
 
3rd International Conference on Natural Hazards & Infrastructure 

5-7 July 2022, Athens, Greece 

 

From Micro to Large Scale Models: Porosity Homogenization Schemes 

for DEM Simulations 

 

Moris Kalderon1, M.Sc., DIC 
National Technical University of Athens 

 

Edward Smith, Ph.D. 
Brunel University London 

 

C. O’Sullivan, Ph.D. 
Imperial College London 

ABSTRACT 

There are many applications where require in-depth understanding of the underlying dynamics of the fluid-

particle interaction and predict phenomena which are detrimental for human lives. For example, internal 

erosion in dams and beneath flood embankments can be occurred due to the variation in the total head of the 

fluid causing particle motion, slope instabilities can be triggered due to fluid flows and liquefaction can be 

caused from an increase in the fluid pressure. All these failures are triggered by actions at a micro-scale, 

constituting the coupled CFD-DEM models the optimum numerical tool in the hands of an engineer; DEM is 

used to resolve the soil as particles and CFD is applied for the depiction of the fluid phases. A critical issue on 

DEM-CFD simulations is the selection of a suitable homogenization coarse graining scheme, in other words a 

method to translate particulate mechanics into continuum mechanics. Within this contribution two novel 

porosity coarse-graining strategies are proposed including a Voxel method where a secondary dense grid of 

“pixel-cells” is implemented adopting a binary logic for the coarse graining and a Hybrid method where both 

analytical formulas and pixels are utilized. The proposed methods are compared with four porosity coarse-

graining schemes that have been documented in the literature, including the Particle Centroid Method (PCM), 

an Analytical method, a method which solves the diffusion equation and an approach which employs averaging 

using kernels. A detailed comparison is then presented for all six schemes considering “accuracy”, 

“smoothness” and “computational cost”. Optimal parameters are obtained for all six methods and 

recommendations for coarse graining DEM samples are discussed. 
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INTRODUCTION 

There are many reasons why one might want to upscale, homogenize or Coarse-Grain (CG), the particle 

information available from a Discrete Element Method (DEM) simulation to obtain a continuum field. For 

instance, to predict the liquefaction-induced settlements and the corresponding structural damages of the 

superstructure (Bullock et al., 2019; Forcellini, 2020; Xue & Yang, 2014) or study improvement methods to 

reduce the liquefaction potential of sands subjected to a shaking (Lopez-Caballero & Modaressi-Farahmand-

Razavi, 2013). Also, reasons may include the assessment of internal erosion in dams and beneath flood 

embankments due to the variation in the total head of the fluid, as well as scour and sand production in oil 

reservoirs (Foster et al., 2000; O’Sullivan, 2011). These include a desire to interpret the simulation data within 
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the continuum mechanics framework in which much of our understanding of material behaviour has evolved, 

the need to upscale data for use in multi-scale modelling approaches or where a DEM code is coupled with a 

Computational Fluid Dynamics (CFD) solver. This last application, coupling DEM-CFD simulations, is the 

motivation for this study. Specifically, this contribution is relevant to the unresolved coupling approach where 

the fluid is modelled at a scale much larger than individual particles, so the particle information is treated in 

an average manner. 

There are many CG methods documented in the literature such as the Particle centroid method (PCM) 

(Hoomans et al., 1996; Kawaguchi et al., 2000; Tsuji et al., 1993), Approximate methods (Darmana et al., 

2005; Khawaja et al., 2012; Tomiyama et al., 1997; Wu et al., 2009), the Particle meshing method (PPM) 

(Peng et al., 2016), Satellite point methods, (Boyce et al., 2014; Clarke et al., 2018; Fitzgerald et al., 2019; 

Mema et al., 2019), Exact methods (Bnà et al., 2015; Freireich et al., 2010; Strobl et al., 2016; Wu et al., 2009), 

Porous particle methods (PPM) (Jing et al., 2016; Kloss et al., 2012; Link et al., 2005), Statistical kernel 

methods (Glasser & Goldhirsch, 2001; Goldhirsch, 2010; Imole et al., 2016; Roy et al., 2019; Xiao & Sun, 

2011; Zhu & Yu, 2002), Diffusion based methods (Sun & Xiao, 2015a, 2015b) etc. In the current study, six 

CG algorithms are assessed (Kalderon et al., 2021). These are the Particle centroid method (PCM), an 

Analytical method, a Diffusion-based, a Kernel-based method together with two new approaches, the Voxel-

based method and the Hybrid method. The averaging algorithms are initially presented both in two and three 

dimensions. Then, the calibration process and the results of the prior tests are illustrated, followed by a 

comparison in terms of accuracy, smoothness and computational cost. Finally, the advantages of the proposed 

Voxel and Hybrid methods are provided in the concluding section. 

