
2 (3)

The mean-centered RR series was then divided by the norm value by applying
Equation (4), to form the normalized RR series.

RRi =
RRi

S
(4)

In order to comply with the ANI formula, the RR series was downsampled in every
window to 1 Hz.

Parasympathetic tone was correlated with ANI measurement, and this tone occurred
only at high frequencies of the RR series. A Daubechies wavelet transform with four coeffi-
cients was used to band-pass filter the normalized RR series from 0.15 Hz to 0.5 Hz, yielding
a time-scale representation of the RR series at different wavelet energy levels. The RR series
with high frequency (RRHF) was then taken from the wavelet components 3 to 5. RRHF
amplitude was expressed in normalized units (n.u.) and ranged from −0.1 to 0.1 n.u. [4].
Calculation of the area under the RRHF curve was done to assess the parasympathetic tone.
To perform the calculation, the local maxima and minima in the RRHF curve were first
detected. A plot of the upper line connected all maxima points, while a plot of the lower
line connected all minima points, as shown in Figure 4. The 64-s RRHF window was then
divided into four 16-s sub-windows. In each sub-window, the area under the curve (AUC)
was calculated. ANI was calculated using the minimum AUC (AUCmin), which was the
smallest AUC of the four, by applying Equation (5) [4,23].

ANI =
100 × (5.1 × AUCmin + 1.2)

12.8
(5)
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A denominator of 12.8 was used in the formula because the maximum possible value
for total AUC was 0.2 n.u. × 64 s = 12.8 s. In addition, the coefficient and constant
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of 5.1 and 1.2, respectively, were used in the formula because both of them had been
empirically determined in a general anesthesia dataset of more than 100 patients, in order
to keep the coherence between the visual effect of respiratory influence on the RR series
and the quantitative measurement of ANI [23].

ANI ranges from 0 to 100, similarly to EAPS, but with the opposite trend, as shown in
Figure 5. A high ANI indicates high parasympathetic activity or low sympathetic activity,
which is associated with low pain. Conversely, a low ANI indicates low parasympathetic
activity or high sympathetic activity, both of which are associated with high pain. Next, by
subtracting ANI from 100, the opposite value (100 − ANI) was obtained. Figure 6 shows
that the opposite of ANI had the same trend as EAPS, so it was used as the input feature
for training the deep learning models.
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2.4. Deep Learning Models

The flowchart in Figure 7 summarizes the steps for building, comparing, and selecting
the best deep learning model.
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2.4.1. Holdout

The holdout method was used to build the initial deep learning models and compare
their performance, by manually selecting 60 patients for training, 10 for validation, and 10
for testing. Figure 8 illustrates the holdout method.
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2.4.2. Data Standardization

Scaling numerical input features to a standard range with centered data distribution
can improve the performance of an AI algorithm. The input feature of the training, vali-
dation, and testing sets, which was the opposite of ANI (100 − ANI), were standardized
prior to training the deep learning models. The standardization was begun by calculating
the mean and standard deviation of the training set. For the training set, the input feature
was subtracted with the calculated mean and divided by the calculated standard deviation,
resulting in a mean of zero and a standard deviation of 1. Additionally, the validation and
testing sets were also standardized in the same way, but the mean and standard deviation
were calculated from the training set, not the validation and testing sets. Equation (6) was
used to standardize the input feature.

z =
x− µ

σ
(6)

where
z: The standardized data
x: The data to be standardized
µ: The mean of the training set
σ: The standard deviation of the training set

2.4.3. Data Windowing

Each window of the input feature consisted of 10 data points, and each window moved
for 10 s. As illustrated in Figure 9, the windows did not overlap because the moving period
was 10 s. In every window, the EAPS at the current time (at t) was predicted based on the
last 10 s of 100 − ANI (from t− 9 to t), as shown in Figure 10. Table 1 shows the proportion
of the data in the holdout method after windowing.
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Table 1. Data proportion in the holdout method.

No. Set Number of Patients Number of Windows

1 Training 60 47,554
2 Validation 10 9031
3 Testing 10 9374
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2.4.4. MLP Model

Both the training and validation sets were assigned with a batch size of 32. After that,
all batches of the entire data were brought into the MLP model. As illustrated in Figure 11,
there were ten input nodes (based on ten time steps of 100 − ANI) and one output node in
the MLP model. There were two hidden layers between the input and output layers, with
32 neurons each. The prediction curve did not fluctuate at all when less than 32 neurons
were used in each hidden layer, so only a flat line could be generated as the prediction
results. The prediction curve deviated farther from the target label curve when more than
32 neurons were used in each hidden layer or more than two hidden layers were used in
the architecture, so the mean absolute error (MAE) increased. To maintain the scale of the
data, batch normalization was applied in each hidden layer. In those two hidden layers and
the output layer, sigmoid activation function was used. Before training the model, all labels
were divided by 100, in order to comply with the sigmoid activation function (which ranges
from 0 to 1). To make sure the model′s predictions were in line with the range of EAPS
(0–100), the results were multiplied back by 100. The parameters were updated during
training using Adam optimizer with a default learning rate of 0.001. Adam was chosen
as the best optimizer for this MLP model because the other types of optimizers could not
achieve the minimum validation loss. Following that, 30 epochs were run for training and
validation. To see how well the model performed in predicting for different patients, the
trained MLP model was used to predict the testing set.
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2.4.5. LSTM Model