 

 

METHODOLOGY 

Any coarse-graining algorithm must consider particles moving freely in a specific domain, so that their 

centroid can be located at any random position within each Eulerian cell. Four different cases can be identified.  

In Category A particles are completely contained within the cell; in this case the whole area / volume of the 

particle is attributed to the specific cell. Category B considers the particles that intercept the boundary between 

two cells and as a result the particles are divided into two segments. For Category C the particles overlap the 

intersection of 4 (2D) or 8 (3D) Eulerian cells. The fourth category refers to the case where particles intersect 

the external boundaries of the sample (Category D). The applications considered in this study used periodic 

boundaries, consequently the portion of the particle located outside the sample boundaries is essentially 

attributed to the opposite Eulerian cell. Hereinafter, the proposed CG schemes are described and are 

mathematically formulated, together with versions of the most widely used CG schemes found in literature.  

Implemented Schemes 

Particle Centroid Method (PCM): This is the simplest but crudest approach to obtain a porosity coarse-grained 

field. The whole particle area is attributed to the cell containing the particle’s centroid even when the particle 

extends beyond the cell boundaries. The porosity of a Eulerian cell using the PCM is as follows: 

𝑛 =
𝑉𝑐𝑒𝑙𝑙 − ∑ 𝑉𝑖

𝑝𝑁𝑝

𝑖=1

𝑉𝑐𝑒𝑙𝑙
 (1) 

where  𝑉𝑐𝑒𝑙𝑙 is the volume of the Eulerian cell, 𝑉𝑖
𝑝
 is the volume of particle 𝑖 and 𝑁𝑝 is the number of particles 

contributing to the cell considered. 

Analytical method: This method calculates the exact overlap volume (or area in 2D) of a particle and a cuboid 

bin by integrating the sphere’s (or circle’s in 2D) equation. Referring to Figure 1 the integral limits are defined 

as the intersection of the planes defining the bin boundaries and the particle. This method assumes that the 

smallest dimension of the bin is larger than the circle’s diameter and the implication of this assumption is that 

a 2D particle (circle) can be in contact with at most two mutually perpendicular bin walls or planes and a 

sphere with at most three. The mathematical formulations used are based on Strobl et al. (2016), Richards 

(1995) and Freireich et al. (2010). In two dimensions the overlapping area Acap is calculated from Equation (2) 

and the segment A4  by Equation (3): 
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𝐴𝑐𝑎𝑝 = r𝑝
2cos−1 (

r𝑝 − ℎ

r𝑝
) − (r𝑝 − h)√2r𝑝h − h2 

(2) 

𝐴4 = ∫ ((√r𝑝
2 − (𝑥 − 𝒙𝑐)2) + 𝒚𝑐)

𝐿2

𝐿1

𝑑𝑥 
(3) 

where r𝑝 is the particle radius, ℎ is the disk segment height, 𝑥𝑐 , 𝑦𝑐 are the particle centroid coordinates and 

𝐿1, 𝐿2 are the limits of the integral along the 𝑥 − 𝑎𝑥𝑖𝑠. The remaining segments are calculated by simple 

subtractions and the portions are allocated to the corresponding bins. 

The first step to estimate each partial volume is to calculate the total sphere volume and the spherical cap 

volume, see Equation. Next the volumes due to edge overlap and corner overlap are determined according to 

Equations (4), (5), (6). Finally, after all the portions are known the volumes are allocated to the relevant bin.  

 

𝑉𝑐𝑎𝑝 =
1

3
𝜋ℎ2(3r𝑝 − ℎ) 

(4) 

 𝑉𝑒𝑑𝑔𝑒 =
2

3
𝑎𝑏 √r𝑝

2 − 𝑎2 − 𝑏2 + 2r𝑝
3 tan−1 (

𝑏√r𝑝
2−𝑎2−𝑏2

r𝑝𝑎
) +

2

3
r𝑝

3 tan−1 (
𝑎√r𝑝

2−𝑎2−𝑏2

r𝑝𝑏
) −

1

3
(3𝑏r𝑝

2 − 𝑏3) tan−1 (
√r𝑝

2−𝑎2−𝑏2

𝑎
) −

1

3
(3𝑎r𝑝

3 − 𝑎3) tan−1 (
√r𝑝

2−𝑎2−𝑏2

𝑏
) 

(5) 

 𝑉𝑐𝑜𝑟𝑛𝑒𝑟 = 𝑉𝑠𝑒𝑔𝑚.7 =
1

2
𝑉𝑒𝑑𝑔𝑒 −

1

6
[6𝑎𝑏𝑐 − 2𝑎𝑐√r𝑝

2 − 𝑎2 − 𝑐2 − 2𝑏𝑐√r𝑝
2 − 𝑏2 − 𝑐2 −

(3𝑎r𝑝
2 − 𝑎3) tan−1 (

𝑐

√r𝑝
2−𝑎2−𝑐2

) + 2r𝑝
3 tan−1 (

𝑏𝑐

r𝑝√r𝑝
2−𝑏2−𝑐2

) + (𝑐3 −

3𝑐r𝑝
2) tan−1 (

𝑏

√r𝑝
2−𝑏2−𝑐2

) − (3𝑏r𝑝
2 − 𝑏3) tan−1 (

𝑐

√𝑅2−𝑏2−𝑐2
) + 2r𝑝

3 tan−1 (
𝑎𝑐

r𝑝√r𝑝
2−𝑎2−𝑐2

) +

(3𝑐r𝑝
2 − 𝑐3) tan−1 (

√r𝑝
2 −𝑎2−𝑐2

𝑎
)] 

(6) 

where 𝑟𝑝 is the particle radius and 𝑎, 𝑏, 𝑐 are the distances between the particle centroid and the corresponding 

bin face. The detailed descriptions of each scenario and the derivation of the equations are presented in 

Kalderon (2017). 

Kernel method: This method is based on the generation of a Eulerian field, from multiplication of particle 

positions by a weighting, generated using a Gaussian or Lucy function, so the particle density is distributed or 

“smoothed” over the support of the weighting function. Porosity is calculated indirectly and a heuristic 

approach is taken to explain the procedure. The volume fraction can be calculated in arbitrary positions on the 

sample’s domain as a summation of the particles’ distributed volumes included in the zone of influence of the 

kernel. Here, a Gaussian kernel is allocated to each particle and porosity of each Eulerian cell is estimated 

based on the contribution of each particle volume. Consequently, the smeared volume is a function of the 
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distance between the particle and the Eulerian cell, as well as the shape of the kernel. Figure 1b shows 

schematically the process that porosity of Eulerian cell (𝑖, 𝑗 + 1) is calculated. The contribution of particles 1, 

2, 3 to the volume fraction (𝑉𝑖,𝑗+1
𝑐𝑒𝑙𝑙 ) depends on the distance (𝑟) between the particle and the cell centroid, 

which should be less than the kernel’s bandwidth (𝑏𝑘) (𝑟𝑘 ≤  𝑏𝑘). The contribution of a particle to a cell is 

given by Equation (7) for the 2D case and Equation (8) for the 3D case, assuming a Gaussian kernel in both 

cases.  

𝑉𝑖
𝑐𝑒𝑙𝑙,𝑘 =

𝑉𝑖
𝑝

𝜋𝑏2
𝑒

−
(𝒙−𝒙𝑐,𝑘)

𝑇
(𝒙−𝒙𝑐,𝑘)

𝑏2  (7) 

𝑉𝑖
𝑐𝑒𝑙𝑙,𝑘 =

𝑉𝑖
𝑝

(𝜋𝑏2)3/2
𝑒

−
(𝒙−𝒙𝑐,𝑘)

𝑇
(𝒙−𝒙𝑐,𝑘)

𝑏2  (8) 

where, 𝑉𝑖
𝑐𝑒𝑙𝑙,𝑘

 is the volume “contributed” by particle 𝑘  to Eulerian cell 𝑖, 𝑉𝑖
𝑝
is the volume of particle 𝑘, 𝑏 is 

the kernel bandwidth, 𝒙 a vector of the Eulerian cells coordinates and 𝒙𝑐,𝑘  a vector of particle coordinates. 

Diffusion based method: This method was established to smooth the porosity CG field that is produced by the 

PCM method and increase accuracy. Porosity essentially is redistributed by solving the diffusion equation with 

initial conditions being the Eulerian cell porosity values derived from the PCM. The initial conditions 

correspond to time 𝑡, where porosity redistribution has not occurred yet and the final conditions correspond to 

time 𝑡 + 𝛥𝑡, i.e after diffusion is completed, see Figure 1c. Time is introduced to describe a pseudo-timestep 

between the initial and final conditions and is used only to solve diffusion equation.  