An LSTM cell has the mechanism that is illustrated in Figure 12. First, the forget gate
has the capability of selecting which information to discard and which information is kept
in the memory. In this gate, a sigmoid function is applied to the combination between the
previous hidden state, which is the short-term memory of LSTM, and the current input, to
yield an output value between 0 and 1. The closer the output value is to 1, the higher the
probability of keeping the information. Then, the previous cell state, which is the long-term
memory of LSTM, is multiplied by the output from the forget gate. Next is the input gate,
where there are sigmoid and hyperbolic tangent functions applied to the previous hidden
state and the current input. The output from both functions are multiplied with each other,
then the multiplication result is summed with the cell state outputted by the forget gate,
to yield the updated cell state. After that is the output gate, where a sigmoid function is
applied to the combination between the previous hidden state and the current input. The
updated cell state is then passed to a hyperbolic tangent function. Last, the output from the
hyperbolic tangent function is multiplied by the output from sigmoid function, yielding
the new hidden state.
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In the LSTM model used in this research, the training and validation sets were assigned
with a batch size of 32. Next, the 10-s windows of 100 − ANI were brought into the LSTM
model, which had two stacked LSTM layers between the input and output layers, as
illustrated in Figure 13. Each LSTM layer consisted of 32 LSTM cells. The prediction
curve did not fluctuate at all when less than 32 cells were used in each LSTM layer, so
only a flat line could be generated as the prediction results. When an LSTM layer had
more than 32 cells or when more than two LSTM layers were used in the architecture,
the prediction curve fluctuated excessively and its position deviated farther from the
target label curve, resulting in a higher MAE. To maintain the scale of the data, batch
normalization was applied to each LSTM layer. The output layer was activated using
sigmoid function. Additionally, Adamax optimizer was used to update the parameters
during training, with a default learning rate of 0.001. The validation losses obtained from
other types of optimizer did not differ significantly from the validation losses obtained from
Adamax optimizer during the trials. The prediction results, however, only appeared as
flat lines when other optimizers were used. In other words, for this LSTM model, Adamax
was the only optimizer that could generate fluctuations in the prediction curve. Following
this, 15 epochs were run for training and validation. More than 15 epochs of training and
validation did not lead to any improvement, because the model never converged, which
meant the validation loss always stayed close to the training loss. In other words, the
validation loss curve never intersected the training loss curve.
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2.4.6. Model Selection

The prediction MAE and shapes generated from the MLP and LSTM models using the
testing set were compared. The best model was determined based on the prediction MAE
and the shape of the prediction curves.

2.4.7. Seven-Fold Cross Validation

The best model was obtained. By using that model, 7-fold cross validation was applied,
as shown in Figure 14. In this method, the testing set is the same as that used in the holdout
method, so the remaining 70 patients were rotated between the training and validation
sets. As for the validation set, 10 patients were randomly selected for each fold. Patients
who had already entered the validation set in a fold did not enter the validation set in
subsequent folds. As a result, they were included in the training set in other folds. To
determine the best fold, the fold with the lowest prediction MAE was chosen.
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3. Results
3.1. Analysis of EAPS Data

In order to check whether the distribution of EAPS data from the five medical doctors
was similar, analysis of variance (ANOVA) was performed. The interval plot in Figure 15
shows that Doctor D gave a significantly lower EAPS, with a P-value of less than 0.05.
Therefore, Doctor D′s EAPS was excluded. Accordingly, for every patient, there were four
EAPS values from four medical doctors (Doctors A, B, C, and E), as shown in Figure 16. To
train the deep learning models, the average of the four EAPS values was assigned as the
target label.
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Figure 16. An average of the EAPS values from the four physicians.

3.2. MLP and LSTM Models in the Holdout Method

According to the holdout method, training and validation loss curves were obtained
from both MLP and LSTM models after 30 and 15 epochs of training and validation,
respectively, as shown in Figures 17 and 18. Each loss value was multiplied backwards by
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100, to match the real range of EAPS. Table 2 shows the training and validation losses of
both models in the last epoch.
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Figure 18. Training and validation losses of the LSTM model in the holdout method.

Table 2. Training and validation losses of the last epoch in the holdout method.

Variable MLP LSTM

Training Loss 2.847 2.859
Validation Loss 2.933 3.194

After training the models, the testing set (the other 10 patients) was predicted using
the trained models. In Table 3, the MAEs between the predicted and the real EAPS are
presented, and in Figure S1, the prediction results are visualized.

MLP had a lower overall prediction MAE than LSTM, as shown in Table 3. In addition,
the prediction curves of MLP appeared to be more appropriate than those of LSTM, as
shown in Figure S1. Therefore, MLP was selected as the best model to predict EAPS.
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Table 3. Prediction MAEs from both models using the holdout method.