𝜕𝑛(𝑟, 𝑡)

𝜕𝑡
= 𝐷 ∇2𝑛(𝒙, 𝑡) (9) 

Where, 𝑛 is the diffused quantity at location 𝒙 and time 𝑡 and 𝐷 is the diffusion coefficient. The numerical 

finite difference method is adopted to solve the diffusion equation, hence in 2D dimensions for ∆𝑥 = ∆𝑦 = ∆𝑠  

and 𝑎 = 2𝐷
∆𝑡

∆𝑠2  we have: 

𝑛𝑖,𝑗
𝑡+∆𝑡 = 𝑎(𝑛𝑖+1,𝑗

𝑡 + 𝑛𝑖−1,𝑗
𝑡 + 𝑛𝑖,𝑗+1

𝑡 + 𝑛𝑖,𝑗−1
𝑡 − 4𝑛𝑖,𝑗

𝑡 ) + 𝑛𝑖,𝑗
𝑡  (10) 

Similarly, in three dimensions for ∆𝑥 = ∆𝑦 = ∆𝑧 = ∆𝑠 and  𝑎 = 𝐷
∆𝑡

∆𝑠2 the solution is: 

 𝑛𝑖,𝑗,𝑘
𝑡+∆𝑡 = 𝑎(𝑛𝑖+1,𝑗,𝑘

𝑡 + 𝑛𝑖−1,𝑗,𝑘
𝑡 + 𝑛𝑖,𝑗+1,𝑘

𝑡 + 𝑛𝑖,𝑗−1,𝑘
𝑡 + 𝑛𝑖,𝑗,𝑘+1

𝑡 + 𝑛𝑖,𝑗,𝑘−1
𝑡 − 6𝑛𝑖,𝑗,𝑘

𝑡 ) + 𝑛𝑖,𝑗,𝑘
𝑡  (11) 

The diffusion coefficient 𝑎 describes the rate of diffusion and is used to in place of the constants 𝐷, 𝛥𝑡 and 

𝛥𝑆, which have no physical meaning here. Selecting a suitable value for coefficient 𝑎 is the main challenge 

associated with using this approach. 
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Figure 1. (a) (left) Indicative 

segment segregation and 

depiction of the integration 

limits in the Analytical 

method (left) 2D and (right) 

3D. (b) Illustration of 

distributed volumes in 

Kernel method. (c) 

Schematic explaination of 

diffusion prossess. 

 

Proposed schemes 

Voxel method: The Voxel method was developed in the current study as an alternative to the Analytical 

method. The algorithm is based on the discretization of the whole sample domain introducing a dense 

secondary grid of small regular “pixel” cells. The density of the grid can be user-defined to control the 

resolution so that accuracy increases as the voxel size reduces. Two loops are used to scan the 2D sample in 

both horizontal and vertical direction in order to define the location of each voxel in respect to the particle's 

location. Similarly, in 3D samples the same procedure is applied with an additional loop to cover the extra 

dimension. Voxels that are covered by particles (particle voxels) are assigned with one and those which are 

covered by fluid (fluid voxels) are assigned with zero. The application of this method requires the secondary 

mesh to be few times smaller than the mean particle diameter. Figure 2α illustrates with ex and cross symbols 

the voxel cells centroids of the Eulerian cell (𝑖 + 1, 𝑗 + 1), where crosses denote the fluid voxels and exes the 

Particle voxels. In other words, a binary logic is applied to determine whether a specific voxel centroid is 

covered by a particle. The distance of each voxel to the nearest cell corner is then calculated and the volume 

of the particle voxel is added to the corresponding Eulerian cell. 

Hybrid method: The Hybrid method can be considered as a special case of the Voxel method, where the 

Analytical method is employed for trivial calculations. Specifically, the area/volume of the particles is 

calculated analytically only when the circle/sphere overlaps one cell face or is entirely inside one Eulerian cell. 

Otherwise, when the sphere overlaps more than two cell faces, and the analytical approach becomes more 

complex, the calculation is achieved by pixel/voxel summation. In two dimensions the area of the circular 

particle is approximated by applying a second dense square grid extending one diameter from the particle’s 

centre and the area is calculated by summing the area of the boxes that are shaped between the grid lines and 

are located within the circle’s area. Similarly, in three dimensions the volume of the spherical particle is 

approximated by applying a cuboid grid and the volume is calculated by summing the volume of the 

corresponding boxes. An example of the method is described in Figure 2b, where the volume of particle voxel 

1 is allocated in Eulerian cell (𝑖, 𝑗 + 1), the volume of particle voxel 2 in Eulerian cell (𝑖 + 1, 𝑗 + 1), the 

volume of particle voxel 3 in Eulerian cell (𝑖, 𝑗) and the volume of particle voxel 4 in Eulerian cell (𝑖 + 1, 𝑗). 
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(α) (b) 

Figure 2. (a) Depiction of Voxel method double grid. The voxels that their centre is located in the 

particle area are counted and then allocated to the corresponding bins. (b) Shematic of Hybrid 

method function when the particle is intercepted by more than two fluid cells. 

 

 

A PRIORY CALIBRATION OF THE ALGORITHMS 

In order to fairly compare the methods, the optimal performance of each method must be determined by tuning 

the parameters such as voxel size, kernel bandwidth or diffusion coefficient. This can be thought of as a 

calibration of the various methods to ensure a fair comparison and achieve accuracy, smoothness, and 

computational cost. Computational cost is determined by implementation of all the methods in MATLAB® 

(2010), an interpreted language which allows us to focus on just algorithmic cost with no compiler 

optimization. Naturally, some bias may be introduced by the author as the algorithms have not been extensively 

optimized, however all approaches have been implemented using the same programming language and 

operating system. 

The accuracy of the results of each implementation is judged relative to the Analytical method, which 

calculates the exact fraction of each sphere inside a cubic cell. The relative error between the two porosity 

fields is defined as follows: 

𝐸𝑟𝑟𝑜𝑟 (%) =
1

𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠
∑

|𝑛𝑐𝑒𝑙𝑙,𝑖
𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 − 𝑛𝑐𝑒𝑙𝑙,𝑖

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
|

𝑛𝑐𝑒𝑙𝑙,𝑖
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

∗ 100 

𝑁𝑜 𝑐𝑒𝑙𝑙𝑠

𝑖=1

 (12) 

where  𝑛𝑐𝑒𝑙𝑙,𝑖
𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 is the porosity value of the Eulerian cell 𝑖 calculated by the examined method, 𝑛𝑐𝑒𝑙𝑙,𝑖

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
 is 

the porosity value of the Eulerian cell 𝑖 calculated by the Analytical method (reference method) and 

𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠 is the total number of cells considered in the sample.  

As stated in the introduction achieving a “smooth” averaged field from the DEM is an important factor to 

achieve a numerically stable CFD simulation. Smoothness is measured as the gradient of porosity between the 

adjacent cells as follows: 

𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =
1

𝑁𝑜 𝑐𝑒𝑙𝑙𝑠
∑ ∇𝑛(𝒙)𝑖

𝑁𝑜 𝑐𝑒𝑙𝑙𝑠

𝑖=1

 (13) 

where 𝒙 = 𝑥, 𝑦 in two dimensions and 𝒙 = 𝑥, 𝑦, 𝑧 in three dimensions. The computational cost is assessed as 

the CPU time required to obtain the porosity field for an identical system run on the same computer with timing 

obtained as the average of several repeats.  

The Kernel, Diffusion, Voxel and Hybrid methods have user-specified parameters which determine how well 

they perform based on competing accuracy, smoothness, and computational cost considerations. For the Kernel 

methods this is the adjustable bandwidth "𝑏”, while the Diffusion method has diffusivity coefficient included 

in the parameter 𝛼, see Equation (11). Similarly, the number of pixels can be varied in the Voxel and Hybrid 

methods along with the number of Eulerian cells selected for the sample. According to this calibration process 
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the number of Eulerian cells is studied indirectly and is defined as 𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠 = (
𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

𝑋∗2𝑟𝑝
𝑚𝑎𝑥 )𝑑, where 

𝑟𝑝
𝑚𝑎𝑥 is the largest particle radius, 𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 is the width of the Sample (square or cubic samples are 

considered), 𝑑 is the number of dimensions (2D versus 3D) and 𝑋 is a multiplier that controls the size of the 

cells. To this end, the 𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠 is different for each sample but the multiplier 𝑋 allows us to directly 

compare samples of different size. A multiplier 𝑋 greater than 1 is proposed in order to avoid Eulerian cells 

fully occupied by particles, therefore the following five multipliers were adopted in this study:  𝑋 =2, 𝑋 =3, 

𝑋 =4, 𝑋 =5 and 𝑋 =6.  

The 2D schemes were calibrated based on five samples of disks generated by Summersgill (2009) using the 

two-dimensional DEM code, PFC-2D (Itasca Consulting Group Inc., 2008). The prescribed analysis density 

was 𝜌=2600kg/m3, while the rest of the parameters are summarized in Table 1.  