Testing Patient MAE of MLP MAE of LSTM

1 2.716 3.238
2 2.622 3.493
3 3.422 2.271
4 2.118 1.886
5 2.127 2.768
6 1.875 1.948
7 1.933 2.242
8 2.735 3.076
9 2.214 2.671
10 3.138 2.731

Overall (mean ± SD) 2.490 ± 0.522 2.633 ± 0.542

3.3. Seven-Fold Cross Validation with MLP

Table 4 shows the training and validation losses for all the folds in the last epoch. As
with the previous method, the trained model of each fold was used to predict the testing
set. The overall prediction MAE of each fold is also presented in Table 4.

Table 4. Training and validation losses in the last epoch in the seven-fold cross validation method,
along with the overall prediction MAE.

Fold Training Loss Validation Loss Overall Prediction MAE
(Mean ± SD)

1 2.832 2.863 2.460 ± 0.634
2 2.793 3.195 3.075 ± 0.879
3 2.795 3.738 3.041 ± 0.673
4 2.869 2.640 2.542 ± 0.711
5 2.754 3.114 3.031 ± 0.948
6 2.804 3.799 3.209 ± 0.820
7 2.788 2.830 2.581 ± 0.711

The first fold had the lowest prediction MAE, and, therefore, was chosen as the best
fold, according to the results shown in Table 4. Figure S2 shows the prediction result of
each patient from the first fold MLP model. As a final step, Table 5 calculates the overall
MAE of the seven-fold cross validation method.

Table 5. The overall MAE of the seven-fold cross validation method.

Fold MAE

1 2.460
2 3.075
3 3.041
4 2.542
5 3.031
6 3.209
7 2.581

Overall (mean ± SD) 2.848 ± 0.308

4. Discussion

As shown in Figure 17, the MLP model trained for 30 epochs converged very well using
the holdout method. The validation loss curve approached and intersected the training
loss curve in several of the last epochs when it reached the minimum validation loss. As
shown in Figure 18, the LSTM model only required 15 epochs to reach low validation loss,
unlike the MLP model. With the LSTM model, the validation loss curve approached, but
did not intersect the training loss curve. As a result of this study, although LSTM is capable
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of memorizing sequences and selecting which information to memorize and to forget, it
did not outperform MLP in predicting EAPS. With the MLP model, the prediction curves
were better shaped. As shown in Figure S1, the MLP model’s prediction curves showed
a better fluctuation shape, while the LSTM model’s prediction curves showed a stiffer
fluctuation shape.

As illustrated in Figures S1 (the left side) and S2, the predicted EAPS values were
able to approximate the real EAPS values determined by the physicians most of the time,
using either the MLP model in the holdout or the seven-fold cross validation method.
Furthermore, the predicted EAPS also followed the real EAPS fluctuations. A decrease
or an increase may occur in the prediction curves. However, it is not always possible to
predict the fluctuations perfectly, similarly to the real EAPS. The prediction curves can
increase or decrease earlier or later than the actual EAPS. In addition, the predicted EAPS
was good at following slight fluctuations, but not very good at following sharp fluctuations.
A sharp increase or decrease in the real EAPS was only followed by a slight increase or
decrease in the predicted EAPS. Furthermore, in the beginning of the surgical procedure,
the extremely high real EAPS was not followed by an extremely high predicted EAPS.
Those imperfections in the prediction results occurred because the predicted EAPS was
based on the ANI value, which refers to HRV, whereas the actual EAPS was not only based
on HRV, but also the clinical experience of the physicians and the events that occurred
during surgery, which means other factors remain that have not yet been covered in the
input features of the current research.

Based on the actual and predicted EAPS values, the overall MAEs between the pre-
dicted and the real EAPS values were 2.460 ± 0.634 for the first fold MLP model and
2.490 ± 0.522 for the holdout method. According to the low MAEs, most of the predicted
EAPS values were close to the actual ones. Furthermore, there were some points with a
higher MAE between the predicted and real EAPS values, such as at the beginning and
during sharp increases and decreases of the real EAPS. However, these parts of the data
represented a minority, so the MAEs did not increase due to them.

Moreover, the overall MAE of the seven-fold cross validation method was 2.848 ± 0.308.
The quality of the MLP model was quite consistent in all folds, due to its low standard
deviation of 0.308, which means there were no big differences between the MAEs of
all folds.

5. Conclusions

Providing continuous monitoring with objective pain assessment during surgery could
help physicians to determine adequate analgesic dosages. In this study, we compared the
performance of MLP and LSTM algorithms in predicting EAPS. MLP had a lower prediction
MAE and a better shape of prediction curves compared to LSTM. In the future, further
studies could consider other features such as photoplethysmography (PPG) and other kinds
of continuous variables, so that the input features would be more complete in representing
the factors that medical doctors use to determine EAPS, and the prediction results would
be closer to the medical doctors’ gold standard.
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