 

Table 1. Summary of the 2D samples simulation parameters 

Sample 

Maximum 

number of 

discs 

Distribution 

for Disc 

generation 

Maximum 

radius (m) 
Wall length (m) 

Disc 

Friction 

Coefficient 

10000gr12p5fb0a 10000 Gaussian 2.5 500 0 

10000gr15fb1b 10000 Gaussian 5 1000 1 

10000gr120fb0a 10000 Gaussian 20 4000 0 

10000ur15fb0b 10000 Uniform 5 850 0 

100000gr15fb0p5b 100000 Gaussian 5 3300 0.5 

The 3D DEM data were generated using a modified version of LAMMPS (Plimpton, 1995) by Shire (Shire, 

2014). The eight cubic samples were created within periodic boundaries and the Hertz-Mindlin contact model 

was adopted. The simulation parameters are Poisson ratio 𝜈=0.3, shear modulus 𝐺=27GPa and particle density 

𝜌=2670kg/m3.  

Table 2 summarizes the simulation of parameters of the linearly samples and Table 3  summarizes the 

simulation of parameters of the bimodal samples. Pictures of the two and three dimensional samples are 

provided in Figure 3.  

 

Table 2. Summary of the 3D linearly graded samples simulation parameters. 

Sample 

Coefficient 

of 

uniformity 

(𝑪𝒖) 

Interparticle 

friction 

coefficient 

(𝝁) 

Sample 

characterization 

Number of 

particles 

Average 

particle 

radius (m) 

Wall 

length 

(m) 

L1.2a 1.2 0 Dense 8262 0.000117 0.00223 

L1.2b 1.2 0.1 Medium 8262 0.000117 0.00223 

L1.2c 1.2 0.3 Loose 8262 0.000117 0.00223 

L3a 3 0 Dense 22600 0.000148 0.0049 

L3b 3 0.1 Medium 22600 0.000148 0.0049 

L3c 3 0.3 Loose 22600 0.000148 0.0049 

L6a 6 0 Dense 59183 0.00015 0.0076 

L6b 6 0.1 Medium 59183 0.00015 0.0076 

L6c 6 0.3 Loose 59183 0.00015 0.0076 
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Table 3. Summary of the 3D bimodal samples simulation parameters. 

Sample 
Size ratio, 

𝒅𝒄𝒐𝒂𝒓𝒔𝒆/𝒅𝒇𝒊𝒏𝒆 

Fines content, 

𝑭𝒇𝒊𝒏𝒆(%) 
Number of 

particles 

Average 

particle 

radius (m) 

Wall length 

(m) 

B2a 2 20 307 0.000666 0.0046 

B2b 2 25 367 0.000636 0.0047 

B2c 2 30 443 0.000613 0.0048 

B2d 2 35 531 0.000594 0.0049 

B6a 6 20 5588 0.000182 0.0043 

B10a 10 20 25376 0.000103 0.0043 

 

 

Figure 3. Images of the samples considered for the calibration: (a) 10000gr12p5fb0a, (b) 10000gr15fb1b, 

(c) 10000gr120fb0a, (d) 10000ur15fb0b, (e) 100000gr15fb0p5b (f) B2a, (g) B2b, (h) B2c, (i) B2d. (j) B6a, 

(k) L1.2a, (l) L1.2b, (m) L1.2c. 

 

Figure 4 gives an estimation of the accuracy and computational time of the Voxel and Hybrid methods as an 

average of the studied samples for Eulerian cell size multipliers from 𝑋=2 to 6. In other words, every sample 

is tested for different number of Eulerian cells and accuracy is depicted as the average error of these tests, 

whilst the maximum and minimum deviation is presented with error bars. A fitting curve is added to provide 

an estimation of the expected error, where 𝑃𝑖 is the number of Pixels along each direction of the sample, 𝑃𝑖 =

√𝑃𝑖𝑥𝑒𝑙𝑠
2

 in 2D and 𝑃𝑖 = √𝑃𝑖𝑥𝑒𝑙𝑠
3

 in 3D. 

(k) (l)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(m)
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Figure 4. Calibration of (a) 2D Voxel method (b) 3D Voxel method (c) 2D Hybrid method (d) 3D 

Hybrid method. (left) Error (%) vs Number of 𝑃𝑖, (right) Computational time vs Number of 𝑃𝑖. 

 

As far as the Voxel method is concerned a parametric investigation is conducted for four (4) different 

resolutions. These are 𝑃𝑖 =100, 𝑃𝑖 =300, 𝑃𝑖 =500 and 𝑃𝑖 =1000 in the 2D samples and 𝑃𝑖 =20, 𝑃𝑖 =50, 

𝑃𝑖 =100 and 𝑃𝑖 =200 in the 3D samples. Figure 4α shows that when the resolution is low, for example  

𝑃𝑖 =100 the average error is 53%, although the computational time is just 6 sec. On the other hand, when 

resolution is increased to 𝑃𝑖 =300 or 𝑃𝑖 =500 the average error reduces to 15% and 10%, respectively. 

Unfortunately, the computational cost increases approximately two order of magnitude compared to the low-

resolution case, reaching 140 sec. for 𝑃𝑖 =300 and 590 sec. for P𝑖 =500. In case of the 3D samples, see Figure 

4b, porosity CG field cannot be accurately represented by the lowest resolution (𝑃𝑖=20, average error=24%), 

although it looks appealing due to the tolerable computational time (8 sec.).. Here, the target is to keep a 

balance between accuracy and computational time. Thus, a resolution of 𝑃𝑖 =300 for the 2D samples and 

𝑃𝑖 =50 for the 3D samples is suggested.  
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The performance of Hybrid method in two dimensions 

is assessed for the four (4) resolutions depicted in 

Figure 5. From visual observation, it is apparent that 

when the coarse grid is utilized only a crude 

approximation of the particle is obtained, while a more 

accurate representation of the particle shape is 

available when more than 𝑃𝑖 = 50 is used. The 3D 

Hybrid method is studied for 𝑃𝑖 = 5, 𝑃𝑖 =
20 𝑎𝑛𝑑 𝑃𝑖 = 50, see Figure 4d. When resolution 

increases from 𝑃𝑖=5 to 𝑃𝑖=20 the average error 

reduces from 2% to 1.2 %, while for a higher 

resolution, i.e. 𝑃𝑖=50 the error is estimated 0.4%, yet 

the computational time is one order of magnitude 

higher than before. Consequently, a resolution of 

𝑃𝑖=50 is considered the most suitable selection for the 

2D samples and 𝑃𝑖=20 for the 3D samples. 

Next, the selection of a suitable bandwidth (𝑏) for the 

Kernel method is examined by introducing a 

normalized bandwidth (𝑏/𝛥𝑠), where Δs = 𝑋 ∗
2𝑟𝑝

𝑚𝑎𝑥. Accuracy, which is translated to minimum 

error compared to the Analytical method, is the 

optimisation criterion, as computational time is not 

affected by the kernel size. Specifically, the optimization algorithm seeks the normalized bandwidth value with 

minimum error, ignoring any local minima, for each 𝑋, which as was stated previously, controls the size of the 

cells. Figure 6a illustrates the optimum 𝑏/𝛥𝑠 values with the 𝑋 multiplier for (𝒍𝒆𝒇𝒕) the 2D and (right) 3D 

method, revealing that the bandwidth size can be correlated with the size of the Eulerian cell. 

 

Figure 6. Selection of optimal user-specified parameters in case of the (a) Kernel method (b) Diffusion 

method, (left)2D and (right) 3D implementations. 

 

Figure 5. Illustration of particle images produced 

by the Hybrid method for resolution (a) 𝑃𝑖 =5 

(5x5 pixels), (b) 𝑃𝑖 =10 (10x10 pixels), (c) 

𝑃𝑖 =50 (50x50 pixels) (d) 𝑃𝑖 =100 (100x100 

pixels). 

(α) (b)

(c) (d)
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 Thus, a trendline is introduced in both plots, as optimum, that describes the relationship between 𝑏/𝛥𝑠 and 𝑋 

multiplier based on the average values defined in each case. Furthermore, the data suggest that an average 

normalized bandwidth (b/ΔS)2𝐷 = 1 may be used across a range of 2D samples and a bandwidth (b/ΔS)3𝐷 =
0.4 may be used across a range of 3D samples without severely compromising the method’s accuracy. 

Applying the same logic to Diffusion method, porosity of every sample was initially estimated for several 

values of the smearing parameter, 𝛼, ranging from 0.01 to 0.3. Then the parameter 𝛼 that revealed the minimum 

error for each studied case was plotted against the multiplier 𝑋. Referring to Figure 6b, the data accumulate 

around specific values of 𝛼 for both the 2D (left) and the 3D (right) implementations. Specifically, in case of 

the 2D samples the average accuracy improves for 𝛼 values between 0.15 and 0.22 and in case of the 3D 

samples between 0.10 and 0.15. Finally, it is observed that the selection of a suitable 𝛼 is not severely affected 

by the 𝑋 multiplier, hence  𝛼2𝐷 = 0.17 can be used across the 2D samples and 𝑎3𝐷=0.12 can be used across 

the 3D samples. 

 

 

DISCUSSION 

Having established the parameters and characteristics of each algorithm, a comparison is carried out among 

the presented methods in terms of error (%), computational cost and smoothness. Sample 10000gr12p5fb0a is 

selected as the reference sample for the comparison of the 2D CG schemes and sample L1.2a is selected for 

the 3D CG schemes. For both cases a Eulerian cell size multiplier 𝑋=3 is assumed. The calibration parameters 

of the methods are summarized in Table 4 for the 2D and Table 5 for the 3D. 

 

Table 4. Summary of the parameters (sample - 10000gr12p5fb0a) used in the comparison of the 2D methods 

Kernel method 

(𝒃/𝜟𝒔) 

Diffusion based method 

(𝜶) 

Hybrid method (pixel 

grid) 

Voxel method (pixel 

grid) 

1 0.17 50x50 300x300 

 

Table 5. Summary of the parameters (sample – L1.2a) used in the assessment of the 3D methods 

Kernel method 

(𝒃/𝜟𝒔) 

Diffusion based method 

(𝜶) 

Hybrid method 

(pixel grid) 

Voxel method (pixel grid) 

0.4 0.12 20x20x20 50x50x50 

 

A direct comparison among the 2D methods is presented in the bar chart of Figure 7α. The PCM is found the 

least accurate (approximately 17% error) and the Hybrid (approximately 0.3% error) together with the 

Analytical the most accurate methods. The Diffusion based method manages to increase the PCM accuracy by 

almost 3 times, giving an error of 6.1%, while the Kernel method performed even better reporting 3.8% error. 

The Voxel method is ranked fourth in terms of accuracy, presenting 8.8% error. Likewise, the computational 

cost varies significantly amongst the implemented methods. The most cost-efficient ones are the PCM and 

Analytical, while the Voxel method is over 3,000 times more computationally demanding. The Diffusion based 

method is 3 times slower and both the Hybrid and the Kernel 26 times slower than the PCM. Regarding the 

smoothness metric PCM demonstrates the highest gradients (worst case) and the Kernel method the lowest 

(best case). The Analytical and Hybrid methods show comparable smoothness values which are 70% reduced 

compared with the PCM. The Diffusion method is the second-best method in terms of this metric, reducing the 

PCM average gradient to more than half.  

The comparison among the 3D algorithms is illustrated in Figure 7b. The Voxel method yielded the highest 

error, approximately 8%, which is attributed to the low resolution that was selected. In contrast, the Hybrid 

method displays the greatest accuracy, only 1.4% error, while the performance of the Kernel and Diffusion 

methods is again remarkable displaying 1.7% and 2.5% errors respectively. In terms of computational time the 

Voxel method is again the most demanding, requiring almost 7,000 times more computational time compared 

to the PCM and Analytical method. The Hybrid method is the second most demanding, cost wise, however is 
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still two orders of magnitude faster compared to the Voxel. All methods managed to reduce the high gradients 

observed at the PCM smoothness tests, with the Kernel method to be proven the most appealing as an average 

reduction of 76% is attained. 

 

 

Figure 7. Illustration of the Error (%), computational time (s), smoothness of each method when applied 

to (a) the 2D sample 10000gr12p5fb0a (b) the 3D sample L1.2a. 

 

CONCLUSIONS   

In this study, six different porosity CG schemes were reviewed and applied to 2D and 3D systems of circular 

/ spherical particles with periodic boundaries. This work was motivated by the inability of the most commonly 

used Particle centroid Method to accurately reproduce the required CG of porosity and similar fields. The 

schemes studied were PCM an Analytical method, a Kernel based method, a Diffusion based method, together 

with two novel methods called the Voxel and Hybrid methods. The optimal user-defined parameters needed to 

apply the methods were selected by considering “accuracy”, “smoothness” and “computational cost” based on 

available two and three-dimensional DEM-CFD samples.  

In conclusion, it was shown that the Kernel and Diffusion based methods required calibration in terms of the 

kernel width and diffusion magnitude, before any further evaluation is conducted, but once tuned they can 

provide cost-effective and reasonable representations of coarse-grained fields for the studied samples. The 

proposed Voxel and Hybrid methods showed high accuracy, giving the user control over accuracy against 

computational cost, an advantage that is not included in any other method found in Literature. The main 

drawback identified is the high computational resources required in case of the Voxel method, especially when 

3D implementations are assessed.  A wider range of samples could be examined in order to confirm a universal 

validity of the suggested parameters. All studied schemes demonstrated a more accurate depiction of the 

calculated fields compared to the PCM with varying degrees of smoothness and ease of implementation in 

CFD solvers.  
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